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Abstract

Center plays an important role in the structure of group theory, algebraic geome-

try, structure of ring theory as well as the structure of semiring. There has been

significant works on the center of semiring that had notable impact in derivation of

semiring. In this thesis we survey and introduce some concepts of different types of

centers of semirings. We aim to shed light on aspects of the structural properties of

different class of centers of semirings. Here different characterizations for that cen-

ters of semirings have been done. Further some algebraic characterizations of certain

classes of centers semirings are studied.

First, the concept of Birkhoff center of c-semiring is discussed. The concept of

Birkhoff center of semigroup was intoduced by Swamy and Murti. In this thesis we

have extended the Birkhoff center to a c-semiring S as the set of elements in S which

are of the form (1, 0) under some factorisation of S as direct product of c-semiring S1

with identity element 1 and a c-semiring S2 with zero element 0 and study various

properties of the Birkhoff center of c-semiring. We have also showed that Birkhoff

center of c-semiring froms a distributive lattice.

Let S be a semiring. An element e ∈ S is called an almost idempotent if e+e2 = e2.

The set of all almost idempotents of a semiring S will be denoted by Ec(S). This

was introdced by M.K. Sen and A.K. Bhuniya. The impetus behind the formation of

the proposed class of center of semiring called almost idempotent center of semiring,

which is the generalization of the set of almost idempotents and the center of semiring.

We have analyzed the center of the semiring and established that almost idempotent

center of semiring forms a distributive lattice in a certain condition.

Also we have studied some special center-like subsets which we call h-center of
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semiring, k-center of semiring, generalized center of semiring and hypercenter of semir-

ing. Besides we have characterized that centers of semirings. Also we have estab-

lished relationship among the Birkhoff center of c-semiring, almost idempotent center

of semiring, k-center of semiring, generalized center of semiring and hypercenter of

semiring.

Let S be a semiring with center Z(S). If S is commutative then S = Z(S). This

result have inspired us to develop a new type of semirings called almost idempotent

central semiring, h-central semiring, k-central semiring, generalized central semiring

and hypercentral semiring in which the whole semiring coincide with its correspond-

ing center. Also we have studied some structural properties of those semirings. At

long last, we have determined the connection between the almost idempotent central

semiring, the h-central semiring and the k-central semiring.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Ring theory plays a key role in advanced algebra both in theory and application.

Advanced algebra is characterized by its emphasis on the systematic investigation

of abstract algebraic structures. A numerous research works have been done on

different generalizations of ring theory. Among them, study of semirings has become

a great interest of the recent researchers. Semirings, from an algebraic perspective,

provide the most natural common generalization that unifies the theories of rings and

distributive lattices. The concept of semirings was first introduced by Vandiver [67]

in 1934. However, the developments of the theory in semirings have been taking place

since 1950. Semirings abound in the Mathematical world around us. Semirings hold

a fundamental place within the realm of Mathematics. Indeed the first mathematical

structure we encounter the set of natural numbers is a semiring. Other semirings arise

naturally in such diverse areas of mathematics as combinatories, functional analysis,

topology, graph theory, Euclidean geometry, probability theory, commutative and

noncommutative ring theory, optimization theory, automata theory, formal language

theory, the mathematical modeling of quantum physics and parallel computation

system. The study of semiring structures has gained considerable attention from

various researchers, including F. Pastijin, Y. Q. Guo, M. K. Sen, K. P. Shum and
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

other contributors (See [9], [24], [50], [54], [58], [59], [60]).

The center of a group plays a fundamental role in the study of group properties

and has various applications in different areas of mathematics. The center of a group

G is the set of all those elements of G which commutes with all elements of G. The

concept of a center was extended to rings, where the center Z(R) of a ring R is defined

as the set of elements that commute with all other elements in the ring. The center

Z(S) of a semiring S refers to a subset of the semiring that consists of elements that

commute with every other element of the semiring. So, the concept of a center in

semiring theory emerged as a generalization of the notion of a center in ring theory.

Moreover, the center of a semiring plays a crucial role in the study of various algebraic

structures and their properties. While the center of a semiring has not received as

much attention as it has in other algebraic structures, there may be specific areas or

research directions where the concept of the center in semirings has been explored in

more depth. Several results concerning the center of rings have analogues in case of

semirings. To get rid of these difficulties, we defined a more restricted class of center

in a semiring, which we referred to as k-center. A k-center Ck(S) of a semiring S is a

subset of S such that whenever a ∈ Ck(S), for any x ∈ S\{0}, then a+ ax = ax and

ax = xa. We note that Ck(S) is a subsemiring of S, but it is not an ideal of S. It is

interesting that Ck(S) is an ideal of the center Z(S) of S. In this thesis, we defined a

still more restricted class of center in semirings, which we called h-center. A h-center

Ch(S) of a semiring S is a subset of S such that whenever a ∈ Ch(S), for any x ∈ S,

then a+ ax = a and ax = xa. It is clear that every element of Ck(S) of a semiring S

is left zero if and only if Ck(S) = Ch(S).

Let S be a semigroup S. An element a ∈ S is said to be a central element of S

if there exist semigroups S1 with 1S1 and S2 with 0S2 and an isomorphism of S onto

S1 × S2 such that a is mapped onto (1S1 , 0S2). The set of all central elements of S

is called the Birkhoff center of S and is denoted by B(S). Swamy and Murti [63]

introduced the concept of the Birkhoff center of semigroup with 0 and 1 analogous

to that of a bounded poset [11] and proved that it is a Boolean algebra in which the

meet operation is the operation in S. Swamy and Murti [64] extended this concept
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for a semigroup with sufficiently many commuting idempotents and proved that it is

a relatively complemented distributive lattice. Swamy and Pragathi [62] have also

extended the above concept for an arbitrary semigroup S and proved that Birkhoff

center of any semigroup S is a relatively complemented distributive lattice in which

the meet operation in the semigroup S.

The notion mentioned above was investigated in semiring setting in this thesis.

In [39], we introduce the notion of Birkhoff center of a c-semiring and prove that

the Birkhoff center of a c-semiring forms a distributive lattice. Furthermore, we also

in [52] study the structure of Birkhoff center of c-semiring. The notion of c-semiring

was introduced to describe many constraint satisfaction schemes. There are some

literature on c-semirings, for instance see [13], [14], [22] and [43].

In 1956, the notion of idempotent semirings was firstly introduced by S. C. Kleene

on the theory of finite automata in [42]. An element a ∈ S is called additive [resp.

multiplicative] idempotent if it satisfies a+a = a [resp. aa = a]. A semiring S is called

additive [resp. multiplicative] idempotent semiring if its additive [resp. multiplicative]

reduct (S,+) [resp,(S, ·)] is an idempotent semigroup. If S is both additive idempo-

tent and multiplicative idempotent then S is idempotent semiring. The max-plus

semiring stands as the most widely recognized instance of an idempotent semiring.

The concept of an idempotent semiring is a basic concept in idempotent analysis. This

concept has many applications in different optimization problems (including dynamic

programming), computer science, automata and formal language theory, numerical

methods, parallel programming. Several works on idempotent semiring have been

explored in literature, such as those presented in references [21], [25], [40], [44],

[66], [69], [71]. In 2010, M.K. Sen and A.K. Bhuniya generalized [57] the concept

of idempotent semiring to almost idempotent semiring. A semiring is said to be an

almost idempotent semiring if its every elements is an almost idempotent. It plays

a significant role in the field of real numbers in real analysis. In this thesis, we have

developed the concept of almost idempotent semiring to almost idempotent central

semiring. The almost idempotent central semirings may be considered as a general-

ization of the almost idempotent semirings. M.K. Sen and A.K. Bhuniya proved that
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the class of all almost idempotent semirings forms a variety. In this thesis, we also

show that the class of all almost idempotent central semirings forms a variety.

A ring (R,+, ·) is called additively cancellative if the semigroup (R,+) is can-

cellative, i.e., if a + x = a + y implies x = y for all a, x, y ∈ R. The definition of

additively cancellative semiring is similar to the definition of additively cancellative

ring. This definition inspired us to construct a new class of center in a semiring,

which we referred to as the generalized center of a semiring. It is denoted by CG(S).

The generalized center CG(S) of a semiring S is the collection of those elements of

‘a’ in S such that a + ab = a + ba for all b ∈ S. In the case of rings, the definition

of generalized center CG(R) of a ring S is same as the generalized center CG(S) of a

semiring S. In an additive cancellative semiring S, CG(S) concides with Z(S), the

center of semiring S. Similarly, in an additive cancellative ring S, no difference can

be found between CG(R) and Z(R), the center of ring R. Again, by the definition of

the generalized center CG(S) of a semiring S, it is clear that Z(S) ⊆ CG(S) (resp.

Z(R) ⊆ CG(R)). Therefore, the generalized center is a proper generalization of the

center in the semiring (resp. the ring). For this reason, we named this particular type

of center as the “Generalized Center”.

In 1975, I. N. Herstein [34] defined a certain subset of a ring R which is closely

related to the center Z(R) of the ring R. He named this certain subset as “hypercenter

of a ring ”. The hypercenter T (R) of R is T (R) = {a ∈ R : axn = xna, n = n(x, a) ≥

1, all x ∈ R}. In this thesis, we study the above notion in semiring setting. We

introduce the notion of hypercenter of semiring and explore its structural properties.

Let S be a semiring with center Z(S). If S is commutative then S = Z(S). This

result have inspired us to develop a new type of semirings called h-central semiring,

k-central semiring, generalized central semiring and hypercentral semiring in which

the whole semiring coincide with its corresponding center.

The present study “Some Aspects of Different Types of Centers of Semirings” was

carried out to study the properties of different types of centers of semirings.



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

1.2 Overview of the Thesis

The entire thesis comprises seven chapters mentioned below. Unless otherwise stated,

all results of Chapters 2, 3, 4, 5, 6 and 7 have actually been contributed by the author

of the thesis himself under his Ph.D. Supervisor, some of which may be the upgradition

of existing results for semirings.

Chapter 1 : Introduction and Preliminaries

In the first chapter, we discuss the background and motivation of this study and

also present some preliminary definitions and important results which are relevant for

this thesis. Additionally, it provides a brief introductory ideas about the thesis.

Chapter 2 : Birkhoff Center of c-Semirings

In this chapter, we introduce the notion of Birkhoff center B(S) of a c-semiring

and provide some illustrations of that center of a c-semiring. Next we initiate the

notion of an important subset E(S) consisting the set of all commuting idempotents

of c-semiring S for the construction of the main characterization theorem for Birkhoff

center of a c-semiring. The main purpose of this chapter to establish the main charac-

terization theorem for Birkhoff center of a c-semiring : “Let S be a c-semiring. Then

a ∈ B(S) if and only if a ∈ E(S) and there exists a homomorphism fa : S −→ Sa

such that x 7−→ (ax, fa(x)) is an isomorphism of S onto aS × Sa and fa is identity

on Sa”. We also prove that the Birkhoff center of a c-semiring forms a lattice. For

this purpose, we are able to furnish that if S is a c-semiring, B(S) is a c-subsemiring

of S. Further we study different types of lattice structures of Birkhoff center of a

c-semiring and also prove that if two c-semirings S1 and S2 are isomorphic, then their

Birkhoff centers B(S1) and B(S2) are isomorphic but the converse is not necessarily

true. Finally, we investigate several properties concerning the Birkhoff center of a

c-semiring. We conclude this chapter by showing that if S is a c-semiring, then B(S)

is a subalgebra of B(E(S)).

Chapter 3 : Almost Idempotent Center of Semirings

Within this chapter, we present the concept of the almost idempotent center,

denoted as Ec(S), for a given semiring S. In some sense Ec(S) is a center-like subset
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of a semiring S. Like center Z(S) of a semiring S, Ec(S) is not an ideal of S. In

the section 3.2, we define the almost idempotent center Ec(S) of a semiring S and

provide a few instances of that center of a semiring S. In the section 3.3, we produce

several fascinating properties of Ec(S) of a semiring S. In the section 3.4, our main

target is to establish the lattice structure for Ec(S) of a semiring S under a certain

condition. For achieving this goal, we introduce a partial order relation in Ec(S)

and finally, we prove the theorem as follows : “If S is a semiring with an additive

absorbing element 1, then Ec(S) forms a lattice.” Furthermore, we analyze various

lattice structures for Ec(S). In the last section 3.5 of this chapter, we introduce the

notion of almost idempotent central semiring in which S = Ec(S) and generalize the

concept of almost idempotent center of semiring which is introduced by M.K. Sen

and A.K. Bhuniya in [57] and furnish some examples of that semiring. Furthermore,

we investigate a range of fascinating properties associated with it. We concentrate

on establishing some characterizations of that special class of semiring.

Chapter 4 : On h-Center of Semirings

In chapter 4, our focus is to describe investigate many results on center-like subset

of a semiring which are analogous to the same direction in ring theory. For this

purpose, we introduce the notion of a special center-like subset which we call h-

center of semiring which is denoted by Ch(S) in the section 4.2. Also in this section,

we provide some examples of h-center of a semiring S and investigate the h-centers

of power semiring and matrix semiring. In the section 4.3, we concentrate on the

algebraic properties of Ch(S) of a semiring S. In this section, we are able to show

that if S be a division semiring with additive absorbing identity 1, then Ch(S) also

functions as a division semiring. Besides, in the section 4.4, we try to set up the

lattice structure of Ch(S) of a semiring S under certain condition on S and study

different types of lattice structures of Ch(S) of a semiring S. In the section 4.5, we

look at some structural properties of Ch(S) of a semiring S via structure preserving

mapping and find out relation between h-centers of two semirings and their cartesian

product semiring. Finally, we introduce the notion of h-central semiring and try to

throw light on some characterizations of that semiring in the section 4.5.
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Chapter 5 : k-Center of a Semiring

The chapter 5 is devoted for the study of k-center Ck(S) of a semiring S. In the

section 5.2 of this chapter begins with the definition of k-center Ck(S) of a semiring

S together with some basic results related to this definition. In the section 5.3, our

focus shifts to exploring the algebraic structure of this k-center for different classes

of semirings. In 1936, J. Von Neumann proved [49] the well known theorem “The

center of regular ring is regular”. We also generalize the above theorem for Ck(S) of

semiring. In the section 5.4, we discuss some properties of Ck(S) of a semiring S.

Additionally, we demonstrate that in the case of a semiring S with identity, Ck(S)

indeed constitutes a semilattice. In the section 5.5, we construct a newer type of

semiring, referred to as the k-central semiring with the help of k-center of semiring S

and provide some properties of that special class of semiring.

Chapter 6 : Generalized Center of a Semiring

Our aim of the chapter 6 is to generalize to the usual center of a semiring. To ac-

complish this objective, we introduce a novel concept called the “Generalized Center”

of a semiring, unveiling a new type of central structure within its framework. In the

section 6.2. we define the concept of generalized center CG(S) of a semiring S and

exhibit some examples of that center of a semiring S. Furthermore, some attributes

of CG(S) of a semiring S that arise naturally from its definition are shown in this

section. In the section 6.3, we enlighten some structural properties of CG(S) of a

semiring S. Moreover, we establish that when D is a division semiring with the unity

element 1, CG(D) qualifies as a division subsemiring of D. Let R be a ring with

center Z = Z(R). If R is commutative then R = Z(R). Our objective is to identify

the class of semirings where a semiring S coincides with its generalized center. To

accomplish this, in the section 6.4 we introduce the concept of a generalized central

semiring, where S = CG(S) holds true. Additionally, we offer a selection of examples

to illustrate this notion. Mainly we characterize them by using generalized center of

semiring.

Chapter 7 : On the Hypercenter of a Semiring

The chapter 7 concerns with hypercenter of a semiring. Section 7.1 may also be
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read as an introduction to hypercenter of semiring. In the section 7.2, we define the

concept of the hypercenter of a semiring and provide several instances that illustrate

the properties of that center of semiring. Some basic properties of hyperenter of a

semiring are discussed in the 7.3. Additionally, we are dedicated to exploring the

hypercenter for matrix semiring. In the last section 7.4, we introduce the notion

of hypercentral semiring and explore some properties of that semiring. Lastly, we

demonstrate that the class of all hypercentral semirings forms a variety

Chapter 8 : The Interrelation of Centers

Chapter 8 focuses on exploring the interconnectedness between various centers of

semirings. The chapter concludes by establishing the interrelationship between the

almost idempotent central semiring, the h-central semiring and the k-central semiring.

1.3 Algebraic Preliminaries

In the forthcoming section, we recall specific definitions and notions of semirings that

will be utilized in this thesis.

Definition 1.3.1. [32] A non-empty set S together with two binary operations “+”

and “·” is said to be a semiring if

(i) (S,+) is a commutative semigroup,

(ii) (S, ·) is a semigroup,

(iii) Both operations are connected by the distributive laws : a · (b+ c) = a · b+a · c

and (b+ c) · a = b · a+ c · a for all a, b, c ∈ S.

A semiring S is called a semiring with zero element ‘0’ if a + 0 = 0 + a = a and

0.a = a.0 = 0 for all a ∈ S. A semiring S is called a semiring with identity element 1

if 1 · a = a · 1 = a for all a ∈ S.

A semiring may or may not have a zero and an identity element.

We consider a semiring (S,+, .) with zero element ‘0’ and identity element ‘1’

throughout this thesis.

We assume 1 ̸= 0. The zero [identity element] (if it exists) of a semiring S is called

an absorbing zero [resp. absorbing identity element] if it satisfies x · 0 = 0 · x = 0
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[resp. x + 1 = 1 + x = 1] for all x ∈ S. Unlike rings, zeros are not always absorbing

here. A semiring S with an absorbing zero is called a hemiring.

Unless otherwise stated, a semiring (S,+, .) will be denoted simply by S and

multiplication “·” will be denoted by juxtaposition.

By the product AB of two non-empty subsets A and B of a semiring S, we mean

the set {
n∑

i=1

aibi : ai ∈ A, bi ∈ B}.

Let (S,+, .) and (T,+, .) be two semirings. Then a mapping f : S −→ T is said

to be a semiring homomorphism [32] of S into T if f(x+ y) = f(x) + f(y), f(xy) =

f(x)f(y) for all x, y ∈ S. An injective homomorphism is called a monomorphism, a

surjective homomorphism is called an epimorphism and a bijective homomorphism is

called an isomorphism.

Definition 1.3.2. [28] A semiring (S,+, ·) is said to be commutative if (S, ·) is

commutative.

Definition 1.3.3. [32] A semiring (S,+, ·) is called additively cancellative if the

semigroup (S,+) is cancellative, i.e., if a+x = a+y implies x = y for all a, x, y ∈ S.

An additively cancellative hemiring is called a halfring.

Definition 1.3.4. [32] For each semiring (S,+, ·) we introduce the notation S∗ by

defining S∗ = S\{0} if (S,+, ·) has a zero 0 and S∗ = S otherwise.

Definition 1.3.5. [32] A semiring (S,+, ·) is called multiplicatively left cancellative if

each element a ∈ S∗ is multiplicatively left cancellable in (S,+, ·), i.e., left cancellable

in (S, ·).

A semiring which is multiplicatively left and right cancellative is called multiplica-

tively cancellative.

Definition 1.3.6. [28] Let I be a nonempty subset of a semiring S. Then I is said to

be a left ideal (resp. right ideal) of S if (I,+) is a subsemigroup of (S,+) and sa ∈ I

(resp. as ∈ I) for all s ∈ S and for all a ∈ I. On the other hand, I is said to be an

ideal of S if it is both a left ideal and a right ideal of S.
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Definition 1.3.7. [32] A left ideal (resp. right ideal, ideal) I of a semiring S is said

to be a left k-ideal (resp. right k-ideal, k-ideal) of S if for any x ∈ S and y ∈ I,

x+ y ∈ I implies that x ∈ I.

Lemma 1.3.8. If I and J are two left k-ideals (resp. right k-ideals, k-ideals) of S

then I ∩ J is also a left k-ideal (resp. right k-ideal, k-ideal) of S.

Definition 1.3.9. [32] Let A be a non-empty subset of a semiring S. Then the k-

closure of A, denoted by A, is defined as : A = {a ∈ S : a+ b = c for some b, c ∈ A}.

Lemma 1.3.10. [32] Let S be a semiring. Then for any two non-empty subsets A,B

of S, we have the following :

(i) A ⊆ A, (ii) A ⊆ B =⇒ A ⊆ B, (iii) A = A and (iv) AB = A B.

Lemma 1.3.11. [32] A left ideal (resp. right ideal, ideal) I of a semiring S is a left

k-ideal (resp. right k-ideal, k-ideal) of S if and only if I = I.

Definition 1.3.12. [32] A non-zero element ‘a’ of a semiring S is said to be a zero

divisor if there exists 0 ̸= b ∈ S such that ab = 0.

Definition 1.3.13. [18] If S is a commutative semiring with identity element, then

S is called a semidomain if ab = 0, a, b ∈ S implies a = 0 or b = 0.

Definition 1.3.14. [28] Let S be a semiring with identity. Then S is called a division

semiring if every nonzero element of S is a unit.

Note that a commutative division semiring is a semifield.

Definition 1.3.15. [28] Let S be a semiring. Then the center of S, denoted by Z(S)

and is defined by Z(S) = {x ∈ S : xy = yx for all y ∈ S}.

Now we present the definition of different class of semirings.

Definition 1.3.16. A semiring S is said to be a central semiring if Z(S) = S.

Definition 1.3.17. [72] An element ‘a’ of a semiring S is said to be regular if there

exists an element x ∈ S such that a = axa.

A semiring S is said to be regular if every element of S is regular.
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Theorem 1.3.18. [38] A semiring S is regular if and only if R ∩ L = RL for every

right ideal R and every left ideal L of S.

Definition 1.3.19. [15] A semiring S is called a k-regular semiring if for each a ∈ S

there exist x, y ∈ S such that a+ axa = aya.

It is to be noted that Bourne preferred the term “regular semiring” in spite of “k-

regular semiring”. Subsequently, Adhikari, Sen and Weinert [1] renamed the Bourne

regularity of a semiring as k-regularity to distinguish this form the notion of Von

Neumann regularity.

Example 1.3.20. (i) The semiring (Z+,⊕,⊙) is k-regular, where ⊕ and ⊙ are de-

fined by : a⊕ b = max(a, b) and a⊙ b = min(a, b) for all a, b ∈ Z+.

(ii) The semiring (Z+,⊕,⊙) is k-regular where ⊕ and ⊙ are defined by : a⊕ b =

max(a, b) and a⊙ b is the usual multiplication of integers, for all a, b ∈ Z+.

Remark 1.3.21. In general, while a regular semiring S can be considered a k-regular

semiring, the reverse statement does not hold. Suppose a semiring S is regular and

a ∈ S. Then there exists x ∈ S such that a = axa. This shows that a+aya = axa+aya

for any y ∈ S. So, a + aya = a(x + y)a i.e. a + aya = aza; where z = x + y. This

shows that S is k-regular. But if we consider Example 1.3.20 (ii), we can check that

(Z+,⊕,⊙) is not regular.

Theorem 1.3.22. [3] A semiring S is k-regular if and only if for every right k-ideal

R and every left k-ideal L of S, RL = R ∩ L .

Definition 1.3.23. [3] An element ‘x’ of a semiring S is said to be intra-regular if

x =
m∑
i=1

aix
2bi for some ai, bi ∈ S and m ∈ N.

A semiring S is said to be intra-regular if every element of S is intra-regular.

Theorem 1.3.24. [3] A semiring S is intra-regular if and only if L ∩ R ⊆ LR for

every left ideal L and right ideal R of S.

Definition 1.3.25. [3] An element ‘x’ of a semiring S is said to be k-intra-regular

if x+
m∑
i=1

aix
2bi =

n∑
j=1

cjx
2dj for some ai, bi, cj, dj ∈ S.

A semiring S is said to be k-intra-regular if every element of S is k-intra-regular.
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Theorem 1.3.26. [3] A semiring S is k-intra-regular if and only if L ∩R ⊆ LR for

every left k-ideal L and right k-ideal R of S.

Definition 1.3.27. [61] An element a ∈ S is called completely regular if there exists

an element x ∈ S satisfying the following conditions: (i) a = a+ x+ a, (ii) a + x =

x + a, (iii) a(a+ x) = a+ x.

A semiring S is called a completely regular semiring if every element a of S is

completely regular.

Definition 1.3.28. [55] Let S be a semiring and a ∈ S. Then ‘a’ is called completely

k-regular if there exist x, u ∈ S such that a + axa = axa, ax + xua = xua and

xa+ aux = aux.

If each element of S is completely k-regular then S is called a completely k-regular

semiring.

Definition 1.3.29. [10] An intra k- regular semiring S is a semiring whose additive

reduct is a semilattice and for each a ∈ S there exists x ∈ S such that a+xa2x = xa2x.

Definition 1.3.30. [31] An element ‘a’ of a semiring S is called π-regular if there

exist x, y ∈ S and a positive number n such that an + anxan = anyan.

A semiring S is called π-regular if every element of S is π-regular.

Definition 1.3.31. [57] A semiring S whose additive reduct is a semilattice is said

to be an almost idempotent semiring if a+ a2 = a2 for any a ∈ S.

Definition 1.3.32. [57] An almost idempotent semiring S is said to be rectangular

if for any a, b ∈ S, there exists x ∈ S such that a+ axbxa = axbxa.

Definition 1.3.33. [57] An almost idempotent semiring S is called a left(right) zero

almost idempotent semiring if for any a, b ∈ S, there exists x ∈ S such that a+axb =

axb (b+ axb = axb).

Definition 1.3.34. [53] A semiring (S,+, ·) is said to be a positive rational do-

main(PRD) if (S, ·) is an abelian group.
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Definition 1.3.35. [35] A semigroup S is called a rectangular band if axa = a for all

a, x ∈ S.

Definition 1.3.36. [65] A semigroup S is called E- inversive if for every a ∈ S

there exists x ∈ S such that (ax)2 = ax, that is, ax is an idempotent of S. These

semigroups are also called E-dense; the latter name is sometimes used for E- inversive

semigroups with commuting idempotents.

Definition 1.3.37. [45] A semiring S is called a b-lattice semiring if (S,+) is a

semilattice and (S, ·) is a band.

Definition 1.3.38. [28] A semiring S with identity 1 is called a simple semiring if

1 + a = 1 for all a ∈ S.

Definition 1.3.39. [32] A semiring S is called a mono-semiring if a+ b = ab for all

a, b ∈ S.

Definition 1.3.40. [28] A semiring (S,+, ·) with multiplicatively zero 0 is said to be

zero square semiring if x2 = 0 for all x ∈ S.

Definition 1.3.41. [68] A semiring (S,+, ·) with additive identity zero is said to be

zerosumfree semiring if x+x = 0 for all x ∈ S. Zerosumfree semirings are also known

as antirings [28].

Example 1.3.42. The set Z+ of all nonnegative integers with the usual operations

of addition and multiplication of integers is a zerosumfree semiring.

Definition 1.3.43. [35] An element ‘z’of a semigroup S is called a left zero if zx = z

for every x in S.

Definition 1.3.44. [35] Let (S,+) be a semigroup. An element ‘e’ of a semigroup S

is called a left identity if e+ x = x for every x in S.

Definition 1.3.45. [29] An element ‘a’ of a semiring S is called multiplicatively

subidempotent if and only if a+a2 = a and a semiring S is multiplicatively subidem-

potent if and only if each of its element is multiplicatively subidempotent.
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Definition 1.3.46. [29] A viterbi semiring S is a semiring in which S is an additively

idempotent and multiplicatively subidempotent i.e. a+ a = a and a+ a2 = a for all

a ∈ S.

Definition 1.3.47. [28] Let S be a semiring with the zero element ‘0’ and identity

element 1 such that 0 ̸= 1. Let us define P ′(S) = {0} ∪ {r + 1 : r ∈ S}. Clearly,

P ′(S) is a subsemiring of the semiring S.

A semiring S is said to be an antisimple semiring if S = P ′(S). Any ring is

antisimple as a semiring.

Definition 1.3.48. [28] A semiring is called nil if every element of the semiring is

nilpotent, that is, the semiring S is nil if for every element x of S, there is a positive

integer n for which xn = 0. More strongly, the semiring S is called nilpotent if there

is a positive integer m such that Sm = 0.

Definition 1.3.49. A variety of algebras is a class of algebras of the same type that is

closed under the formation of subalgebras, homomorphic images and direct products

(see [16]). It is well known (Birkhoff’s theorem ) that a class of algebras of the same

type is a variety if and only if it is an equational class. Thus, all semirings form a

variety. A variety is formed by all idempotent semirings, as indicated by [70].

We now discuss some preliminary definitions and notions of c-semiring that are

pertinent to this thesis. Additionally, we will explore the properties associated with

c-semiring.

Definition 1.3.50. [14] A c-semiring is an algebraic system that consists of a non-

empty set S together with two binary operations, called addition “+” and multipli-

cation, denoted by juxtaposition such that

(i) S is an additively commutative monoid with identity 0S,

(ii) S is a multiplicatively commutative monoid with identity 1S,

(iii) a0S = 0Sa = 0S for all a ∈ S.

(iv) a+ a = a and a+ 1S = 1S for all a ∈ S,

(v) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ S.
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Note 1.3.51. Intuitively, the idempotence of “+” is needed to get a partial order

over the elements of the semiring S; the commutativity of multiplication allows to

consider sets of constraints (instead of ordered tuples); and the fact that 1S is the

absorbing element of “+” makes the element 1S the maximum element of the partial

order “≤S”. This is useful for our treatment, since it gives us an upper bound to all

the elements of S. Also 0S is the minimum element of the partial order “≤S”.

Let S be a c-semiring. Now define a binary relation “≤S” on S by

a ≤S b if and only if a + b = b for all a, b ∈ S. Then (S,≤S) forms a partial

ordered set.

Given a c-semiring S together with the partial order relation “≤S” defined above,

the following results are proved in [14] :

Result I : a ≤S b =⇒ a+ c ≤S b+ c and a ≤S b =⇒ ac ≤S bc for all a, b, c ∈ S.

(Addition and Multiplication are monotone over ≤S).

Result II : ab ≤S a for all a, b ∈ S. (Multiplication is intensive).

Result III : (S,≤S) is a complete lattice.

Result IV : (S,≤S) is a distributive lattice, if S is idempotent (i.e. a2 = a for all

a ∈ S).

Definition 1.3.52. Let (S,+, .) be a c-semiring and T be a non-empty subset of

S. Then T is called a c-subsemiring of S if T itself forms a c-semiring w.r.t. the

restricted operations of S i.e. T is a subsemiring of S such that 0T , 1T ∈ T and (T,+)

is a band having 1T is the absorbing element of T w.r.t. “+”.

We now a present a few instances of c-semirings as illustrative examples.

Example 1.3.53. Consider S = {0, 1, x, y}. Define the operations “+” and “.” as

follows :

+ 1 x y 0

1 1 1 1 1

x 1 x y x

y 1 y y y

0 1 x y 0

. 1 x y 0

1 1 x y 0

x x 0 0 0

y y 0 0 0

0 0 0 0 0
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Then (S,+, ·) forms a c-semiring.

Example 1.3.54. Consider S = R+
0 ∪ {+∞}; where R+

0 is the set of non-negative

real numbers.

Then (i) (S,⊕,⊙) is a c-semiring with identity 1S = 0 and zero 0S = +∞; where

a ⊕ b = min(a, b) as addition on S and a ⊙ b = max(a, b) as multiplication on S.

Also +∞⊕x = x for all x ∈ S, +∞⊕+∞ = +∞, +∞⊙x = +∞ for all x ∈ S and

+∞⊙+∞ = +∞.

(ii) (S,⊕,⊙) is a c-semiring with identity 1S = 0 and zero 0S = +∞; where

a ⊕ b = min(a, b) as addition on S and a ⊙ b for the usual addition on S. Also

+∞ ⊕ x = x for all x ∈ S, +∞ ⊕ +∞ = +∞, +∞ ⊙ x = +∞ for all x ∈ S and

+∞⊙+∞ = +∞.

Example 1.3.55. Let A = (|A|, ⊕A, ⊗A, 0A, 1A) and B = (|B|, ⊕B, ⊗B, 0B, 1B)

be c-semiring. Define ⊕A×B, ⊗A×B : (|A| × |B|) × (|A| × |B|) → |A| × |B| by

(a1, b1)⊕A×B (a2, b2) = (a1 ⊕A a2, b1⊕B
b2) and (a1, b1)⊗A×B (a2, b2)

= (a1 ⊗A a2, b1 ⊗B b2).

Then A×B = (|A| × |B|, ⊕A×B, ⊗A×B, (0A, 0B), (1A, 1B)) is a c-semiring.

Definition 1.3.56. A c-semiring S is called a c-semifield if every nonzero element of

S is unit.

1.4 Lattice-Theoretic Preliminaries

In this section, we present a brief overview of lattices and their connection to semir-

ings, which will become apparent in the future. For instance, lattices serve as a valu-

able illustration for semirings that fulfill certain conditions. All the definitions and

results in this section can be found in [11], [12], [17], [19], [20], [23], [30], [36], [41],

[46].

Definition 1.4.1. Let A and B be two nonempty sets. The Cartesian product of A

and B, written A×B, is defined to the set A×B = {(a, b) : a ∈ A, b ∈ B}.
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Definition 1.4.2. A subset R of A× B is called a relation from A to B. If A = B

we say R is a relation on A, denoted as R ⊆ A × B. When (a, b) ∈ R, we can also

express it as aRb.

Definition 1.4.3. Let R be a relation on a set A then R is called :

(i) reflexive: if (a, b) ∈ R for all a ∈ A.

(ii) symmetric: if (a, b) ∈ R, implies that (b, a) ∈ R.

(iii) antisymmetric: if (a, b) ∈ R and (b, a) ∈ R implies that a = b.

(vi) transitive: if (a, b) ∈ R and (b, c) ∈ R implies that (a, c) ∈ R.

(v) equivalence: if R is reflexive, symmetric and transitive.

(iv) partial order: if R is reflexive, antisymmetric and transitive.

Definition 1.4.4. A nonempty set P together with a partial order relation “ ≤ ” on

P is called a partial order set or a poset, denoted by (P,≤).

Example 1.4.5. The set of integers Z, under usual less than or equal “ ≤ ” relation

is a poset.

Example 1.4.6. The set of natural numbers N, under divisibility is a poset.

Example 1.4.7. For any nonempty set X, the power set of X, denoted by P (X)

is the set of all subsets of X under contained in “⊆” is a poset, such that for any

A,B ∈ P (X), A ≤ B means A ⊆ B.

Definition 1.4.8. Suppose S is a subset of a partially ordered set P and let a ∈ P be

an upper bound of S if x ≤ a for all x ∈ S. If a is an upper bound such that a ≤ b for

all other upper bounds b, then a is referred to as the least upper bound (lub), denoted

as sup S = a.

Definition 1.4.9. Suppose S is a subset of a partially ordered set P and let a ∈ P

be a lower bound of S, satisfying a ≤ x for all x ∈ S. If a is a lower bound such that

any other lower bound b satisfies b ≤ a, then a is referred to as the greatest lower

bound (glb), denoted as inf S = a.
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Definition 1.4.10. A poset (L,≤) is said to form a lattice, if for every a, b ∈ L, sup

{a, b} and inf {a, b} and exist in L. We can represent the supremum as a ∨ b, which

is read as“ a join b” and the infimum as a ∧ b, which is read as“ a meet b.”

Example 1.4.11. Let X be a nonempty set, then the power set of X, P(X), under

contained in “ ⊆ ” is a lattice, such that for any two sets A, B in P(X), we have

A ∧ B = A ∩ B, and A ∨ B = A ∪ B. Since A ∩ B ⊆ A, A ∩ B ⊆ B and for any

set C such that C ⊆ A, C ⊆ B, then C ⊆ A ∩ B, then A ∧ B = A ∩ B. Similarly

A ∨B = A ∪B.

Note 1.4.12. By a least element of any subset X of a lattice L, we mean an element

a ∈ X such that a ≤ x for all x ∈ X and a is said to be minimal element of X if

there exists no x ∈ X such that x < a. The concept of greatest element and maximal

element can be defined dually. A least element must be minimal and a greatest element

must be maximal; but converse is not true. For any X ⊆ L, there can be at most one

least (greatest) element while there can be more than one minimal (maximal) element

in X.

Theorem 1.4.13. [41] Let L be a poset, then L is a lattice if and only if every

nonempty finite subset of L has sup and inf.

Theorem 1.4.14. [41] If L is any lattice, then for any a, b, c, d ∈ L, the following

results holds.

1. a ∧ a = a = a ∨ a.

2. a ∧ b = b ∧ a and a ∨ b = b ∧ a.

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c.

4. a ∧ b ≤ a, a ∧ b ≤ b, a ≤ a ∨ b and b ≤ a ∨ b.

5. a ≤ b if and only if a ∧ b = a if and only if a ∨ b = b.

6. a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

7. a ≤ b and c ≤ d imply a ∧ c ≤ b ∧ d and a ∨ c ≤ b ∨ d.

Definition 1.4.15. A nonempty subset S of a lattice L is called a sublattice of L if

for any two elements a, b in S, both a ∧ b and a ∨ b are also contained within S.
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Definition 1.4.16. A poset (P,≤) is called a meet-semilattice [resp. join-semilattice]

if for all a, b ∈ P , inf {a,b} [resp. sup {a,b}] exists.

Clearly, a poset (P,≤) is a lattice iff it is a join and a meet semilattice.

Definition 1.4.17. A lattice L is called a modular lattice simply modular, if for all

a, b, c ∈ L with a ≥ b, implies a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) [= b ∨ (a ∧ c)].

Definition 1.4.18. A lattice L is called a distributive lattice if for all a, b, c ∈ L, we

have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

Theorem 1.4.19. [19] A distributive lattice is always modular lattice.

However, it should be noted that the converse is not necessarily true, meaning

that a modular lattice is not always a distributive lattice. This can be illustrated

with the example of M5, which is a modular lattice.

a b c

0

1

M5

But M5 is not a distributive lattice and a∧ (b∨ c) = a, whereas (a∧ b)∨ (a∧ c) = 0.

Definition 1.4.20. [19] A lattice (L,∨,∧) is called a complete lattice if every subset

of L has l.u.b. and g.l.b.

Note 1.4.21. • In light of Theorem 1.4.13, every finite lattice is complete.

• The lattice formed by the set of all integers Z under the usual order relation “ less

than or equal to” (≤) is not complete due to the absence of an upper bound for the

set K = {x ∈ Z : x ≥ 0}.
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Definition 1.4.22. [19] Let L be a bounded lattice and x ∈ L. An element y ∈ L is

called a complement of x if x∧ y = 0 and x∨ y = 1. L is called complemented lattice

if all of its elements have complements.

A bounded complemented distributive lattice is called a Boolean lattice.

Example 1.4.23. Let S be a nonempty set. Then (P(S),⊆) forms a distributive

lattice and each element has a complement. Thus (P(S),⊆) is a Boolean lattice.

Definition 1.4.24. [41] A subalgebra (or a Boolean subalgebra) is a non-empty subset

of S of a Boolean algebra L such that a, b ∈ S =⇒ a ∧ b, a ∨ b, a′ ∈ S.

1.5 Literature Review and Important Results

In this section, we briefly give an outline of the earlier studies where center of rings

have been associated with various algebraic structures. In particular, we list the

results regarding center of rings which have greatly motivated us to define the new

type of center of semirings which have been studied in the present thesis. Additionally,

we include all the essential results on semirings that will be utilized extensively.

Note that for a semiring S, the center Z(S) is not a semifield but in particular,

we have the following result :

Theorem 1.5.1. If D is a division semiring, then the center Z(D) is a semifield.

Proof. Let D be a division semiring and Z(D) be the center of D. Then Z(D) is

a commutative semiring with identity 1, say. Let a ̸= 0 be any element of Z(D).

Then Da is a nonzero left ideal of D. Since D is a division semiring, it follows that

Da = D. Thus, there exists d ∈ D such that da = 1. Since a ∈ Z(D), we have

da = ad = 1. We have to only show that d ∈ Z(D). Now for any x ∈ D, we find

that a(xd) = (ax)d = (xa)d = x(ad) = x1 = 1x = (ad)x = a(dx). This implies that

xd = dx for all x ∈ D. So, d ∈ Z(D). Thus, we find that ad = da = 1 for some

d ∈ Z(D). This shows that a is a unit in Z(D). Therefore, Z(D) is a semifield.

We now present the following theorem that we generalize in this thesis.
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Theorem 1.5.2. [49] The center of a regular ring R is regular.

Proof. Let a be a central element of R and let x ∈ R be such that a = axa = ax2.

So, ax2 is central. Let z ∈ R. Then a2xz = za2x and hence xa2z = a2zx, i.e.

a2z commutes with x and so, it commutes with x3. Therefore, a2x3z = za2x3, i.e.

y = a2x3 is central. But, since a2x2 = ax, we have y = ax2 and clearly, aya =

a2x2a = axa = a. This completes the proof.

Theorem 1.5.3. [28] Let S = (S,+, ·, 0, 1) be a semiring. Then S is a bounded

distributive lattice if and only if S is commutative, simple and idempotent.

Proof. The necessity of the conditions is clear. Conversely, assume the conditions to

be true. Then (S,+) and (S, ·) are commutative semigroups. Let a, b ∈ S. Then

(a + b)a = aa + ba = a + ba = 1a + ba = (1 + b)a = (b + 1)a = 1a = a and

ab+ a = ab+ a1 = a(b+1) = a1 = a. Hence, the absorption laws hold and therefore,

(S,+, ·) is a lattice. Moreover, 0+a = a and a+1 = 1, i.e. 0 ≤ a ≤ 1. Consequently,

S is a bounded lattice. Since “·” is distributive with respect to “+”, S is a bounded

distributive lattice.
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Chapter 2

Birkhoff Center of c-Semirings

2.1 Introduction

The concept of center of a partially ordered set P is the set of all elements of

P with an element 0 and an element 1 for which in some decomposition of P into a

direct product with one of the components is 1 and the other is 0. The center of a

partially ordered set with an element 0 and an element 1 forms a Boolean algebra.

The concept of Birkhoff center of a semigroup with 0 and 1 was introduced by Swamy

and Murti [63], analogous to that of a partially ordered set and proved that it is a

Boolean algebra. Swamy and Pragathi [62] have also extended the above concept

for an arbitrary semigroup S and proved that Birkhoff center of any semigroup S

is a relatively complemented distributive lattice in which the meet operation is the

operation in the semigroup S. In [64], Swamy and Murti also introduced the concept

of Boolean center of a universal algebra which is another kind of notion of a center.

It is quite natural to ask whether we can generalize the notion of Birkhoff center

in case of semiring to form some lattice structure. We are unable to construct the

notion of Birkhoff center of an arbitray semiring to form a lattice structure. But we

observed that if we consider a particular type of semiring, namely c-semiring inspite

of an arbitrary semiring then we can construct the Birkhoff center of that semiring

to form a lattice structure. In c-semiring, “c” stands for “constraint”. The notion of

c-semiring was introduced to describe many constraint satisfaction schemes.

22
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More precisely, the notion of c-semiring was introduced by Bistarelli et al. [14]

to tackle constraint solving over semirings. In fact, by considering c-semiring the

elements of the chosen semiring can be interpreted in many ways : costs, levels of

preference, uncertainties, probabilities, etc. This specific choice of c-semiring is used

to different instances of framework which lead to some new constraint solving schemes.

On the other hand, some authors studied the notion of the Birkhoff center of

dynamical system for topological aspects and some others also studied hyperbolic

types of Birkhoff center of a diffeomorphism in a compact manifold. However, in

this chapter, we confine ourselves wholly to study the algebraic aspects of Birkhoff

center and we describe the Birkhoff center of a certain algebraic structure. Our main

purpose in this chapter is to prove that the Birkhoff center of any c-semiring forms a

distributive lattice.

2.2 Birkhoff Center of c-Semirings

In this section, we will present the concept of the Birkhoff center for a c-semiring and

offer illustrative instances of this center. To begin with, let us establish a definition

for the Birkhoff center of a c-semiring, which is as follows :

Definition 2.2.1. Let S be a c-semiring. An element a ∈ S is said to be a central

element of S if there exist c-semirings S1 with identity 1S1 and S2 with zero 0S2 and

an isomorphism of S onto S1 × S2 such that a is mapped onto (1S1 , 0S2).

The set of all central elements of S is called Birkhoff center of S and is denoted

by B(S).

Example 2.2.2. Consider the c-semirings S, S1 and S2 defined in Example 1.3.54(i).

Now define f : S −→ S1 × S2 by f(x) = (x⊕ α, x⊕ β) for all x ∈ S, where α and β

are fixed positive real numbers.

Now for all x, y ∈ S, f(x⊕y) = (x⊕y⊕α, x⊕y⊕β) = (x⊕y⊕α⊕α, x⊕y⊕β⊕β) =

(x⊕ α ⊕ y ⊕ α, x⊕ β ⊕ y ⊕ β) = (x⊕ α, x⊕ β) + (y ⊕ α, y ⊕ β) = f(x) + f(y) and

f(x ⊙ y) = ((x ⊙ y) ⊕ α, (x ⊙ y) ⊕ β) = ((x ⊙ y) ⊕ α ⊕ α, (x ⊙ y) ⊕ β ⊕ β) =
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((x⊕α)⊙ (y⊕α), (x⊕β)⊙ (y⊕β)) = (x⊕α, x⊕β)(y⊕α, y⊕β) = f(x)f(y). Hence

f is a homomorphism.

To prove that f is one to one, let x, y ∈ S be such that f(x) = f(y). Then

(x⊕ α, x⊕ β) = (y ⊕ α, y ⊕ β). This implies that x⊕ α = y ⊕ α and x⊕ β = y ⊕ β

i.e. min(x, α) = min(y, α) and min(x, β) = min(y, β). Thus x = y for specific choice

of α and β. This implies that f is one to one.

To prove that f is onto, let (u, v) ∈ S1 × S2. Let γ be an arbitrary fixed element

of R+
0 such that u < α < γ and u < β < γ. Then f(u⊕ γ, v⊕ γ) = (u, v). This shows

that f is onto. Hence, f is an isomorphism.

If x ∈ B(S), then f(x) = (1S1 , 0S2). This implies that (x⊕ α, x⊕ β) = (1S1 , 0S2).

Therefore, (x⊕ α, x⊕ β) = (0,+∞). Thus x⊕ α = 0 and x⊕ β = +∞.

Case (i): x < α , x < β : Then (min(x, α), (min(x, β)) = (0,+∞) =⇒ (x, x) =

(0,+∞). Thus, x = 0 and x = +∞.

Case (ii): x < α , x ≥ β : Then (min(x, α), (min(x, β)) = (0,+∞) =⇒ (x, β) =

(0,+∞). Thus x = 0 and β = +∞.

Case (iii): x ≥ α , x ≥ β : Then (min(x, α), (min(x, β)) = (0,+∞) =⇒ (α, β) =

(0,+∞). Thus α = 0 and β = +∞.

Case (iv): x > α , x < β : Then (min(x, α), (min(x, β)) = (0,+∞) =⇒ (α, x) =

(0,+∞). Thus, α = 0 and x = +∞. From Case (iii) (x ≥ α , x ≥ β ), for any

values of x, we get f(x) = (1S1 , 0S1) = (0,+∞). Therefore, S has infinitely many

central elements i.e. B(S) contains infinitely many elements.

Example 2.2.3. Consider S = R−
0 ∪ {−∞}, where R−

0 is the set of non-positive real

numbers. Then (S,⊕,⊙) is a c-semiring with identity 1S = 0 and zero 0S = −∞,

where a⊕ b = max(a, b) as addition on S and a⊙ b = min(a, b) as multiplication on

S. Also −∞⊕ x = x for all x ∈ S, −∞⊕−∞ = −∞, −∞⊙ x = −∞ for all x ∈ S

and −∞⊙−∞ = −∞. Then in a similar fashion, we can show that S has infinitely

many central elements i.e. B(S) contains infinitely many elements.

Example 2.2.4. Consider S = {0, 1, x, y, z}. Define the operations “+” and “.” on

S by means of the following tables :
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+ 0 x y z 1

0 0 x y z 1

x x x z y 1

y y z y x 1

z z y x z 1

1 1 1 1 1 1

. 0 x y z 1

0 0 0 0 0 0

x 0 0 0 0 x

y 0 0 0 0 y

z 0 0 0 0 z

1 0 x y z 1

Then (S,+, ·) is a c-semiring and B(S) = {0, 1}.

Lemma 2.2.5. If S is a c-semiring then 0S, 1S ∈ B(S).

Proof. We first define f : S −→ {0S} × S by f(x) = (0S, x) for all x ∈ S. Let

x = y for some x, y ∈ S. Then f(x) = (0S, x) and f(y) = (0, y). Since x = y,

(0S, x) = (0S, y) =⇒ f(x) = f(y). Thus f is well defined. Now f(x+ y) = (0S, x+

y) = (0S, x)+(0S, y) = f(x)+f(y) and f(xy) = (0S, xy) = (0S, x)(0S, y) = f(x)f(y).

Hence, f is a homomorphism. To establish the injectiveness of f , let’s suppose that

for any x, y ∈ S, f(x) = f(y) =⇒ (0S, x) = (0S, y) =⇒ x = y. Hence, f is one to

one. Let us take an arbitrary element (0S, z) ∈ {0S} × S, where z ∈ S. According

to the definition of the function f , we obtain f(x) = (0S, x). Consequently, we can

conclude that f(z) = (0S, z). This implies that f is onto. Hence f is an isomorphism

from S onto {0S} × S, where {0S} is a c-semiring with 0S as the identity element.

Also 0S 7−→ (1{0S}, 0S) and hence 0S ∈ B(S).

Now we define g : S −→ S × {1S} by g(x) = (x, 1S) for all x ∈ S. Let x = y

for some x, y ∈ S. Now g(x) = (x, 1S) and g(y) = (y, 1S). Since x = y, (x, 1S) =

(y, 1S) =⇒ g(x) = g(y). Thus, g is well defined. Now g(x + y) = (x + y, 1S) =

(x+y, 1S +1S) ( since (S,+) is a band ) = (x+1S, y+1S) = g(x)+g(y) and g(xy) =

(xy, 1S) = (x, 1S) (y, 1S) = g(x) g(y). Hence, g is a homomorphism. To prove that

g is one-one, suppose for any x, y ∈ S, g(x) = g(y)=⇒ (x, 1S) = (y, 1S) =⇒ x = y.

Therefore, g is one to one. To prove that g is onto, let (z, 1S) ∈ S×{1S}, where z ∈ S.

So, by the definition of g, we get g(x) = (x, 1S). Therefore, g(z) = (z, 1S). Thus g is

onto. Hence, g is an isomorphism from S onto S × {1S}, where {1S} is a c-semiring

with 1S as the zero element. Also 1S 7−→ (1S, 0{1S}) and hence 1S ∈ B(S).
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Lemma 2.2.6. If S is a c-semiring containing a single element ‘a’ i.e. if S = {a}

is a c-semiring, then a ∈ B(S).

Proof. If S is a c-semiring containing a single element ‘a’ i.e. if S = {a} is a c-

semiring, then ‘a’ is as an identity element as well as a zero element of S. Based on

Lemma 2.2.5, we can conclude that a ∈ B(S).

2.3 The Characterization of B(S)

In this section we give a necessary and sufficient condition for B(S) of a c-semiring S.

To aid in the characterization of the central element of a c-semiring S, we introduce

a important subset called E(S).

The set of all commuting idempotents of a c-semiring is denoted by E(S). Thus

for a c-semiring S, the set E(S) is defined by E(S) = {a ∈ S : a2 = a and ax =

xa for all x ∈ S}.

Theorem 2.3.1. If S is a c-semiring, then E(S) is a c-subsemiring of S.

Proof. Since S is c-semiring, then 0 ∈ E(S) . So E(S) is non-empty. Let a, b ∈ E(S).

Now (a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2 = a + ab + b + ba = a(1 + b) +

b(1 + a) = a1 + b1 (since 1 is the absorbing element w.r.t. “+” ) = a + b. Again

(a+ b)x = ax+ bx = xa+ xb = x(a+ b) for all x ∈ S. Therefore, a+ b ∈ E(S). Also

(ab)2 = abab = aabb = a2b2 = ab and (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)

for all x ∈ S. Therefore, ab ∈ E(S). Thus, E(S) is a subsemiring of S. Again

1S, 0S ∈ E(S). Since E(S) is a subsemiring of S and (S,+) is a band, (E(S),+)

is a band. Also 1S is the absorbing element of E(S) w.r.t. “+”. Hence E(S) is a

c-subsemiring of S.

Lemma 2.3.2. Let S be a c-semiring. Then the following are equivalent :

(i) E(S) = {a ∈ S : a2 = a and ax = xa for all x ∈ S}

(ii) E(S) = {a ∈ S : a+ a2 = a2 and ax = xa for all x ∈ S}.
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Proof. (i) =⇒ (ii).

Let a ∈ E(S). Then a2 = a =⇒ a2 = a1 =⇒ a2 = a(1+a) (since 1 is an absorbing

element w.r.t. “+”). Therefore, a2 = a+ a2. Since a ∈ E(S), ax = xa for all x ∈ S.

Hence E(S) = {a ∈ S : a+ a2 = a2 and ax = xa for all x ∈ S}.

(ii) =⇒ (i).

Let a ∈ E(S). Then a2 = a + a2 =⇒ a2 = a(1 + a) =⇒ a2 = a (since 1 is

an absorbing element w.r.t. “+”). Hence, E(S) = {a ∈ S : a2 = a and ax =

xa for all x ∈ S}.

Remark 2.3.3. In a semiring S, an element ‘a’ of S is said to be almost idempotent

if a+a2 = a2. Thus, we see that in a c-semiring, the notion of idempotent and almost

idempotent coincides.

Now we are going to prove that the Birkhoff center of a c-semiring S is contained

in the Birkhoff center of E(S).

For this, we need the following result :

Lemma 2.3.4. Let S1 and S2 be two semirings. Then E(S1 ×S2) = E(S1)×E(S2).

Proof. Let e = (e1, e2) ∈ E(S1 × S2). Then e
2 = e and ex = xe for all x = (x1, x2) ∈

S1 × S2. Now e2 = e =⇒ (e1, e2)
2 = (e1, e2) =⇒ (e21, e

2
2) = (e1, e2). Therefore, e

2
1 = e1

and e22 = e2. Again ex = xe for all x = (x1, x2) ∈ S1 × S2 =⇒ (e1, e2)(x1, x2) =

(x1, x2)(e1, e2) =⇒ (e1x1, e2x2) = (x1e1, x2e2). This implies that e1x1 = x1e1 for

all x1 ∈ S1 and e2x2 = x2e2 for all x2 ∈ S2. Hence, e1, e2 are elements in E(S1)

and E(S2) respectively. Thus, e = (e1, e2) ∈ E(S1) × E(S2). This implies that

E(S1 × S2) ⊆ E(S1)× E(S2) (i).

Let e = (e1, e2) ∈ E(S1) × E(S2) =⇒ e1 ∈ E(S1) and e2 ∈ E(S2). Then e21 = e1

and e1x1 = x1e1 for all x1 ∈ S1 and e22 = e2 and e2x2 = x2e2 for all x2 ∈ S2.

Now e2 = (e1, e2)
2 = (e1, e2)(e1, e2) = (e21, e

2
2) = (e1, e2) (since e1 ∈ E(S1) and

e2 ∈ E(S2)) = e. Therefore, e is an idempotent element in E(S1 × S2). Again

ex = (e1, e2)(x1, x2) = (e1x1, e2x2) = (x1e1, x2e2) (since e1 ∈ E(S1) and e2 ∈ E(S2))

= (x1, x2)(e1, e2) = xe for all x = (x1, x2) ∈ S1 × S2. Hence, e is a commuting
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idempotent element in E(S1 × S2). This implies that e ∈ E(S1 × S2). Consequently,

we find that E(S1)× E(S2) ⊆ E(S1 × S2) (ii).

From (i) and (ii), it follows that E(S1 × S2) = E(S1)× E(S2).

Theorem 2.3.5. Let S be a c-semiring. Then B(S) ⊆ B(E(S)).

Proof. Let a ∈ B(S) and x ∈ S. Since a ∈ B(S), there exist c-semirings S1 with

identity 1S1 and S2 with zero 0S2 and there is an isomorphism f : S −→ S1 × S2

such that f(a) = (1S1 , 0S2). Let f(x) = (x1, x2), where x ∈ S and x1 ∈ S1, x2 ∈ S2.

Then f(a2) = f(a)f(a) = (1S1 , 0S2)(1S1 , 0S2) = (1S1 , 0S2) = f(a). Since f is injective,

it follows that a2 = a. So, a is an idempotent element. Also f(ax) = f(a)f(x) =

(1S1 , 0S2)(x1, x2) = (x1, 0S2) = (x1, x2)(1S1 , 0S2) = f(x)f(a) = f(xa). Again since f

is injective, we find that ax = xa. Thus, a is a commuting idempotent element in S

and hence a ∈ E(S). Consequently, it follows that B(S) ⊆ E(S). Now the restriction

of f to E(S) becomes an isomorphism of E(S) onto E(S1 × S2) = E(S1) × E(S2)

(by Lemma 2.3.4) and f(a) = (1E(S1), 0E(S2)). Note that 1E(S1) and 0E(S2) are identity

and zero in E(S1) and E(S2) respectively. Cosequently, a ∈ B(E(S)) and hence

B(S) ⊆ B(E(S)).

Let S be a c-semiring and a ∈ S. We define two sets

aS = {as : s ∈ S} and Sa = {x ∈ S : ax = a and a+ x = x}.

By utilizing the following two results, we can outline main characterization of the

central elements.

Lemma 2.3.6. Let S be a c-semiring and a ∈ S. Then Sa is a c-subsemiring of S

with ‘a’ as the zero element.

Proof. Let x, y ∈ Sa. Now a(xy) = (ax)y = ay = a (since ax = a and ay = a). Also

a + x = x =⇒ ay + xy = xy =⇒ a + xy = xy (since ay = a). Therefore, xy ∈ Sa.

Again a(x + y) = ax + ay = a + a = a (since ax = a, ay = a and (S,+) is a band).

Also a + (x + y) = (a + x) + y = x + y (since a + x = x). Therefore, x + y ∈ Sa.

Also a ∈ Sa. Thus, Sa is a subsemiring of S with a as zero element. Again 1 ∈ Sa.

This implies that a1 = 1a = a...(i) and a+1 = 1...(ii). From (i), we get that 1 is the
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identity element of Sa. Again from (ii), it follows that 1 is an absorbing element of

Sa w.r.t. “+”. Since Sa is a subsemiring of S and (S,+) is a band, so (Sa, + ) is a

band. Hence, Sa is a c-subsemiring of S with ‘a’ as the zero element.

Lemma 2.3.7. If a ∈ E(S), then aS is a c-subsemiring of S with ‘a’ as the identity

element and in this case aS = {x ∈ S : ax = x}.

Proof. Let x, y ∈ aS. Then x = ax1 for some x1 ∈ S and y = ay1 for some y1 ∈ S.

Now xy = (ax1)(ay1) = a(x1ay1) = as′, where s′ = x1ay1 ∈ S. Therefore, xy ∈ aS.

Again x + y = ax1 + ay1 = a(x1 + y1) ∈ aS. Therefore, aS is a c-subsemiring of S.

Let e be the identity of aS. So by definition we get ze = z for some z ∈ aS. Since

z ∈ aS, z = as for some s ∈ S. Therefore, ase = as (i).

We claim that ‘a’ is the identity of aS. Put e = a in L.H.S. of (i). L.H.S. =

ase = asa = a2s = as ( since a ∈ E(S)) = as = R.H.S. Therefore, ‘a’ is the identity

of aS. Again 0 ∈ aS. It follows that z0 = 0z = 0 and z+0 = 0+z = z for all z ∈ aS.

So, 0 is the zero element of aS. Since aS is a subsemiring of S and (S,+) is a band,

(aS, + ) is a band. Also ‘a’ is the absorbing element of aS w.r.t. “+”. Hence, aS is

a c-subsemiring of S with ‘a’ as the identity element.

We now present the main characterization theorem for Birkhoff center of a c-

semiring, in fact, this is the main result of this chapter.

Theorem 2.3.8. Let S be a c-semiring. Then a ∈ B(S) if and only if a ∈ E(S)

and there exists a homomorphism fa : S −→ Sa such that x 7−→ (ax, fa(x)) is an

isomorphism of S onto aS × Sa and fa is identity on Sa.

Proof. Suppose a ∈ B(S). Then a ∈ E(S) by Theorem 2.3.5. Thus there exists

an isomorphism α : S −→ S1 × S2 such that α(a) = (1S1 , 0S2), where S1 is a c-

semiring with identity 1S1 and S2 is a c-semiring with zero 0S2 . For any x ∈ S, let

α(x) = (x1, x2), where x1 ∈ S1, x2 ∈ S2. Define fa : S −→ Sa by fa(x) = α−1(1S1 , x2).

Let x, y ∈ S be such that x = y. Then α(x) = α(y) =⇒ (x1, x2) = (y1, y2). This

implies that x1 = y1 and x2 = y2. Now fa(x) = α−1(1S1 , x2) = α−1(1S1 , y2) = fa(y).

Thus, fa is well defined. Now afa(x) = α−1(1S1 , 0S2) α
−1(1S1 , x2) = α−1(1S1 , 0S2) = a
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and a+fa(x) = α−1(1S1 , 0S2)+ α−1(1S1 , x2) = α−1(1S1+1S1 , 0S2+x2) = α−1(1S1 , x2) =

fa(x). So, fa(x) ∈ Sa for all x ∈ S. Also fa(x)fa(y) = α−1(1S1 , x2) α
−1(1S1 , y2) =

α−1(1S1 , x2y2) = fa(xy) and fa(x) + fa(y) = α−1(1S1 , x2) + α−1(1S1 , y2) = α−1(1S1 +

1S1 , x2 + y2) = α−1(1S1 , x2 + y2) = fa(x + y). Hence, fa is a homomorphism. Let

ψ : S −→ aS × Sa be defined by ψ(x) = (ax, fa(x)) for all x ∈ S. We show that

ψ is an isomorphism. Now ψ(x)ψ(y) = (ax, fa(x))(ay, fa(y)) = (a2xy, fa(xy)) =

(axy, fa(xy)) = ψ(xy) and ψ(x)+ψ(y) = (ax, fa(x))+ (ay, fa(y)) = (a(x+ y), fa(x+

y)) = ψ(x + y) for all x, y ∈ S. Hence, ψ is a homomorphism. To prove that ψ is

one to one, suppose for any x, y ∈ S, ψ(x) = ψ(y). Then ax = ay and fa(x) = fa(y).

Now ax = ay =⇒ α(ax) = α(ay) =⇒ α(a)α(x) = α(a)α(y) =⇒ (1S1 , 0S2) (x1, x2) =

(1S1 , 0S2) (y1, y2) =⇒ (x1, 0S2) = (y1, 0S2) =⇒ x1 = y1. Also fa(x) = fa(y) =⇒

α−1(1S1 , x2) = α−1(1S1 , y2) =⇒ x2 = y2. Therefore, α(x) = (x1, x2) = (y1, y2) =

α(y) =⇒ x = y. Hence, ψ is one to one.

To prove that ψ is onto, let (ax, y) ∈ aS × Sa. As earlier, let α(x) = (x1, x2) and

α(y) = (y1, y2) with xi, yi ∈ Si, i = 1, 2. Then ay = a and hence (1S1 , 0S2) = α(a) =

α(ay) = α(a)α(y) = (1S1 , 0S2)(y1, y2) = (y1, 0S2). Therefore, y1 = 1S1 . Choose

z ∈ S such that α(z) = (x1, y2). Then α(az) = α(a)α(z) = (1S1 , 0S2)(x1, y2) =

(x1, 0S2) = (1S1 , 0S2)(x1, x2) = α(a)α(x) = α(ax) and hence az = ax. Also fa(z) =

α−1(1S1 , y2) = α−1(y1, y2) (since y1 = 1S1) = α−1α(y) = y. Therefore, ψ is onto.

Thus, ψ is an isomorphism of S onto aS×Sa. Also for any x ∈ Sa, ax = a and hence

α(a)α(x) = α(a) i.e. (1S1 , 0S2)(x1, x2) = (1S1 , 0S2) i.e. x1 = 1S1 . Now α(fa(x)) =

(1S1 , x2) = (x1, x2) = (x1, x2) = α(x) and therefore fa(x) = x. Thus, fa restricted to

Sa is identity.

Conversely, suppose the given condition is satisfied. We have to prove that a ∈

B(S). Since a ∈ E(S), aS is a subsemiring with a as identity element and Sa is a

semiring with a as the zero element. Since a ∈ E(S), a2 = a and fa(a) = a, it follows

that x 7−→ (ax, fa(x)) is an isomorphism of S onto aS×Sa such that a is mapped onto

(a, a). Take S1 = aS and S2 = Sa. Define α : S −→ S1 × S2 by α(x) = (ax, fa(x)).

Then α is an isomorphism and α(a) = (1S1 , 0S2) in S1 × S2. Thus, a ∈ B(S).

Now we prove some lemmas.
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Let a, b ∈ B(S). Then by the above theorem, there exist maps fa : S → Sa and

fb : S → Sb such that x 7−→ (ax, fa(x)) is an isomorphism of S onto aS × Sa and

x 7−→ (bx, fb(x)) is an isomorphism of S onto bS × Sb, fa is identity on Sa and fb is

identity on Sb. Put c = fa(b). Then we have the following.

Lemma 2.3.9. Let fb : S → Sb be a map such that x 7→ (bx, fb(x)) is an isomorphism

of S onto bS × Sb and fb is identity on Sb. Then fb(Sa) ⊆ Sa.

Proof. x ∈ Sa =⇒ ax = a and a + x = x =⇒ fb(ax) = fb(a) and fb(a + x) =

fb(x) =⇒ fb(a) fb(x) = fb(a) and fb(a) + fb(x) = fb(x) =⇒ fb(a)f
2
b (x) = fb(a)

and fb(a) + f 2
b (x) = f 2

b (x) ( since fb(x) ∈ Sb and fb is identity on Sb and f 2
b (x) =

fb(fb(x)) = fb(x)) =⇒ fb(afb(x)) = fb(a) and fb(a+fb(x)) = fb(fb(x)) =⇒ afb(x) = a

and a+ fb(x) = fb(x). This implies that fb(x) ∈ Sa. Consequently, fb(Sa) ⊆ Sa.

Lemma 2.3.10. Sc = Sa ∩ Sb = (Sa)b = (Sb)a := {x ∈ Sb : ax = a}.

Proof. Since c = fa(b) ∈ Sa, we have that ac = a and a + c = c. Also, since

b ∈ Sa and fa(Sb) ⊆ Sb, we have that c ∈ Sb and hence bc = b and b + c = c. Now,

x ∈ Sc =⇒ cx = c =⇒ acx = ac and bcx = bc =⇒ ax = a and bx = b (i).

Again x ∈ Sc =⇒ c+x = x =⇒ a+(c+x) = a+x and b+(c+x) = b+x =⇒ x = a+x,

since a ∈ Sa and c ∈ Sa, a+ c ∈ Sa and x = b+ x (ii),

since b ∈ Sa and c ∈ Sa, b+ c ∈ Sa. From (i) and (ii), we get ax = a, a+ x = x and

bx = b, b+x = x. Therefore, x ∈ Sa and x ∈ Sb =⇒ x ∈ Sa∩Sb. Hence, Sc ⊆ Sa∩Sb.

Conversely, let x ∈ Sa ∩ Sb =⇒ ax = a and bx = b =⇒ fa(bx) = fa(b) =⇒

fa(b) fa(x) = fa(b) =⇒ cx = c (iii),

since x ∈ Sa, fa(x) = x. Again x ∈ Sa ∩ Sb =⇒ x ∈ Sa and x ∈ Sa =⇒ a + x = x

and b+ x = x =⇒ fa(b+ x) = fa(x) =⇒ fa(b+ x) = x (since c = fa(b) ∈ Sa, c+ x =

fa(b+ x) ∈ Sa ) =⇒ c+ x = x (iv),

since c = fa(b) ∈ Sa, c + x = fa(b + x) ∈ Sa . From (iii) and (iv), we find that

cx = x and c + x = x. Therefore, x ∈ Sc. Accordingly, Sa ∩ Sb ⊆ Sc and hence

Sc = Sa ∩ Sb.

Lemma 2.3.11. Let a, b ∈ B(S). Then fa(b) = fb(a).
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Proof. Put c = fa(b) and d = fb(a). By Lemma 2.3.10, Sc = Sa ∩ Sb = Sb ∩ Sa = Sd.

Since c ∈ Sc and d ∈ Sd, we have c = cd = dc = d and c = c + d = d + c = d. Thus,

fa(b) = fb(a).

2.4 Lattice Structure of B(S)

Our next goal is to find out the lattice structure of B(S) of a c-semiring S. To achieve

this, we first prove the following technical result.

Theorem 2.4.1. If S is a c-semiring, then B(S) is a c-subsemiring of S.

Proof. Let a, b ∈ B(S). Then there exist c-semirings S1 with identity 1S1 and S2 with

zero 0S2 and an isomorphism f : S −→ S1×S2 such that f(a) = (1S1 , 0S2). Similarly,

there exist c-semirings T1 with 1T1 and T2 with 0T2 and an isomorphism g : S −→

T1 × T2 such that g(b) = (1T1 , 0T2). Let g(a) = (t1, t2); where t1 ∈ T1 and t2 ∈ T2 and

f(b) = (w1, w2); where w1 ∈ S1 and w2 ∈ S2. Since B(S) ⊆ E(S), ‘a’ is a commuting

idempotent in S. So, a2 = a for all x ∈ S. Then g(a2) = g(a) =⇒ g(a) g(a) =

g(a) =⇒ (t1, t2) (t1, t2) = (t1, t2) =⇒ (t21, t
2
2) = (t1, t2). Thus, t21 = t1 and t22 = t2.

Again for any a ∈ S, ax = xa for all x ∈ S. Therefore, g(ax) = g(xa) =⇒ g(a) g(x) =

g(x) g(a) =⇒ (t1, t2) (x1, x2) = (x1, x2) (t1, t2) =⇒ (t1x1, t2x2) = (x1t1, x2t2); where

g(x) = (x1, x2), xi ∈ Ti for i = 1, 2. So, t1x1 = x1t1 and t2x2 = x2t2. Hence, for any

t1 ∈ T1, t
2
1 = t1 and t1x1 = x1t1 for all x1 ∈ T1 and for any t2 ∈ T2, t

2
2 = t2 and

t2x2 = x2t2 for all x2 ∈ T2. Thus, t1 and t2 are commuting idempotent in T1 and T2,

respectively. Now we put R1 = t1T1 and R2 = t2T2 × S2. Then R1 is a c-semiring

(c-subsemiring of T1) with t1 as identity and R2 is a c-semiring with (0T2 , 0S2) as zero

(since T2 and S2 are so). For any x ∈ S, let f(x) = (s1, s2) and g(x) = (x1, x2);

where si ∈ Si and xi ∈ Ti for i = 1, 2. Define h : S −→ R1 × R2 by h(x) =

(t1x1, (t2x2, s2)). We now prove that h is an isomorphism and h(ab) = (1R1 , 0R2). Let

y ∈ S and g(y) = (y1, y2) and f(y) = (r1, r2); where ri ∈ Si, yi ∈ Ti for i = 1, 2.

Then g(xy) = g(x) g(y) = (x1, x2) (y1, y2) = (x1y1, x2y2) and f(xy) = f(x) f(y) =

(s1, s2) (r1, r2) = (s1r1, s2r2). Now h(x + y) = (t1(x1 + y1), (t2(x2 + y2), s2 + r2)) =
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(t1x1, (t2x2, s2))+(t1y1, (t2y2, r2)) = h(x)+h(y) and h(xy) = (t1x1y1, (t2x2y2, s2r2)) =

(t1x1t1y1, (t2x2y2, s2r2)) = (t1x1, (t2x2, s2)) (t1y1, (t2y2, r2)) = h(x)h(y). So, h is a

homomorphism. To prove that h is one to one, let h(u) = h(v) for some u, v ∈ S.

Then (t1u1, (t2u2,m2)) = (t1v1, (t2v2, n2)) =⇒ t1u1 = t1v1, t2u2 = t2v2 and m2 =

n2 =⇒ u1 = v1, u2 = v2 and m2 = n2 (since t1u1 = u1, t1v1 = v1, t2u2 = u2 and

t2v2 = v2). Now (u1, u2) = (v1, v2) =⇒ g(u) = g(v) =⇒ u = v (since g is one to one).

Therefore, h is one to one. To prove that h is onto, suppose (t1p1, (t2p2, q2)) ∈ R1×R2;

where p1 ∈ T1, p2 ∈ T2, q2 ∈ S2. Since (p1, p2) ∈ T1 × T2 and g : S −→ T1 × T2 is an

isomorphism, there exists y ∈ S such that g(y) = (p1, p2). Now g(ay) = g(a)g(y) =

(t1, t2)(p1, p2) = (t1p1, t2p2) = (p1, p2) (since t1p1 = p1, t2p2 = p2) = g(y). This imlpies

that ay = y. So f(ay) = f(y) =⇒ f(a)f(y) = f(y) =⇒ (1S1 , 0S2)(y1, y2) = (y1, y2)

(since f(y) = (y1, y2)). Therefore, y2 = 0S2 . Since f is an isomorphism, there exits

x ∈ S such that f(x) = (y1, q2). Then f(ax) = f(a)f(x) = (1S1 , 0S2)(y1, q2) =

(y1, 0S2) = (y1, y2) (since y2 = 0S2) = f(y). Hence, ax = y. Let g(x) = (z1, z2). Then

(t1p1, t2p2) = g(y) = g(ax) = g(a)g(x) = (t1, t2) (z1, z2) = (t1z1, t2z2). Therefore,

h(x) = (t1z1, (t2z2, q2)) = (t1p1, (t2p2, q2)). Hence, h is onto and h is an isomorphism.

Also g(ab) = g(a)g(b) = (t1, 0T2) and f(ab) = f(a)f(b) = (w1, 0S2). This implies

that h(ab) = (t1, (0T2 , 0S2)) = (1R1 , 0R2). Thus, ab ∈ B(S). We now prove that

a+ b ∈ B(S). Put R′
1 = t1T1 × t2T2 and R′

2 = t2 + T2. Then R
′
1 is a c-semiring with

(t1, t2) as identity and R′
2 is a c-semiring with (t2 + 0T2) as zero with respect to the

following operations : (t2+p)+(t2+q) = t2+(p+q) and (t2+p)(t2+q) = t2+pq for all

p, q ∈ T2. Define h
′ : S −→ R′

1×R′
2 by h

′(x′) = ((t1x
′
1, t2x

′
2), t2+x

′
2). For any x

′ ∈ S,

let g(x′) = (x′1, x
′
2) and f(x

′) = (s′1, s
′
2); where x

′
1 ∈ T1, x

′
2 ∈ T2, s

′
1 ∈ S1, s

′
2 ∈ S2.

For any y′ ∈ S, let g(y′) = (y′1, y
′
2) and f(y′) = (r′1, r

′
2), where y′1 ∈ T1, y

′
2 ∈

T2, r
′
1 ∈ S1, r

′
2 ∈ S2. We have g(x′ + y′) = g(x′) + g(y′) = (x′1, x

′
2) + (y′1, y

′
2) =

(x′1+ y
′
1, x

′
2+ y

′
2) and f(x

′+ y′) = f(x′)+ f(y′) = (s′1, s
′
2)+ (r′1, r

′
2) = (s′1+ r

′
1, s

′
2+ r

′
2).

Now h′(x′)h′(y′) = ((t1x
′
1, t2x

′
2), t2+x

′
2)((t1y

′
1, t2y

′
2), t2+y

′
2) = ((t1x

′
1t1y

′
1, t2x

′
2t2y

′
2), t2+

x′2y
′
2) = ((t1x

′
1y

′
1, t2x

′
2y

′
2), t2 + x′2y

′
2) = h′(x′y′) (since t1y

′
1 = y′1 and t1y

′
1 = y′1) and

h′(x′) + h′(y′) = ((t1x
′
1, t2x

′
2), t2 + x′2) + ((t1y

′
1, t2y

′
2), t2 + y′2) = ((t1(x

′
1 + y′1), t2(x

′
2 +

y′2)), t2 + (x′2 + y′2)) = h′(x′ + y′). Hence, h′ is a homomorphism. To prove that
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h′ is one to one, let h′(u′) = h′(v′) for some u′, v′ ∈ S =⇒ ((t1u
′
1, t2u

′
2), t2 + u′2) =

((t1v
′
1, t2v

′
2), t2 + v′2) =⇒ t1u

′
1 = t1v

′
1, t2u

′
2 = t2v

′
2 and t2 + u′2 = t2 + v′2 =⇒ t1u

′
1 =

t1v
′
1, t2u

′
2 = t2v

′
2 and t2+u

′
2 = t2+ v

′
2 =⇒ u′1 = v′1, u

′
2 = v′2 and t2+u

′
2 = t2+ v

′
2 (since

t1u
′
1 = u′1t2u

′
2 = u′2t1v

′
1 = v′1, t2v

′
2 = v′2). Now (u′1, u

′
2) = (v′1, v

′
2) =⇒ g(u′) = g(v′).

Therefore, u′ = v′ (since g is one to one). Thus h′ is one to one. To prove that h′

is onto, suppose ((t1p
′
1, t2p

′
2), t2 + q′2) ∈ R′

1 × R′
2, where p

′
1 ∈ T1, p

′
2 ∈ T2, q

′
2 ∈ T2.

Since (p′1, p
′
2) ∈ T1 × T2 and g : S −→ T1 × T2 is an isomorphism, there exists p′ ∈ S

such that g(p′) = (p′1, p
′
2). Similarly, since (p′1, q

′
2) ∈ T1 × T2, there exists q′ ∈ S

such that g(q′) = (p′1, q
′
2). Now g(aq′) = g(a)g(q′) =⇒ g(aq′) = (t1, t2) (p′1, q

′
2) =

(t1p
′
1, t2q

′
2) = (p′1, q

′
2) (since t1p

′
1 = p′1 and t1q

′
2 = q′2) = g(q′). Since g is one to one, so

we find that aq′ = q′. This implies that h′(aq′) = h′(q′) =⇒ h′(a)h′(q′) = h′(q′) =⇒

((t1, t2), t2)((t1p
′
1, t2q

′
2), t2 + q′2) = ((t1p

′
1, t2q

′
2), t2 + q′2) =⇒ ((t1p

′
1, t2q

′
2), t2 + 0T2) =

((t1p
′
1, t2q

′
2), t2+q

′
2) =⇒ t2+q

′
2 = t2+0T2 . Again h

′(a+ b) = (1R′
1
, 0R′

2
) = ((t1, t2), t2+

0T2). Now h′((a + b)p′) = h′(a + b)h′(p′) = ((t1, t2), t2 + 0T2)((t1p
′
1, t2p

′
2), t2 + p′2) =

((t1p
′
1, t2p

′
2), t2+0T2) = ((t1p

′
1, t2p

′
2), t2+q

′
2) (since t2+0T2 = t2+q

′
2 ). Hence, h

′ is onto

and h′ is an isomorphism. Also f(a + b) = f(a) + f(b) = (w1 + 1S1 , w2) = (1S1 , w2)

(since 1S1 is absorbing with respect to “+”) and g(a + b) = g(a) + g(b) = (t1 +

1T1 , t2) = (1T1 , t2) (since 1T1
is absorbing with respect to “+”); from which we get

h′(a+ b) = ((t1(t1 + 1
T1
), t2t2), t2 + t2) = ((t1, t2), t2) = ((t1, t2), t2 + 0T2) = (1R′

1
, 0R′

2
).

Thus, a + b ∈ B(S). Hence, B(S) is a subsemiring of S. Again 0S, 1S ∈ B(S) (

by Lemma 2.2.5). Since B(S) is a subsemiring of S and (S,+) is a band, (B(S),+)

is a band. Also 1S is the absorbing element of B(S) w.r.t. “+”. Hence, B(S) is a

c-subsemiring of S.

Now we are going to set up the lattice structure for B(S). For that we start with

the following note.

Note 2.4.2. A subset may fail to be a sublattice even when it forms a lattice under

the operations of the parent lattice restricted to the sublattice.

Example 2.4.3. Let G be a group. Then P(G) = Set of all subsets of G forms a

lattice under subset relation ⊆ and where H ∧K = H ∩K and H ∨K = Intersection
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of all subsets of G containing both H and K (= H ∪K). Let τ be set of all subgroups

of G. Then τ ⊆ P(G) and τ is not a sublattice of P(G) as for H,K ∈ τ , H ∨K =

Intersection of all subsets containing both H and K will be H ∪K which may not be

a subgroup and thus H ∨K /∈ τ .

But in case of c-semiring, a c-subsemiring of a c-semiring S forms a lattice struc-

ture w.r.t. the same partial order relation defined on S.

It is already in the literature that a c-semiring S forms a lattice structure w.r.t.

a parial order relation “≤S” on S defined by a ≤S b if and only if a + b = b for all

a, b ∈ S.

In this lattice a ∨ b and a ∧ b are nothing but a + b and ab respectively. So, any

c-subsemiring of a c-semiring S forms a sublattice. Since B(S) is a c-subsemiring of

a c-semiring S, it is a sublattice of S.

Theorem 2.4.4. If S is a c-semiring, then B(S) forms a distributive lattice.

Proof. Let a, b, c ∈ B(S). Then a∧ (b∨ c) = a∧ (b+ c) (since b∨ c = b+ c) = a(b+ c)

(since a ∧ b = ab) = ab+ ac = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ B(S). Hence B(S) is a

distributive lattice.

A distributive lattice is always modular lattice. Also from Theorem 2.4.4, it follows

that B(S) is a distributive lattice for a c-semiring S. So we have the following result:

Lemma 2.4.5. If S is a c-semiring, then B(S) forms a modular lattice.

Theorem 2.4.6. If S is a c-semiring, then B(S) forms a complete lattice.

Proof. Let S be a c-semiring. Define a partial order relation “≤S” on S by a ≤S b

if and only if a + b = b for all a, b ∈ S. Then from [14], it follows that (S,≤S) is a

complete lattice. From Theorem 2.4.1, we know that B(S) is a c-subsemiring of S.

So, we conclude that (B(S),≤S) is a complete lattice.

Theorem 2.4.7. If S is a c-semiring, then B(S) forms a Boolean lattice.
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Proof. Let S be a c-semiring with identity 1S and zero element 0S. Suppose that

α ∈ B(S), α ̸= 0S, 1S. Then there exist c-semirings S1 with identity 1S1 , S2 with zero

element 0S2 and an isomorphism f : S −→ S1 ×S2 such that f(α) = (1S1 , 0S2). Since

f is surjective and (0S1 , 1S2) ∈ S1×S2, there exists β ∈ S such that f(β) = (0S1 , 1S2).

Now f(α+β) = f(α)+f(β) = (1S1 , 0S2)+(0S1 , 1S2) = (1S1 , 1S2) = f(1S). This implies

that α+β = 1S. Again f(αβ) = f(α)f(β) = (1S1 , 0S2)(0S1 , 1S2) = (0S1 , 0S2) = f(0S).

Thus, αβ = 0S. So, β is a complement of α. We show that β ∈ B(S). Let us

construct a function g : S −→ S2 × S1 defined by g(x) = (c, d), where f(x) = (d, c).

To prove that g is homomorphism, suppose for x, y ∈ S, g(x + y) = (c, d). Then

f(x + y) = (d, c) =⇒ f(x) + f(y) = (d, c) (since f is homomorphism) =⇒ (a1, b1) +

(a2, b2) = (d, c), where f(x) = (a1, b1) and f(y) = (a2, b2) =⇒ (a1+a2, b1+b2) = (d, c).

This implies that a1+a2 = d and b1+b2 = c. Again g(x) = (b1, a1) and g(y) = (b2, a2).

Now g(x) + g(y) = (b1, a1) + (b2, a2) = (b1 + b2, a1 + a2) = (c, d) = g(x + y). Again

g(xy) = (c1, d1). Then by the definition of g, f(xy) = (d1, c1) =⇒ f(x)f(y) = (d1, c1)

(since f is homomorphism) =⇒ (a1, b1)(a2, b2) = (d1, c1), where f(x) = (a1, b1) and

f(y) = (a2, b2) =⇒ (a1a2, b1b2) = (d1, c1). Thus, a1a2 = d1 and b1b2 = c1. Again

g(x) = (b1, a1) and g(y) = (b2, a2). Now g(x)g(y) = (b1, a1)(b2, a2) = (b1b2, a1a2) =

(c1, d1) = g(xy). Hence, g is a homomorphism. To prove that g is one to one, suppose

for any x, y ∈ S, g(x) = g(y). Then (c1, d1) = (c2, d2) =⇒ c1 = c2 and d1 = d2. Now

(d1, c1) = (d2, c2) =⇒ f(x) = f(y) =⇒ x = y (since f is one to one). Hence, g is

one to one. To prove that g : S −→ S2 × S1 is onto, consider (a, b) ∈ S2 × S1. Then

(b, a) ∈ S1 × S2. Since f : S −→ S1 × S2 is surjective, there exists z ∈ S such that

f(z) = (b, a). This implies that g(z) = (a, b). Therefore, g is onto. Thus, g is an

isomorphism. Therefore, β ∈ B(S). So, the complement of any element of B(S) is

also the member of B(S). Hence, B(S) is a complemented lattice. From Theorem

2.4.4, it follows that B(S) is a distributive lattice. Again 0S, 1S ∈ B(S). Thus, B(S)

is a bounded lattice and consequently, B(S) forms a Boolean lattice.

Corollary 2.4.8. If S is a finite c-semiring, then the number of elements of B(S) is

2n for some n ∈ N.
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Proof. From the above, we find that B(S) forms a Boolean lattice. From [19], it

follows that every finite Boolean lattice is isomorphic to a set with 2n elements for

some n = 0, 1, 2, ... So, the number of elements of B(S) is 2n for some n ∈ N.

2.5 Properties of Birkhoff Center of c-Semiring

The following section is dedicated to investigating various properties associated with

the Birkhoff center B(S) of a c-semiring S.

Lemma 2.5.1. Let S be a c-semiring. If x is a nonzero and nonidentity element of

S such that x ∈ B(S), then x is a divisor of zero in S.

Proof. Let S be a c-semiring and x ∈ B(S). Then there exist two c-semirings S1

with identity 1S1 and S2 with zero 0S2 and an isomorphism f : S −→ S1 × S2 such

that f(x) = (1S1 , 0S2). Again f(0S) = (0S1 , 0S2) and f(1S) = (1S1 , 1S2). Suppose

f(y) = (0S1 , 1S2), where y(̸= 0) ∈ S. Now f(xy) = (0S1 , 0S2) = f(0S). This implies

that xy = 0S (since f is a isomorphism). Therefore, x is a zero divisor in S.

The following example shows that the converse of the above result is not true i.e.

a divisor of zero in a c-semiring S is not necessarily a member of B(S).

Example 2.5.2. Consider the set S1 = {0S1 , 1S1}. Define the operations “+” and

“.” on S by means of the followings two tables :

+ 0S1 1S1

0S1 0S1 1S1

1S1 1S1 1S1

. 0S1 1S1

0S1 0S1 0S1

1S1 0S1 1S1

Then (S1,+, ·) is a c-semiring and B(S1) = {0S1 , 1S1}.

Consider S2 = {0S2 , 1S2 , x}. Define the operations “+” and “.” on T as follows :

+ 0S2 x 1S2

0S2 0S2 x 1S2

x x x 1S2

1S2 1S2 1S2 1S2

. 0S2 x 1S2

0S2 0S2 0S2 0S2

x 0S2 0S2 x

1S2 0S2 x 1S2
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Then (S2,+, ·) is a c-semiring and B(S2) = {0S2 , 1S2}.

Let S = S1×S2 = {(0S1 , 0S2), (0S1 , 1S2), (0S1 , x), (1S1 , 0S2), (1S1 , 1S2), (1S1 , x)} with

two binary operations “+” and “.” on S, defined by componentwise. Then (S,+, ·) is

a c-semiring and B(S) = {(0S1 , 0S2), (1S1 , 1S2), (1S1 , 0S2), (0S1 , 1S2)} .

Now |S| = |S1×S2| = 6 and |B(S)| = |B(S1×S2)| = 4. Again (0S1 , x), (1S1 , x) ∈ S

and (0S1 , x) · (1S1 , x) = (0S1 , x · x) = (0S1 , 0S2). This implies that (0S1 , x) and (1S1 , x)

are divisors of zero. But (0S1 , x), (1S1 , x) /∈ B(S).

Theorem 2.5.3. If S = {0S, 1S, x1, x2, ..., xn−2} is a finite set of n elements to-

gether with two binary operations addition and multiplication (denoted by juxtaposi-

tion) satifying the following conditions : xi + xi = xi for all xi ∈ S, xi + xj = 0,

xixj = 0 for all i ̸= j, xi, xj ∈ S, 1Sxi = xi for all xi ∈ S, 0Sxi = 0S for all xi ∈ S,

1S + xi = 1S for all xi ∈ S, then S forms a c-semiring and B(S) = {0S, 1S}.

Proof. It can be easily shown that S forms a c-semiring with multiplicative identity

1S and additive identity 0S. Again 1S is an absorbing element of S with respect to

addition. If x ∈ B(S), then there exists an element y ∈ B(S) such that x, y are

complement to each other i.e. x + y = 1S and xy = 0S, since B(S) forms a Boolean

lattice. From hypothesis, it is only possible when either x = 1S, y = 0S or x = 0S,

y = 1S. Hence, B(S) = {0S, 1S}.

Theorem 2.5.4. If S is a finite c-semiring with prime cardinality, then B(S) =

{0S, 1S}.

Proof. Suppose that S is a finite c-semiring with prime cardinality i.e. |S| = p,

where p is a prime number. Let x ∈ B(S). Then there exist two c-semirings S1 with

identity 1S1 and S2 with zero 0S2 and an isomorphism f : S −→ S1 × S2 such that

f(x) = (1S1 , 0S2). Since 0S, 1S ∈ B(S), f(0S) = (0S1 , 0S2) and f(1S) = (1S1 , 1S2).

Again since S ≃ S1 × S2, so |S| = |S1 × S2| = |S1| × |S2|. Now |S| = p implies that

|S| = |S1| × |S2| = p. This implies either |S1| = 1, |S2| = p or |S1| = p, |S2| = 1. Let

S1 = {0S1} and S2 = {0S2 , 1S2 , x1, . . . , xp−2}. Since f(x) = (1S1 , 0S2) = (0S1 , 0S2) =

f(0S). This implies that x = 0S. Taking |S1| = p and |S2| = 1, we can prove that

x = 1S. Hence, B(S) = {0S, 1S}.
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Theorem 2.5.5. If S1 and S2 are two c-semirings, then |B(S1 × S2)| ≥ 4.

Proof. Let S1 be a c-semiring with identity 1S1 and zero 0S1 , S2 be another c-semiring

with identity 1S2 and zero 0S2 . Let f : S1×S2 −→ S1×S2 be the identity isomorphism.

We know that (1S1 , 1S2), (0S1 , 0S2) ∈ B(S1 × S2). Also f(1S1 , 0S2) = (1S1 , 0S2) implies

that (1S1 , 0S2) ∈ B(S1 × S2). Now (0S1 , 1S2) is a complement of (1S1 , 0S2). Hence,

(1S1 , 0S2) ∈ B(S1 × S2), (0S1 , 1S2) ∈ B(S1 × S2). Therefore, |B(S1 × S2)| ≥ 4.

Theorem 2.5.6. If S is a c-semiring with cardinality |S| ≤ 7, then |B(S)| ≤ 4.

Proof. If S is a singleton c-semiring, then B(S) is a singleton. Again from Theorem

2.5.4, it follows that if S is a c-semiring with prime cardinality then B(S) = {0S, 1S},

where 0S is the zero element of S and 1S is the identity element of S. If S is a

c-semiring with cardinality 4 then the cardinality of B(S) is either 2 or 4. Again if

S is a c-semiring with cardinality 6, then the cardinality of B(S) is either 2 or 4.

Therefore, |B(S)| ≤ 4.

Remark 2.5.7. If S = S1 × S2, where S1 and S2 are two c-semirings and |S| ≤ 7

then by Theorem 2.5.5 and Theorem 2.5.6, we conclude that |B(S)| = 4.

Theorem 2.5.8. If S1 and S2 are two c-semirings, then B(S1)×B(S2) ⊆ B(S1×S2).

Proof. Let (a, b) ∈ B(S1)×B(S2). Then as a ∈ B(S1), there exist two c-semirings T1

with identity 1T1 and T2 with zero 0T2 and an isomorphism f : S1 −→ T1 × T2

such that f(a) = (1T1 , 0T2). Also as b ∈ B(S2), there exist two c-semirings T
′
1

with identity 1T ′
1
and T

′
2 with zero 0T ′

2
and an isomorphism g : S2 −→ T

′
1 × T

′
2

such that g(b) = (1T ′
1
, 0T ′

2
). Now we consider the c-semiring T1 × T ′

1 with iden-

tity (1T1 , 1T ′
1
) and the c-semiring T2 × T ′

2 with zero (0T2 , 0T ′
2
) and define a map-

ping F : S1 × S2 −→ (T1 × T ′
1) × (T2 × T

′
2) by F (x, y) = ((s1, s

′
1), (t2, t

′
2)), where

f(x) = (s1, t2), g(y) = (s′1, t
′
2) and s1 ∈ T1, s

′
1 ∈ T

′
1, t2 ∈ T2, t

′
2 ∈ T

′
2. At first we

show that F is well defined. Let (x, y), (p, q) ∈ S1 × S2 such that (x, y) = (p, q).

Then x = p and y = q. Since f , g are well defined, x = p =⇒ f(x) = f(p)

and y = q =⇒ g(y) = g(q). Let f(x) = f(p) = (a, b) and g(y) = g(q) =

(c, d), where a ∈ T1, b ∈ T2, c ∈ T ′
1 and d ∈ T ′

2. So, F (x, y) = ((a, c), (b, d)) =
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F (p, q). Thus, F is well defined. To show that F is a homomorphism, consider

(x1, y1), (x2, y2) ∈ S1 × S2. Now we assume that f(x1) = (s1, s2), f(x2) = (t1, t2),

g(y1) = (s′1, s
′
2) and g(y2) = (t′1, t

′
2), where s1, t1 ∈ T1, s2, t2 ∈ T2, s

′
1, t

′
1 ∈ T ′

1 and

s′2, t
′
2 ∈ T ′

2. Since f is a homomorphism, it follows that f(x1 + x2) = f(x1) + f(x2) =

(s1, s2) + (t1, t2) = (s1 + t1, s2 + t2) and f(x1x2) = f(x1)f(x2) = (s1, s2)(t1, t2) =

(s1t1, s2t2). Again, since g is a homomorphism, we have g(y1 + y2) = g(y1) + g(y2) =

(s′1, s
′
2) + (t′1, t

′
2) = (s′1 + t′1, s

′
2 + t′2) and g(y1y2) = g(y1)g(y2) = (s′1, s

′
2)(t

′
1, t

′
2) =

(s′1t
′
1, s

′
2t

′
2). So, we find that F ((x1, y1) + (x2, y2)) = F (x1 + x2, y1 + y2) = ((s1 +

t1, s2 + t2), (s
′
1 + t

′
1, s

′
2 + t

′
2)) = ((s1, t1), (s1, t

′
1)) + ((s2, t2), (s

′
2, t

′
2)) = F (x1, y1) +

F (x2, y2). Again F ((x1, y1)(x2, y2)) = F (x1x2, y1y2) = ((s1s2, t1t2), (s
′
1s

′
2, t

′
1t

′
2)) =

((s1, t1), (s
′
1, t

′
1))((s2, t2), (s

′
2, t

′
2)) = F (x1, y1)F (x2, y2). This shows that F is a ho-

momorphism. To prove that F is one to one, suppose that for any (x, y), (p, q) ∈

S1 × S2, F (x, y) = F (p, q). Then we have ((s1, s
′
1), (t2, t

′
2)) = ((p1, p

′
1), (q2, q

′
2)), where

f(x) = (s1, t2), g(y) = (s
′
1, t

′
2), f(p) = (p1, q2) and g(q) = (p′1, q

′
2). This implies that

s1 = p1, t2 = q2, s
′
1 = p′1 and t′2 = q′2. Since s1 = p1, s

′
1 = p′1 =⇒ f(x) = f(p) =⇒ x =

p (since f is one to one) (i).

Again t2 = q2, t
′
2 = q′2 =⇒ f(y) = f(q) =⇒ y = q (since f is one to one) (ii).

From (i) and (ii), we find that (x, y) = (p, q) for all (x, y), (p, q) ∈ S1 × S2 =⇒ F

is one to one. To prove that F is onto, let ((a1, a
′
1), (a2, a

′
2)) ∈ (T1 × T ′

1)× (T2 × T ′
2),

where a1 ∈ T1, a
′
1 ∈ T ′

1, a2 ∈ T2 and a
′
2 ∈ T ′

2. Since (a1, a2) ∈ T1 × T2 and f :

S1 −→ T1 × T2 is an isomorphism, there exists x ∈ S1 such that f(x) = (a1, a2).

Again since (a
′
1, a

′
2) ∈ T ′

1 × T ′
2 and g : S2 −→ T ′

1 × T
′
2 is an isomorphism, there exists

y ∈ S2 such that g(y) = (a
′
1, a

′
2). Therefore, F (x, y) = ((a1, a

′
1), (a2, a

′
2)). This implies

that F is onto and cosequently, F is an isomorphism. Since f(a) = (1T1 , 0T2) and

g(b) = (1T ′
1
, 0T ′

2
), F (a, b) = ((1T1 , 1T ′

1
), (0T2 , 0T ′

2
)), where (1T1 , 1T ′

1
) is the identity of

T1 × T ′
1 and (0T2 , 0T ′

2
) is the zero element of T2 × T ′

2. So, (a, b) ∈ B(S1 × S2). Hence,

B(S1)×B(S2) ⊆ B(S1 × S2).

Now we show that the following theorem can be used to strengthen theorem 2.5.8.
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Theorem 2.5.9. If S1 and S2 are two c-semirings without zero divisor, then B(S1 ×

S2) = B(S1)×B(S2).

Proof. Let S1 be c-semiring with identity 1S1 , zero 0S1 and S2 be c-semiring identity

1S2 , zero 0S2 . Since S1 and S2 be two c-semirings without zero divisor, then the set of

zero divisor of S1×S2 is (S
∗
1×{0S2})∪({0S1}×S∗

2), where S
∗
i denotes Si\0Si

for i = 1, 2.

From Lemma 2.5.1, we get if (a, b) ∈ B(S1 × S2) \ {(1S1 , 1S2), (0S1 , 0S2)}, then (a, b)

must be zero divisor. So, B(S1×S2)\{(1S1 , 1S2), (0S1 , 0S2)} ⊆ (S∗
1 ×{0S2})∪ ({0S1}×

S∗
2). This implies that a central element of S1×S2 except (1S1 , 1S2) and (0S1 , 0S2) must

be of the form either (x, 0S2) or (0S1 , y). Since (x, 0S2) ∈ B(S1×S2), then there exists

an element (0S1 , y) ∈ B(S1×S2) (Since B(S1×S2) forms a Boolean lattice) such that

(x, 0S2) + (0S1 , y) = (1S1 , 1S2). So, (x, y) = (1S1 , 1S2). This implies that x = 1S1 and

y = 1S2 . Therefore, (x, 0S2) = (1S1 , 0S2). Similarly, we show that (0S1 , y) = (0S1 , 1S2).

Therefore, B(S1 × S2) = {(0S1 , 0S2), (1S1 , 1S2), (1S1 , 0S2), (0S1 , 1S2)}. Again B(S1) =

{0S1 , 0S2} and B(S2) = {0S2 , 1S2}. Hence, B(S1 × S2) = B(S1)×B(S2).

Theorem 2.5.10. If two c-semirings are isomorphic, then their Birkhoff centers are

isomorphic.

Proof. Consider S and T are two c-semirings which are isomorphic. Let f : S −→ T

be an isomorphism. Consider y ∈ B(T ). By the definition of Birkhoff center, there

exists an isomorphism g : T −→ T1 × T2 such that g(y) = (1T1 , 0T2), where T1

is a c-semiring with identity 1T1 and T2 with zero 0T2 . Since f : S −→ T and

g : T −→ T1 × T2 are isomorphism, gof : S −→ T1 × T2 is an isomorphism. Now

(gof)(x) = g(f(x)) = g(y) = (1T1 , 0T2). Thus, x ∈ B(S). For any y ∈ B(T ), there

exists a unique x ∈ B(S) such that f(x) = y. This implies that |B(S)| = |B(T )|. The

restriction of f to B(T ) i.e. f|B(S)
: B(S) −→ B(T ) is an isomorphism. Therefore,

B(S) ≃ B(T ).

The following example shows that the converse of the above theorem is not true

i.e. if B(S) and B(T ) are isomorphic then the c-semirings S and T may not be

isomorphic.



CHAPTER 2. BIRKHOFF CENTER OF c-SEMIRINGS 42

Example 2.5.11. Consider the set S = {0, 1, a}. Define the operations “+” and “.”

on S by means of the followings two tables :

+ 0 a 1

1 1 1 1

a a a 1

0 0 a 1

. 0 a 1

1 0 a 1

a 0 0 a

0 0 0 0

Then (S,+, ·) is a c-semiring and B(S) = {0, 1}.

Consider T = {0, 1, x, y}. Define the operations “+” and “.” on T as follows :

+ 0 x y 1

1 1 1 1 1

x x x y 1

y y y y 1

0 0 x y 1

. 0 x y 1

1 0 x y 1

x 0 0 0 x

y 0 0 0 y

0 0 0 0 0

Then (T,+, ·) is a c-semiring and B(T ) = {0, 1}. Thus, B(S) ≃ B(T ) although S is

not isomorphic to T because |S| = 3 and |T | = 4.

Now we are trying to find out the class of c-semirings where the converse of the

above Theorem 2.5.10 is true.

Remark 2.5.12. We provide a class of c-semirings where the converse of the above

Theorem 2.5.10. is true. Let S = S2×S2×· · ·×S2 (k-times) and T = S2×S2×· · ·×S2

(m-times) be two c-semirings such that B(S) ≃ B(T ), where S2 is a c-semiring of

order 2. From Theorem 2.5.13, we have B(S) = S and B(T ) = T . Further from

Corollary 2.4.8, it follows that |B(S)| = 2k and |B(T )| = 2m. Since |B(S)| = B(T )|,

k = m. So, S = S2 × S2 × · · · × S2 (k-times) and T = S2 × S2 × · · · × S2 (k-times).

Therefore, S ≃ T .

Theorem 2.5.13. Let S be a c-semiring. If S is isomorphic to S2 × S2 × ...× S2 (n

times, n ∈ N), then S = B(S), where S2 is a c-semiring of order 2.

Proof. If two c-semirings are isomorphic then their Birkhoff centers are isomorphic.

Since S ≃ S2 × S2 × .........× S2, B(S) ≃ B(S2 × S2 × .........× S2). Again since B(S)
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forms a Boolean lattice, the order of B(S) is 2n. Since B(S) is a c-subsemiring of S,

B(S2 × S2 × .........× S2) ⊆ S2 × S2 × .........× S2. Then |B(S2 × S2 × .........× S2)| ≤

|S2 × S2 × .........× S2| = 2n (since S2 is a c-semiring of order 2) (i).

S = S2×S2×.........×S2 (n times) = (S2×S2×.........×S2)(n−1 times)×S2 = S1×S2,

where S1 = (S2×S2× .........×S2) (n−1 times). Since S1 and S2 are two c-semirings,

B(S1) × B(S2) ⊆ B(S1 × S2). It follows that |B(S1)| × |B(S2)| ≤ |B(S1 × S2)|.

Therefore, 2n ≤ |B(S1 × S2)| = |B(S2 × S2 × .........× S2)| (ii).

From (i) and (ii), we get 2n ≤ |B(S2 × S2 × ......... × S2)| ≤ 2n. Consequently,

|B(S2 × S2 × .........× S2)| = 2n. Hence, S = B(S).

Theorem 2.5.14. If S is a c-semiring, then B(S) is a subalgebra of B(E(S)).

Proof. Suppose a ∈ B(S). Then a ∈ E(S) and there exists a map fa : S −→ Sa such

that x 7−→ (ax, fa(x)) is an isomorphism of S onto aS × Sa and fa is identity on Sa.

Since a ∈ B(S), there exist two c-semirings S1 with identity 1S1 and S2 with zero 0S2

and there is an isomorphism f : S −→ S1 × S2 such that f(a) = (1S1 , 0S2). For any

x ∈ S, consider f(x) = (x1, x2), where x1 ∈ S1 and x2 ∈ S2. Define fa : S −→ Sa

by fa(x) = f−1(1S1 , x2). For any e ∈ S, define α : E(S) −→ aE(S) × E(S)a

by α(e) = (ae, fe(x)). To prove that α is one to one, suppose for any x, y ∈ S,

α(x) = α(y). Then ax = ay and fa(x) = fa(y). Now ax = ay =⇒ f(ax) =

f(ay)(since f is an isomorphism)=⇒ f(a)f(x) = f(a)f(y) =⇒ (1S1 , 0S2)(x1, x2) =

(1S1 , 0S2)(y1, y2) =⇒ (x1, 0S2) = (y1, 0S2) =⇒ x1 = y1. Also, fa(x) = fa(y) =⇒

f−1(1S1 , x2) = f−1(1S1 , y2) =⇒ x2 = y2. Therefore, f(x) = (x1, x2) = (y1, y2) =

f(y) =⇒ x2 = y2(since f is an isomorphism). Consequently, α is one to one. To

prove that α is onto, suppose (ac, d) ∈ aE(S) × E(S)a. Choose x ∈ S such that

ax = ac and fa(x) = d = fa(d). Now ax2 = (ax)2 = (ac)2 = ac = ax and fa(x
2) =

fa(d
2) = fa(d) = fa(x) and hence x2 = x (since f is an one to one) i.e. x is an

idempotent. Let y ∈ S. Now, fa(xy) = fa(x)fa(y) = fa(d)fa(y) = fa(dy) = fa(yd) =

fa(y)fa(d) = fa(yx). Therefore, xy = yx for all y ∈ S. Therefore, x ∈ E(S) =⇒ α is

onto. So α is an isomorphism. Thus, a ∈ B(E(S)). Hence, B(S) is a subalgebra of

B(E(S)).
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Conclusion : In this chapter, we have proved that if two c-semirings are isomor-

phic, then their Birkhoff centers are isomorphic but the converse of this result is not

necessarily true. It will be more interesting to study different types of c-semirings

where the converse of this result is also true.
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3.1 Introduction

In 2001, M.K. Sen et al. initially coined [56] the term “k-idempotent” to describe

a unique class of elements in a k-regular semiring. However, during subsequent re-

search involving this concept, they recognized that the term “almost idempotent”

was a more fitting designation. Consequently, they officially adopted the term “al-

most idempotent” to refer to these elements. An element e ∈ S is called an almost

idempotent if e + e2 = e2. Almost idempotent has a significant impact on k-Clifford

semirings, as well as left k-Clifford semirings and other notable subclasses within the

realm of k-regular semirings. This notion is a proper generalization of multiplicative

idempotent elements in the semirings whose additive reduct is a semilattice. We were

inspired by the concepts of almost idempotent and the center of semiring, which led us

to propose a fresh variation known as the “almost idempotent center” of a semiring.

The almost idempotent center of a semiring S consists of almost idempotents of S

that are also the elements of usual center Z(S) of S. So, almost idempotent center is

the intersection of the set of all idempotent elements and the center of semirings. The

objective of this chapter is to explore numerous findings that demonstrate a strong

resemblance between the properties of the almost idempotent center in a semiring and

45
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those in ring theory. Additionally, within this chapter, we present the concept of an

almost idempotent central semiring, expanding on the notion of an almost idempotent

semiring. Moreover, we employ the assistance of the almost idempotent center of the

semiring to effectively characterize the properties of the almost idempotent central

semiring.

3.2 Ec(S) of a Semiring S

This section begins by introducing the concept of the almost idempotent center of a

semiring. We present several examples and fundamental findings that are not only

beneficial for subsequent results but also for the upcoming sections. To commence,

we define the almost idempotent center as follows :

Definition 3.2.1. Let S be a semiring. A subset Ec(S) of a semiring S is called

an almost idempotent center of S which is defined by Ec(S) = {a ∈ S : a + a2 =

a2 and ab = ba for all b ∈ S}.

Example 3.2.2. Consider (N,⊕,⊙) is a semiring with a ⊕ b = min{a, b} = a as

addition on N; where b > a and a ⊙ b for the usual multiplication. For any b ∈ N,

a⊕ a2 = min{a, aa} = a and ab = ba. Then Ec(N) = N.

Example 3.2.3. Suppose that (N,⊕,⊙) is a semiring; where a⊕ b = max{a, b} and

a⊙ b = min{a, b}. In this case, it can be observed that Ec(N) = N.

Example 3.2.4. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x 1

1 1 1 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Therefore, we can conclude that (S,+, ·) is a semiring and Ec(S) = {0, x, 1} = S.
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Example 3.2.5. Consider S = {0, 1, 2, 3}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 3

2 2 3 3 3

3 3 3 3 3

. 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 3

3 0 3 3 3

Then (S,+, ·) is a commutative semiring. It is worth noting that Z(S) = S =

{0, 1, 2, 3}. But Ec(S) = {0, 2, 3}. Hence, we can conclude that Ec(S) ⊊ Z(S).

Example 3.2.6. Consider S = {0, a, b, c}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c c

. 0 a b c

0 0 0 0 0

a 0 a a a

b 0 a b b

c 0 a c c

Consequently, (S,+, ·) forms a non-commutative semiring. Moreover, Z(S) = Ec(S) =

{0, a}.

Example 3.2.7. {A class of finite semiring} : Let n, i be integers such that 2 ≤ n,

0 ≤ i < n, and B(n, i) = {0, 1, 2, ..., n− 1}. We define addition and multiplication in

B(n, i) by the following equations (let m = n− i) :

x+ y =

 x+ y, if x+ y ≤ n− 1

l, if x+ y ≥ n ; where l ≡ (x+ y)modm and i ≤ l ≤ n− 1.

x · y =

 xy, if xy ≤ n− 1

l, if xy ≥ n ; where l ≡ (xy)modm and i ≤ l ≤ n− 1.

Then the set B(n, i) is a commutative semiring with zero (0) and identity (1) under

addition (“+”) and multiplication (“·”). In particular, let n = 4 and i = 1, then we
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have B(4, 1) = {0, 1, 2, 3}. The operations “+” and “·” on B(4, 1) by means of the

following tables :

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 1

2 2 3 1 2

3 3 1 2 3

. 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 1 3

3 0 3 3 3

As a result, the set B(4, 1) forms a commutative semiring, leading to the conclusion

that Ec(B(4, 1)) = {0, 3}.

Example 3.2.8. Let G be a group and S be the set of all subsets of G. Let us define

“+” and “·” in S as : A + B = A ∪ B and A · B = {ab | a ∈ A, b ∈ B} for all

A,B ∈ S. Then (S,+, ·) is an additively idempotent semiring where ϕ is the zero

element and {e} [e denotes the identity element of the group G] is the unity of the

semiring S. Consider G = k4 = {e, a, b, c} (Klein’s 4- group).

+ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

In this case S = Z(S) = {ϕ, {e}, {e, a}, {e, b}, {e, c}, {e, a, b}, {e, b, c}, {e, a, c}, {a, b, c},

{e, a b, c}}. It is important to note that Ec(S) = {ϕ, {e}, {e, a}, {e, b}, {e, c}, {e, a, b}, {e, b, c},

{e, a, c}, {a, b, c}, {e, a b, c}}. Therefore, Ec(S) ̸= Z(S).

We now construct an interseting example of almost idempotent center of power

set of a semiring. The construction is outlined as follows :

Example 3.2.9. Let S be a commutative semigroup with identity and P(S) be the set

of all subsets of S. Define addition and multiplication on P(S) by : U + V = U ∪ V

and U · V = {ab : a ∈ U, b ∈ V } for all U, V ∈ P(S). Then (P(S),+, ·) forms a

semiring.
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Let A be a subsemigroup of S and A ∈ Ec(P(S)). Then A + A2 = A2 and

AB = BA for all B ∈ P(S) =⇒ A ∪ A2 = A2 and AB = BA for all B ∈ P (S) =⇒

A ⊆ A2 (i).

Since A is a subsemigroup of S, so A2 = A · A ⊆ A (ii).

From (i) and (ii), we obtain A = A2. So, Ec(P(S)) ⊆ {A ∈ P(S) : A2 = A}.

If we take B ∈ {A ∈ P (S) : A2 = A} =⇒ B2 = B. Now B + B2 = B + B =

B ∪ B = B = B2 =⇒ B + B2 = B2. Since S is commutative, so AB = BA for all

A ∈ P(S). Consequently, {A ∈ P(S) : A2 = A} ⊆ Ec(P (S)). Therefore, we conclude

that Ec(P(S)) = {A ∈ P(S) : A2 = A}.

Theorem 3.2.10. Let S be a semiring with identity. Then a ∈ Ec(S) if and only if

aIn ∈ Ec(M
d
n(S)); where M

d
n(S) is the set of all n×n diagonal matrices of the form :

Md
n(S) =




a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 : aii ∈ S


Proof. Let a ∈ Ec(S). Then a+ a2 = a2 and ab = ba for all b ∈ S.

Now aIn + (aIn)
2

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a2 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · a2



=


a+ a2 0 · · · 0

0 a+ a2 · · · 0
...

...
. . .

...

0 0 · · · a+ a2


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=


a2 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · a2



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a


= (aIn)

2, since a ∈ Ec(S).

Again (aIn)B =


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn



=


ab1 0 · · · 0

0 ab2 · · · 0
...

...
. . .

...

0 0 · · · abn



=


b1a 0 · · · 0

0 b2a · · · 0
...

...
. . .

...

0 0 · · · bna



=


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a


= B(aIn), since a ∈ Ec(S).

Therefore, it follows that aIn ∈ Ec(M
d
n(S)).

Conversely, let’s assume that aIn ∈ Ec(M
d
n(S)). Our task now is to demonstrate
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that a ∈ Ec(S). Let x ∈ S. Now consider B =


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x

. Due to the fact

that aIn ∈ Ec(Mn(S)), we can determine that aIn + (aIn)
2 = (aIn)

2 and (aIn)B =

B(aIn). Comparing both sides, it becomes evident that a + a2 = a2 and ax = xa.

Consequently, it can be deduced that a ∈ Ec(S).

We adapt some of basic results to almost idempotent center of semirings. We will

now introduce a lemma that will be applicable in the subsequent theorem.

Lemma 3.2.11. If S is a semiring with zero element 0, then 0 ∈ Ec(S).

Proof. Considering an element a ∈ Ec(S), we observe that a + a2 = a2 and ax = xa

hold for all x ∈ S. Furthermore, for any a ∈ S, we have 0+02 = 02 and a·0 = 0 = a·0.

As a result, we can conclude that 0 ∈ Ec(S).

Theorem 3.2.12. The almost idempotent center of a semiring S forms a subsemiring

of S.

Proof. By applying Lemma 3.2.11, it follows that if S is a semiring with a zero element

0, then we can deduce that 0 ∈ Ec(S). So, the almost idempotent center Ec(S) of

a semiring S is non-empty. Let S be a semiring and a, b ∈ Ec(S). Our objective

is to prove that a + b ∈ Ec(S) and ab ∈ Ec(S). Since a ∈ Ec(S), a + a2 = a2 and

ab = ba for all b ∈ S and b ∈ Ec(S), b + b2 = b2 and ba = ab for all a ∈ S. Now

(a+b)+(a+b)2 = a+b+(a+b)(a+b) = a+b+a2+ab+ba+b2 = a+a2+b+b2+ab+ba =

a2 + b2 + ab+ ba = a2 + ab+ b2 + ba = a(a+ b)+ b(b+ a) = (a+ b)2. Hence, for every

x ∈ S, (a+ b)x = ax+ bx = xa+ xb = x(a+ b). Therefore, a+ b ∈ Ec(S).

Again (ab)2 = (ab)(ab) = a(ba)b = aabb = a2b2 = (a + a2)(b + b2) = ab + ab2 +

a2b+ a2b2 = ab+ a2b2 + a2b (since a+ a2 = a2 ⇒ ab2 + a2b2 = a2b2)= ab+ a2b2 (since

b + b2 = b2 ⇒ a2b + a2b2 = a2b2)= ab + (ab)2. For any x ∈ S, (ab)x = abx = axb =

x(ab). Hence, it follows that ab ∈ Ec(S). Consequently, we can conclude that Ec(S)

is a subsemiring of S.
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Remark 3.2.13. The Example 3.2.7 shows that the almost idempotent center of a

semiring S is not an ideal of S, as evidenced by the fact that 2 ·3 = 2 /∈ Ec(B(4, 1)) =

{0, 3}.

Proposition 3.2.14. If S is an additively cancellation semiring, then Ec(S) = {0}.

Proof. Let a ∈ Ec(S). Then a + a2 = a2 and ab = ba for all b ∈ S. If S is an

additively cancellation semiring, then a = {0}. Since a is an arbitrary element of

Ec(S), it follows that Ec(S) = {0}.

3.3 The Structural Properties of Ec(S)

In this section, we delve into the fundamental structural properties of Ec(S) for a

semiring S that are typically assumed across conventional semirings.

Now, we observe the following outcome :

Theorem 3.3.1. If φ is an epimorphism from S to S ′, then φ(Ec(S)) ⊆ Ec(S
′).

Proof. Suppose S is a semiring and φ : S −→ S ′ is an epimorphism. Let φ(Ec(S)) =

{φ(s) : s ∈ Ec(S)}. Our goal is to prove that φ(Ec(S)) ⊆ Ec(S
′). Let φ(e) ∈

φ(Ec(S)) and consider x ∈ S ′. Given that φ is a surjective function, we can conclude

that there exists an element y in set S for which there exists a preimage x in set S ′

such that φ(y) = x. Furthermore, since e ∈ Ec(S), we can observe that e+e2 = e2 and

ey = ye. Now for any x ∈ S ′, φ(e)+φ(e)2 = φ(e)+φ(e2) = φ(e+e2) = φ(e2) = φ(e)2

and φ(e)x = φ(e)φ(y) = φ(ey) = φ(ye) = φ(y)φ(e) = xφ(e), utilizing the fact that φ

is an epimorphism. As a consequence, we can conclude that φ(e) ∈ Ec(S
′). Therefore,

we can deduce that φ(Ec(S)) ⊆ Ec(S
′).

Theorem 3.3.2. Let S and S ′ be two semiring. If f : S → S ′ is a monomorphism,

then f(Ec(S)) = Ec(f(S)).

Proof. Let’s assume x ∈ f(Ec(S)). This means that there exists some y in Ec(S)

such that x = f(y). Our goal is to prove two statements: f(y) + f(y)2 = f(y)2 and

f(y)s = sf(y) for all s in f(S).
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For any s in f(S), we have f(y) + f(y)2 = f(y) + f(y)f(y) = f(y) + f(yy) =

f(y + y2) = f(y2). Similarly, f(y)s = f(y)f(r) = f(yr) = f(ry) = f(r)f(y) = sf(y).

Thus, we have shown that x = f(y) ∈ Ec(f(S)). Therefore, f(Ec(S)) ⊆ Ec(f(S)).

Now, let’s consider x′ in Ec(f(S)). This implies that x′ = f(r′) for some r′ in S.

We need to prove that r′ ∈ Ec(S). Since x′ ∈ Ec(f(S)), we can deduce that for any

f(s) ∈ f(S), x′ + x′2 = x′2 =⇒ f(r′) + f(r′)2 = f(r′)2 =⇒ f(r′ + r′2) = f(r′2) =⇒

r′ + r′2 = r′2, since f is a monomorphism and x′f(s) = f(s)x′ =⇒ f(r′)f(s) =

f(s)f(r′) =⇒ f(r′s) = f(sr′). Applying the monomorphism property of f , we get

r′s = sr′. Consequently, we can conclude that r′ ∈ Ec(S). Thus, we have proven that

Ec(f(S)) ⊆ f(Ec(S)).

In summary, we have shown that Ec(f(S)) = f(Ec(S)).

Theorem 3.3.3. If two semirings S1 and S2 are isomorphic, then their almost idem-

potent centers Ec(S1) and Ec(S2) are isomorphic.

Proof. Consider two semirings S1 and S2 which are isomorphic. Then there is an

isomorphism f : S1 −→ S2. Let x ∈ Ec(S1). Then for any s1 ∈ S1, x + x2 = x2

and xs1 = s1x. Let f(x) = y; where y ∈ S2. Since f is an isomorphism, for any

s2 ∈ S2, there exists s1 ∈ S1 such that f(s1) = s2. Thus, y + y2 = f(x) + f(x)2 =

f(x) + f(x2) = f(x + x2) = f(x2) = f(x)2 = y2 and ys2 = f(x)f(s1) = f(xs1) =

f(s1x) = f(s1)f(x) = s2y, since x ∈ Ec(S1). Hence, we can conclude that y ∈ Ec(S2).

This implies that f(Ec(S1)) ⊆ Ec(S2). Again, let b ∈ Ec(S2). Then b = f(a); where

a ∈ S1. Since f is an isomorphism, for any y ∈ S2, there exists x ∈ S1 such that

y = f(x). Since b ∈ Ec(S2), we have b + b2 = b2 and by = yb. Consequently,

we can deduce that b + b2 = b2 =⇒ f(a) + f(a)2 = f(a)2 =⇒ f(a) + f(a)f(a) =

f(a)f(a) =⇒ f(a) + f(a2) = f(a2) =⇒ f(a + a2) = f(a2) =⇒ a + a2 = a2 and

by = yb =⇒ f(a)f(x) = f(x)f(a) =⇒ f(ax) = f(xa) =⇒ ax = xa, since f is an

isomorphism. Therefore, we conclude that a ∈ Ec(S1). Consequently, b = f(a) ∈

f(Ec(S1)). Thus, Ec(S2)) ⊆ f(Ec(S1)) and hence Ec(S2) = f(Ec(S1)). As a result,

g = f|Ec(S1)
: Ec(S1) −→ Ec(S2) is well defined and it is an isomorphism from Ec(S1)

onto Ec(S2).
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In general, it is important to note that the converse of the above Theorem 3.3.3

does not hold true. This can be illustrated by the following example :

Example 3.3.4. Ec(Z+
0 ) = {0} and Ec(R+

0 ) = {0}. However, it should be noted that

Z+
0 and R+

0 are not isomorphic.

Theorem 3.3.5. If S1 and S2 are two semirings, then Ec(S1×S2) = Ec(S1)×Ec(S2).

Proof. Let S1 and S2 be two semirings. Assume e = (e1, e2) ∈ Ec(S1 × S2). Thus,

we have e + e2 = e2 and ex = xe for all x = (x1, x2) ∈ S1 × S2. By expanding the

equations, we obtain (e1, e2) + (e1, e2)
2 = (e1, e2)

2 =⇒ (e1, e2) + (e21, e
2
2) = (e21, e

2
2) =⇒

(e1+e
2
1, e2+e

2
2) = (e21, e

2
2). Consequently, we conclude that e1+e

2
1 = e21 and e2+e

2
2 = e22.

Furthermore, we observe that ex = xe for all x = (x1, x2) ∈ S1 × S2. This implies

that (e1, e2)(x1, x2) = (x1, x2)(e1, e2) =⇒ (e1x1, e2x2) = (x1e1, x2e2), which leads

to e1x1 = x1e1 for all x1 ∈ S1 and e2x2 = x2e2 for all x2 ∈ S. Hence, we can

conclude that e1, e2 are elements in Ec(S1) and Ec(S2) respectively. Consequently,

e = (e1, e2) ∈ Ec(S1)× Ec(S2). This implies that Ec(S1 × S2) ⊆ Ec(S1)× Ec(S2) (i).

For reverse part, let e = (e1, e2) ∈ Ec(S1)×Ec(S2). Therefore, we have e1 ∈ Ec(S1)

and e2 ∈ Ec(S2). Then e1 + e21 = e21 and e1x1 = x1e1 for all x1 ∈ S1 and e2 + e22 = e22

and e2x2 = x2e2 for all x2 ∈ S2. Now, e+e
2 = (e1, e2)+(e1, e2)

2 = (e1, e2)+(e21, e
2
2) =

(e1 + e21, e2 + e22) = (e21, e
2
2) = (e1, e2)

2 = e2, since e1 ∈ Ec(S1) and e2 ∈ Ec(S2).

Again ex = (e1, e2)(x1, x2) = (e1x1, e2x2) = (x1e1, x2e2) = (x1, x2)(e1, e2) = xe for all

x = (x1, x2) ∈ S1 × S2. This implies that e ∈ Ec(S1 × S2) and consequently, we find

that Ec(S1)× Ec(S2) ⊆ Ec(S1 × S2) (ii).

From (i) and (ii), it follows that E(S1 × S2) = Ec(S1)× Ec(S2).

With the application of Theorem 3.3.5, we construct an example of an almost

idempotent center of semiring.

Example 3.3.6. Consider two semiring (N,⊕,⊙); where a ⊕ b = min{a, b} and ⊙

is usual multiplication and (R+
0 ,+, ·); where “+” is usual addition and “·” is usual

multiplication. Now we take a semiring (N× R+
0 ,+, ·) with component-wise addition

and multiplication. Then Ec(N× R+
0 ) = N× {0}.
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3.4 Lattice Structure of Ec(S)

The objective of this section is to establish the lattice structure for Ec(S). To achieve

this, we start by considering the following example :

Example 3.4.1. Consider the ring Z12 and let ΩZ12 be the set of all ideals of Z12.

Specifically, ΩZ12 = {< 0 >,< 1 >,< 2 >,< 3 >,< 4 >,< 6 >}. Define ⊕ and ⊙ by

I1⊕I2 = {a1+b1 : a1 ∈ I1, b1 ∈ I2} and I1⊙I2 =

{
n∑

i=1

aibi : a1 ∈ I1, b1 ∈ I2

}
for all

I1, I2 ∈ ΩZ12; where n ∈ N. We can observe that (ΩZ12 ,⊕,⊙) forms a semiring. Here,

Ec(ΩZ12) = {< 0 >,< 1 >,< 3 >,< 4 >} ≠ {0}. This particular example serves as a

significant non-trivial illustration of an almost idempotent center of a semiring that

contains an additive absorbing element denoted by 1.

Theorem 3.4.2. If S is a semiring with an additive absorbing element 1, then Ec(S)

is a multiplicatively band.

Proof. Given that 1 is an additive absorbing element of S, so 1 + a = 1 for all

a ∈ S. Let a ∈ Ec(S). Then a + a2 = a2, which can be rewritten as a(1 + a) = a2.

Simplifying further, we have a · 1 = a2, leading to the conclusion that a = a2. Thus,

for all a ∈ Ec(S), we find that a2 = a. Consequently, Ec(S) can be regarded as a

multiplicatively band.

We would like to introduce a lemma that will assist us in constructing the lattice

structure for Ec(S).

Lemma 3.4.3. Let S be a semiring with an additive absorbing element 1. Define a

binary relation “ ≤S” on Ec(S) by “ a ≤S b” if and only if ab = a for all a, b in

Ec(S). Then (Ec(S),≤S) forms a partial ordered set.

Proof. For any elements a, b ∈ Ec(S), we have a ≤S b ⇐⇒ ab = a. To demonstrate

this, let’s take an element a from Ec(S). Since S is a semiring with an additive

absorbing identity element 1, according to Theorem 3.4.2, we can conclude that a2 = a

holds true for all a ∈ Ec(S). Consequently, we find that a · a = a2 = a. This

observation implies that a ≤S a. Therefore, the relation “≤S” is reflexive. Consider
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elements a and b from Ec(S) such that a ≤S b and b ≤S a. This implies that ab = a

and ba = b for a, b ∈ Ec(S). Since a, b ∈ Ec(S), we can deduce that ab = ba. From

this, we can conclude that a = b. Hence, the relation “≤S” is antisymmetric.

Now, let’s assume a ≤S b and b ≤S c hold for a, b, c ∈ Ec(S). We know that

a ≤S b implies ab = a and b ≤S c implies bc = b. By substituting bc = b in ab = a, we

get a(bc) = a. Simplifying this further, we obtain (ab)c = a. Consequently, we have

ac = a, since ab = a. Therefore, we can conclude that a ≤S c for all a, c ∈ Ec(S).

Hence, the relation “≤S” is transitive. Consequently, “≤S” forms a partial order

relation on Ec(S) and therefore, (Ec(S),≤S) constitutes a partially ordered set.

Now, we unveil the core outcome of this section.

Theorem 3.4.4. If S is a semiring with an additive absorbing element 1, then Ec(S)

forms a lattice.

Proof. Suppose S is a semiring with an additive absorbing element 1. Define a binary

relation denoted as “≤S” on Ec(S) as follows : a ≤S b if and only if ab = a for all

a, b ∈ Ec(S). By Lemma 3.4.3, it is ensured that (Ec(S),≤S) forms a partially

ordered set. Let’s consider the expression abb = ab2 = ab, since b ∈ Ec(S) and Ec(S)

is multiplicatively band. This implies that ab ≤S b for all a, b ∈ Ec(S). Additionally,

we have aba = (aa)b (since a ∈ Ec(S)) = a2b = ab, given that a ∈ Ec(S) and Ec(S)

is multiplicatively band. Hence, we can conclude that ab ≤S a for all a, b ∈ Ec(S).

Therefore, ab serves as a lower bound for both a and b.

We will now demonstrate that ab is the greatest lower bound of a and b. Suppose

g is another lower bound of a and b. This means that g ≤S a holds true if and only

if ga = g for all g, a ∈ Ec(S) and similarly, g ≤S b if and only if gb = g for all

g, b ∈ Ec(S). Now, we observe that gab = (ga) b = gb (since ga = g) = g, as gb = g.

Therefore, we can conclude that g ≤S ab for all a, b ∈ Ec(S). Consequently, ab is the

greatest lower bound of a and b.

We now determine the least upper bound of both a and b in Ec(S). By utilizing the

fact that Ec(S) is a multiplicatively band with the property a (a+b) = a2+ab = a+ab

(since a ∈ Ec(S)), we can simplify this further to a (1 + b) = a1 = a, as 1 acts as an
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additive absorbing element in S. Based on this, we can conclude that a ≤S a+ b for

any a, b ∈ Ec(S). Therefore, a+ b serves as an upper bound for both a and b.

Next, we aim to demonstrate that a+ b is the least upper bound of a and b. Let’s

assume that l ∈ Ec(S) is another upper bound of a and b. Consequently, a ≤S l

implies al = a for all a, l ∈ Ec(S) and b ≤S l implies bl = b for all b, l ∈ Ec(S). By

applying these conditions, we find that (a+ b) l = al+ bl = a+ b (due to al = a and

bl = b). Therefore, a + b ≤S l holds true for all a, b ∈ Ec(S). Consequently, we can

confirm that a + b is indeed the least upper bound of a and b. As a result, we have

demonstrated that Ec(S) forms a lattice.

Our focus now shifts to exploring the different lattice structures that are associated

with Ec(S).

Theorem 3.4.5. If S is a semiring that has an additive absorbing element 1, then

Ec(S) constitutes a distributive lattice.

Proof. Given that S is a semiring with an additive absorbing element 1, it is known

that Ec(S) forms a lattice. For any two elements a, b ∈ Ec(S), we have a ∨ b = a+ b

and a∧ b = ab. Let a, b, c ∈ Ec(S). Thus, we can deduce that a∧ (b∨ c) = a∧ (b+ c),

which follows from the fact that b ∨ c = b + c. This can be further simplified as

a(b + c), utilizing the property that a ∧ (b + c) = a(b + c). Consequently, we obtain

ab+ ac = (a∧ b)∨ (a∧ c) for all a, b, c ∈ Ec(S). As a result, it can be concluded that

Ec(S) constitutes a distributive lattice.

Remark 3.4.6. A distributive lattice is always modular lattice. Consequently, if S is

an additive absorbing element 1, then Ec(S) forms a modular lattice.

Remark 3.4.7. If S is a finite semiring with an additive absorbing element 1, then

Ec(S) forms a complete lattice.

We know that every finite set has supremum. As a result, if S is a finite set, then

every subset of Ec(S) possesses its supremum within Ec(S). Correspondingly, any

subset of Ec(S) also has its infimum within Ec(S). Thus, we can assert that Ec(S)

forms a complete lattice.
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Theorem 3.4.8. If S is a finite semiring with a zero element 0 and an additive

absorbing element 1 which is also an identity element, then Ec(S) forms a bounded

lattice.

Proof. In the case of a finite semiring S with an additive absorbing element 1, it is

known that the set Ec(S) forms a lattice. Considering an element a ∈ Ec(S), we

observe that a · 1 = a due to the identity property of 1 and a · 0 = 0, since 0 is the

zero element. Consequently, we can establish that a ≤ 1 and 0 ≤ a for all a ∈ Ec(S).

As a result, 1 acts as the greatest element of Ec(S) while 0 acts as the least element.

Hence, we conclude that Ec(S) constitutes a bounded lattice.

3.5 The Structure of Almost Idempotent Central

Semirings

Within this section, we introduce almost idempotent central semiring as a general-

ization of almost idempotent semiring was previously introduced by M.K. Sen et al.

[57]. We begin by outlining a definition and subsequently explore various properties

associated with this semiring.

Definition 3.5.1. A semiring S is said to be almost idempotent central semiring if

Ec(S) = S.

We now provide several instances of almost idempotent central semiring.

Example 3.5.2. Consider the set of integers Z+ with the operations a+b = lcm{a, b}

and a ·b = ab. Then (Z+,+, ·) is a semiring with zero element 1. Then Ec(Z+) = Z+.

Therefore, (Z+,+, ·) is an almost idempotent central semiring.

Example 3.5.3. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :
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+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x 1

1 0 1 1

Then (S,+, ·) is a semiring and Ec(S) = {0, x, 1} = S. Therefore, (S,+, ·) is an

almost idempotent central semiring.

Example 3.5.4. Consider S = {0, x, y, 1}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 x y 1

0 0 x y 1

x x x y x

y y y y y

1 1 x y 1

. 0 x y 1

0 0 0 0 0

x 0 x x x

y 0 x y y

1 0 x y 1

Then (S,+, ·) is a semiring and Ec(S) = {0, x, y, 1} = S. Therefore, (S,+, ·) is an

almost idempotent central semiring.

Remark 3.5.5. If S is an almost idempotent central semiring, then Ec(S) = Z(S).

Our focus now shifts to identifying certain conditions under which a semiring can

be classified as an almost idempotent central semiring.

Theorem 3.5.6. Every commutative idempotent semiring is an almost idempotent

central semiring.

Proof. Let S be an idempotent semiring. Then a + a = a and a2 = a for all a ∈ S.

Clearly, Ec(S) ⊆ S. Take an arbitrary non-zero element a in S. For any a ∈ S,

we have a + a2 = a2 + a2 = a2, as S is an idempotent semiring. Furthermore,

since S is a commutative semiring, satisfying ab = ba for all a, b ∈ S, it follows

that a(̸= 0) ∈ Ec(S). Additionally, 0 is also an element of Ec(S). Thus, we can

conclude that S ⊆ Ec(S) and therefore, S = Ec(S). Consequently, S is an an almost

idempotent central semiring.
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Theorem 3.5.7. Every additively idempotent mono-semiring is an almost idempotent

central semiring.

Proof. Assume S to be an additively idempotent semiring. For any a ∈ S, if a+ a =

a, then we can deduce that a2 = a, utilizing the fact that S is a mono-semiring.

Consequently, S is a multiplicatively band. It is evident that Ec(S) ⊆ S. Let’s

choose an arbitrary non-zero element a from S. We observe that for any a in S, if

a+a = a, then we find that a+a2 = a2, utilizing the fact that S is a multiplicatively

band. Additionally, considering any elements a and b from S, we find that ab = a+b =

b+a = ba, since S is a mono-semiring. Hence, a(̸= 0) ∈ Ec(S). Additionally, we note

that 0 is an element of Ec(S). Consequently, we can conclude that S ⊆ Ec(S) and as

a result, S = Ec(S). This establishes S as an almost idempotent central semiring.

Theorem 3.5.8. If S is a mono-semiring with identity element 1 and (S, ·) is a

rectangular band, then S is an almost idempotent central semiring.

Proof. Given that Ec(S) is a subsemiring of S, it can be deduced that Ec(S) ⊆ S.

Assume a(̸= 0) to be any arbitrary element within S. As (S, ·) is a rectangular band,

for any a, b ∈ S, we have aba = a. In particular, a1a = a, which implies a2 = a. Since

S is a mono-semiring, we can conclude that a+a = a. Therefore, we have a+a2 = a2

for all a in S. Moreover, the commutative property ab = a+b = b+a = ba is satisfied

by all elements a and b in S, as S is a mono-semiring. Consequently, a( ̸= 0) ∈ Ec(S).

Furthermore, 0 ∈ Ec(S). Therefore, we can establish that S ⊆ Ec(S), leading to

the conclusion that S = Ec(S). As a result, S is an almost idempotent central

semiring.

In the following, we outline a characterization theorem pertaining to almost idem-

potent central semiring.

Theorem 3.5.9. Let S be a multiplicatively subidempotent semiring. If S forms a

semilattice with respect to multiplication if and only if S is an almost idempotent

central semiring.
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Proof. Let’s establish the necessity. It is evident that Ec(S) ⊆ S. Take an arbitrary

element a( ̸= 0) from S. Since S forms a semilattice with respect to multiplication,

we have a = a2 and ab = ba for all a, b ∈ S. Furthermore, due to S being a

multiplicatively subidempotent semiring, we can deduce that for any a ∈ S, a+ a2 =

a =⇒ a + a2 = a2, as S is also multiplicatively band. Additionally, the property

ab = ba holds for all a, b ∈ S, as S is a semilattice with respect to multiplication.

Consequently, a(̸= 0) ∈ Ec(S). Furthermore, we have 0 ∈ Ec(S). Thus, we can

conclude that S ⊆ Ec(S), which implies S = Ec(S). As a result, S represents an

almost idempotent central semiring.

Now, let’s prove the converse. Suppose S is an almost idempotent central semiring,

meaning Ec(S) = S. Consider an element a ∈ Ec(S). Then we have a+ a2 = a2 (i).

Moreover, since S is a multiplicatively subidempotent semiring, we can also deduce

a+ a2 = a (ii).

Combining equations (i) and (ii), we conclude that a = a2. Additionally, since

a ∈ Ec(S), we have ab = ba for all a, b ∈ S. As a result, S is commutative and

multiplicative band. Hence, S forms a semilattice with respect to multiplication.

Theorem 3.5.10. If S is a mono-semiring, then any almost idempotent central

semiring can be considered as a k-regular semiring.

Proof. Suppose S is an almost idempotent central semiring. We can deduce that

Ec(S) = S. Additionally, due to S being a mono-semiring, we have a+ b = ab for all

a, b ∈ S. By multiplying both sides of this equation by ‘a’, we derive a2 + ba = aba.

Further simplification yields a + a2 + ba = a + aba, which can be further reduced

to a2 + ba = a + aba, as S is an almost idempotent semiring. Using the fact that

S is a mono-semiring, we can conclude that (a + b)a = a + aba, resulting in aba =

a+aba. As a consequence, S is k-regular semiring. Consequently, Ec(S) is a k-regular

semiring.

The subsequent pair of examples illustrates that the converse of the Theorem

3.5.10 is not true i.e. every k-regular semiring is not almost idempotent central

semiring.
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Example 3.5.11. The semiring (Z+
0 ,+, ·) is k-regular; where “+” and “·” are usual

addition and multiplication respectively. In this case Ec(Z+
0 ) = {0} ≠ S. As a result,

it is evident that (Z+
0 ,+, ·) is not almost idempotent central semiring.

Example 3.5.12. Consider S = {0, x, 1}. Define the operations “+” and “.” on S1

by means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 1 1

Therefore, (S,+, ·) is a k-regular semiring. However, Ec(S) = {0} ̸= S. So, (S,+, ·)

is not an almost idempotent central semiring.

Theorem 3.5.13. Let S be an almost idempotent central semiring. If S is an addi-

tively regular semiring, then S is an additively idempotent semiring.

Proof. Given that S is an almost idempotent central semiring, we can deduce that

S = Ec(S). So, a + a2 = a2 and ab = ba for all a, b ∈ S. Multiplying both sides by

‘a’, we obtain a+ a2 + a = a+ a2 (i).

Additionally, S is an additively regular semiring, we can assert that a+a2+a = a.

Therefore, the equation (i) simplifies to a = a + a2. By adding ‘a’ on both sides of

this equation, we get a+ a = a+ a2 + a for all a ∈ S. From this, we can deduce that

a+a = a for all a ∈ S. Consequently, we conclude that S is an additively idempotent

semiring.

The subsequent results yield the different properties of almost idempotent central

semirings.

Proposition 3.5.14. Suppose S is an almost idempotent central semiring. Then the

following statements are true.

(a) If (S, ·) is a band, then (S,+) is a band.

(b) If (S,+) is a band and possesses cancellative properties, then (S, ·) is a band.
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Proof. (a) Assume that S is an almost idempotent central semiring i.e. S = Ec(S).

Let a ∈ Ec(S) = S. For any a ∈ S, a+ a2 = a2 (i).

As (S, ·) is a band, we can conclude that a2 = a for all a ∈ S. Based on equation

(i), we can deduce that a+ a = a for all a ∈ S. Hence, (S,+) is a band.

(b) Consider (S,+) to be a band. Given that S is an almost idempotent central

semiring, we can deduce that S = Ec(S). Let a ∈ Ec(S). For any a ∈ S, we have

a+ a2 = a2 (i).

Since (S,+) is a band, we can conclude that a2 + a2 = a2 for all a2 ∈ S (ii).

Combining equations (i) and (ii), we can see that a+ a2 = a2 + a2. Applying the

cancellative law, we obtain a = a2 for all a ∈ S. Thus, we can conclude that (S, ·) is

a band.

Theorem 3.5.15. Let S be an almost idempotent central semiring. If S is a zero

square semiring, then S = {0}.

Proof. Suppose S is an almost idempotent central semiring i.e. Ec(S) = S. Let

a ∈ Ec(S). We have a + a2 = a2, which implies a + 0 = 0, since S is a zero square

semiring. As ‘a’ is chosen arbitrarily from S, we can conclude that S = {0}.

Theorem 3.5.16. If S is an almost idempotent central semiring with identity element

1 and (S, ·) is cancellative, then the equation b + ab = ab holds true for all elements

a and b in S.

Proof. Assuming S is an almost idempotent central semiring, represented by Ec(S) =

S. Let a ∈ Ec(S). Consequently, for any a ∈ S, we have a + a2 = a2, which implies

a(1 + a) = a · a. By the cancellative law, we obtain 1 + a = a (i).

Subsequently, multiplying both sides of equation (i) by ‘b’, we obtain (1 + a)b = ab,

which can be rearranged to yield b+ ab = ab for all a, b ∈ S.

Theorem 3.5.17. Every simple and almost idempotent central semiring is also a

multiplicatively idempotent semiring.

Proof. Suppose S is an almost idempotent central semiring, denoted by Ec(S) = S.

Consider an element a that belongs to Ec(S) = S. Then for any a ∈ S, we have
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a + a2 = a2. By simplifying the equation using the fact that S is a simple semiring,

we can deduce a(1+a) = a2, which can be further reduced to a·1 = a2. Consequently,

we arrive at the conclusion that a2 = a, thereby establishing S as a multiplicatively

idempotent semiring.

Our next target is to show that the class of all almost idempotent central semirings

is a variety. In order to accomplish this, we commence by establishing the subsequent

Lemma.

Lemma 3.5.18. Let S be an almost idempotent central semiring and S ′ be an sub-

semiring of S. Then S ′ is an almost idempotent central semiring.

Proof. Let S be an almost idempotent central semiring, denoted as Ec(S) = S. Our

objective is to show that S ′ is an almost idempotent central semiring, denoted as

Ec(S
′) = S ′. Suppose a ∈ S ′ ⊆ S = Ec(S). Consequently, a + a2 = a2 and ab = ba

for all b ∈ S. As S ′ is a subsemiring of S, we can infer that a+ a2 = a2 and ab = ba

for all b ∈ S ′. Hence, a ∈ Ec(S
′), indicating that S ′ ⊆ Ec(S

′). Furthermore, since

Ec(S
′) serves as a subsemiring of S ′, it follows that Ec(S

′) ⊆ S ′. Thus, we conclude

that Ec(S
′) = S ′, affirming that S ′ is an almost idempotent central semiring.

Lemma 3.5.19. Every homomorphic image of an almost idempotent central semiring

is also an almost idempotent central semiring

Proof. Let S be an almost idempotent central semiring with identity 1S and S ′ be

an almost idempotent central semiring with identity 1S′ . Let f : S → S ′ be onto

homomorphism. Then S ′ is the homomorphic image of the the almost idempotent

semiring S. We have to show that S ′ is an almost idempotent semiring. Since f

is an onto homomorphism, so S ′ = {f(a) : a ∈ S}. Furthermore, f(1S) = 1S′

acts as the identity element of S ′. Let s′ ∈ S ′. Then there exists a ∈ S such that

f(a) = s′. As S is an almost idempotent semiring, we know that a + a2 = a2 and

ab = ba for all a, b ∈ S. So, for any f(b) ∈ S ′, we have s′ + s′2 = f(a) + f(a)2 =

f(a) + f(a)f(a) = f(a) + f(aa) = f(a) + f(a2) = f(a + a2) = f(a2) = f(a)2 = s′2

and s′f(b) = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = f(b)s′. Therefore, we conclude
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that s′ = f(a) ∈ Ec(S
′) = S ′. Since s′ is an arbitrary element of S ′, it follows that S ′

is an almost idempotent central semiring.

Lemma 3.5.20. Let {Si : i = 1, 2, ..., n} be a finite family of semirings. Then the

direct product of semirings S =
n∏

i=1

Si is almost idempotent central semiring if and

only if each semiring Si is almost idempotent central semiring.

Proof. Let’s consider a family of semirings {Si : i = 1, 2, ..., n}; where each semir-

ing Si is almost idempotent central semiring. Now, suppose we have an element

(x1, x2, ..., xn) ∈ S, where each xi ∈ Si. Since each Si is almost idempotent central

semiring, for any yi ∈ Si, we have xi + x2i = x2i and xiyi = yixi for all i = 1, 2, ..., n.

Consequently, it follows that (x1, x2, ..., xn) + (x1, x2, ..., xn)
2

= (x1, x2, ..., xn) + (x1, x2, ..., xn)(x1, x2, ..., xn) = (x1, x2, ..., xn) + (x21, x
2
2, ..., x

2
n)

= (x1 + x21, x2 + x22, ..., xn + x2n) = (x21, x
2
2, ..., x

2
n) = (x1, x2, ..., xn)(x1, x2, ..., xn)

= (x1, x2, ..., xn)
2 and (x1, x2, ..., xn)(y1, y2, ..., yn) = (x1y1, x2y2, ..., xnyn)

= (y1x1, y2x2, ..., ynxn) = (y1, y2, ..., yn)(x1, x2, ..., xn). As a result, we conclude that

S is an almost central idempotent semiring

Conversely, suppose that S =
n∏

i=1

Si is almost idempotent central semiring. Our

objective is to demonstrate that each semiring Si is almost idempotent central semir-

ing. To accomplish this, we will examine the mapping π : S → Si defined by

π((x1, x2, ..., xn)) = xi for all (x1, x2, ..., xn) ∈ S. It can be observed that π is an onto

homomorphism from S =
n∏

i=1

Si to Si. Consequently, according to Lemma 3.5.19, Si

is an almost idempotent central semiring for all i = 1, 2, ..., n. This completes the

proof.

Theorem 3.5.21. The class of all almost idempotent central semirings is a variety.

Proof. By utilizing the Lemmas 3.5.18, 3.5.19 and 3.5.20, we have proved that the

class of almost idempotent central semirings is closed under taking subsemirings,

homomorphic images and direct products. Therefore, it can be concluded that the

class of all almost idempotent central semirings is a variety.
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Chapter 4

On h-Center of Semirings

4.1 Introduction

Center has left indelible mark on the structure theory of rings and useful for many

purposes. A center-like subset refers to a subset within certain classes of rings that

is defined based on a commutativity condition and coincides with the center of the

ring. There are many results in the literature of ring theory about that direction.

The hypercenter theorem, introduced by Herstein [34], is the first notable result in

this particular context. Several authors have investigated the center-like subsets of

rings or special classes of rings (See [6], [7], [8], [26], [48]). Some recent works on

center-like subsets of rings can be found in [37], [47], [73]. The motivation for

constructing a special type of center, namely “h-center” of a semiring came from the

concept of center-like subsets of a ring.

The aim of this chapter is to explore various findings concerning a center-like

subset of a semiring that bear resemblance to similar concepts in ring theory, using the

assistance of the h-center of the semiring. In some sense, the h-center, represented as

Ch(S), is a center-like subset of a semiring S. Like center Z(S) of a semiring S, Ch(S)

is not an ideal of S. But we can establish that Ch(S) is indeed an ideal of Z(S). If S

is an additively cancellative semiring, it is noteworthy that Ch(S) = Ann(S)∩Z(S);

where Ann(S) denote the annihilator of semiring S. Consequently, the h-center

serves as a generalization of both the semiring’s annihilator and its center. In the

66
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final section of this chapter we introduce an exclusive kind of semiring known as the

“h-central semiring” utilizing the concept of h-center. Additionally, we delve into

several structural aspects pertaining to this particular semiring.

4.2 Ch(S) of a Semiring S

Within this section, we will provide a formal definition for the concept of h-center of a

semiring S, accompanied by a few illustrative examples. Additionally, an investigation

into the h-centers of the power semiring and matrix semiring will be conducted.

Definition 4.2.1. Let S be a semiring. A subset Ch(S) of a semiring S is called

h-center of S if Ch(S) = {a ∈ S : a+ ab = a and ab = ba for all b ∈ S}.

Note 4.2.2. If S be a semiring with zero element 0, then from the definition of

h-center, we see that 0 ∈ Ch(S).

Example 4.2.3. Note that Z+
0 = {x ∈ Z : x ≥ 0}, Q+

0 = {x ∈ Q : x ≥ 0}

and R+
0 = {x ∈ R : x ≥ 0} are commutative semirings with zero. In this case,

Ch(Z+
0 ) = {0}, Ch(Q+

0 ) = {0} and Ch(R+
0 ) = {0}.

Example 4.2.4. Let’s consider the semiring (N,⊕,⊙); where for any b > a, a⊕ b =

min{a, b} = a as addition on N and a ⊙ b for the usual multiplication on N. Then

for any b ∈ N, we have a⊕ ab = min{a, ab} = a and ab = ba. Consequently, we can

conclude that Ch(N) = N.

Example 4.2.5. Consider S = {0, a, b, c}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c c

. 0 a b c

0 0 0 0 0

a 0 a a a

b 0 a b b

c 0 a c c
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Therefore, (S,+, ·) is a non-commutative semiring. In this case, Z(S) = {0, a}.

However, Ch(S) = {0, a}. Hence, we can observe that Z(S) = Ch(S).

Let us now investigate the characteristics of Ch(S) within the framework of a

power semiring.

Definition 4.2.6. Let S be a semigroup and P(S) be the set of all subsets of S.

Define addition and multiplication on P(S) by : U + V = U ∪ V and U · V = {ab :

a ∈ U, b ∈ V } for all U, V ∈ P(S). Then (P(S),+, ·) is a semiring whose additive

reduct is a semilattice.

Theorem 4.2.7. Let S be a commutative semigroup and (P(S),+, ·) is a semiring.

Then Ch(P(S)) = {I ∈ P(S) : I is an ideal of S}.

Proof. Let I be an ideal of S and consider A ∈ P(S). We can observe that I + IA =

I ∪ IA = I, since IA ⊂ I due to I being an ideal of S. Additionally, since S is

commutative, we have IA = {ia : i ∈ I, a ∈ A} = AI. Consequently, I ∈ Ch(P(S)).

Moreover, if X ∈ Ch(P(S)), then X+XA = X and XA = AX for any A ∈ P(S). We

claim that X is an ideal of S. If possible, let X be not an ideal of S. Then there exists

some a ∈ S such that xia /∈ X for some xi ∈ X. Now X+X{a} = X ∪X{a} ≠ X as

xia /∈ X which contradicts that X ∈ Ch(P(S)). Thus, we conclude that X is indeed

an ideal of S. Consequently, we can state that Ch(P(S)) is the collection of all ideals

of S, which can be expressed as Ch(P(S)) = {I ∈ P(S) : I is an ideal of S}.

The formation of the h-center in a matrix semiring is shown by the following

theorem.

Theorem 4.2.8. Let S be a semiring with identity. Then a ∈ Ch(S) if and only if

aIn ∈ Ch(M
d
n(S)); where M

d
n(S) is the set of all n× n diagonal matrices of the form:

Md
n(S) =




a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 : aii ∈ S


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Proof. Let a ∈ Ch(S). Then a+ ab = a and ab = ba for all b ∈ S.

Now aIn + (aIn)B

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


ab1 0 · · · 0

0 ab2 · · · 0
...

...
. . .

...

0 0 · · · abn



=


a+ ab1 0 · · · 0

0 a+ ab2 · · · 0
...

...
. . .

...

0 0 · · · a+ abn

 =


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 = aIn,

since a ∈ Ch(S).

Again (aIn)B =


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn



=


ab1 0 · · · 0

0 ab2 · · · 0
...

...
. . .

...

0 0 · · · abn

 =


b1a 0 · · · 0

0 b2a · · · 0
...

...
. . .

...

0 0 · · · bna



=


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 = B(aIn), since a ∈ Ch(S).

Consequently, it can be deduced that aIn ∈ Ch(M
d
n(S)).

Conversely, suppose that aIn ∈ Ch(M
d
n(S)). Our aim now is to demonstrate
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that a ∈ Ch(S). Let x ∈ S. Now consider B =


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x

. Since aIn ∈

Ch(M
d
n(S)), it follows that aIn + (aIn)B = aIn and (aIn)B = B(aIn). Comparing

both sides, we can deduce that a + ax = a and ax = xa. Consequently, we can

conclude that a ∈ Ch(S).

By virtue of the Theorem 4.2.8, we arrive at the following Corollary :

Corollary 4.2.9. Let S be a semiring with identity. Then the h-center of S i.e.

Ch(Mn(D)) = {A ∈ Mn(D) : A + AB = A and AB = BA for all B ∈ Mn(D)};

where Mn(D) is the set of all n× n diagonal matrices.

4.3 Algebraic Properties of Ch(S)

In this section, we establish that Ch(S) constitutes a subsemiring within S and elab-

orates on further algebraic characteristics of Ch(S). We wrap up this section by

examining Ch(S) in the context of a different class of semiring.

Theorem 4.3.1. The h-center of a semiring S with zero 0 is a subsemiring of S.

Proof. Since S is a semiring with zero element 0, then 0 ∈ Ch(S). So, the h-center of

a semiring S is non-empty. Let x, y ∈ Ch(S). We now show that x+ y ∈ Ch(S) and

xy ∈ Ch(S). For any k in S, we have (x+y)+(x+y)k = x+xk+y+yk = x+y (since

x ∈ Ch(S) and y ∈ Ch(S)) and (x+ y)k = xk+ yk = kx+ ky (since x, y ∈ Ch(S)) =

k(x+ y). Therefore, we conclude that x+ y ∈ Ch(S). Furthermore, we observe that

xy+xyk = x(y+yk) = xy (since y ∈ Ch(S)) and xyk = xky (since y ∈ Ch(S))= kxy

(since x ∈ Ch(S)). Hence, we can deduce that xy ∈ Ch(S). Consequently, we can

establish that Ch(S) forms a subsemiring of S.

According to above Theorem 4.3.1, we arrive the following corollary :
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Corollary 4.3.2. Let S be a semiring with identity element 1. Then Ch(S) is an

additively idempotent subsemiring of S.

Proof. We can conclude that Ch(S) is a subsemiring of S based on Theorem 4.3.1.

Let’s assume a belongs to Ch(S). Consequently, a + ax = a and ax = xa for all

x ∈ S. If we choose x = 1, we obtain a+a = a, which indicates that ‘a’ is an additive

idempotent element. Since ‘a’ is an arbitrary element of Ch(S), it follows that Ch(S)

is an additively idempotent subsemiring of S.

Remark 4.3.3. Consider a semiring S. In this context, Ch(S) is a multiplicatively

subidempotent semiring. Let a ∈ Ch(S). Then a+ax = a and ax = xa for all x ∈ S.

If x = a, then a + a2 = a. This implies that ‘a’ is a multiplicatively subidempotent

element of S. Since ‘a’ is arbitrary, we can conclude that Ch(S) is a multiplicatively

subidempotent semiring.

Proposition 4.3.4. If S is a semiring with identity element 1, then Ch(S) is a viterbi

semiring.

Proof. If we let a ∈ Ch(S), we observe that a+ab = a and ab = ba for every b ∈ S. By

choosing b = 1 as the multiplicative identity in S, it becomes evident that a+ a = a

and by setting b = a, we find that a + a2 = a. Since a is chosen arbitrarily, we can

conclude that Ch(S) forms a viterbi semiring.

Now we present the desired characterization theorem for h-center of a semiring.

Theorem 4.3.5. Let S be a semiring with identity element 1. Then 1 ∈ Ch(S) if

and only if 1 is an absorbing element of S with respect to addition.

Proof. First suppose that 1 ∈ Ch(S). By the definition of h-center of a semiring, we

have 1 + 1 · a = 1 for all a ∈ S. As a result, we can deduce that 1 + a = 1 for every

element a in S, indicating that 1 functions as an additively absorbing element of S.

Conversely, let’s assume that 1 is an absorbing element of S with respect to

addition. Thus we have 1 + a = 1 for all a ∈ S. This implies that 1 + 1.a = 1 for all

a ∈ S. Hence, a ∈ Ch(S).
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By using Theorem 4.3.5, we can easily deduce the subsequent Corollary.

Corollary 4.3.6. Let S be a semiring with identity element 1. Then 1 ∈ Ch(S) if

and only if S is a semiring with additively absorbing 1.

We will now introduce another characterization theorem that applies to the h-

center of a c-semiring.

Theorem 4.3.7. Let S be a c-semiring. Then 1 ∈ Ch(S) if and only if |S| = 2.

Proof. Given that S is a c-semiring, we can deduce that 0, 1 ∈ S. Let 1 ∈ Ch(S).

Then 1+ b = 1 for all b ∈ S. Since S is a c-semiring, we have 1+ x = 1 for all x ∈ S.

This implies that b = 1. Thus, we have S = {0, 1}.

Conversely, suppose that |S| = 2. Since S is a c-semiring, so 0, 1 ∈ S. Thus, it

follows that S = {0, 1}. Additionally, since S is a c-semiring, we can deduce that

1 + x = 1 for all x ∈ S. Hence, 1 ∈ Ch(S).

The following theorems explore the characteristics and properties of Ch(S) in

different classes of semirings.

Theorem 4.3.8. If S is a division semiring with unity 1, then Ch(S) is a simple

semiring.

Proof. Let z ∈ Ch(S) and z ̸= 0. As Ch(S) ⊆ S, so z ∈ S. Moreover, S being a

division semiring implies that there exists an inverse w for z in S, satisfying zw =

1 = wz. Since z ∈ Ch(S), we have z + zr = z for all r ∈ S (i).

By substituting r = z into equation (i), we get z + z2 = z. This can be further

simplified to wz + wz2 = wz, which leads to 1 + wz · z = wz. Simplifying further,

we get 1 + z = 1, given that wz = 1. As z is arbitrary, we can conclude that Ch(S)

constitutes a simple semiring.

It can be observed in the following theorem that a division semiring’s h-center,

within a semiring with an additive absorbing identity, is itself a division semiring.

Theorem 4.3.9. Let S be a division semiring with additive absorbing identity 1.

Then Ch(S) is a division semiring.
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Proof. Let a( ̸= 0) ∈ Ch(S) ⊆ S. Since S is a division semiring, there exists d ∈ S\{0}

such that ad = da = 1. By the existence of an additive absorbing identity 1 in S,

we can apply Theorem 4.3.5 to conclude that 1 ∈ Ch(S). We have to only show

that d ∈ Ch(S). Since a ∈ Ch(S), a + ax = a and ax = xa for all x ∈ S. Now

multiplying d from right side, we have (a + ax)d = ad and axd = xad. This implies

that ad+axd = ad and axd = xad. So, we have 1+axd = 1 and axd = x, since ad = 1.

Next multiplying d from left side, we have d+daxd = d and daxd = dx =⇒ d+xd = d

and xd = dx for all x ∈ S, since da = 1. Therefore, we conclude that d ∈ Ch(S).

In summary, we have shown that ad = da = 1 for some d ∈ Ch(S), demonstrating

that a is a unit in Ch(S). Hence, Ch(S) is a division semiring.

Theorem 4.3.10. Let S be an additively cancellative semiring. Then S is a mono-

semiring if and only if Ch(S) is additively rectangular band.

Proof. Let S be a mono-semiring. By applying Theorem 4.3.1, we can conclude that

Ch(S) forms a subsemiring of S. Let a ∈ Ch(S). Then a+ ab = a for all b ∈ S. This

implies that a + a + b = a, since S is mono-semiring. Thus, a + b + a = a for all

a ∈ Ch(S). Therefore, Ch(S) is additively rectangular band.

Conversely, suppose that Ch(S) is additively rectangular band. Then a+b+a = a

for all a, b ∈ Ch(S). Since Ch(S) is a subsemiring of S, we can infer that both a and

b are elements of S. Therefore, we have a+ b+ a = a for all a, b ∈ S (i).

Additionally, if a ∈ Ch(S), we can further state that a+ ab = a for all b ∈ S (ii).

By combining equations (i) and (ii), we deduce that for any a and b in S, the

equality a+ ab = a+ b+ a holds. This can be rearranged as a+ ab = a+ a+ b, and

by utilizing the additively cancellative property of S, we arrive at the conclusion that

ab = a+b. Thus, we establish that ab = a+b holds for all a and b in S. Consequently,

we can affirm that S is a mono-semiring.

Similar to ring theory, it can be shown that the center of a regular semiring is a

regular semiring. With this in mind, we can now generalize this concept of center of

semiring to h-center of semiring.

Theorem 4.3.11. The h-center of a regular semiring is a regular semiring.
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Proof. Suppose S is a regular semiring. We can then conclude that the center Z(S) is

also a regular semiring. Let x ∈ Ch(S)(⊆ Z(S)). Since Z(S) is a regular semiring, we

can find an element y in Z(S) such that x = xyx. By expanding this expression, we

obtain x = xyx = (xyx)yx = x(yxy)x. We aim to showcase that yxy(= z) ∈ Ch(S).

We know that Ch(S) is an ideal of Z(S). Since x ∈ Ch(S), y ∈ Z(S) and Ch(S) is an

ideal of Z(S), so z = yxy ∈ Ch(S). Thus for any x ∈ Ch(S), there exists z ∈ Ch(S)

such that x = xzx. Therefore, Ch(S) is a regular subsemiring of S.

In general, the converse of the aforementioned theorem does not hold. This can

be demonstrated by the following counterexample.

Example 4.3.12. We consider (Z+
0 ,+, ·) is a semiring; where “+” and “·” are usual

addition and multiplication respectively. In this context, Ch(Z+
0 ) = {0} which is

regular. However, it is important to note that (Z+
0 ,+, ·) is not a regular semiring.

4.4 The Lattice Structure in the Context of Ch(S)

Within this section, our focus lies on proving that under specific conditions on S,

Ch(S) of a semiring S exhibits a lattice structure.

Theorem 4.4.1. Let S be a semiring with identity 1. If (S, ·) is a rectangular band,

then Ch(S) is a b-lattice semiring.

Proof. We know that if S is a semiring with identity element 1, then Ch(S) is an

additively idempotent semiring. It is evident that Ch(S) is also additively commuta-

tive. Consequently, (Ch(S),+) is a semilattice. Let a ∈ Ch(S). For any b ∈ S, the

equation a + ab = a implies (a + ab) a = a · a, which further leads to a2 + aba = a2.

Since (S, ·) is a rectangular band, we can simplify this expression as a2 + a = a2 (i).

By substituting b = a into a+ab = a, we find that a+a·a = a results in a+a2 = a(ii).

From (i) and (ii), we can deduce that a2 = a. Therefore, (Ch(S), .) forms a band.

As a result, Ch(S) is a b-lattice semiring.

We are now prepared to demonstrate that the set Ch(S) indeed constitutes a

partial order set when subjected to a particular binary relation.



CHAPTER 4. ON h-CENTER OF SEMIRINGS 75

Lemma 4.4.2. Let S be a semiring with identity element 1. Define a binary relation

“≤S” on Ch(S) by “a ≤S b” if and only if a + b = a for all a, b in Ch(S). Then

(Ch(S),≤S) forms a partial ordered set.

Proof. The relation ≤S on the set Ch(S) satisfies the following properties :

Reflexivity : For any a ∈ Ch(S), a+ ax = a holds for all x ∈ S. In particular, for

x = 1, we have a + a1 = a, which simplifies to a + a = a. Therefore, a ≤S a for all

a ∈ Ch(S). Thus “≤S” is reflexive.

Antisymmetry : If a ≤S b and b ≤S a for a, b ∈ Ch(S), then a + b = a and

b + a = b. Combining these equations, we find that a = b, showing that the relation

“≤S” is antisymmetric.

Transitivity : Suppose a ≤S b and b ≤S c for a, b, c ∈ Ch(S). This means a+b = a

and b + c = b. Now a + c = a + b + c = a + b = a. Thus, a ≤S c holds for all

a, c ∈ Ch(S). Hence “≤S” is transitive.

As a result, we conclude that the relation “≤S” is a partial order on the set Ch(S).

Therefore, (Ch(S),≤S) forms a partially ordered set.

Theorem 4.4.3. If S is a semiring with identity element 1, then Ch(S) forms a

semilattice.

Proof. Assuming that S is a semiring with identity element 1, we can deduce from

Corollary 4.3.2 that Ch(S) constitutes an additively idempotent semiring. In order

to establish a binary relation denoted as “≤S” on Ch(S), we define a ≤S b if and only

if a+ b = a holds for all a, b ∈ Ch(S). By virtue of Theorem 4.4.2, we ascertain that

(Ch(S),≤S) forms a partially ordered set.

Further, for any a, b ∈ Ch(S), we observe that a+ b+ a = a+ a+ b = a+ b, since

Ch(S) is an additively idempotent semiring. This implies that a+ b ≤S a. Similarly,

a + b + b = a + b + b = a + b, due to the additively idempotent property of Ch(S).

Consequently, a+ b ≤S b. Therefore, a+ b serves as a lower bound for both a and b.

Next, we aim to demonstrate that a + b constitutes the greatest lower bound of

a and b. Let g be another lower bound of a and b. This implies that g ≤S a if and

only if g + a = g holds for all g, a ∈ Ch(S), and similarly, g ≤S b if and only if
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g + b = g holds for all g, b ∈ Ch(S). Proceeding from g + a = g, we can deduce that

g + a + b = g + b, and by virtue of g + b = g, we obtain g + a + b = g. Therefore,

g ≤S a+b holds for all a, b ∈ Ch(S). Consequently, a+b represents the greatest lower

bound of a and b. Hence, we can conclude that Ch(S) forms a semilattice.

Through the utilization of Lemma 4.4.2 alongside Theorem 4.4.3, we establish the

subsequent theorem, which represents our principal objective concerning the lattice

structure of the h-center of a semiring.

Theorem 4.4.4. If S is a multiplicatively idempotent semiring with identity element

1, then Ch(S) forms a lattice.

Proof. In the multiplicatively idempotent semiring S with identity element 1, we

define a binary relation denoted by “≤S” on Ch(S); where “a ≤S b” if and only if

a + b = a for all a, b ∈ Ch(S). The Lemma 4.4.2 implies that (Ch(S),≤S) forms a

partially ordered set. Furthermore, from Theorem 4.4.3, we deduce that a+ b serves

as the greatest lower bound for a and b. Let a ∈ Ch(S). Then, for every b in S, we

have a+ ab = a, which implies that a ≤S ab. Similarly, if b ∈ Ch(S), we can observe

that b + ba = b for all b ∈ S, leading to b ≤S ab. Consequently, ab acts as an upper

bound for a and b. To establish that ab is the least upper bound for a and b, let

l ∈ Ch(S) be another lower bound of a and b in Ch(S). Thus, a ≤S l if and only if

a + l = l for all a, l ∈ Ch(S), and b ≤S l if and only if b + l = b for all b, l ∈ Ch(S).

By utilizing the fact that S is a multiplicatively idempotent semiring, we can deduce

that (a+ l)(b+ l) = ab =⇒ ab+al+ bl+ l2 = ab =⇒ ab+al+ bl+ l = ab. Simplifying

this expression, we find ab+ al+ l = ab =⇒ ab+ l = ab, as l ∈ Ch(S). Consequently,

we can conclude that ab ≤S l holds for all a, b ∈ Ch(S). Therefore, ab represents the

least lower bound of a and b, establishing that Ch(S) forms a lattice.

Our immediate goal is to determine the classification of the lattice of Ch(S).

Theorem 4.4.5. If S is a multiplicatively idempotent semiring with identity element

1, then Ch(S) forms a distributive lattice.



CHAPTER 4. ON h-CENTER OF SEMIRINGS 77

Proof. We know that if S is a multiplicatively idempotent semiring with identity

element 1, then Ch(S) forms a lattice. For any two elements a, b in Ch(S), we have

a∨ b = ab and a∧ b = a+ b. Let a, b, c ∈ Ch(S). Thus, we have a∧ (b∨ c) = a∧ (bc)

(since b ∨ c = bc), which further simplifies to a + bc (as a ∧ b = a + b). Similarly,

(a∧ b)∨ (a∧ c) = (a+ b)∨ (a+ c) = a2+ac+ ba+ bc = a+ac+ab+ bc = a+ bc for all

a, b, c ∈ Ch(S). Consequently, we can deduce that a∧ (b∨ c) = (a∧ b)∨ (a∧ c) for all

a, b, and c in Ch(S). Hence, we can conclude that Ch(S) is a distributive lattice.

Remark 4.4.6. A distributive lattice is always modular lattice. If S represents a

multiplicatively idempotent semiring with the identity element 1, then Ch(S) forms a

modular lattice.

Remark 4.4.7. If S is a finite multiplicatively idempotent semiring, then Ch(S)

forms a complete lattice.

Every finite set possesses a supremum, therefore, if S is finite, any subset of Ch(S)

also has its supremum within Ch(S). Likewise, every subset of Ch(S) has its infimum

in Ch(S). Hence, Ch(S) constitutes a complete lattice.

Theorem 4.4.8. Let S be a finite multiplicatively idempotent semiring with zero

element 0 and identity 1. If 1 is additively absorbing, then Ch(S) forms a bounded

lattice.

Proof. Suppose S is a finite multiplicatively idempotent semiring. If S possesses an

identity element 1, then Ch(S) forms a lattice. Let a be an element of Ch(S). It

follows that 1 + a = 1 due to 1 being an absorbing element under addition, and

a+ 0 = a as 0 acts as the additive identity. Consequently, we can deduce that 1 ≤ a

and a ≤ 0 for every a in Ch(S). Therefore, 1 serves as the least element, while 0 acts

as the greatest element in Ch(S). Thus, we can conclude that Ch(S) is a bounded

lattice.
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4.5 Structural Characteristics of Ch(S)

Within this section, we arrange several structural properties of Ch(S) of a semiring S

by means of structure preserving mapping, and find out relation between the h-centers

of two semirings and their semiring formed by taking their Cartesian product.

Theorem 4.5.1. Let S and S ′ be two semirings and φ : S −→ S ′ be an epimorphism.

Then φ(Ch(S)) ⊆ Ch(S
′).

Proof. Suppose we have an epimorphism φ : S −→ S ′ of semirings. Let φ(Ch(S)) =

{φ(s) : s ∈ Ch(S)}. Our objective is to demonstrate that φ(Ch(S)) ⊆ Ch(S
′).

Consider an element φ(s1) ∈ φ(Ch(S)); where s1 ∈ Ch(S), and let x be an arbitrary

element of S ′. As φ is onto, there exists y ∈ S such that y has a preimage x of S ′

such that φ(y) = x. Since s1 ∈ Ch(S), we have s1 + s1y = s1 and s1y = ys1. Now

for any x ∈ S ′, we observe the following : φ(s1) + φ(s1)x = φ(s1) + φ(s1)φ(y) =

φ(s1) + φ(s1y) = φ(s1 + s1y) = φ(s1) and φ(s1)x = φ(s1)φ(y) = φ(s1y) = φ(ys1) =

φ(y)φ(s1) = xφ(s1), since φ is an epimorphism. Consequently, we conclude that

φ(s1) ∈ Ch(S
′). Hence, we have established that φ(Ch(S)) ⊆ Ch(S

′).

Theorem 4.5.2. Let S and S ′ be two semirings. If f : S → S ′ is a monomorphism,

then f(Ch(S)) = Ch(f(S)).

Proof. Suppose x ∈ f(Ch(S)). Then x = f(y) for some y ∈ Ch(S). We have to show

that f(y) + f(y)s = f(y) and f(y)s = sf(y) for all s ∈ f(S). For any s ∈ f(S), we

have f(y) + f(y)s = f(y) + f(y)f(r) = f(y + yr) = f(y) and f(y)s = f(y)f(r) =

f(yr) = f(ry) = f(r)f(y) = sf(y). Therefore, x = f(y) ∈ Ch(f(S)). Consequently,

f(Ch(S)) ⊆ Ch(f(S)). Now, let x
′ ∈ Ch(f(S)). Then x

′ = f(r′) for some r′ ∈ S. Our

objective is to show that r′ ∈ Ch(S). Since x′ ∈ Ch(f(S)), for any f(s) ∈ f(S), it

follows that x′ + x′f(s) = x′ =⇒ f(r′)+ f(r′)f(s) = f(r′) =⇒ f(r′ + r′s) = f(r′) =⇒

r′ + r′s = r′, since f is a monomorphism and x′f(s) = f(s)x′ =⇒ f(r′)f(s) =

f(s)f(r′) =⇒ f(r′s) = f(sr′) =⇒ r′s = sr′, as f is a monomorphism. Therefore,

r′ ∈ Ch(S). Thus, Ch(f(S)) ⊆ f(Ch(S)) and hence Ch(f(S)) = f(Ch(S)).
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Theorem 4.5.3. If two semirings S1 and S2 are isomorphic, then their h-centers

Ch(S1) and Ch(S2) are isomorphic.

Proof. Consider two semirings S1 and S2 which are isomorphic. Then there is an

isomorphism f : S1 −→ S2. Let x ∈ Ch(S1). Then for any s1 ∈ S1, x + xs1 = x

and xs1 = s1x. Let f(x) = y; where y ∈ S2. Since f is an isomorphism, for

any s2 ∈ S2, there exists s1 ∈ S1 such that f(s1) = s2. Consequently, we have

y+ys2 = f(x)+f(x)f(s1) = f(x+xs1) = f(x) = y and ys2 = f(x)f(s1) = f(xs1) =

f(s1x) = f(s1)f(x) = s2y, since x ∈ Ch(S1). Hence, we can deduce that y ∈ Ch(S2),

demonstrating that f(Ch(S1)) ⊆ Ch(S2).

Now, let’s consider an element b in Ch(S2). Then b = f(a); where a ∈ S1. As

f is an isomorphism, for any y ∈ S2, there exists x ∈ S1 such that y = f(x).

Since b ∈ Ch(S2), we conclude that b + by = b and by = yb. Consequently, we

have f(a) + f(a)f(x) = f(a), which implies f(a + ax) = f(a). This further leads

to a + ax = a and by = yb. Additionally, we can infer that f(a)f(x) = f(x)f(a),

resulting in f(ax) = f(xa) and ax = xa, given that f is an isomorphism. Therefore,

we can deduce that a ∈ Ch(S1). As a result, we obtain b = f(a) ∈ f(Ch(S1)). This

implies that Ch(S2) ⊆ f(Ch(S1)), and consequently, Ch(S2) = f(Ch(S1)). Hence,

we can conclude that the restricted function g = f|Ch(S1)
: Ch(S1) −→ Ch(S2) is

well-defined and serves as an isomorphism from Ch(S1) onto Ch(S2).

The converse of the Theorem 4.5.3 does not hold, meaning that the isomorphism

between Ch(S1) and Ch(S2) does not guarantee isomorphism between S1 and S2, as

illustrated by the following example.

Example 4.5.4. Ch(Z+
0 ) = {0} and Ch(R+

0 ) = {0}. But Z+
0 and R+

0 do not exhibit

isomorphism.

Theorem 4.5.5. If S1 and S2 are two semirings, then Ch(S1×S2) = Ch(S1)×Ch(S2).

Proof. Let’s consider S1 and S2 as two semirings. Assuming z ∈ Ch(S1×S2), we have

z = (x, y) ∈ S1 × S2 and for any (a, b) ∈ S1 × S2, (x, y) + (x, y)(a, b) = (x, y) and

(x, y)(a, b) = (a, b)(x, y), which implies (x+xa, y+yb) = (x, y) and (xa, yb) = (ax, by).
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By comparing both sides, we obtain x+xa = x, y+yb = y, xa = ax, and yb = by. This

implies that x ∈ Ch(S1) and y ∈ Ch(S2). Consequently, z = (x, y) ∈ Ch(S1)×Ch(S2),

thus establishing Ch(S1 × S2) ⊆ Ch(S1)× Ch(S2) (i).

For the reverse part, let (a, b) ∈ Ch(S1)×Ch(S2). This implies that a ∈ Ch(S1) and

b ∈ Ch(S2). Thus, for any x ∈ S1, we have a+ax = a and ax = xa, and for any y ∈ S2,

we have b+by = b and by = yb. Now, (a, b)+(a, b)(x, y) = (a+ax, b+by) = (a, b) and

(a, b)(x, y) = (ax, by) = (xa, yb) = (x, y)(a, b), since a ∈ Ch(S1) and b ∈ Ch(S2). This

implies that (a, b) ∈ Ch(S1 × S2), establishing Ch(S1)× Ch(S2) ⊆ Ch(S1 × S2) (ii).

From (i) and (ii), we conclude that Ch(S1 × S2) = Ch(S1)× Ch(S2).

The above theorem helps us to produce several examples of h-center of a semiring.

We provide one such example in the following.

Example 4.5.6. Consider two semirings (N,⊕,⊙); where a⊕ b = min{a, b} and ⊙

is usual multiplication and (Z+
0 ,+, ·); where “+” is usual addition and “·” is usual

multiplication. Now we take a semiring (N× Z+
0 ,+, ·) with component-wise addition

and multiplication. Then Ch(N× Z+
0 ) = Ch(N)× Ch(Z+

0 ) = N× {0}.

4.6 On h-Central Semiring

This section presents the definition of an h-central semiring S based on its h-center

form, and subsequently explores several characterizations of h-central semiring S in

relation to its h-center.

Definition 4.6.1. A semiring S is said to be an h-central semiring if Ch(S) = S.

Note 4.6.2. If S is an h-central semiring, then Ch(S) = S = Z(S) i.e. S is a central

semiring. However, in the case of a central semiring S, it does not necessarily imply

that S is an h-central semiring. For instance, we consider a semiring (R+,+, .). Then

Z(R+) = R+ where as Ch(R+) = {0}. Hence, (R+,+, .) is a central semiring but not

an h-central semiring.
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Example 4.6.3. Consider the set of integers Z+ with the operations a+b = gcd{a, b}

and a ·b = ab. Then (Z+,+, ·) is a semiring with zero element 1. Then Ch(Z+) = Z+.

Therefore, (Z+,+, ·) is an h-central semiring.

Example 4.6.4. Consider S = {0, x, y, 1}. Define the operations “+” and “.” on S

by the following tables :

+ 0 x y 1

0 0 x y 1

x x x y 1

y y y y 1

1 1 1 1 1

. 0 x y 1

0 0 0 0 0

x 0 x x x

y 0 x y y

1 0 x y 1

Then (S,+, ·) is a semiring and Ch(S) = {0, x, y, 1} = S. Consequently, S is an

h-central semiring.

Example 4.6.5. Let R be a ring. Let ΩR be the set of all ideals of R. Define ⊕ and ⊙

by I1⊕I2 = {a1+b1 : a1 ∈ I1, b1 ∈ I2} and I1⊙I2 =

{
n∑

i=1

aibi : a1 ∈ I1, b1 ∈ I2

}
for

all I1, I2 ∈ ΩR, where n ∈ N. Then (ΩR,⊕,⊙) forms a semiring. If R is commutative,

then (ΩR,⊕,⊙) is an h-central semiring.

Evidently, Ch(ΩR) ⊆ ΩR. Our aim is to establish that ΩR ⊆ Ch(ΩR). Let I ∈ ΩR.

To show that I ∈ Ch(ΩR) i.e. to show that I ⊕ (I ⊙ I1) = I and I ⊙ I1 = I1 ⊙ I for

all I1 ∈ ΩR. Note that I ⊙ I1 is an ideal of R. Suppose that I ⊙ I1 = I2. Clearly,

I ⊆ I ⊕ I2 (i).

We need to demonstrate that I ⊕ I2 ⊆ I. Let x = p + q ∈ I ⊕ I2; where p ∈ I,

q ∈ I2 = I ⊙ I1. We can express q =
n∑

i=1

piqi; where pi ∈ I, qi ∈ I1 for all i = 1, ..., n.

Therefore, we have x = p + q = p +
n∑

i=1

piqi = p + p1q1 + p2q2 + ... + pnqn. Now, we

know that p ∈ I, p1 ∈ I, q1 ∈ I1 ⊆ R. Since I is an ideal of R, we can conclude that

p1q1, p2q2, p3q3, ..., pnqn ∈ I. Consequently, we have x = p+ p1q1 + p2q2 + ...+ pnqn =

p+ q ∈ I. Since x ∈ I ⊕ I2 was arbitrarily chosen, we can affirm that I ⊕ I2 ⊆ I(ii).

Combining (i) and (ii), we obtain I ⊕ I2 = I =⇒ I ⊕ (I ⊙ I1) = I (as I2 =

I ⊙ I1). Given that R is commutative, we can deduce that I ⊙ I1 = I1 ⊙ I. Therefore,
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I ∈ Ch(ΩR). As I represents any arbitrary element of ΩR, we can conclude that

ΩR ⊆ Ch(ΩR), leading to Ch(ΩR) = ΩR. Thus, we can assert that ΩR is an h-central

semiring.

We are currently in the process of determining the relationship between h-central

semiring and k-regular semiring.

Theorem 4.6.6. If S be a multiplicatively idempotent semiring, then every h-central

semiring is a k-regular semiring.

Proof. Let S be a h-central semiring. Then Ch(S) = S. Consider a ∈ Ch(S). Then

a2 ∈ Ch(S), since Ch(S) is a subsemiring of S. So, for any x ∈ S, we get a2+a2·x = a2.

This can be rewritten as a+a·a·x = a·a (using the property that S is multiplicatively

band). Further simplification yields a+ a · x · a = a · a · 1 (since S is a semiring with

identity element 1). Finally, we have a + a · x · a = a · 1 · a. Consequently, we can

conclude that Ch(S) is a k-regular semiring.

The subsequent pair of instances demonstrate that the converse of Theorem 4.6.6

mentioned above does not hold, indicating that every k-regular semiring is not h-

central semiring.

Example 4.6.7. The semiring (Z+
0 ,+, ·) is k-regular; where “+” and “.” are usual

addition and multiplication respectively. However, Ch(Z+
0 ) = {0} ≠ S. Hence, we

can conclude that (Z+
0 ,+, ·) is not h-central semiring.

Example 4.6.8. Consider S = {0, x, 1}. Define the operations “+” and “.” on S1

by means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 1 1

Therefore, (S,+, ·) is a k-regular semiring. However, Ch(S) = {0} ≠ S, thereby

indicating that (S,+, ·) is not a h-central semiring.
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We now introduce a characterization theorem that establishes the relationship

between an h-central semiring and a simple semiring.

Theorem 4.6.9. If S is a commutative semiring with identity 1, it is an h-central

semiring if and only if it is a simple semiring.

Proof. Let S be an h-central semiring. Then we have Ch(S) = S. Let a ∈ Ch(S).

Then a + ab = a and ab = ba for all b ∈ S. In particular, we have 1 + b = 1 for all

b ∈ S. Therefore, we can conclude that S is a simple semiring.

Conversely, suppose that S is a simple semiring with identity element 1. It is

clear that Ch(S) ⊆ S. Let a(̸= 0) be an arbitrary element in S. Now for b ∈ S,

a = a1 = a(1 + b) = a + ab, considering the fact that S is a simple semiring.

Additionally, since S is commutative, we can deduce that ab = ba. Thus, we have

shown that a( ̸= 0) ∈ Ch(S). Furthermore, 0 ∈ Ch(S) as well. Consequently, we can

conclude that S ⊆ Ch(S), leading to the equality S = Ch(S). As a result, S is an

h-central semiring.

We now present another version of the above theorem.

Theorem 4.6.10. Let S be a commutative semirng with identity 1. Then S is an

h-central semiring if and only if S is a semiring with additive absorbing 1.

Proof. Suppose that S is an h-central semiring. Then Ch(S) = S. Thus 1 + 1b = 1

and 1b = b1 for all b ∈ S. This implies that 1 + b = 1 for all b ∈ S. This shows that

1 is an additively absorbing element.

Conversely, suppose that S is a semiring additive absorbing 1. Clearly, Ch(S) ⊆ S.

Let a( ̸= 0) be an arbitrary element in S. Now for b ∈ S, a+ab = a1+ab = a(1+b) =

a1 = a (as 1 is an additive absorbing element). So, for any b ∈ S, a + ab = a and

ab = ba, as S is commutative. Thus, a(̸= 0) ∈ Ch(S). Also 0 ∈ Ch(S). Therefore,

S ⊆ Ch(S) and hence S = Ch(S). Consequently, S is an h-central semiring.

We proceed to set up another characterization theorem for an h-central semiring.

In order to do so, we present the following theorem.
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Theorem 4.6.11. Suppose S is a mono-semiring. Then S is an h-central semiring

if and only if (S,+) is a rectangular band.

Proof. Let S be a mono-semiring. Then a+b = ab holds true for all a, b ∈ S. Suppose

that S is an h-central semiring, denoted by Ch(S) = S, then for any a ∈ S = Ch(S),

we have a+ab = a and ab = ba for all b ∈ S. To establish that (S,+) is a rectangular

band, we need to demonstrate that a+b+a = a holds for all a, b ∈ S. By utilizing the

fact that a+ b+ a = ab+ a (due to the mono-semiring property of S), we can deduce

that a + b + a = a, as S satisfies the conditions of an h-central semiring. Hence, we

conclude that (S,+) is indeed a rectangular band

Conversely, let us assume that (S,+) is a rectangular band. It is evident that

Ch(S) is a subset of S. Consider an arbitrary element a(̸= 0) in S. For any b ∈ S,

we have a+ ab = a+ a+ b (due to the mono-semiring property of S) = a+ b+ a = a

(since (S,+) is a rectangular band). Therefore, for any b ∈ S, we have a + ab = a,

and consequently, ab = a + b = b + a = ba, since S is a mono-semiring. Thus, we

can conclude that a( ̸= 0) ∈ Ch(S). Additionally, 0 ∈ Ch(S). Hence, it follows that

S ⊆ Ch(S), leading to the conclusion that S = Ch(S). As a result, S is as an h-central

semiring.

Proposition 4.6.12. Let S be an h-central semiring. The following statements hold

true :

(i) If (S, ·) is a band, then (S,+) is a band.

(ii) If (S,+) is a band and is cancellative, then (S, ·) is a band.

Proof. (i) Assume (S, ·) is a band, and let S be an h-central semiring, implying

S = Ch(S). Consider an element a belonging to Ch(S). For any b in S, a + ab = a.

By choosing b = a, we find that a + aa = a, which can be further simplified to

a+ a2 = a, since (S, ·) is a band. Consequently, a+ a = a. Thus, (S,+) is a band.

(ii) Suppose (S,+) is a band, and let’s assume that S is an h-central semiring,

which implies S = Ch(S). Consider an element a ∈ Ch(S). For any b ∈ S, we have

a + ab = a. In particular, a + aa = a, which can be rewritten as a + a2 = a. Since

(S,+) is a band, we can simplify this further to a + a2 = a + a. Consequently, we



CHAPTER 4. ON h-CENTER OF SEMIRINGS 85

deduce that a2 = a, as cancellation holds in (S,+). Therefore, for any a ∈ S, it holds

that a2 = a. Thus, (S, ·) also forms a band.

Theorem 4.6.13. Let S be an h-central semiring. If (S, ·) is a rectangular band,

then the following are true :

(a) (S, ·) is a band.

(b) (S,+) is a band.

Proof. (a) Suppose S is an h-central semiring. In this case, we have Ch(S) = S. Let’s

consider an element a belonging to Ch(S). For any b in S, a+ ab = a holds. We can

further simplify this expression as follows: (a + ab)a = aa, which can be written as

a2 + aba = a2, which further simplifies to a2 + a = a2 (i),

since (S, ·) is a rectangular band. Moreover, if we substitute b = a in the equation

a+ ab = a, we obtain a+ aa = a, which can be rewritten as a+ a2 = a (ii).

Based on the implications of equations (i) and (ii), we can conclude that a2 = a.

Consequently, we can say that (S, ·) is a band.

(b) Consider a ∈ Ch(S). Consequently, we have a + ab = a for all a, b ∈ S . By

setting b = a, we can deduce that a + a2 = a, which simplifies to a + a = a, since

(S, ·) is a band for all a ∈ S. Therefore, (S,+) is a band.

Theorem 4.6.14. If S be a h-central semiring, then the following are true :

(i) If (S, ·) has a left zero, then (S,+) is a band.

(ii) If (S, ·) has a left identity, then (S,+) has a left zero.

Proof. (i) Assuming S is an h-central semiring, meaning Ch(S) = S, and let a ∈

Ch(S). For any b ∈ S, a+ ab = a =⇒ a+ a = a, since (S, ·) has a left zero. Thus, it

follows that (S,+) forms a band.

(ii) Consider a ∈ Ch(S). Then a + ab = a for all b ∈ S. Since (S, ·) has a left

identity, ab = b for all a, b in S. This implies that a + b = a. As a result, we can

conclude that (S,+) is left zero.
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Proposition 4.6.15. Let S be a zerosumfree semiring. If S is an h-central semiring,

then S is a zero square semiring.

Proof. Suppose that S is an h-central semiring. Then Ch(S) = S. Let a ∈ Ch(S) = S.

For any a, b ∈ S, a+ab = a and ab = ba. Taking b = a, we get a+aa = a =⇒ a+a2 =

a =⇒ a+a+a2 = a+a =⇒ 0+a2 = 0(since S is a zerosumfree semiring)=⇒ a2 = 0.

Thus a2 = 0 for all all a ∈ S. Accordingly, S is a zero square semiring.

Theorem 4.6.16. If S is a zero square and h-central semirng with additive identity

0, then aba = 0 for all a, b ∈ S.

Proof. Assume S is an h-central semiring with Ch(S) = S. Take a ∈ S = Ch(S). For

any b ∈ S, if a+ ab = a, then we have a2 + aba = a2, which simplifies to 0 + aba = 0

due to S being a zero square semiring. Consequently, we can deduce that aba = 0.

Theorem 4.6.17. Let S be a zerosumfree semirng with additive identity 0. Then S

is an h-central semiring if and only if ab = 0 for all a, b ∈ S.

Proof. Suppose that S is an h-central semiring i.e. Ch(S) = S. Let a ∈ S = Ch(S).

Then for any b ∈ S, a+ab = a =⇒ a+ab+a = a+a =⇒ a+a+ab = a+a =⇒ ab = 0,

since S is a zerosumfree semirng.

Conversely, suppose that ab = 0 for all a, b ∈ S. This implies that ab + a =

0 + a =⇒ ab + a = a and ab = 0 = ba for all a, b ∈ S. Thus, S is an h-central

semiring.

Proposition 4.6.18. Let S be h- central semiring. If (S, ·) is a band, then (S,+) is

E-inversive semigroup.

Proof. Since S is an h-central semiring and (S, ·) is a band, we need to demonstrate

that (S,+) forms an E-inversive semigroup. Let’s consider an element a belonging

to the set Ch(S). For any a, b ∈ S, if a+ ab = a, then (a+ ab) b = ab, which further

simplifies to ab + ab2 = ab. Utilizing the fact that (S, ·) is a band, we can conclude

that ab + ab = ab. This equality holds for all ab in E[+]; where E[+] represents the

set of all additive idempotents in (S,+). Hence, there exists an element b in S such
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that ab + ab = ab. This implies that a is an E-inversive element. Consequently, we

can establish that (S,+) forms an E-inversive semigroup.

We conclude this chapter by investigating the behaviour of a h-central semiring

in the context of PRD.

Proposition 4.6.19. Let S be a PRD. If S be a h-central semiring, then 1 + a = a

for all a in S.

Proof. Consider an h-central semiring S and let a ∈ Ch(S). In this case, for any

element b ∈ S, the equation a+ab = a holds true. Since the operation (S, ·) forms an

abelian group, it guarantees the existence of an inverse a−1 for every element a ∈ S.

Let’s choose b to be a−1, resulting in a + aa−1 = a. Consequently, we can conclude

that a+ 1 = a holds for all elements a in S.

By virtue of Proposition 4.6.19, we arrive at the following Corollary :

Corollary 4.6.20. Let S be a PRD. If S be a h-central semiring, then a+ b = a for

all a, b ∈ S.

Proof. By applying proposition 4.6.19, we establish that if S is a h-central semiring,

then for all a ∈ S, the equation 1 + a = a holds. Multiplying both sides of the

equation a+1 = a by ‘b’, we can deduce that ab+ b = ab implies a+ ab+ b = a+ ab,

which further implies a+b = a. This deduction relies on the fact that S is a h-central

semiring and a ∈ S = Ch(S).
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k-Center of a Semiring

5.1 Introduction

Ideal of semiring plays a prominant role in structure theory and contributes signifi-

cantly to the development of several branches within semiring theory. However, it is

important to note that the notion of a semiring theoretical ideal does not generally

align with the concept of a ring theoretical ideal. In fact, many results pertaining

to ideals in rings have no analogues in semirings. Henriksen highlighted this dis-

crepancy by observing that not every ideal I of a semiring S can be regarded as the

kernel of a homomorphism. To address these challenges, in 1958, he [33] defined a

more restricted class of ideals in a semiring, which he called this special kind of ideals

a k-ideal or subtractive. An ideal I of a semiring S is referred to as a k-ideal or

subtractive ideal if, for any two elements a in I and x in S such that a + x is in I,

x must also be in I. The significant findings derived from the study of k-ideals mo-

tivated us to define new type of center of semiring namely “k-center” of semiring S.

The k-center, denoted by Ck(S), is defined as the set of elements a in S that satisfy

the conditions a + ab = ab and ab = ba for all nonzero elements b in S. In 1936, J.

Von Neumann established [49] the well known theorem “The center of regular ring

is regular”. Additionally, we have also extended the above theorem for k-center of

regular semiring. Furthermore, we analyze the concept of k-center of semiring S and

and derive several noteworthy outcomes concerning that center of semiring. In the

88
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concluding section, we construct an interesting class of semiring namely, k-central

semiring and delve into the structural properties of that semiring with the assistance

of k-center of semiring S.

5.2 Ck(S) of a Semiring S

In this segment, the concept of k-center in a semiring S is introduced, accompanied by

relevant examples and fundamental findings that will prove beneficial in the following

sections. To begin, we establish the definition of the k-center of a semiring.

Definition 5.2.1. Let S be a semiring. Then Ck(S) = {a ∈ S : a+ ab = ab and

ab = ba for all b ∈ S\{0}} is called k-center of S.

Example 5.2.2. Consider the semiring (N,⊕,⊙) with a ⊕ b = max{a, b} = b as

addition on N; where b > a and a⊙ b for the usual multiplication of natural numbers.

For any b ∈ N, a⊕ ab = max{a, ab} = ab and ab = ba. Then Ck(N) = N.

Example 5.2.3. Let’s examine the semiring (N,⊕,⊙); where a⊕ b is defined as the

maximum of a and b, and a⊙b is defined as the minimum of a and b for any a, b ∈ N.

In this context, the set Ck(N) is found to be 1.

Example 5.2.4. Consider the set S = {0, 1, x}. Define two operations “+” and “.”

on S by means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S,+, ·) forms a semiring and Ck(S) = {0, x, 1} = S.

Example 5.2.5. {A class of finite semiring} : Let n, i be integers such that 2 ≤ n,

0 ≤ i < n, and B(n, i) = {0, 1, 2, ..., n− 1}. We define addition and multiplication in

B(n, i) by the following equations (let m = n− i) :

x+ y =

 x+ y, if x+ y ≤ n− 1

l, if x+ y ≥ n ; where l ≡ (x+ y)modm and i ≤ l ≤ n− 1.



CHAPTER 5. k-CENTER OF A SEMIRING 90

x · y =

 xy, if xy ≤ n− 1

l, if xy ≥ n ; where l ≡ (xy)modm and i ≤ l ≤ n− 1.

Then the set B(n, i) is a commutative semiring with zero (0) and identity (1) under

addition and multiplication.

In particular, let n = 3 and i = 1, then we have B(3, 1) = {0, 1, 2}. The set

B(3, 1) is a commutative semiring under addition (“+”) and multiplication (“.”) .

The operations “+” and “.” on S1 by means of the following tables :

+ 0 1 2

0 0 1 2

1 1 2 1

2 2 1 2

. 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

Then Ck(B(3, 1)) = {0, 2}.

Example 5.2.6. Let S = {0, a, b, c}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c c

. 0 a b c

0 0 0 0 0

a 0 a a a

b 0 a b b

c 0 a c c

Thus, (S,+, ·) forms a non-commutative semiring. Additionally, in this case, Ck(S) =

Z(S) = {0, a}.

Proposition 5.2.7. If S is a semiring with zero element 0, then 0 ∈ Ck(S).

Proof. Let a ∈ Ck(S). Since a ∈ Ck(S), a+ ax = ax and ax = xa for all x ∈ S\{0}.

For any a ∈ S\{0}, 0 + 0 · a = 0 = 0 · a and a · 0 = 0 = a · 0. Hence, 0 ∈ Ck(S).

Theorem 5.2.8. The k-center of a semiring S is a subsemiring of S.
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Proof. Given a semiring S with a zero element 0, we can conclude that 0 ∈ Ck(S).

As a result, Ck(S) is guaranteed to be non-empty. Consider a semiring S, and let

x, y ∈ Ck(S). Our task is to demonstrate that x+ y and xy also belong to Ck(S).

For any s in S excluding 0, we can observe that (x+y)+(x+y)s = x+xs+y+ys =

xs+ ys = (x+ y)s. Moreover, (x+ y)s = xs+ ys = sx+ sy = s(x+ y), utilizing the

fact that x, y ∈ Ck(S). Thus, we conclude that x+ y ∈ Ck(S).

Furthermore, we have xy+ xys = x(y+ ys) = x(ys) = xys and xys = xsy = sxy,

given that x, y ∈ Ck(S). Consequently, we can deduce that xy ∈ Ck(S). Thus, we

have shown that Ck(S) is a subsemiring of S.

In light of Theorem 5.2.8, we can deduce the following outcome :

Corollary 5.2.9. If S is a semiring with identity element 1, then Ck(S) is an addi-

tively idempotent subsemiring of S.

Proof. By utilizing Theorem 5.2.8, it becomes evident that Ck(S) forms a subsemiring

within the semiring S. Suppose a ∈ Ck(S), then, we have the conditions a+ ax = ax

and ax = xa for all x ∈ S\{0}. Notably, this implies that a + a · 1 = a · 1 =

a. Consequently, we can conclude that Ck(S) constitutes an additively idempotent

subsemiring of S.

Proposition 5.2.10. If a semiring S holds additively cancellation property, then

Ck(S) = {0}.

Proof. Let a ∈ Ck(S). Since a ∈ Ck(S), a+ ab = ab and ab = ba for all b ∈ S\{0}. If

S holds additively cancellation property, then a = {0}. Therefore, Ck(S) = {0}.

Remark 5.2.11. Let S be a semiring and a ∈ Ck(S). Since a ∈ Ck(S), a+ ax = ax

and ax = xa for all x ∈ S\{0}. If x = a, then a+ a2 = a2. This implies that ‘a’ is a

almost idempotent of S. Thus we see that in a semiring, every element of k-center is

almost idempotent.

The converse is not true. For example, we know that Pf (F ) is an almost idempo-

tent semiring if and only if F is a band. Take b ∈ F as a non-absorbing element. So,
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bx ̸= b for all x ∈ F . Again {b}∪{b}{x} = {x}{b} =⇒ {b, bx} ≠ {xb}. Consequently,

this suggests that {b} /∈ Ck(Pf (F )).

If S is a semiring with identity element 1, then 1 ∈ Z(S) but 1 ̸∈ Ck(S).

However, we have the following result for a c-semiring S :

Proposition 5.2.12. Let S be a c-semiring. Then 1 ∈ Ck(S) if and only if |S| = 2.

Proof. Given that S is a c-semiring, we can deduce that 0, 1 ∈ S. Considering

1 ∈ Ck(S), we observe that 1 + 1b = 1b holds true for all b ∈ S\{0}. As S is a

c-semiring, we can conclude that x + 1 = 1 for all x ∈ S, which implies b = 1.

Consequently, we have S = {0, 1}.

On the other hand, let us assume that the cardinality of S is 2. Since S is a

c-semiring, we can establish that 0, 1 ∈ S. Consequently, we find that S = {0, 1}. As

S is a c-semiring, we have x + 1 = 1 for all x ∈ S. As a result, we can infer that

1 ∈ Ck(S).

The next corollary is an easy consequence of Proposition 5.2.12.

Corollary 5.2.13. If S is a c-semifield, then Ck(S) = {0, 1}.

5.3 Ck(S) of Different Class of Semirings

In this section, we analyze the algebraic structure of the k-center in various types of

semirings.

The notion that the center of a regular ring constitutes a regular ring is widely

recognized in the field of ring theory. The following theorem serves to illustrate that

this result extends to k-center in semiring theory as well.

Theorem 5.3.1. The k-center of a regular semiring is a regular.

Proof. Let S be a regular semiring, and a be an arbitrary element in Ck(S). Our goal

is to prove that there exists y ∈ Ck(S) such that a = aya. We begin by noting that

since a ∈ Ck(S), we have a ∈ S. As S is regular, we can write a = axa = aax = a2x,
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for some x ∈ S, since a ∈ Ck(S). Thus, a2x (= a) ∈ Ck(S). Let z ∈ S be arbitrary.

Since a2x ∈ Ck(S), we have a
2xz = za2x which implies xa2z = a2zx since a ∈ Ck(S).

Therefore, a2z commutes with x. Next, we aim to show that a2z commutes with

x3. We have a2zx3 = a2zxx2 = xa2zx2 = xa2zxx = xxa2zx = xxxa2z = x3a2z.

Thus, a2zx3 = x3a2z, and since a2 ∈ Ck(S), we obtain za2x3 = a2x3z. Hence, a2x3

commutes with z. Let y = a2x3. Then y commutes with z. Since a2x = a, we have

y = a2x3 = a2xx2 = ax2. Thus, ax2 commutes with z. For any z ∈ S \ {0}, we

have ax2 + ax2z = ax2 + zax2 = (a + za)x2 = (a + az)x2 = azx2 = zax2 = ax2z,

since a ∈ Ck(S), which implies za = az. Hence, ax2 + ax2z = ax2z and zax2 = ax2z.

Thus, ax2 ∈ Ck(S), i.e., y ∈ Ck(S). Now, we can calculate aya as follows : aya =

a(ax2)a = a2x2a = a2xxa = axa = a, since a2x = a = axa. Therefore, we have

shown that aya = a for some y ∈ Ck(S). Since a was chosen arbitrarily, we conclude

that every element of Ck(S) is regular. Hence, Ck(S) is a regular semiring.

However, it should be noted that the converse of Theorem 5.3.1 does not hold in

general. For instance, let’s examine Example 5.2.3; where Ck(N) = {1}. In this case,

Ck(N) is considered regular. However, upon further inspection, it can be verified that

(N,⊕,⊙) is not regular.

Proposition 5.3.2. If S is a semiring, then Ck(S) is a k-regular semiring.

Proof. Let a ∈ Ck(S). Then a2 ∈ Ck(S), since Ck(S) is a subsemiring of S. Addi-

tionally, we have a+ a · a2 = a2 · a, indicating that a+ a · a · a = a · a · a. Therefore,

we can conclude that Ck(S) is a k-regular semiring.

It is important to observe that a k-regular semiring is a π-regular. Consequently,

the following corollary can be derived :

Corollary 5.3.3. If S is a semiring, then Ck(S) is a π-regular.

Proposition 5.3.4. If S is a semiring, then Ck(S) is completely k-regular.

Proof. Assume S is a semiring. In this case, Ck(S) is known to be k-regular. Consider

an element a ∈ Ck(S). It follows that there exists an element x ∈ Ck(S) such that
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a+ axa = axa (i).

By multiplying both sides of equation (i) by x, we obtain ax + axax = axax =⇒

ax+xaxa = xaxa. Letting ax = u, we have ax+xua = xua. Once again, multiplying

both sides of equation (i) by x leads us to xa+ xaxa = xaxa =⇒ xa+ axax = axax.

Setting xa = u, we get xa + aux = aux. As a result, we can conclude that S is

completely k-regular.

Proposition 5.3.5. If S is a semiring, then Ck(S) is intra k-regular.

Proof. Let a ∈ Ck(S). Since Ck(S) forms a subsemiring of S, we can deduce that

a3 ∈ Ck(S). We can rewrite the equation a+ a · a3 = a · a3 as a+ a · a2 · a = a · a2 · a.

Therefore, a +
n∑

i=1

aiz
2ci =

n∑
i=1

cjz
2dj for all z, ai, bi, cj, dj ∈ S. Therefore, we can

conclude that Ck(S) is intra k-regular.

Proposition 5.3.6. If S is a semiring, then Ck(S) is rectangular almost idempotent

semiring.

Proof. Considering an element a ∈ Ck(S), we observe that a4 ∈ Ck(S), as Ck(S)

forms a subsemiring of S. Therefore, we can deduce that a + a · a4 = a · a4, which

can be further simplified as a+ a · a · a · a · a = a · a · a · a · a. This implies that Ck(S)

qualifies as a rectangular almost idempotent semiring.

Proposition 5.3.7. If S is a semiring, then Ck(S) is zero almost idempotent semir-

ing.

Proof. Suppose a ∈ Ck(S). Consequently, a
2 ∈ Ck(S) as well. Furthermore, we have

a+ a · a2 = a · a2 =⇒ a+ a · a · a = a · a · a. Consequently, we can conclude that Ck(S)

forms a zero almost idempotent semiring.

Proposition 5.3.8. If S is a multiplicatively band, then Ck(S) is completely regular.

Proof. Let a be an element of Ck(S). Consequently, a
2 also belongs to Ck(S) due to

the fact that Ck(S) is a subsemiring of S. Additionally, since every element of Ck(S)

is almost idempotent, we have a+ a2 + a = a2 + a = a2 = a, using the fact that S is

a multiplicatively band. Moreover, we can observe that a(a2 + a) = a · a2 = a · a =

a2 = a2 + a. Thus, we can conclude that Ck(S) is completely regular.
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Theorem 5.3.9. Let S be a simple semiring. If Ck(S) is a simple semiring if and

only if S = {0, 1}

Proof. Let S be a simple semiring and Ck(S) be also a simple semiring. Then 1+a = 1

for all a ∈ Ck(S) (i).

Now, if 1 ∈ Ck(S), then 1 + 1 · a = 1 · a for all a ∈ S\{0} =⇒ 1 + a = a (ii).

By combining (i) and (ii), we get a = 1 for all a ∈ S. Again we know that

0 ∈ Ck(S). So, S = {0, 1}.

Conversely, suppose that S = {0, 1}. Again S is a semiring with identity element

1, from Corollary 5.2.9, Ck(S) is an additively idempotent semiring i.e. a + a = a

for all a ∈ Ck(S). So, 1 + a = 1 for all a ∈ Ck(S). Accordingly, Ck(S) is a simple

semiring.

5.4 Characteristics and Attributes of Ck(S)

In the following section, we outline a number of properties pertaining to the k-center

of a semiring.

Theorem 5.4.1. If φ is an epimorphism from S to S ′ then φ(Ck(S)) ⊆ Ck(S
′).

Proof. Let us consider S be an semiring and φ : S −→ S ′ is an epimorphism of

S ′. Suppose φ(Ck(S)) = {φ(s) : s ∈ Ck(S)}. Our aim is to provide evidence that

φ(Ck(S)) ⊆ Ck(S
′). Let φ(s1) ∈ φ(Ck(S)); where s1 ∈ S ′\{0}. Since φ is onto, there

exist y ∈ S such that y has a preimage x of S ′\{0} i.e. φ(y) = x. Since s1 ∈ Ck(S),

we have s1 + s1y = s1y and s1y = ys1. Now for any x ∈ S ′\{0}, we can observe

the following equalities : φ(s1) + φ(s1)x = φ(s1) + φ(s1)φ(y) = φ(s1) + φ(s1y) =

φ(s1+s1y) = φ(s1y) = φ(s1)φ(y) = φ(s1)x. Moreover, we have φ(s1)x = φ(s1)φ(y) =

φ(s1y) = φ(ys1) = φ(y)φ(s1) = xφ(s1), since φ is an epimorphism. Consequently, we

can conclude that φ(s1) ∈ Ck(S
′), and thus, φ(Ck(S)) ⊆ Ck(S

′).

Theorem 5.4.2. Let S and S ′ be two semirings. If f : S −→ S ′ is a monomorphism,

then f(Ck(S)) = Ck(f(S)).
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Proof. Let us assume x ∈ f(Ck(S)). This implies that x = f(y) for some y ∈ Ck(S).

Our goal is to demonstrate that f(y) + f(y)s = f(y)s and f(y)s = sf(y) for all

s ∈ f(S)\{0}. Now for any s ∈ f(S)\{0}, we have f(y) + f(y)s = f(y) + f(y)f(r) =

f(y + yr) = f(yr) = f(y)f(r) = f(y)s and f(y)s = f(y)f(r) = f(yr) = f(ry) =

f(r)f(y) = sf(y). Therefore, x = f(y) ∈ Ck(f(S)). Hence, f(Ck(S)) ⊆ Ck(f(S)).

Now, let’s consider x′ ∈ Ck(f(S)). Then x′ = f(r′) for some r′ ∈ S. Our objective

is to prove that r′ ∈ Ck(S). Since x
′ ∈ Ck(f(S)), for any f(s) ∈ f(S)\{0}, it follows

that x′+x′f(s) = x′f(s) =⇒ f(r′)+f(r′)f(s) = f(r′)f(s) =⇒ f(r′+r′s) = f(r′s) =⇒

r′ + r′s = r′s and x′f(s) = f(s)x′ =⇒ f(r′)f(s) = f(s)f(r′) =⇒ f(r′s) = f(sr′) =⇒

r′s = sr′, since f is a monomorphism. Therefore, r′ ∈ Ck(S). Consequently, we

can establish that Ck(f(S)) ⊆ f(Ck(S)), leading to the conclusion that f(Ck(S)) =

Ck(f(S)).

Theorem 5.4.3. If two semirings S1 and S2 are isomorphic, then their k-centers

Ck(S1) and Ck(S2) are isomorphic.

Proof. Suppose we have two isomorphic semirings S1 and S2. In this case, there is

an isomorphism f : S1 −→ S2. Let’s consider an element x ∈ Ck(S1). For any

non-zero element s1 ∈ S1, we have x + xs1 = xs1 and xs1 = s1x. Let’s define

f(x) = y; where y ∈ S2. Since f is an isomorphism, for any non-zero element

s2 ∈ S2, there exists s1 ∈ S1\{0} such that f(s1) = s2. Consequently, we have

y + ys2 = f(x) + f(x)f(s1) = f(x + xs1) = f(xs1) = f(x)f(s1) = ys2 and ys2 =

f(x)f(s1) = f(xs1) = f(s1x) = f(s1)f(x) = s2y, considering that x ∈ Ck(S). As a

result, we can conclude that y ∈ Ck(S2). Thus, we have f(Ck(S1)) ⊆ Ck(S2). Now,

let’s consider an element b ∈ Ck(S2). We can express b = f(a); where a ∈ S1. Since f

is an isomorphism, for any y ∈ S2\{0}, there exists x ∈ S1 such that y = f(x). Since

b ∈ Ck(S2), it follows that b + by = by and by = yb. By examining these equations,

we can deduce that b + by = by =⇒ f(a) + f(a)f(x) = f(a)f(x) =⇒ f(a + ax) =

f(ax) =⇒ a+ax = ax and by = yb =⇒ f(a)f(x) = f(x)f(a) =⇒ f(ax) = f(xa) =⇒

ax = xa, assuming that f is an isomorphism. These conclusions lead us to the fact

that a ∈ Ck(S1). Consequently, we can state that b = f(a) ∈ f(Ck(S1)). Therefore,



CHAPTER 5. k-CENTER OF A SEMIRING 97

Ck(S2) ⊆ f(Ck(S1)), which implies that Ck(S2) = f(Ck(S1)). Hence, we can assert

that g = f|Ck(S1)
: Ck(S1) −→ Ck(S2) is an isomorphism from Ck(S1) onto Ck(S2).

Usually, the converse of Theorem 5.4.3 is invalid. This can be observed by con-

sidering the following counter example.

Example 5.4.4. It should be noted that Ck(Z+
0 ) = {0} and Ck(R+

0 ) = {0}. Hence,

Ck(Z+
0 ) and Ck(R+

0 ) are isomorphic but Z+
0 and R+

0 are not isomorphic.

Proposition 5.4.5. Let S be a c-semiring. If x ∈ Ck(S), then x = xa for all

a ∈ S\{0}.

Proof. Consider a c-semiring S and let x belong to the set Ck(S). Given a ∈ S\{0}, it

follows from x ∈ Ck(S) that x+x ·a = x ·a. This equation can be further simplified as

x ·1+x ·a = x ·a, which leads to x(1+a) = x ·a. Since 1 acts as an absorbing element

with respect to addition, we deduce x · 1 = x · a, ultimately yielding x = xa.

Remark 5.4.6. If Ck(S) = S, then S is commutative. The converse may not hold,

as demonstrated in example 5.2.5; where S is commutative despite Ck(S) ̸= S. Given

this scenario, we can observe that B(3, 1) = {0, 1, 2} and Ck(B(3, 1)) = {0, 2}. Con-

sequently, it is evident that Ck(B(3, 1)) does not equal B(3, 1).

Proposition 5.4.7. If S is a semiring, then Ck(S) is a semidomain.

Proof. Considering a and b as nonzero elements in Ck(S), let ab = 0. Since a belongs

to Ck(S), it satisfies the condition a + ax = ax and xa = ax for all x in S (except

0). By substituting x = b into the previous equations, we find that a + ab = ab and

ab = ba. Consequently, we conclude that a + 0 = 0, which implies a = 0. Hence,

Ck(S) can be identified as a semidomain.

A widely acknowledged fact is that if S is a semiring, the center of the matrix

semiring Mn(S) can be expressed as Z(Mn(S)) = {aIn ∈ Mn(S) : a ∈ Z(S)}; where

In represents the n× n identity matrix.

Regarding the k-center of the matrix semiring, we have the following notable

outcome :
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Theorem 5.4.8. Let S be a semiring with identity. Then a ∈ Ck(S) if and only if

aIn ∈ Ck(Mn(S)).

Proof. Let a ∈ Ck(S). Then a+ ab = ab for all b ∈ S\{0}.

Now aIn + (aIn)B

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


ab11 ab12 · · · ab1n

ab21 ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · abnn



=


a+ ab11 ab12 · · · ab1n

ab21 a+ ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · a+ abnn



=


ab11 ab12 · · · ab1n

ab21 ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · abnn

 = (aIn)B, since a ∈ Ck(S).

Again (aIn)B =


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn

=


ab11 ab12 · · · ab1n

ab21 ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · abnn



=


b11a b12a · · · b1na

b21a b22a · · · b2na
...

...
. . .

...

bn1a bn2a · · · bnna

=


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

= B(aIn),

since a ∈ Ck(S). This implies that aIn ∈ Ck(Mn(S)).

Conversely, suppose that aIn ∈ Ck(Mn(S)). We want to show that a ∈ Ck(S).
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For any x ∈ S\{0}, let B =


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x

. Since aIn ∈ Ck(Mn(S)), it follows

that aIn + (aIn)B = (aIn)B and (aIn)B = B(aIn). Comparing both sides, we find

that a+ ax = ax and ax = xa. Consequently, we can conclude that a ∈ Ck(S).

By employing the aforementioned Theorem 5.4.8, we derive the subsequent result:

Corollary 5.4.9. Let S be a semiring with identity. Then the k-center Ck(Mn(S)) =

{aIn ∈Mn(S) : a ∈ Ck(S)}; where In is the n× n identity matrix.

The k-center of a polynomial semiring over a semiring yields the following result :

Theorem 5.4.10. Let S[x] be a polynomial semiring over a semiring S. Then f(x) =

a0 + a1x+ ...+ anx
n ∈ Ck(S[x]) if and only if ai ∈ Ck(S); i = 0, 1, 2, ..., n.

Proof. Consider the function f(x) = a0+a1x+ ...+anx
n ∈ Ck(S[x]). Let d ∈ S\{0}.

We can deduce that d ∈ S \ {0} implies that d ∈ S[x] \ {0}. Since f(x) ∈ Ck(S[x]),

we have f(x) + f(x)d = f(x)d and f(x)d = df(x). This implies that (a0 + a1x+ ...+

anx
n)+(a0+a1x+ ...+anx

n)d = (a0+a1x+ ...+anx
n)d and d(a0+a1x+ ...+anx

n) =

(a0+ a1x+ ...+ anx
n)d. Thus, we have (a0+ a0d)+ (a1+ a1d)x+ ...+(an+ and)x

n =

a0d+a1dx+...+andx
n and da0+da1x+...+danx

n = a0d+a1dx+...+andx
n. Comparing

both sides, it follows that a0 + a0d = a0d, a1 + a1d = a1d, ..., an + and = and and

a0d = da0, a1d = da1, ..., and = dan. As d is arbitrary, we conclude that ai ∈ Ck(S),

i = 0, 1, ..., n.

Conversely, suppose that ai ∈ Ck(S). Since ai ∈ Ck(S), ai + aib = aib and

aib = bai for all b ∈ S\{0}. We have to show that f(x) ∈ Ck(S[x]). For any

g(x) = b0 + b1x + ... + bkx
k ∈ S[x]\{0}, f(x) + f(x)g(x) = (a0 + a1x + ... + anx

n) +

(a0+a1x+...+anx
n)(b0+b1x+...+bkx

k) = (a0+a1x+...+anx
n)+

(
a0b0+

∑
i+j=1

aibjx+∑
i+j=2

aibjx
2+ ...+

∑
i+j=n

aibjx
n+ ...+anbkx

n+k
)
= a0+a0b0+(a1+

∑
i+j=1

aibj)x+(a2+∑
i+j=2

aibj)x
2+...+(an+

∑
i+j=n

aibj)x
n+...+anbkx

n+k = a0b0+
∑
i+j=1

aibjx+
∑
i+j=2

aibjx
2+
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...+
∑
i+j=n

aibjx
n+...+anbkx

n+k = (a0+a1x+...+anx
n)(b0+b1x+...+bkx

k) = f(x)g(x).

Again f(x)g(x) = (a0 + a1x+ ...+ anx
n)(b0 + b1x+ ...+ bkx

k) = a0b0 +
∑
i+j=1

aibjx+∑
i+j=2

aibjx
2 + ... +

∑
i+j=n

aibjx
n + ... + anbkx

n+k = b0a0 +
∑
i+j=1

bjaix +
∑
i+j=2

bjaix
2 +

... +
∑
i+j=n

bjaix
n + ... + bkanx

n+k = (b0 + b1x + ... + bkx
k)(a0 + a1x + ... + anx

n) =

g(x)f(x). Thus, f(x) + f(x)g(x) = f(x)g(x) and f(x)g(x) = g(x)f(x). Therefore,

f(x) ∈ Ck(S[x]).

The corollary stated below is a direct consequence of Theorem 5.4.10.

Corollary 5.4.11. Let S be a semiring and S[x] be the polynomial semiring over S.

Then the k-center Ck(S[x]) = {a0 + a1x + a2x
2 + ... + anx

n ∈ S[x] : ai ∈ Ck(S), i =

0, 1, 2, ..., n}.

We would like to share an extremely useful Theorem concerning the cartesian

product of the k-center of two semirings.

Theorem 5.4.12. If S1 and S2 are two semirings, then Ck(S1 × S2) = Ck(S1) ×

Ck(S2).

Proof. Let S1 and S2 be two semirings with zero elements 0S1 and 0S2 respectively. Let

z ∈ Ck(S1 × S2). Then z = (x, y) ∈ S1 × S2 and for any (a, b) ∈ (S1 × S2)\{0S1 , 0S2},

(x, y) + (x, y)(a, b) = (x, y)(a, b) and (x, y)(a, b) = (a, b)(x, y) =⇒ (x + xa, y + yb) =

(xa, yb) and (xa, yb) = (ax, by). Comparing both sides, we get x+ xa = xa, y+ yb =

yb, xa = ax, yb = by. As a result, we can conclude that x + xa = xa, xa = ax for

all a ∈ S1\{0S1} and y + yb = yb, yb = by for all b ∈ S2\{0S2}. Consequently, we

can deduce that x ∈ Ck(S1) and y ∈ Ck(S2). Therefore, it can be concluded that

z = (x, y) ∈ Ck(S1)× Ck(S2), which implies Ck(S1 × S2) ⊆ Ck(S1)× Ck(S2) (i).

For reverse part, let (a, b) ∈ Ck(S1) × Ck(S2). This means that a ∈ Ck(S1) and

b ∈ Ck(S2). For any x ∈ S1\{0S1}, we observe that a + ax = ax, ax = xa and

y ∈ S2\{0S2}, we have b + by = by, by = yb. Now (a, b) + (a, b)(x, y) = (a + ax, b +

by) = (ax, by) = (a, b)(x, y). Likewise, we can show that (a, b)(x, y) = (ax, by) =
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(xa, yb) = (x, y)(a, b), using the fact that a ∈ Ck(S1) and b ∈ Ck(S2). This implies

that (a, b) ∈ Ck(S1 × S2) and hence Ck(S1)× Ck(S2) ⊆ Ck(S1 × S2) (ii).

From (i) and (ii), we can conclude that Ck(S1 × S2) = Ck(S1)× Ck(S2).

We will now demonstrate the practical use of Theorem 5.4.12 through the following

example.

Example 5.4.13. Consider two semirings (N,⊕,⊙) with a ⊕ b = max{a, b} = b as

addition on N; where b > a and a⊙ b for the usual multiplication of natural numbers

and (Z+
0 ,+, ·), where “+” is usual addition and “·” is usual multiplication. Now we

take a semiring (N×Z+
0 ,+, ·) with component-wise addition and multiplication. Then

Ck(N× Z+
0 ) = Ck(N)× Ck(Z+

0 ) = N× {0}.

In the subsequent theorem, our primary objective is to establish that the k-center

of a semiring, which is a rectangular band under multiplication, indeed constitutes a

b-lattice semiring.

Theorem 5.4.14. Let S be a semiring with identity 1. If (S, ·) is a rectangular band,

then Ck(S) is a b-lattice semiring.

Proof. In the case where S is a semiring with an identity element 1, it is known that

Ck(S) forms an additively idempotent semiring and possesses additive commutativity.

Consequently, the structure (Ck(S),+) can be recognized as a semilattice. Let us

consider an element a ∈ Ck(S). For any nonzero element b ∈ S, the equation a+ab =

ab holds. By substituting b = a into this equation, we obtain a+ a · a = a · a, which

can be simplified as a+ a2 = a2 (i).

Additionally, due to the property of (S, ·) being a rectangular band, we have

a+ ab = ab =⇒ (a+ ab) · a = ab · a =⇒ a · a+ aba = aba =⇒ a2 + a = a (ii).

Combining equations (i) and (ii), we conclude that a2 = a. Thus, we establish

that (Ck(S), .) forms a band. Consequently, Ck(S) can be classified as a b-lattice

semiring.

The next aim on our agenda is to establish that Ck(S) forms a semilattice. To

accomplish this, we initiate with the technical finding.
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Theorem 5.4.15. Let S be a semiring with identity element 1. Define a binary

relation “≤S” on Ck(S) by “a ≤S b” if and only if a + b = a for all a, b in Ck(S).

Then (Ck(S),≤S) forms a partial ordered set.

Proof. Now a ≤S b ⇐⇒ a + b = a for all a, b ∈ Ck(S). Take an element a ∈ Ck(S).

This implies that a + ax = ax holds for all x ∈ S\{0}. Setting x = 1, we get

a + a1 = a1, which simplifies to a + a = a. This equation holds for all a ∈ Ck(S),

showing that a ≤S a. Thus, the relation “≤S” is reflexive.

Now, assume that a ≤S b and b ≤S a hold for elements a, b ∈ Ck(S). According

to the definitions, we have a ≤S b ⇐⇒ a + b = a for a, b ∈ Ck(S), and b ≤S a ⇐⇒

b + a = b for a, b ∈ Ck(S). This implies that a = b for a, b ∈ Ck(S). Hence, the

relation“≤S” is antisymmetric.

Suppose a ≤S b and b ≤S c hold for elements a, b, c ∈ Ck(S). Using the definitions,

we find that a ≤S b ⇐⇒ a + b = a for a, b ∈ Ck(S), and b ≤S c ⇐⇒ b + c = b for

b, c ∈ Ck(S). From these two equations, we have a + c = a + b + c = a + b = a.

Thus, a ≤S c holds for all a, c ∈ Ck(S). Consequently, the relation “≤S” is transitive.

Therefore, (Ck(S),≤S) forms a partial ordered set.

Theorem 5.4.16. If S is a semiring with identity then Ck(S) forms a semilattice.

Proof. Let S be a semiring with identity element 1. Then from Corollary 5.2.9, it

follows that Ck(S) is an additively idempotent semiring. Define a binary relation “≤S”

on Ck(S) by “a ≤S b” if and only if a+b = a for all a, b in Ck(S). We can establish from

Theorem 5.4.15 that (Ck(S),≤S) forms a partial ordered set. Utilizing the fact that

Ck(S) is an additive idempotent semiring, we observe that a+b+a = a+a+b = a+b,

demonstrating that a+b ≤S a for all elements a and b in Ck(S). Again a+b+b = a+b,

since Ck(S) is an additive idempotent semiring. This implies that a + b ≤S b for all

a, b in Ck(S). So, a + b is a lower bound of a and b. We now show that a + b is the

greatest lower bound of a and b. Let g be another lower bound of a and b. Then

g ≤S a ⇐⇒ g + a = g for all g, a ∈ Ck(S) and g ≤S b ⇐⇒ g + b = g for all

g, b ∈ Ck(S). Now g+ a = g =⇒ g+ a+ b = g+ b =⇒ g+ a+ b = g, since g+ b = g.

Thus, g ≤S a+ b holds for all a, b ∈ Ck(S). So, a+ b is the greatest lower bound of a
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and b. Hence, Ck(S) forms a semilattice.

Theorem 5.4.17. [28] A commutative semiring is a bounded distributive lattice if

and only if it is a simple multiplicatively idempotent semirng.

Theorem 5.4.18. If Ck(S) is bounded distributive lattice, then it is a trivial semiring.

Proof. According to the definition of Ck(S), it can be identified as a commutative

semiring. Assuming that Ck(S) is a simple semiring, we can deduce that 1+ a = 1(i)

for all a ∈ Ck(S). Furthermore, if 1 ∈ Ck(S) and for any a ∈ S\{0}, then we can

conclude that 1 + 1 · a = 1 · a, which simplifies to 1 + a = a (ii).

Combining equations (i) and (ii), we arrive at the conclusion that a = 1 for all

elements a ∈ S. Additionally, we know that 0 ∈ Ck(S). Consequently, it follows that

Ck(S) is a trivial semiring.

Remark 5.4.19. If S is a semiring with identity, then it follows that Ck(S) consti-

tutes a semilattice. However, the above mentioned Theorem 5.4.18 demonstrates that

Ck(S) fails to constitute a bounded distributive lattice. In the event that Ck(S) were

to be considered a bounded distributive lattice, it would consequently be reduced to a

trivial semiring.

5.5 k-Central Semiring

This section introduces the concept of a k-central semiring, followed by an examina-

tion of its key properties. Subsequently, we delve into establishing various character-

izations of this semiring. To begin, we provide the definition of a k-central semiring.

Definition 5.5.1. A semiring S is said to be a k-central semiring if Ck(S) = S.

In order to illustrate k-central semiring, we now generate some instances.

Example 5.5.2. Consider the set of integers Z+ with the operations a+b = lcm{a, b}

and a ·b = ab. Then (Z+,+, ·) is a semiring with zero element 1. Then Ck(Z+) = Z+.

Therefore, (Z+,+, ·) is a k-central semiring.
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Example 5.5.3. Consider S = {0, x, y, 1}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 x y 1

0 0 x y 1

x x x y x

y y y y y

1 1 x y 1

. 0 x y 1

0 0 0 0 0

x 0 x y x

y 0 y y y

1 0 x y 1

Note that Z(S) is a subsemiring of S but generally, Z(S) ̸= S for a semiring S.

Remark 5.5.4. If S is a k-central semiring, then S is a central semiring but the

converse is not necessarily true. Note that commutative semirings are central semir-

ings but not k-central semirings. In particular, semifields are central semirings but

not k-central semirings.

We are now determining the relationship between the k-central semiring and the

k-regular semiring.

Theorem 5.5.5. Every k-central semiring is a k-regular semiring.

Proof. Let S be a k-central semiring. Then Ck(S) = S. Let a ∈ Ck(S). Then

a2 ∈ Ck(S), since Ck(S) is a subsemiring of S. Furthermore, we observe that a+a·a2 =

a · a2, implying that a + a · a · a = a · a · a. As a result, we conclude that Ck(S) is a

k-regular semiring.

The subsequent pair of illustrations demonstrate that the converse of the afore-

mentioned Theorem 5.5.5 does not hold, meaning that every k-regular semiring is not

a k-central semiring.

Example 5.5.6. The semiring (Z+
0 ,⊕,⊙) is k-regular; where a⊕ b = max{a, b} and

a⊙ b = min{a, b} for all a, b ∈ Z+
0 . But Ck(Z+

0 ) = {0, 1} ̸= S. Therefore, (Z+
0 ,⊕,⊙)

is not a k-central semiring.

Consequently, (S,+, ·) forms a k-central semiring due to the equality Ck(S) = {0, x, y, 1} =S.
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Example 5.5.7. Consider S = {0, x, 1}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 1 1

Then (S,+, ·) is a k-regular semiring. But Ck(S) = {0} ̸= S i.e. (S,+, ·) is not a

k-central semiring.

We now present a characterization Theorem of k-central semiring in the context

of c-semiring.

Theorem 5.5.8. Let S be a c-semiring with zero element 0 and identity element 1.

Then S is a k-central semiring if and only if |S| = 2.

Proof. If we let |S| = 2, then S = {0, 1}. It is evident that 0, 1 ∈ Ck(S), thus

establishing Ck(S) = S. As a result, S can be classified as a k-central semiring.

Conversely, if we assume that S is a k-central semiring, denoted as Ck(S) = S,

then it follows that both 0 and 1 exist within S. This implies that 0 and 1 are elements

of Ck(S). Based on Proposition 5.2.12, we can conclude that |S| = 2.

By virtue of Corollary 5.2.9, we can deduce the following result :

Proposition 5.5.9. If S is a k-central semiring with identity, then S is an additively

idempotent semiring.

Proof. Assume S is a k-central semiring. Then Ck(S) = S. Consider an arbitrary

element a ∈ S = Ck(S). For any b ∈ S \ {0}, we have a + ab = ab. In particular,

when we take b as the identity element 1, we obtain a+a ·1 = a ·1. Consequently, we

can deduce that a + a = a for all a ∈ S. As a result, S is an additively idempotent

semiring.

Proposition 5.5.10. If S is an additively idempotent mono-semiring, then S is a

k-central semiring.
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Proof. Suppose S is an additively idempotent mono-semiring. It is evident that

Ck(S) ⊆ S. Consider a(̸= 0) be an arbitrary element in S. For any b belonging to S

excluding 0, we have a+ ab = a+ a+ b = a+ b = ab and ab = a+ b = b+ a = ba as S

is an additively idempotent mono-semiring. Consequently, for any b in S (excluding

0), we have a + ab = ab and ab = ba. Additionally, 0 ∈ Ck(S). Hence, we can

conclude that S ⊆ Ck(S), which implies S = Ck(S). Consequently, S is a k-central

semiring.

Proposition 5.5.11. Any additively idempotent mono-semiring S with identity el-

ement 1 is a k-central semiring if and only if it satisfies the quasi identity x + 1 =

y + 1 =⇒ x = y for all x, y ∈ S.

Proof. Let us prove the necessity. Given that x+1 = y+1. As S is a mono-semiring,

we find that x + 1 = y + 1 =⇒ x · 1 = y · 1 =⇒ x = y. Hence, we conclude that it

satisfies the quasi identity.

We aim to demonstrate sufficiently. It is evident that Ck(S) ⊆ S. Our task is to

establish that S ⊆ Ck(S). Suppose we take an arbitrary element x(̸= 0) from S. Since

S is an additively idempotent semiring, we have x+1 = x+1+1 ( 1+1 = 1, as S is an

additively idempotent semiring) = (x+1)+1 for all x ∈ S. This implies that x+1 = x

for all x ∈ S based on the given quasi identity. Furthermore, for any x ∈ S \ {0}, we

can observe that x+ xy = x(1 + y) = xy. Additionally, xy = x+ y = y + x = yx, as

S is mono-semiring. Consequently, for any x ∈ S \ {0}, x + xy = xy and xy = yx.

Thus, it follows that x(̸= 0) ∈ Ck(S). We can also include 0 ∈ Ck(S). As a result,

we can conclude that S ⊆ Ck(S), leading to S = Ck(S). Hence, we establish that S

is a k-central semiring.

Let us now introduce the most important characterization theorem for a k-central

semiring.

Theorem 5.5.12. Let S be a commutative semiring with identity 1. Then S is a

k-central semiring if and only if 1 ∈ Ck(S).

Proof. Assuming S is a k-central semiring, we can establish Ck(S) = S. This implies

that 1 ∈ S = Ck(S).
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Conversely, suppose that 1 ∈ Ck(S). Clearly, Ck(S) ⊆ S. Let a(̸= 0) be an

arbitrary element in S. For any b in S excluding 0, we have a + ab = a1 + a1b =

a(1 + 1b) = ab, due to the fact that 1 ∈ Ck(S). Therefore, for any b in S excluding

0, a + ab = ab, and since S is commutative, ab = ba. Consequently, a (not equal to

0) belongs to Ck(S). Additionally, 0 ∈ Ck(S). Hence, S ⊆ Ck(S) and consequently,

S = Ck(S). Therefore, S is a k-central semiring.

Based on Theorem 5.5.12, the subsequent Corollary can be derived as follows :

Corollary 5.5.13. Let S be a semiring with identity 1. A central semiring S is a

k-central semiring if and only if 1 ∈ Ck(S).

The subsequent two theorems showcase various properties of a k-central semiring.

Theorem 5.5.14. Let S be a k- central semiring. If (S, ·) is a rectangular band, then

the following are true.

(a) (S, ·) is a band.

(b) (S,+) is a band.

Proof. (a) Let S be a k- central semiring. Suppose S is a k-central semiring. Let a

and b ̸= 0 be elements of S such that a + ab = ab, which implies (a + ab)a = aba.

Considering the fact that (S, ·) is a rectangular band, we can further deduce that

a2 + aba = aba, leading to a2 + a = a (i).

Now, consider setting b = a in the equation a + ab = ab. This yields a + aa = aa,

which can be rewritten as a+ a2 = a2 (ii).

From (i) and (ii), we get a2 = a. Hence, (S, ·) is a band.

(b) Let’s consider an element a belonging to the set Ck(S). This means that for

all a in S and all non-zero elements b in S, the equation a+ ab = ab holds true. If we

substitute b with a, we get a + a2 = a2, which further simplifies to a + a = a, since

(S, ·) is a band. As a result, we can conclude that (S,+) is also a band.

Theorem 5.5.15. If S be a k- central semiring, then the following are true.

(i) If (S, ·) has a left zero, then (S,+) is a band.

(ii) If (S, ·) has a left identity, then (S,+) has a left identity.
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Proof. (i) Consider a k-central semiring S. Let a and b be elements of S; where b is

nonzero. If a + ab = ab, then it follows that a + a = a due to the presence of a left

zero element in (S, ·). Therefore, we can conclude that (S,+) forms a band.

(ii) Let a ∈ Ck(S). Consequently, for all a ∈ S and b ∈ S\{0}, we have a+ab = ab.

Given that (S, ·) possesses a left identity, we can deduce that ab = b for any a and b

belonging to S. This, in turn, implies that a + b = b. Hence, we can conclude that

(S,+) also has a left identity.

Proposition 5.5.16. Let S be k- central semiring. If (S, ·) has a left zero, then

(S,+) is E-inversive semigroup.

Proof. By hypothesis, (S, ·) has a left zero ‘a’ i.e. ab = a for all b ∈ S. Consider S is a

k- central semiring and a ∈ Ck(S). Then for any b ∈ S\{0}, a+ab = ab. This implies

that ab+ab = ab for all ab in E[+] (since (S, ·) has a left zero ‘a’,); where E[+] is the

of all additive idempotents in (S,+). In other words, there exists an element a ∈ S

such that ab+ ab = ab. From this, we can conclude that b is an E-inversive element,

thus establishing that (S,+) is an E-inversive semigroup.

We bring this chapter to a close by analyzing the behavior of the k-central semiring

within the framework of PRD.

Proposition 5.5.17. If S is both a PRD and a k-central semiring, then S must also

be a simple semiring.

Proof. Assuming S is a k-central semiring and a ∈ Ck(S). Then a + ab = ab for all

b ∈ S\{0}. Since (S, ·) is an abelian group, then a−1 exists for any a ∈ S. Taking

b = a−1, we find that a+ aa−1 = aa−1. From this equation, we deduce that a+1 = 1

for all a ∈ S. As a consequence, we can conclude that S is a simple semiring.

Proposition 5.5.18. If S is both a PRD and a k-central semiring, then S must also

be a multiplicatively subidempotent.

Proof. Assuming S is a PRD, according to proposition 5.5.17, if S is a k-central

semiring, then the equation 1 + a = 1 holds for all a ∈ S. Consequently, we can
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deduce that a(1 + a) = a · 1, which simplifies to a + a2 = a. Thus, the equation

a + a2 = a holds for all elements a ∈ S. As a result, it can be concluded that S is a

multiplicative subidempotent.

Proposition 5.5.19. Let S be a PRD. If S is a k-central semiring, then S has a left

zero.

Proof. Assuming S is a PRD, by referencing proposition 5.5.17, we deduce that if S

is a k-central semiring, it must also be a simple semiring. Let us consider an element

a ∈ Ck(S). For any non-zero element b ∈ S, we observe that a + ab = ab, which

leads us to the equation a(1 + b) = ab. Simplifying further, we find a · 1 = ab,

and subsequently a = ab, given that S is a simple semiring. As a consequence, we

conclude that S possesses a left zero.
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Chapter 6

Generalized Center of a Semiring

6.1 Introduction

In the field of abstract algebra, the center of a group G, is the set of elements that

commute with every element of G. It is denoted Z(G), from German Zentrum, mean-

ing center. In set-builder notation, Z(G) = {a ∈ G : ab = ba for all b ∈ S}. The

notion of center of ring is analogous to the center of group. Again the notion of center

of semiring is analogous to the center of ring. However, to delve further into this topic

and explore novel findings, we introduce a distinct variation known as the generalized

center of a semiring. The generalized center, denoted as CG(S), is a specific center

constructed to establish new results concerning semirings. The generalized center of

semiring is defined by CG(S) = {a ∈ S : a + ab = a + ba for all b ∈ S}. Inter-

estingly, in additively cancellative semirings, the generalized center CG(S) coincides

with the conventional center Z(S) of the semiring. This intriguing observation serves

as motivation for defining and exploring the properties of the generalized center of

semiring. So, the generlaized center of semiring is precisely generalization of the cen-

ter of semiring. Consequently, this chapter focuses on discussing the characteristics

of this substructure within semirings and delves into the algebraic structure of the

center in various classes of semirings.

The primary objective of this chapter is to provide an in-depth understanding of

these topics, particularly emphasizing the class of semirings in which a semiring S

110
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aligns with its generalized center. To accomplish this goal, we introduce a new type

of semiring known as the generalized central semiring and thoroughly investigate its

properties in conjunction with the generalized center of a semiring.

6.2 CG(S) of a Semiring S

In this section, we introduce the concept of a generalized center of a semiring, along

with a variety of examples and fundamental findings that have relevance for upcoming

results and subsequent sections.

Definition 6.2.1. Let S be a semiring. A subset CG(S) of a semiring S is called

generalized center of S which is defined by CG(S) = {a ∈ S : a+ ab = a+ ba for all

b ∈ S}.

Proposition 6.2.2. If S is a semiring with zero element 0, then 0 ∈ CG(S).

Proof. Given that 0 is the zero element of S, we can observe that 0 · x = 0 = x · 0 for

all x ∈ S. Now for any x ∈ S, 0 + 0 · x = 0 + x · 0, as 0 serves as the zero element of

S. As a consequence, we can conclude that 0 ∈ CG(S).

Proposition 6.2.3. If S is a semiring with identity element 1, then 1 ∈ CG(S).

Proof. Given that 1 serves as the identity element in S, we can deduce that 1 · x =

x · 1 = x for all x ∈ S. Moreover, for any x ∈ S, we have 1 + 1 · x = 1 + x · 1, due

to the fact that 1 acts as the identity element of S. Consequently, it follows that

1 ∈ CG(S).

Here, we present a number of examples illustrating the concept of the generalized

center in a semiring.

Example 6.2.4. Consider (N,⊕,⊙) is a semiring; where a ⊕ b = max{a, b} and

a⊙ b = min{a, b}. Then CG(N) = N.

Example 6.2.5. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :
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+ 0 x 1

0 0 x 1

x x x 1

1 1 1 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S,+, ·) is a semiring and CG(S) = {0, x, 1} = S.

Example 6.2.6. Consider S = {0, a, b, c}. Define the operations “+” and “·” on S

by means of the following tables :

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c c

. 0 a b c

0 0 0 0 0

a 0 a a a

b 0 a b b

c 0 a c c

By using these operations, we can establish that (S,+, ·) forms a non-commutative

semiring. In this case, Z(S) = {0, a}. However, CG(S) = {0, a, c}. Therefore, we

can conclude that Z(S) ̸= CG(S)

The following example is taken from the source [[28], Example 1.10].

Example 6.2.7. We consider a semigroup (M, ·) with multiplication table

. 0 1 a b c

0 0 0 0 0 c

1 0 1 a b c

a 0 a a a c

b 0 b b b c

c 0 c c c c

Let S = Sub(M) be the set of all subsets of the semigroup M . Let us define “+”

and “·” in S as : A + B = A ∪ B and A · B = {ab | a ∈ A, b ∈ B} for all

A,B ∈ S. Then (S,+, ·) is a semiring with zero element ϕ and the identity element

1 = 1M . We have |S| = 25 = 32. In addition, S is additively idempotent and
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multiplicatively idempotent non-commutative semiring. The center Z(S) as the form

Z(S) = {{ϕ}, {0}, {1}, {0, 1}, {c}, {0, c}, {0, 1, c}, {1, c}}.

The generalized center CG(S) as of the form

CG(S) = {{ϕ}, {0}, {1}, {0, 1}, {c}, {0, c}, {0, 1, c}, {1, c}, {1, a}, {1, b}, {a, b}, {1, a, b},

{a, b, c}, {1, a, c}, {1, b, c}, {1, a, b, c}, {0, 1, a}, {0, 1, b}, {0, a, b}, {0, 1, a, b}, {0, a, b, c},

{0, 1, a, c}, {0, 1, b, c}, {0, 1, a, b, c}}.

Again CG(S)\Z(S) = {{1, a}, {1, b}, {a, b}, {1, a, b}, {a, b, c}, {1, a, c}, {1, b, c},

{1, a, b, c}, {0, 1, a}, {0, 1, b}, {0, a, b}, {0, 1, a, b}, {0, a, b, c}, {0, 1, a, c}, {0, 1, b, c},

{0, 1, a, b, c}}. Those elements of S which are not the elements of CG(S) as well

as Z(S) are {a}, {b}, {0, a}, {0, b}, {a, c}, {b, c}, {0, a, c}, {0, b, c}. In this case,

CG(S) ̸= Z(S) and Z(S) ⊂ CG(S). Again CG(S) ̸= S.

Proposition 6.2.8. Let S be a semiring. Then Z(S) ⊆ CG(S).

Proof. Let a ∈ Z(S). Then ab = ba for all b ∈ S. Consequently, for all b ∈ S, we also

have a+ ab = a+ ba. This, in turn, implies that a ∈ CG(S). Hence, we can conclude

that Z(S) ⊆ CG(S).

Example 6.2.9. Let D be a distributive lattice with identity element 1.

Let

 a a

0 a

 ∈ M2(D). For any

 b c

0 d

 ∈ M2(D),

 a a

0 a

 b c

0 d

 = ab ac+ ad

0 ad

. Again

 b c

0 d

 a a

0 a

 =

 ba ba+ ca

0 da

.

So,

 a a

0 a

 b c

0 d

 ̸=

 b c

0 d

 a a

0 a

.

Therefore,

 a a

0 a

 /∈ Z(M2(D)).

But

 a a

0 a

 +

 a a

0 a

 b c

0 d

 =

 a+ ab a+ ac+ ad

0 a+ ad

 =

 a a

0 a

.

Again

 a a

0 a

+

 b c

0 d

 a a

0 a

 =

 a+ ba a+ ba+ ca

0 a+ da

 =

 a a

0 a

.
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So,

 a a

0 a

+

 a a

0 a

 b c

0 d

 ̸=

 a a

0 a

+

 b c

0 d

 a a

0 a

.

Thus,

 a a

0 a

 ∈ CG(M2(D)).

Similarly, we can show that { a

 1 0

1 1

, a

 1 1

1 1

}∈ CG(M2(D)).

But { a

 1 0

1 1

, a

 1 1

1 1

}/∈ Z(M2(D)).

Also, a

 1 0

0 1

 ∈ Z(M2(D)), and consequently, a

 1 0

0 1

 ∈ CG(M2(D)).

Subsequently, we analyze the behavior of the generalized center in the context of

matrix semiring.

Theorem 6.2.10. Let S be a semiring with identity. Then a ∈ CG(S) if and only if

aIn ∈ CG(M
d
n(S)); where M

d
n(S) is the set of all n× n diagonal matrices i.e.,

Md
n(S) = {


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 : aii ∈ S}

Proof. Let a ∈ CG(S). Then a+ ab = a+ ba for all b ∈ S.

Now aIn + (aIn)B

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


ab1 0 · · · 0

0 ab2 · · · 0
...

...
. . .

...

0 0 · · · abn


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=


a+ ab1 0 · · · 0

0 a+ ab2 · · · 0
...

...
. . .

...

0 0 · · · a+ abn



=


a+ b1a 0 · · · 0

0 a+ b2a · · · 0
...

...
. . .

...

0 0 · · · a+ bna



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


b1a 0 · · · 0

0 b2a · · · 0
...

...
. . .

...

0 0 · · · bna



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a



= a+B(aIn), since a ∈ CG(S))

This implies that aIn ∈ CG(M
d
n(S)).

Conversely, suppose that aIn ∈ CG(M
d
n(S)). Now we show that a ∈ CG(S). For

any x ∈ S, let B =


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x

. Since aIn ∈ CG(M
d
n(S)), it follows that

aIn + (aIn)B = a + B(aIn). Comparing both sides, we find that a + ax = a + xa.

Therefore, a ∈ CG(S).

Theorem 6.2.11. Let S be a commutative semiring with identity. Then aIn ∈

CG(Mn(S)) for all a ∈ S.

Proof. Let a ∈ CG(S). Then a+ ab = a+ ba for all b ∈ S.
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Now aIn + (aIn)B

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...

bn1 bn2 · · · bnn



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


ab11 ab12 · · · ab1n

ab21 ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · abn



=


a+ ab11 ab12 · · · ab1n

ab21 a+ ab22 · · · ab2n
...

...
. . .

...

abn1 abn2 · · · a+ abnn



=


a+ b11a b12a · · · b1na

b21a a+ b22a · · · b2na
...

...
. . .

...

bn1a bn2a · · · a+ bnna



=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 +


b11a b12a · · · b1na

b21a b22a · · · b2na
...

...
. . .

...

bn1a bn2a · · · bna

 = aIn + B(aIn), since S is com-

mutative semiring. This conveys that aIn ∈ CG(Mn(S)).

Theorem 6.2.12. The generalized center of a semiring S is a subsemiring of S.

Proof. Since S is a semiring with zero element 0, then 0 ∈ CG(S). Consequently,

the generalized center CG(S) of a semiring S is non-empty. Let S be a semiring and

x, y ∈ CG(S). We will now demonstrate that x + y ∈ CG(S) and xy ∈ CG(S). For

any b ∈ S, x + xb = x + bx, since x ∈ CG(S) and y + yb = y + by, since y ∈ CG(S).

Now, by combining these equations, we obtain (x+ y) + (x+ y)b = x+ y+ xb+ yb =

x + xb + y + yb = x + bx + y + by = (x + y) + b(x + y). Thus, we conclude that

x+ y ∈ CG(S).
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Furthermore, we have xy + xyb = x(y + yb) = x(y + by) = xy + xby = (x +

xb)y = (x + bx)y = xy + bxy. Therefore, xy ∈ CG(S). Consequently, CG(S) forms a

subsemiring of S.

Remark 6.2.13. The Example 6.2.6 shows that the generalized center of a semiring

S is not an ideal of S, since b · c = b /∈ CG(S) = {0, a, c}.

Theorem 6.2.14. If S is a mono-semiring, then S = CG(S).

Proof. Indeed, CG(S) ⊆ S is evident. To establish S ⊆ CG(S), we need to demon-

strate that every element a in S is also an element of CG(S). Let a ∈ S. Given that

S is a mono-semiring, it follows that a + b = ab for all a, b ∈ S. Now, consider any

b ∈ S. We can observe that a + ab = a + a + b = a + b + a = a + ba. Consequently,

we deduce that a ∈ CG(S). Consequently, S ⊆ CG(S). Thus, we can conclude that

S = CG(S).

6.3 Analysis of CG(S)’s Properties

In this segment, we elucidate a set of fundamental properties concerning the gener-

alized center of a semiring, which are commonly assumed as given in conventional

semiring theory.

Theorem 6.3.1. If φ is an epimorphism from S to S ′, then φ(CG(S)) ⊆ CG(S
′).

Proof. Let S be an semiring and φ : S −→ S ′ is an epimorphism of S ′. Consider

φ(CG(S)) = {φ(s) : s ∈ CG(S)}. We have to show that φ(CG(S)) ⊆ CG(S
′). Let

φ(s1) ∈ φ(CG(S)) and x ∈ S ′. Since φ is onto, there exist y ∈ S such that y has

a preimage x of S ′ i.e. φ(y) = x. Since s1 ∈ CG(S), s1 + s1y = s1 + ys1. Now for

any x ∈ S ′, φ(s1) + φ(s1)x = φ(s1) + φ(s1)φ(y) = φ(s1) + φ(s1y) = φ(s1 + s1y) =

φ(s1 + ys1) = φ(s1) + φ(ys1) = φ(s1) + φ(y)φ(s1) = φ(s1) + xφ(s1). Therefore,

φ(s1) ∈ CG(S
′). Hence, φ(CG(S)) ⊆ CG(S

′).

Theorem 6.3.2. Let S and S ′ be two semirings. If f : S → S ′ is a monomorphism,

then f(CG(S)) = CG(f(S)).
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Proof. Suppose x ∈ f(CG(S)). Then x = f(y) for some y ∈ CG(S). Our goal is to

prove that f(y) + f(y)s = f(y) + sf(y) for all s ∈ f(S). For any s ∈ f(S), we can

observe the following chain of equalities : f(y) + f(y)s = f(y) + f(y)f(r) = f(y) +

f(yr) = f(y+yr) = f(y+ry) = f(y)+f(ry) = f(y)+f(r)f(y) = f(y)+sf(y). Hence,

we can conclude that x = f(y) ∈ CG(f(S)). Consequently, f(CG(S)) ⊆ CG(f(S)).

Now, let’s consider x′ ∈ CG(f(S)). Then x′ = f(r′) for some r′ ∈ S. Our objective

is to demonstrate that r′ ∈ CG(S). Since x′ ∈ CG(f(S)), we can deduce that for

any f(s) ∈ f(S), the following equation holds : x′ + x′f(s) = x′ + f(s)x′ =⇒

f(r′)+f(r′)f(s) = f(r′)+f(s)f(r′) =⇒ f(r′)+f(r′s) = f(r′)+f(sr′) =⇒ f(r′+r′s) =

f(r′ + sr′). Since f is a monomorphism, we can conclude that r′ + r′s = r′ + sr′.

Therefore, r′ = f(r′) ∈ f(CG(S)). Consequently, CG(f(S)) ⊆ f(CG(S)). Thus, we

have demonstrated that CG(f(S)) = f(CG(S)) as desired.

Theorem 6.3.3. If two semirings S1 and S2 are isomorphic, then their generalized

centers CG(S1) and CG(S2) are isomorphic.

Proof. Consider two semirings S1 and S2 which are isomorphic. Then there is an

isomorphism f : S1 −→ S2. Let x ∈ CG(S1). Then for any s1 ∈ S1, x+xs1 = x+s1x;

where y ∈ S2. Since f is an isomorphism, for any s2 ∈ S2, there exists s1 ∈ S1 such

that f(s1) = s2. Thus, y + ys2 = f(x) + f(x)f(s1) = f(x + xs1) = f(x + s1x) =

f(x)+f(s1x) = f(x)+f(s1)f(x) = y+s2y, since x ∈ CG(S1). Therefore, y ∈ CG(S2).

Consequently, f(CG(S1)) ⊆ CG(S2). Again let b ∈ CG(S2). Then b = f(a); where

a ∈ S1. Since f is an isomorphism, for any y ∈ S2, there exists x ∈ S1 such that

y = f(x). Since b ∈ CG(S2), it follows that b + by = b + yb . Now b + by =

b+ yb =⇒ f(a) + f(a)f(x) = f(a) + f(x)f(a) =⇒ f(a) + f(ax) = f(a) + f(xa) =⇒

f(a+ ax) = f(a+ xa) =⇒ a+ ax = a+ xa, since f is an isomorphism. This implies

that a ∈ CG(S1). Therefore, b = f(a) ∈ f(CG(S1)). Thus, CG(S2)) ⊆ f(CG(S1)) and

hence CG(S2) = f(CG(S1)). So, g = f|CG(S1)
: CG(S1) −→ CG(S2) is well defined and

it is an isomorphism from CG(S1) onto CG(S2).

The following example makes it evident that the converse of theorem 6.3.3 is not

valid.
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Example 6.3.4. Consider S1 = {0, 1, x}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 x 1

0 0 x 1

x x x 1

1 1 1 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S1,+, ·) is a semiring and CG(S1) = {0, x, 1}.

Consider S2 = {0, 1, 2, 3}. Define the operations “+” and “.” on S by means of the

following tables :

+ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

. 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 3 3

Then (S2,+, ·) is a non-commutative semiring. Here, CG(S2) = {0, 1, 3}.

Now, |CG(S1)| = |CG(S2)| = 3. So, CG(S1) and CG(S2) are isomorphic. But |S1| = 3

and |S2| = 4. Therefore, S1 and S2 are not isomorphic.

Theorem 6.3.5. If S is a simple semiring, then the generalized center CG(S) is also

a simple semiring of S.

Proof. Since S is a simple semiring, then 1 + a = 1 for all a ∈ S. This implies that

1 + a = 1 for all a ∈ CG(S), since CG(S) is a subsemiring of S. So, CG(S) is also a

simple semiring of S.

Theorem 6.3.6. If S is a semiring, then CG(S) is an antisimple semiring of S.

Proof. Consider a semiring S. Let r ∈ CG(S). For any x ∈ S, it follows that

r+ rx = r+xr. Furthermore, for any x ∈ S, we can observe that (r+1)+(r+1)x =

r+1+rx+x = r+ rx+1+x = r+xr+1+x = r+1+xr+x ·1 = (r+1)+x(r+1).

From this, we conclude that r + 1 ∈ CG(S). Additionally, we know that 0 ∈ CG(S).

Hence, P ′(CG(S)) = {0} ∪ {r + 1 : r ∈ CG(S)}. Accordingly, CG(S) itself forms an

antisimple semiring within S.
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Theorem 6.3.7. Let D be a semiring with unity 1. If D is a division semiring, then

CG(D) is a division subsemiring of D.

Proof. Let D be a division semiring and CG(D) be the generalized center of D. Take

a ̸= 0 as an arbitrary element of CG(D). Consequently, Da represents a nonzero left

ideal of D. Given that D is a division semiring, we can deduce that Da = D. Thus,

there exists d ∈ D such that da = 1. Since a ∈ CG(D), for any d ∈ D, a+ad = a+da.

Since D is a division semiring, for a non zero element a in D, there exists an inverse

element a′ such that aa′ = a′a = 1. Now, we can establish that d = d · 1 =⇒ d =

d(aa′) =⇒ d = (da)a′ =⇒ d = 1 · a′ =⇒ d = a′. Additionally, aa′ = 1 =⇒ ad = 1.

The only remaining task is to demonstrate that d ∈ CG(D). As a ∈ CG(D), for any

x ∈ D, we can observe that a + ax = a + xa =⇒ da + dax = da + dxa =⇒ 1 + x =

1+dxa =⇒ 1 ·d+xd = 1 ·d+dxad =⇒ d+xd = d+dx ·1 =⇒ d+xd = d+dx, since

da = ad = 1. This implies that d ∈ CG(D). Consequently, we find that ad = da = 1

for some d ∈ CG(D). Hence, we conclude that ‘a’ is a unit in CG(D). Therefore,

CG(D) serves as a division subsemiring of D.

Theorem 6.3.8. Let S[x] be a polynomial semiring over a semiring S. If f(x) =

a0 + a1x + ... + anx
n ∈ CG(S[x]), then ai ∈ CG(S); i = 0, 1, 2, ..., n. The converse is

true if ai ∈ Z(S); i = 0, 1, 2, ..., n.

Proof. Consider f(x) = a0 + a1x + ... + anx
n ∈ CG(S[x]). Let d ∈ S. Now d ∈ S

implies that d ∈ S[x]. Given that f(x) ∈ CG(S[x]), we can deduce that f(x)+f(x)d =

f(x) + df(x). This implies that (a0 + a1x + ... + anx
n) + (a0 + a1x + ... + anx

n)d =

(a0+a1x+...+anx
n)+d(a0+a1x+...+anx

n). Thus, we have (a0+a0d)+(a1+a1d)x+

...+(an+and)x
n = (a0+da0)+(a1+da1)x+...+(an+dan)x

n. By comparing both sides,

we can conclude that a0+a0d = a0+da0, a1+a1d = a1+da1, ..., an+and = an+dan.

Since d is arbitrary, it follows that ai ∈ CG(S) for i = 0, 1, ..., n.

Conversely, suppose that ai ∈ Z(S). Since ai ∈ Z(S), aib = bai for all b ∈ S. Our

goal is to demonstrate that f(x) ∈ CG(S[x]). For any g(x) = b0+b1x+...+bkx
k ∈ S[x],

we have f(x) + f(x)g(x) = (a0 + a1x+ ...+ anx
n) + (a0 + a1x+ ...+ anx

n)(b0 + b1x+

...+ bkx
k). This expression simplifies to (a0 + a1x+ ...+ anx

n) +
(
a0b0 +

∑
i+j=1

aibjx+
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i+j=2

aibjx
2 + ... +

∑
i+j=n

aibjx
n + ... + anbkx

n+k
)
= a0 + a0b0 + (a1 +

∑
i+j=1

aibj)x +

(a2 +
∑
i+j=2

aibj)x
2 + ... + (an +

∑
i+j=n

aibj)x
n + ... + anbkx

n+k = a0 + b0a0 + (a1 +∑
i+j=1

bjai)x+ (a2 +
∑
i+j=2

bjai)x
2 + ...+ (an +

∑
i+j=n

bjai)x
n + ...+ bkanx

n+k. Hence, we

can conclude that f(x)+f(x)g(x) = f(x)+g(x)f(x). Consequently, we can establish

that f(x) ∈ CG(S[x]).

Theorem 6.3.9. If S1 and S2 are two semirings, then CG(S1 × S2) = CG(S1) ×

CG(S2).

Proof. Let S1 and S2 be two semirings. Suppose z ∈ CG(S1 × S2). Then z = (x, y) ∈

S1×S2 and for any (a, b) ∈ S1×S2, we have (x, y)+ (x, y)(a, b) = (x, y)+ (a, b)(x, y).

Comparing both sides, we get x+xa = x+ ax and y+ yb = y+ by. This implies that

x+xa = x+ ax for all a ∈ S1 and y+ yb = y+ by for all b ∈ S2. Thus, it follows that

x ∈ CG(S1) and y ∈ CG(S2). Therefore, z = (x, y) ∈ CG(S1) × CG(S2) and hence

CG(S1 × S2) ⊆ CG(S1)× CG(S2) (i).

Considering the reverse case, let (a, b) ∈ CG(S1) × CG(S2). This indicates that

a ∈ CG(S1) and b ∈ CG(S2). Consequently, for any x ∈ S1, we observe that a +

ax = a + xa and for any y ∈ S2, we have b + by = b + yb. Now, by examining

(a, b) + (a, b)(x, y) = (a + ax, b + by) = (a + xa, b + yb) = (a, b) + (x, y)(a, b), since

a ∈ CG(S1) and b ∈ CG(S2). We can conclude that (a, b) ∈ CG(S1 × S2), affirming

CG(S1)× CG(S2) ⊆ CG(S1 × S2) (ii).

Consequently, based on (i) and (ii), we can deduce that CG(S1 × S2) equals

CG(S1)× CG(S2).

Applying the principles outlined in Theorem 6.3.9, we formulate the following

example.

Example 6.3.10. Consider two semiring (N,⊕,⊙); where a⊕ b = min{a, b} and ⊙

is usual multiplication and (Z+
0 ,+, ·), where “+” is usual addition and “·” is usual

multiplication. Now we take a semiring (N× Z+
0 ,+, ·) with component-wise addition

and multiplication. Then CG(N× Z+
0 ) = N× Z+

0 .
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6.4 Generalized Central Semiring

In the following section, we outline the concept of a generalized central semiring and

analyze several key properties related to this semiring.

Definition 6.4.1. A semiring S is called a generalized central semiring if CG(S) = S.

In order to provide a clearer understanding of generalized central semirings, we

present the following examples.

Example 6.4.2. Let’s consider a distributive lattice D. In this case, it can be observed

that for any a, b ∈ D, both equations a+ab = a and a+ba = a hold true. Consequently,

it follows that a + ab = a + ba for all a, b ∈ D. Based on this, we can deduce that

CG(D) = D. Therefore, we can conclude that every distributive lattice can be classified

as a generalized central semiring.

Example 6.4.3. Let R be a commutative ring and ΩR be the set of all ideals of R.

Define ⊕ and ⊙ by I1 ⊕ I2 = {a1 + b1/a1 ∈ I1, b1 ∈ I2} and I1 ⊙ I2 = {
∑n

i=1 aibi/a1 ∈

I1, b1 ∈ I2} for all I1, I2 ∈ ΩR; where n is a fnite number but not fixed. Then the

semiring (ΩR,⊕,⊙) is a generalized central semiring.

Evidently, CG(ΩR) ⊆ ΩR. We have to show that ΩR ⊆ CG(ΩR). Let I ∈ ΩR. To

demonstrate that I ∈ CG(ΩR), which means showing that I⊕(I⊙I1) = I⊕(I1⊙I) for

all I1 ∈ ΩR. By virtue of R being commutative, we have I⊙I1 = I1⊙I. Consequently,

I ⊕ (I ⊙ I1) = I ⊕ (I1 ⊙ I) for all I1 ∈ ΩR. Therefore, I ∈ CG(ΩR). Since I is an

arbitrary element of ΩR, it follows that ΩR ⊆ CG(ΩR) and hence CG(ΩR) = ΩR.

Hence, ΩR qualifies as a generalized central semiring.

Example 6.4.4. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x 1

1 0 1 1
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Then (S,+, ·) is a semiring and CG(S) = {0, x, 1} = S. Therefore, (S,+, ·) is a

generalized central semiring.

Example 6.4.5. Consider S = {0, x, y, 1}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 x y 1

0 0 x y 1

x x x y 1

y y y y 1

1 1 1 1 1

. 0 x y 1

0 0 0 0 0

x 0 x x x

y 0 x y y

1 0 x y 1

Then (S,+, ·) is a semiring and CG(S) = {0, x, y, 1} = S. Therefore, (S,+, ·) is a

generalized central semiring.

Example 6.4.6. {A class of finite semiring} : Let n, i be integers such that 2 ≤ n,

0 ≤ i < n, and B(n, i) = {0, 1, 2, ..., n− 1}. We define addition and multiplication in

B(n, i) by the following equations (let m = n− i) :

x+ y =

 x+ y, if x+ y ≤ n− 1

l, if x+ y ≥ n ; where l ≡ (x+ y)modm and i ≤ l ≤ n− 1.

x · y =

 xy, if xy ≤ n− 1

l, if xy ≥ n ; where l ≡ (xy)modm and i ≤ l ≤ n− 1.

Then the set B(n, i) is a commutative semiring with zero 0 and identity 1 under

addition and multiplication. Then CG(B(n, i)) = B(n, i). Therefore, B(n, i) is a

generalized central semiring.

Note that Z(S) is a subsemiring of S but generally, Z(S) ̸= S for a semiring S.

Remark 6.4.7. If S is a commutative semiring, then the generalized central semiring

coincides with the central semiring.

Remark 6.4.8. If S is an additively cancellative semiring, then the generalized cen-

tral semiring coincides with the central semiring.
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Remark 6.4.9. If S is a mono-semiring, then the generalized central semiring coin-

cides with the central semiring.

We conclude this section by proving that the class of all generalized central semir-

ings forms a variety. In order to do so, we begin by demonstrating the following

Lemmas.

Lemma 6.4.10. Let S be a generalized central semiring and S ′ be an subsemiring of

S. Then S ′ is a generalized central semiring.

Proof. Let S be a generalized central semiring i.e. CG(S) = S. We have to show

that S ′ is an generalized central semiring i.e. CG(S
′) = S ′. Let a ∈ S ′ ⊆ S = CG(S).

Consequently, a + ab = a + ba for all a, b ∈ S. This implies that a + ab = a + ba

for all a, b ∈ S ′, since S ′ is a subsemiring of S. Consequently, a ∈ CG(S
′). This

establishes that S ′ ⊆ CG(S
′) and hence CG(S

′) = S ′. As a result, S ′ is a generalized

central semiring.

Lemma 6.4.11. Every homomorphic image of a generalized central semiring is a

generalized central semiring.

Proof. Let S be a generalized central semiring with identity 1S. Let f : S → S ′ be

onto homomorphism. Then S ′ is the homomorphic image of the generalized central

semiring S. Our goal is to demonstrate that S ′ is a generalized central semiring. As

f is an onto homomorphism, we can express S ′ = {f(a) : a ∈ S}. Now f(1S) = 1S′ is

the identity element of S ′. Let s′ ∈ S ′. Then there exists a ∈ S such that f(a) = s′.

Since S is a generalized central semiring, a+ ab = a+ ba for all b ∈ S. Consequently,

for any f(b) ∈ S ′, we have s′+ s′f(b) = f(a)+f(a)f(b) = f(a)+f(ab) = f(a+ab) =

f(a+ ba) = f(a)+ f(ba) = f(a)+ f(b)f(a) = s′+ f(b)s′. Thus, we can conclude that

s′ = f(a) ∈ CG(S
′) = S ′. Since s′ is an arbitrary element of S ′, it follows that S ′ is a

generalized central semiring.

Lemma 6.4.12. Let {Si : i = 1, 2, ..., n} be a finite family of semirings. Then the

direct product of semirings S =
n∏

i=1

Si is generalized central semiring if and only if

each semiring Si is generalized central semiring.
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Proof. Suppose that each semiring Si of the family {Si : i = 1, 2, ..., n} is generalized

central semiring. Let (x1, x2, ..., xn) ∈ S; where each xi ∈ Si. Since each Si is

generalized central semiring, for any yi ∈ Si, we have xi + xiyi = xi + yixi for all

i = 1, 2, ..., n. Thus it follows that

(x1, x2, ..., xn)+ (x1, x2, ..., xn)(y1, y2, ..., yn) = (x1, x2, ..., xn)+ (x1y1, x2y2, ..., xnyn) =

(x1 + x1y1, x2 + x2y2, ..., xn + xnyn) = (x1 + y1x1, x2 + y2x2, ..., xn + ynxn)

= (x1, x2, ..., xn) + (y1x1, y2x2, ..., ynxn)

= (x1, x2, ..., xn)+(y1, y2, ..., yn)(x1, x2, ..., xn). Cosequently, S is a generalized central

semiring.

Conversely, suppose that S =
n∏

i=1

Si is generalized central semiring. We have

to show that each semiring Si is generalized central semiring. Let us consider the

mapping πi : S → Si defined by π((x1, x2, ..., xn)) = xi for all (x1, x2, ..., xn) ∈ S.

Then π is an onto homomorphism from S =
n∏

i=1

Si to Si. Thus by Theorem 6.4.10,

Si is generalized central semiring for all i = 1, 2, ..., n and hence the proof.

Theorem 6.4.13. The class of all generalized central semiringas is a variety.

Proof. By establishing the validity of Lemma 6.4.10, 6.4.11, and 6.4.12, we have

demonstrated the closure of the class of generalized central semirings under subsemir-

ings, homomorphic images, and direct products. As a consequence, we can conclude

that the class of all generalized central semirings forms a variety.



Chapter 7

On the Hypercenter of a Semiring



Chapter 7

On the Hypercenter of a Semiring

7.1 Introduction

The notion of the hypercenter of a finite group has a long history and plays a vital

role in group theory. Consider a finite group G, and let 1 ≤ Z1(G) ≤ Z2(G) ≤ ...

be a series of subgroups of G; where Z1(G) = Z(G) is the center of G and Zi+1(G),

for i ≥ 1, is defined by Zi+1(G)/Zi(G) = Z(G/Zi(G)). Let H(G) =
⋃

i Zi(G). The

subgroup H(G) is called the hypercenter of G. Clearly H(G) is nilpotent in G. In

1949, Reinhold Baer [4] introduced the notion of hypercenter of a finite group. In [5]

he extensively studied the properties of H(G) and provided various characterizations

of H(G). T. A. Peng, in [51], established some necessary and sufficient conditions for

an element or a subgroup of a finite group G to lie in H(G). In 1976, R. K. Agrawal

[2] also introduced the notion of the generalized hypercenter of a finite group, proving

that it is supersolvable. Furthermore, the generalized hypercenter is contained within

the intersection of maximal supersolvable subgroups. I.N. Herstein [34] defined the

hypercenter of a ring R to be the set T (R) = {a ∈ R : axn = xna, n = n(x, a) ≥

1, all x ∈ R} and demonstrated that, for a ring R with no non-zero nil ideals the

hypercenter T (R) coincides with the center Z(R) of R. The hypercenter of rings has

been extensively studied by various authors, and relevant results can be found in [27],

[37], [48]. Motivated by Herstein’s hypercenter, we extend this concept to semirings

and discuss its properties. We then focus on the algebraic structure of this center for

126
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different classes of semirings. Additionally, we introduce the notion of a hypercentral

semiring and explore its properties.

7.2 T (S) of a Semiring S

Within this section, we lay out the definition of the hypercenter in a semiring, ac-

companied by pertinent examples and fundamental results that have implications for

both subsequent outcomes and upcoming sections.

Definition 7.2.1. Let S be a semiring. A subset T (S) of a semiring S is called

hypercenter of S which is defined by T (S) = {a ∈ S : axn = xna, n = n(x, a) ≥

1, all x ∈ S}.

Proposition 7.2.2. If S is a semiring with zero element 0, then 0 ∈ T (S).

Proof. Suppose a ∈ T (S). Given that a ∈ T (S), it satisfies the condition axn = xna

x ∈ S; where n = n(x, a) ≥ 1. Consequently, for every x ∈ S, we have 0 · xn = 0 =

xn · 0. As a result, we can conclude that 0 ∈ T (S).

Proposition 7.2.3. If S is a semiring with multiplicative identity element 1, then

1 ∈ T (S).

Proof. Let a ∈ T (S). Since a ∈ T (S), then axn = xna, n = n(x, a) ≥ 1 for all x ∈ S.

Moreover, for every x in S, we observe that 1 · xn = xn = xn · 1. Consequently, we

can conclude that 1 ∈ T (S).

Let’s explore some concrete illustrations of hypercenters in semirings.

Example 7.2.4. R+
0 = {x ∈ R : x ≥ 0}, Z+

0 = {x ∈ Z : x ≥ 0} and Q+
0 = {x ∈

Q : x ≥ 0} are commutative proper semirings with zero. In this case, T (R+
0 ) = R+

0 ,

T (Z+
0 ) = Z+

0 and T (Q+
0 ) = Q+

0 .

Example 7.2.5. Consider (N,⊕,⊙) is a semiring; where a ⊕ b = max{a, b} and

a⊙ b = min{a, b}. Then T (N) = N.
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Example 7.2.6. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x 1

1 1 1 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S,+, ·) is a semiring and T (S) = {0, x, 1} = S.

Example 7.2.7. Consider S = {0, a, b, c}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c c

. 0 a b c

0 0 0 0 0

a 0 a a a

b 0 a b b

c 0 a c c

Then (S,+, ·) is a non-commutative semiring. In this case, Z(S) = T (S) = {0, a}.

Example 7.2.8. We consider a semigroup (M, ·) with multiplication table

+ 0 a b

0 0 0 0

a 0 a a

b 0 b b

Let S = Sub(M) be the set of all subsets of the semigroup M . Let us define “+” and

“·” in S as : A + B = A ∪ B and A · B = {ab | a ∈ A, b ∈ B} for all A,B ∈ S.

Then (S,+, ·) is a semiring with zero element ϕ ; see [[28], Example 1.10] . We have

|S| = 23 = 8. In addition, S is additively idempotent and multiplicatively idempotent

non-commutative semiring. The center Z(S) as the form Z(S) = {{ϕ}, {0}}. The

hypercenter T (S) as of the form T (S) = {{ϕ}, {0}}. In this case, T (S) = Z(S).

Again T (S) ̸= S. This is the non- trivial example of T (S).
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Theorem 7.2.9. The hypercenter of a semiring S is a subsemiring of S.

Proof. Assuming S is a semiring with the zero element 0, it follows that 0 ∈ T (S)

and hence forth T (S) is a non-empty set. Let S be a semiring and p, q ∈ T (S).

We aim to prove that p + q ∈ T (S) and pq ∈ T (S). Since p ∈ T (S), we have

pxn = xnp, n = n(x, p) ≥ 1 for all x ∈ S. Similarly, since q ∈ T (S), we have

qxm = xmq, m = m(x, q) ≥ 1 for all x ∈ S. Now, let’s examine pxmn = pxn...xn(

repeated m-times) = xnpxn...xn (repeated m − 1-times) = xnxnpxn...xn(repeated

m − 2-times) = ... = xn...xnp (repeated m-times) = xmnp. Similarly, let’s an-

alyze qxmn = qxm...xm(repeated n-times) = xmqxm...xm (repeated n − 1-times)

= xmxmqxm...xm(repeated n− 2-times) = ... = xm...xmq (repeated n-times) = xmnq.

Now, for any x ∈ S, we consider (p + q)xmn = pxmn + qxmn = xmnp + xmnq (since

p, q ∈ T (S)) = xmn(p + q). Hence, we have established that p + q ∈ T (S). Simi-

larly, for any x ∈ S, we consider (pq)xmn = p(qxmn) = p(xmnq) (since q ∈ T (S))

= (pxmn)q = (xmnp)q = xmn(pq), since p ∈ T (S). Thus, we have shown that

pq ∈ T (S). Consequently, we can conclude that T (S) forms a subsemiring of S.

7.3 Foundational Aspects of T (S) in Semiring S

This section is dedicated to exploring the fundamental properties of T (S). To begin,

we will focus on exploring the isomorphism property of T (S) in relation to S.

Theorem 7.3.1. If φ is an automorphism of S then φ(T ) ⊂ T .

Proof. Suppose S is a semiring and φ : S −→ S is an automorphism of S. Let

φ(T ) = {φ(t) : t ∈ T}. Our goal is to prove that φ(T ) ⊂ T . Consider an element

φ(t1) ∈ φ(T ). Since φ is onto, there exist y ∈ S such that y has an preimage x

of S such that φ(y) = x. Let t1 ∈ T . For any y ∈ S such that t1y
k = ykt1;

k = k(t1, y) ≥ 1, we can proceed with the following steps : Now, take an arbitrary

x ∈ S, we observe that φ(t1)x
k = φ(t1){φ(y)}k = φ(t1)φ(y

k) = φ(t1y
k) = φ(ykt1)

(since t1 ∈ T ) = φ(yk)φ(t1) = (φ(y))kφ(t1) = xkφ(t1), since φ is an automorphism.

Therefore, we conclude that φ(t1) ∈ T , thereby establishing φ(T ) ⊂ T .
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Theorem 7.3.2. If two semirings S1 and S2 are isomorphic, then their hypercenters

T (S1) and T (S2) are isomorphic.

Proof. Consider two isomorphic semirings, denoted as S1 and S2. Then there is an

isomorphism f : S1 −→ S2. Let x ∈ T (S1). Then for any s1 ∈ S1, xs
n
1 = sn1x,

n = n(x, s1) ≥ 1. Let f(x) = y; where y ∈ S2. Since f is an isomorphism, for any

s2 ∈ S2, there exists s1 ∈ S1 such that f(s1) = s2. Thus, ysn2 = f(x)f(s1)
n =

f(x)f(sn1 )(since f is an isomorphism, f(s1)
n = f(sn1 ) ) = f(xsn1 ) = f(sn1x) =

f(sn1 )f(x) = f(s1))
nf(x) = sn2y, since x ∈ T (S1). Therefore, y ∈ T (S2). Thus,

f(T (S1)) ⊆ T (S2). Again, let b ∈ T (S2). Then b = f(a); where a ∈ S1. Since f

is an isomorphism, for any y ∈ S2, there exists x ∈ S1 such that y = f(x). Since

b ∈ T (S2), it follows that by
n = ynb =⇒ f(a)(f(x))n = (f(x))nf(a) =⇒ f(a)f(xn) =

f(xn)f(a) =⇒ f(axn) = f(xna) =⇒ axn = xna, since f is an isomorphism. This

implies that a ∈ T (S1). Hence, we conclude that b = f(a) ∈ f(T (S1)). Consequently,

T (S2)) ⊆ f(T (S1)) and hence T (S2) = f(T (S1)). As a result, g = f|T (S1)
: T (S1) −→

T (S2) is well defined and it is an isomorphism from T (S1) onto T (S2).

Theorem 7.3.3. Let S and S ′ be two semiring. If f : S → S ′ is a monomorphism,

then f(T (S)) = T (f(S)).

Proof. Suppose x ∈ f(T (S)). Then x = f(y) for some y ∈ T (S). Our objective is

to prove that f(y)sn = snf(y) for all s ∈ f(S). Now for any s ∈ f(S), we have

f(y)sn = f(y)(f(r))n = f(y)f(rn) = f(yrn) = f(rny) = f(rn)f(y) = (f(r))nf(y) =

snf(y), since y ∈ T (S). Consequently, x = f(y) ∈ T (f(S)). Thus, we establish that

f(T (S)) ⊆ T (f(S)). Now, suppose x′ is an element of T (f(S)). This implies that

x′ = f(r′) for some r′ in S. Our aim is to demonstrate that r′ belongs to T (S). Since

x′ is an element of T (f(S)), we can deduce that for any f(s) in f(S), the equation

x′(f(s))n = (f(s))nx′ holds. Consequently, f(r′)f(sn) = f(sn)f(r′), which further

simplifies to f(r′sn) = f(snr′). Considering that f is a monomorphism, we can derive

r′sn = snr′. Therefore, r′ ∈ T (S). As a result, we establish that T (f(S)) ⊆ f(T (S)).

Hence, we can conclude that T (f(S)) = f(T (S)).

Theorem 7.3.4. If S1 and S2 are two semirings, then T (S1 × S2) = T (S1)× T (S2).
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Proof. Let S1 and S2 be two semirings with zero elements 0S1 and 0S2 respectively.

Suppose z ∈ T (S1 × S2). Then z = (x, y) ∈ S1 × S2. Additionally, for any (a, b) ∈

S1 × S2, the following condition holds : (x, y)(a, b)n = (a, b)n(x, y). This condition

can be further simplified as (x, y)(an, bn) = (an, bn)(x, y), which implies (xan, ybn) =

(anx, bny). By comparing both sides, we can deduce that xan = anx and ybn = bny.

This implies that xan = anx for all a ∈ S1 and ybn = bny for all b ∈ S2. Thus,

it follows that x ∈ T (S1) and y ∈ T (S2). Consequently, we can conclude that

z = (x, y) ∈ T (S1)× T (S2), leading to the inclusion T (S1 × S2) ⊆ T (S1)× (S2) (i).

For reverse part, let (a, b) ∈ T (S1) × T (S2). This means that a ∈ T (S1) and

b ∈ T (S2). Consequently, for any x ∈ S1, we have axn = xna and y ∈ S2, we

have byn = ynb. Now, (a, b)(x, y)n = (a, b)(xn, yn) = (axn, byn) = (xna, ynb) =

(xn, yn)(a, b) = (x, y)n(a, b), since a ∈ T (S1) and b ∈ T (S2) for all (x, y) ∈ S1 × S2.

This implies that (a, b) ∈ T (S1 × S2) and hence T (S1)× T (S2) ⊆ T (S1 × S2) (ii).

From (i) and (ii), we can conclude that T (S1 × S2) = T (S1)× T (S2).

Theorem 7.3.5. Let S be a semiring with identity. Then a ∈ T (S) if and only if

aIn ∈ T (Md
n(S)); where M

d
n(S) is the set of all n× n diagonal matrices of the form :

Md
n(S) =




a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 : aii ∈ S


Proof. Let a ∈ T (S). Then axn = xna; n = n(x, a) for all x ∈ S. Since a ∈ T (S),

we have abn1
1 = bn1

1 a, ab
n2
2 = bn2

2 a,...,ab
nn
n = bnn

n a. Let n = lcm{n1, n2, ..., nn}. Now,

abn1 = abn1k
1 = abn1

1 b
n1
1 ...b

n1
1 (k-times) = bn1

1 ab
n1
1 ...b

n1
1 (k − 1-times) = bn1

1 b
n1
1 a...b

n1
1

(k − 2-times) = ... = bn1
1 ...b

n1
1 a (k- times) = bn1k

1 a = bn1a. Similarly, we get abn2 =

bn2a,...,ab
n
n = bnna. Now, for any B =


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

,
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(aIn)B
n =


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

 ...


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

 (n-times)

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

 ...


b21 0 · · · 0

0 b22 · · · 0
...

...
. . .

...

0 0 · · · b2n

 = · · ·

=


a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a




bn1 0 · · · 0

0 bn2 · · · 0
...

...
. . .

...

0 0 · · · bnn

 =


abn1 0 · · · 0

0 abn2 · · · 0
...

...
. . .

...

0 0 · · · abnn



=


bn1a 0 · · · 0

0 bn2a · · · 0
...

...
. . .

...

0 0 · · · bnna

 =


bn1 0 · · · 0

0 bn2 · · · 0
...

...
. . .

...

0 0 · · · bnn




a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a



=


b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn



n 
a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 = Bn(aIn).

This implies that aIn ∈ T (Md
n(D)).

Conversely, suppose that aIn ∈ T (Md
n(D)). Now we show that a ∈ T (S). For

any x ∈ S, let B =


x 0 · · · 0

0 x · · · 0
...

...
. . .

...

0 0 · · · x

. Since aIn ∈ T (Md
n(D)), it follows that

(aIn)B
n = Bn(aIn). Comparing both sides, we find that axn = xna. Consequently,

a ∈ T (S).

Theorem 7.3.6. If S is a nil semiring, then T (S) = S

Proof. Assume S is a nil semiring and a ∈ S. It is evident that T (S) ⊆ S. Let b be
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any element in S. Our objective is to demonstrate that a belongs to T (S). Since S

is a nil semiring, there exists a natural number n such that bn = 0. Consequently,

abn = 0 and bna = 0. As a result, we can deduce that abn = bna, and this holds true

for n = n(b, a) ≥ 1 for all b ∈ S. Thus, we can conclude that a belongs to T (S),

leading to the inclusion S ⊆ T (S). Therefore, we can infer that T (S) = S.

Theorem 7.3.7. If S is a semiring, then T (S) is an antisimple semiring of S.

Proof. Suppose S is a semiring. Let r ∈ T (S). Then rxn = xnr; n(x, r) ≥ 1, for all

x ∈ S. Moreover, we observe that (r + 1)xn = rxn + xn = xnr + xn (since r ∈ T (S))

= xn(r+1); n(x, r) ≥ 1, for all x ∈ S. Consequently, we conclude that r+1 ∈ T (S).

Therefore, we can deduce that P ′(T (S)) = {0} ∪ {r + 1 : r ∈ T (S)}. Thus, it follows

that T (S) is also an antisimple semiring of S.

Theorem 7.3.8. If S is a simple semiring, then T (S) is also a simple semiring of

S.

Proof. Given that S is a simple semiring, it follows that 1 + a = 1 for every a in S.

Consequently, this condition holds true for all elements a belonging to the subsemiring

T (S), as T (S) is a subset of S. Therefore, T (S) can also be regarded as a simple

semiring of S.

Theorem 7.3.9. If D is a division semiring, the hypercenter T (D) of D is a division

semiring.

Proof. Consider the division semiring D and its hypercenter T (D). It is known that

1 ∈ D. Let a(̸= 0) be any element of T (D). Consequently, Da becomes a nonzero

left ideal of D. As D is a division semiring, we deduce that Da = D. Thus there

exists d ∈ D such that da = 1. Since a ∈ T (D), for any d ∈ D, we have adn =

dna = dn−1da = dn−1 · 1 (due to da = 1) = dn−1. Continuing this process, we

obtain adn = dn−1 =⇒ adna = dn−1a =⇒ adn−1da = dn−2da =⇒ adn−1 = dn−2. By

applying the same reasoning repeatedly, we arrive at ad2 = d =⇒ ad2a = da =⇒

ad · da = da =⇒ ad = 1. Thus, we conclude that ad = da = 1. The remaining

task is to demonstrate that d ∈ T (D). Since a ∈ T (D), for any x ∈ D, axm = xma;
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m = m(x, a) ≥ 1. Now, a(xmd) = (axm)d = (xma)d (since a ∈ T (D)) = xmad = 1·xm

(since ad = 1) = adxm(since ad = 1) = a(dxm). By applying the cancellation law, we

obtain xmd = dxm. Therefore, we can conclude that d ∈ T (D). Consequently, T (D)

can be classified as a division semiring.

Theorem 7.3.10. Let S be any semiring. If a ∈ T (S) is nilpotent then aS is a nil

right ideal of S.

Proof. Suppose a ̸= 0 is a nilpotent element in T , which means there exists some

positive integer n > 1 such that an = 0 and an−1 ̸= 0. Consider an element x ∈ S.

Since an−1 ∈ T , we have (ax)man−1 = an−1(ax)m = 0 for a suitable positive integer

m ≥ 1. Let’s choose the smallest integer i such that (ax)uai = 0 for some positive

integer u ≥ 1. If i = 1, then we would have (ax)u+1 = 0, implying that ax is

nilpotent. If i > 1, then since x(ax)ua · ai−1 = 0, (xa)u+1ai−1 = 0. Since ai−1 ∈ T ,

ai−1((xa)u+1)s = ((xa)u+1)sai−1 = 0 for some s ≥ 1. Thus ai−1(xa)r = 0, where r =

(u+1)s; hence ai−2(ax)r+1 = 0. Since ai−2 ∈ T , ((ax)r+1)vai−2 = ai−2((ax)r+1)v = 0.

But this contradicts the minimal nature of i. In conclusion, we have i = 1, and

therefore, ax is nilpotent for every x ∈ S. Consequently, aS is nil, establishing the

validity of the theorem.

7.4 Hypercentral Semiring

This section is dedicated to defining the concept of an hypercentral semiring and

examining several properties relevant to this semiring.

Definition 7.4.1. A semiring S is said to be hypercentral semiring if T (S) = S.

Example 7.4.2. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x 1

1 0 1 1
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Then (S,+, ·) is a semiring and T (S) = {0, x, 1} = S.

Example 7.4.3. Consider S = {0, x, y, 1}. Define the operations “+” and “.” on S

by means of the following tables:

+ 0 x y 1

0 0 x y 1

x x x y 1

y y y y 1

1 1 1 1 1

. 0 x y 1

0 0 0 0 0

x 0 x x x

y 0 x y y

1 0 x y 1

Then (S,+, ·) is a semiring and T (S) = {0, x, y, 1} = S.

Example 7.4.4. Let’s consider the set S = {1, 2, 3, 6}, the subset of natural num-

bers N. Now define two binary operations ∧ and ∨ on S by a ∧ b = gcd{a, b} and

a ∨ b = lcm{a, b} for all a, b ∈ S. As a result, we can conclude that the structure

(S,∨,∧) is a bounded distributive lattice. Consequently, S is a commutative semir-

ing. Therefore, the semiring S possesses the property that T (S) = S, making it a

hypercentral semiring.

We aim to demonstrate that the class of all hypercentral semirings constitutes

a variety. To accomplish this objective, we will now shift our focus to proving the

following three Lemmas, which will lay the foundation for the desired Theorem.

Lemma 7.4.5. Let S be a hypercentral semiring and S ′ be an subsemiring. Then S ′

is a hypercentral semiring.

Proof. Assume S is a hypercentral semiring, where T (S) = S. Our goal is to demon-

strate that S ′ is also a hypercentral semiring with T (S ′) = S ′. Let a ∈ S ′ ⊆ S = T (S).

Then abn = bna; n = n(b, a) ≥ 1 for all b ∈ S. This implies that abn = bna;

n = n(b, a) ≥ 1 for all b ∈ S ′, since S ′ is a subsemiring of S. This implies that

a ∈ T (S ′). Therefore, S ′ ⊆ T (S ′). Moreover, since T (S ′) is a subsemiring of S ′,

we also have T (S ′) ⊆ S ′. Hence, T (S ′) = S ′. Consequently, S ′ is a hypercentral

semiring.
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Lemma 7.4.6. Every homomorphic image of a hypercentral semiring is a hypercentral

semiring.

Proof. Suppose we have two hypercentral semirings: S with identity element 1S and

S ′ with identity element 1S′ . Let f : S → S ′ be an onto homomorphism. Our goal is

to show that S ′ is also a hypercentral semiring. Since f is an onto homomorphism,

so S ′ = {f(a) : a ∈ S}. Furthermore, we know that f(1S) = 1S′ , confirming that the

identity element is preserved under f . Now, let’s take an arbitrary element s′ ∈ S ′.

By definition, there exists a ∈ S such that f(a) = s′. Since S is a hypercentral

semiring, abn = bna for all a, b ∈ S. Consider any f(b) ∈ S ′, we have : s′f(b)n =

f(a)f(b)n = f(a)f(bn) = f(abn) = f(bna) = f(bn)f(a) = f(b)nf(a) = f(b)ns′.

Therefore, s′ = f(a) ∈ T (S ′) = S ′. Since s′ is an arbitrary element of S ′, we

conclude that S ′ satisfies the hypercentral property as well, making it a hypercentral

semiring.

Lemma 7.4.7. Let {Si : i = 1, 2, ..., n} be a finite family of semirings. Then the

direct product of semirings S =
n∏

i=1

Si is hypercentral semiring if and only if each

semiring Si is hypercentral semiring.

Proof. Suppose that each semiring Si of the family {Si : i = 1, 2, ..., n} is hypercentral.

Since each Si is hypercentral semiring, for any yi ∈ Si, we have xiy
n
i = yni xi for all

i = 1, 2, ..., n. Now, (x1, x2, ..., xn)(y1, y2, ..., yn)
n

= (x1, x2, ..., xn)(y1, y2, ..., yn)...(y1, y2, ..., yn)(repeated n-times)

= (x1, x2, ..., xn)(y
n
1 , y

n
2 , ..., y

n
n) = (x1y

n
1 , x2y

n
2 , ..., xny

n
n)

= (yn1x1, y
n
2x2, ..., y

n
nxn) = (yn1 , y

n
2 , ..., y

n
n)(x1, x2, ..., xn)

= (y1, y2, ..., yn)...(y1, y2, ..., yn)(repeated n-times) (x1, x2, ..., xn)

= (y1, y2, ..., yn)
n(x1, x2, ..., xn). Cosequently, S is a hypercentral semiring.

Conversely, suppose that S =
n∏

i=1

Si is hypercentral semiring. Our goal is to

demonstrate that each individual semiring Si is also hypercentral. To do this, we’ll uti-

lize the mapping πi : S → Si defined by π((x1, x2, ..., xn)) = xi for all (x1, x2, ..., xn) ∈

S. This mapping π serves as an onto homomorphism from S =
n∏

i=1

Si to Si. By
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invoking Lemma 7.4.6, we can conclude that Si is a hypercentral semiring for all

i = 1, 2, ..., n. Thus, our objective is proven.

Theorem 7.4.8. The class of all hypercentral semirings is a variety.

Proof. By establishing the results from Lemmas 7.4.5, 7.4.6, and 7.4.7, it is demon-

strated that the class of hypercentral semirings exhibits closure under subsemirings,

homomorphic images, and direct products. Hence, we can conclude that the class of

all of hypercentral semirings forms a variety.
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Chapter 8

The Interrelation of Centers

8.1 Introduction

In earlier sections, we established various types of semiring centers and explored

their properties in detail. Moreover, we utilized these centers to construct fascinating

semirings. Additionally, we presented several characterizations for these semirings.

Conclusively, this thesis concludes by examining the interrelationships among the

centers of semiring and establishing connections between the intriguing semirings we

have developed.

8.2 The Relationship among Centers

The initial objective in this chapter is to develop a correlation between the center

Z(S), Ec(S), and B(S) of a semiring S.

Theorem 8.2.1. The almost idempotent center of a semiring S is a subsemiring of

Z(S).

Proof. We know that Z(S) is a subsemiring of S. Furthermore, Theorem 3.2.12

demonstrates that the almost idempotent center Ec(S) of a semiring S also constitutes

a subsemiring of S. Consequently, based on the definition, we get Ec(S) ⊆ Z(S).

Thus, we can conclude that Ec(S) of S is indeed a subsemiring of Z(S).

138
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Proposition 8.2.2. If S is an idempotent semiring, then Ec(S) = Z(S).

Proof. It is evident that Ec(S) ⊆ Z(S). Our goal is to establish that Z(S) ⊆ Ec(S).

Consider an element a ∈ Z(S). Consequently, ab = ba for all b ∈ S. Since S is an

idempotent semiring, we have a + a = a and a2 = a for all a ∈ S. This implies that

a + a2 = a2. As a ∈ Z(S), we have ab = ba. Hence, both a + a2 = a2 and ab = ba

hold true. Consequently, a ∈ Ec(S). Thus, we can conclude that Z(S) ⊆ Ec(S).

Therefore, we can deduce that Ec(S) = Z(S).

Theorem 8.2.3. [39] (Lemma 2.3.8) Let S be a c-semiring. Then a ∈ B(S) if

and only if a ∈ Ec(S) and there exists a homomorphism fa : S −→ Sa such that

x 7−→ (ax, fa(x)) is an isomorphism of S onto aS × Sa and fa is identity on Sa.

Remark 8.2.4. If S is a c-semiring, then we have the following diagram :

B(S)

Ec(S)

Z(S)

Furthermore, our attention now shifts to establishing the connection between the

conventional center Z(S), the h-center Ch(S), and the almost idempotent center

Ec(S) of the semiring S. Additionally, we present the subsequent outcome :

Proposition 8.2.5. Let S be a semiring. Then Ch(S) is an ideal of Z(S).

Proof. Based on Theorem 4.3.1, we can conclude that Ch(S) forms a subsemiring

within S. By the definition of Ch(S), it is evident that Ch(S) is contained in Z(S).

Consequently, Ch(S) can be identified as a subsemiring of Z(S). Suppose we have

r ∈ Z(S) and a ∈ Ch(S). Given that r ∈ Z(S), it satisfies the condition rs = sr for

any s ∈ S. Moreover, since a ∈ Ch(S), it fulfills the properties a+ab = a and ab = ba

for all b ∈ S. For any b ∈ S, it follows that arb = abr = bar, as both r ∈ Z(S) and
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a ∈ Ch(S). Additionally, we have ar+arb = ar+abr = (a+ab)r = ar and arb = bar

for every b ∈ S. Therefore, we can conclude that ar ∈ Ch(S). Similarly, we can

demonstrate that ra ∈ Ch(S). Consequently, we can deduce that Ch(S) functions as

an ideal of Z(S).

Theorem 8.2.6. If S is a c-semiring, then Ch(S) = Z(S).

Proof. Initially, we observe that the set Ch(S) is contained within Z(S). Our task is

to demonstrate that Z(S) is also contained within Ch(S). Let us consider an element

a ∈ Z(S). This implies that ax = xa for all x ∈ S. As S is a c-semiring, we have

the property 1 + x = 1 for any x ∈ S. Now, for any b ∈ S, we can deduce that

a+ ab = a(1 + b) = a1 = a, as 1 + b = 1 and ab = ba, since a ∈ Z(S). Consequently,

we can conclude that a ∈ Ch(S). Hence, Z(S) is contained within Ch(S). Thus, we

have established that Ch(S) = Z(S).

Proposition 8.2.7. If S is a multiplicatively idempotent semiring with identity 1,

then Ch(S) ⊆ Ec(S).

Proof. Suppose a ∈ Ch(S). Consequently, we have a + ab = a and ab = ba for any

b ∈ S. Specifically, if we take b = a, we obtain a+ a2 = a. As S is a multiplicatively

idempotent semiring, we have a + a2 = a2. Moreover, since a satisfies ab = ba for

all a and b in S (as a ∈ Ch(S)), we can conclude that a ∈ Ec(S). Therefore, we can

establish that Ch(S) ⊆ Ec(S).

Example 8.2.8. Consider S = {0, 1, x}. Define the operations “+” and “.” on S by

means of the following tables :

+ 0 x 1

0 0 x 1

x x x x

1 1 x 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S,+, ·) is an idempotent semiring and Ec(S) = {0, x, 1} = S and Ch(S) =

{0, x}. Ec(S) ⊈ Ch(S). This example shows that every element of Ec(S) is not an

element of Ch(S).
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Remark 8.2.9. For multiplicatively idempotent semiring S, we have the following :

Ch(S)

Ec(S)

Z(S)

In the subsequent analysis, we direct our attention towards establishing the cor-

relation between the standard center Z(S) and the k-center Ck(S) of a semiring S.

Furthermore, we have obtained the following result :

Proposition 8.2.10. If S be a semiring, then Ck(S) is an ideal of Z(S).

Proof. Consider Ck(S) as a subsemiring of Z(S). Let r ∈ Z(S) and a ∈ Ck(S). As

r ∈ Z(S), it satisfies the condition rs = sr for all s ∈ S. Similarly, since a ∈ Ck(S),

it satisfies the conditions a + ab = ab and ab = ba for all b ∈ S\{0}. Consequently,

for any b ∈ S\{0}, we have arb = abr = bar, owing to the commutativity of r ∈ Z(S)

and a ∈ Ck(S). Moreover, ar + arb = ar + abr = (a + ab)r = abr = arb and

arb = bar for all b ∈ S\{0}. Therefore, ar ∈ Ck(S). Similarly, we can demonstrate

that ra ∈ Ck(S). Thus, Ck(S) qualifies as an ideal of Z(S).

Corollary 8.2.11. If S is a semifield, then either Ck(S) = Z(S) or Ck(S) = {0}.

Theorem 8.2.12. Let S be an additively idempotent mono-semiring. Then Ck(S)

coincides with Z(S).

Proof. Clearly, Ck(S) is a subset of Z(S). Our goal is to prove the reverse inclusion,

that is, Z(S) ⊆ Ck(S). Let a be an element of Z(S). This means that ax = xa for all

x ∈ S. Since S is an additively idempotent mono-semiring, we know that a + a = a

and a+b = ab for all a, b ∈ S. Now, for any b ∈ S excluding the zero element, we have

a+ ab = a+ a+ b = a+ b = ab, using the properties that a+ a = a, a+ b = ab, and
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ab = ba (since a ∈ Z(S)). This implies that a is also an element of Ck(S). Therefore,

we can conclude that Z(S) ⊆ Ck(S). Hence, we have shown that Ck(S) = Z(S).

According to the subsequent theorem, there is no distinction between k-center

and usual center when considering a c-semifield.

Theorem 8.2.13. If S is a c-semifield, then Ck(S) = Z(S).

Proof. To establish the equality Ck(S) = Z(S), we begin by observing that Ck(S) ⊆

Z(S). To demonstrate the reverse inclusion, that is, Z(S) ⊆ Ck(S), suppose a ∈

Z(S). This implies that ax = xa for all x ∈ S. Moreover, as S is a c-semifield, for

any nonzero element b ∈ S, there exists d ∈ S such that bd = db = 1. Furthermore,

we note that x + 1 = 1 holds true for all x ∈ S. Consequently, for any b ∈ S\{0},

we have a + ab = abd + ab = ab(d + 1) = ab; where d + 1 = 1 and ab = ba, due

to a ∈ Z(S). Hence, we deduce that a ∈ Ck(S), demonstrating that Z(S) ⊆ Ck(S).

Consequently, we establish the equality Ck(S) = Z(S).

Our upcoming task involves investigating the connection among Ck(S), Ch(S),

and Ec(S). Additionally, we possess the subsequent finding :

Theorem 8.2.14. Let S be a semiring. Then every element of Ck(S) is left zero if

and only if Ck(S) = Ch(S).

Proof. Let’s take a belonging to Ck(S) into consideration. Given that a is a left zero

element, we have ab = a for every b ∈ Ck(S). Consequently, for any b ∈ S excluding

zero, we can deduce that a + ab = ab and ab = ba. Since a is a left zero element,

we have a + ab = a and ab = ba for all b ∈ S, demonstrating that a ∈ Ch(S).

Consequently, we can conclude that Ck(S) ⊆ Ch(S). Similarly, let’s assume a to be

an element of Ch(S). Following the same reasoning, for any b ∈ S excluding zero, we

can derive that a+ ab = a and ab = ba. Therefore, a+ ab = ab and ab = ba hold true

for all b in S excluding zero, given that a is a left zero. Consequently, we can conclude

that a ∈ Ck(S). Therefore, Ch(S) ⊆ Ck(S) and accordingly, we can establish that

Ck(S) = Ch(S).
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Conversely, if we assume Ck(S) = Ch(S), and let a ∈ Ck(S) = Ch(S), we can

deduce that a + ab = ab and ab = ba hold true for all b ∈ S\{0}. Additionally, we

find that a + ab = a and ab = ba are satisfied for all b ∈ S. From these conditions,

we can conclude that a = ab for every b ∈ S, leading to the conclusion that a is a left

zero.

Proposition 8.2.15. Let S be a semiring. Then Ck(S) ⊆ Ec(S).

Proof. If a ∈ Ck(S), then a satisfies the properties a + ab = ab and ab = ba for

all b ∈ S\{0}. Notably, when we let b = a, it follows that a + a2 = a2. Thus, we

conclude that a+ a2 = a2 and ab = ba hold for all a, b ∈ S, implying that a ∈ Ec(S).

Consequently, we can establish the inclusion Ck(S) ⊆ Ec(S).

Note 8.2.16. But the following example shows that every element of Ec(S) is not an

element of Ck(S).

Example 8.2.17. Consider S = {0, 1, x}. Define the operations “+” and “.” on S

by means of the following tables :

+ 0 x 1

0 0 x 1

x x x 1

1 1 1 1

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Then (S,+, ·) is an idempotent semiring and Ec(S) = {0, x, 1} = S and Ck(S) = {0}.

It follows that Ec(S) ⊈ Ck(S).

Remark 8.2.18. For any semiring S, we have the following :

Ck(S)

Ec(S)

Z(S)
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The subsequent theorem provides evidence that Ck(S) and Ec(S) coincide given

a certain condition.

Theorem 8.2.19. Let S be a semiring. If every element of Ec(S) is left identity,

then Ck(S) = Ec(S).

Proof. Suppose a ∈ Ck(S). Consequently, we have a + ab = ab and ab = ba for all

b ∈ S\{0}. Specifically, when we choose b = a, we obtain a + a2 = a2. This implies

that a + a2 = a2 and ab = ba for any a, b ∈ S. As a result, we can conclude that

a ∈ Ec(S). Therefore, we can say that Ck(S) ⊆ Ec(S).

Now, let’s consider an element a ∈ Ec(S). In this case, we have a + a2 = a2 and

ab = ba for all b ∈ S. Using these conditions, we can deduce that a + a2 + ab =

a2 + ab, which further simplifies to a+ a(a+ b) = a(a+ b). Since a serves as the left

identity of Ec(S), we can conclude that a + ab = ab. Therefore, we have established

that a + ab = ab and ab = ba for all b ∈ S\{0}. Consequently, we can say that

Ec(S) ⊆ Ck(S). Hence, it follows that Ck(S) = Ec(S).

It’s time to discover how the usual center Z(S), the h-center Ch(S), the k-center

Ck(S), and the generalized center CG(S) of a semiring S are interconnected.

Additionally, the following result holds true : We observe that if S is an additively

cancellative semiring, the generalized center CG(S) coincides with the semiring’s usual

center denoted as Z(S).

Proposition 8.2.20. Let S be a commutative semiring. Then Z(S) = CG(S).

Proof. In a commutative semiring S, it is known that Z(S) = S (i).

It is also evident that CG(S) ⊆ S. Consider an element a ∈ S. Since S is a com-

mutative semiring, for any a, b ∈ S, ab = ba. Consequently, for all a, b ∈ S, we have

a+ ab = a+ ba. Hence, a ∈ CG(S). This implies that S ⊆ CG(S). Therefore, we can

conclude that S = CG(S) (ii).

From (i) and (ii), we can deduce that Z(S) = CG(S).

Theorem 8.2.21. If S is a mono-semiring, then CG(S) = Z(S).
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Proof. If S is a mono-semiring, then S = CG(S). Since S is a mono-semiring, for

any a, b ∈ S, ab = a + b = b + a = ba. This indicates that S is a commutative

semiring. We know that in a commutative semiring S, Z(S) = S. Accordingly, we

have CG(S) = Z(S).

Note 8.2.22. As per the definition, it follows that Ch(S) ⊆ Z(S), Ck(S) ⊆ Z(S) and

Z(S) ⊆ CG(S). Therefore, we can conclude that Ck(S) ⊆ CG(S) and Ch(S) ⊆ CG(S).

Furthermore, we analyze the interplay between the standard center Z(S), the h-

center Ch(S), the k-center Ck(S), the generalized center CG(S), and the hypercenter

T (S) of a semiring S. Additionally, we derive the following finding :

Proposition 8.2.23. Let S be a semiring. Then Z(S) ⊆ T (S).

Proof. Let a ∈ Z(S). Then ab = ba for all b ∈ S. Consequently, for all b ∈ S, we

have abn = bna when n = 1. This observation implies that a ∈ T (S). Hence, we can

conclude that Z(S) ⊆ T (S).

Theorem 8.2.24. If S is a rectangular band with 1, then T (S) = Z(S).

Proof. Suppose S is a rectangular band. Then for any a, b ∈ S, we have the equality

aba = a. Specifically, if we take a1a = a, we can deduce that a2 = a. This observation

leads to the conclusion that S is a multiplicatively band. We can further establish

that b = b2 = bb = b2b = b3 = ... = bn; where n(≥ 1) is an integer. Consider an

element a ∈ T (S). We can assert that abn = bna for all b ∈ S; where n = n(b, a) ≥ 1.

This equality implies that ab = ba for all b ∈ S, since bn = b. Consequently, we can

conclude that a ∈ Z(S). Therefore, T (S) ⊆ Z(S). By utilizing Proposition 8.2.23, we

can deduce that Z(S) ⊆ T (S). Hence, we can finally establish that T (S) = Z(S).

Theorem 8.2.25. If S is a semiring, then Ch(S) ⊆ T (S) and Ck(S) ⊆ T (S).

Proof. We have the inclusion Ch(S) ⊆ Z(S), and also Z(S) ⊆ T (S). Consequently,

it follows that Ch(S) ⊆ T (S). Similarly, considering Ck(S) ⊆ Z(S), we can deduce

that Ck(S) ⊆ T (S).

Theorem 8.2.26. If S is an additively cancellative semiring, then CG(S) ⊆ T (S).
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Proof. Assume that a belongs to the generalized center of S denoted by CG(S). In

such case, it holds true that a+ab = a+ba for any b ∈ S. Given that S is an additively

cancellative semiring, we can conclude that ab = ba for all a, b ∈ S. Consequently,

this implies that a ∈ Z(S). Additionally, it is known that Z(S) ⊆ T (S). Hence, we

can infer that a ∈ T (S). As a result, we can conclude that CG(S) ⊆ T (S).

Note 8.2.27. The generalized center in Example 7.2.8 is given by

CG(S) = {{ϕ}, {0}, {a, b}, {0, a, b}}, while the hypercenter is T (S) = {{ϕ}, {0}}. It

is important to note that CG(S) ̸= T (S).

Theorem 8.2.28. If S is a commutative semiring, then T (S) = CG(S).

Proof. We know that if S is a commutative semiring, then Z(S) = S (i).

By utilizing Proposition 8.2.23, we obtain Z(S) ⊆ T (S) (ii).

In order to prove T (S) = Z(S), we need to prove T (S) ⊆ Z(S). As T (S) constitutes

a subsemiring of S, T (S) ⊆ S. Consequently, according to (i), we obtain T (S) ⊆ S =

Z(S). This implies that T (S) ⊆ Z(S) (iii).

By combining (ii) and (iii), it follows that T (S) = Z(S) (iv).

Moreover, based on Proposition 8.2.20, we have previously established that if S is a

commutative semiring, then Z(S) = CG(S) (v).

Considering (iv) and (v), we can conclude that T (S) = CG(S).

We now demonstrate the interrelation among the usual center, k-center, almost

idempotent center and generalized center of a semiring.
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Ck(S) ⊆ Ec(S) ⊆ Z(S) ⊆ CG(S) ⊆ S.

Ck(S)

Ec(S)

Z(S)

CG(S)

S

We also delebrate the interrelation among the usual center, k-center, almost idem-

potent center and hypercenter of semiring.

Ck(S) ⊆ Ec(S) ⊆ Z(S) ⊆ T (S) ⊆ S.

Ck(S)

Ec(S)

Z(S)

T (S)

S

8.3 Interactions within Central Semirings

Initially, our exploration focuses on the connection between h-central semiring and

almost idempotent semiring. Additionally, we have obtained the subsequent finding :
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Theorem 8.3.1. In a PRD, every h-central semiring is an almost idempotent central

semiring.

Proof. Consider a semiring S that is both a PRD and an h-central semiring, denoted

as S = Ch(S). Since Ec(S) is a subsemiring of S, we have Ec(S) ⊆ S. To demonstrate

the reverse inclusion S ⊆ Ec(S), let us take an arbitrary nonzero element a ∈ S. By

applying the Proposition 4.6.19, we get in a PRD, if S is an h-central semiring, then

for all a in S, 1 + a = a (i).

Multiplying both sides of (i) by ‘a’, we find that a(1 + a) = a · a =⇒ a+ a2 = a2.

Furthermore, since S is a h-central semiring, we have ab = ba for all a, b ∈ S. Hence,

a+ a2 = a2 and ab = ba for all b ∈ S. Consequently, we can conclude that a ∈ Ec(S).

Additionally, we note that 0 ∈ Ec(S). Hence, we establish that S ⊆ Ec(S), resulting

in the equality Ec(S) = S. Therefore, S qualifies as an almost idempotent central

semiring.

In a particular scenario, we are currently establishing the connection between the

k-central semiring and the h-central semiring.

Theorem 8.3.2. In a PRD, every k-central semiring is an h-central semiring.

Proof. Assume S to be a PRD and a k-central semiring. It is evident that Ch(S) ⊆ S.

Take an arbitrary non-zero element a from S. Proposition 5.5.17 implies that in a

PRD, every k-central semiring is a simple semiring. Hence, for any b ∈ S, we have

1 + b = 1, which further leads to a(1 + b) = a1, resulting in a+ ab = a for all a ∈ S.

Additionally, due to S being a k-central semiring, we know that ab = ba for all b ∈ S.

Therefore, both a+ ab = a and ab = ba hold for all b ∈ S. Consequently, a ∈ Ch(S).

We can also observe that 0 is an element of Ch(S). Thus, we conclude that S ⊆ Ch(S)

and, as a result, Ch(S) = S. Consequently, S is an h-central semiring

We conclude this chapter by exploring the connection between a k-central semiring

and an almost idempotent central semiring.

Theorem 8.3.3. Every k-central semiring is an almost idempotent central semiring.
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Proof. Let S be a k-central semiring. Clearly, Ec(S) ⊆ S. Consider an arbitrary

non-zero element a in S = Ck(S). For any b in S excluding zero, we have a+ab = ab.

In particular, a+ a · a = a · a =⇒ a+ a2 = a2. Moreover, ab = ba holds b ∈ S, since

a ∈ Ck(S). Additionally, 0 ∈ Ec(S). Hence, we can conclude that S ⊆ Ec(S), leading

to Ec(S) = S. Consequently, S can be classified as an almost idempotent central

semiring.

The interrelation among k-central semiring , h-central semiring and almost idem-

potent central semiring can be shown through the following diagrammatic depiction:

k-central semiring =⇒ h-central semiring =⇒ almost idempotent central semiring

and k-central semiring =⇒ almost idempotent central semiring.

k − central semiring h− central semiring

Almost idempotent central semiring
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