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Notation

Throughout this thesis, we adopt the following notations. In some cases, we have men-
tioned the page numbers where the corresponding terms have been discussed explicitly.

• C : Set of complex numbers.

• R : Set of real numbers.

• Q : Set of rational numbers.

• Z : Set of integers.

• N : Set of natural numbers (note that we do not consider zero as a natural number).

• T : Circle group.

• {x} : Fractional part of x (page no. xxiv).

• ‖x‖ : Distance from the integers, i.e., min
{
{x}, 1− {x}

}
.

• F : Set of all unbounded modulus functions.

• F : Set of all strictly increasing unbounded modulus functions.

• G : Set of weight functions (page no. xxi).

• d(A) : Natural density of A ⊆ N.

• dα(A) : Natural density of order α of A ⊆ N.

• I : Ideal.

• I∗ : Dual filter of the ideal I.

• Fin : Collection of all finite subsets of N.

• Id : Natural density ideal.

• Idα : Natural density ideal of order α.

• Ig : Simple density ideal.

• Ig(f) : Moduler simple density ideal.

• t(an)(T) : Characterized subgroup.
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• ts(an)(T) : s-Characterized subgroup.

• tα(an)(T) : α-Characterized subgroup.

• tf,g(an)
(T) : f g-Characterized subgroup.

• tI(an)(T) : I-Characterized subgroup.

• D-set : Dirichlet set (page no. 74).

• A-set : Arbault set (page no. 74).

• N-set : Set of absolute convergence (page no. 74).

• sA-set : Statistical Arbault set (page no. 78).
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List of Definitions

Throughout this thesis, we frequently use some terms. The definition of each of them
can be found in the corresponding page number mentioned below.

• Ideal, Filter, Translation invariant ideal (page no. xix ).

• P -ideal, Analytic ideal (page no. xx).

• Natural density, Natural density of order α, Simple density (page no. xxi).

• Modulus function, Moduler simple density (page no. xxii).

• Statistical convergence, I-Convergence, I∗-Convergence (page no. xxiii).

• Circle group (page no. xxiv).

• Topologically torsion element, Characterized subgroup (page no. 2).

• Arithmetic sequence (page no. 3).

• s-Characterized subgroup, Topologically s-torsion element, α-Characterized sub-
group (page no. 4).

• Topologically α-torsion element, supp(x), suppq(x) (page no. 25).

• α-Splitting sequence (page no. 35).

• f g-Statistical convergence, f g-Characterized subgroup (page no. 43).

• I-Characterized subgroup, Topologically I-torsion element (page no. 59).

• Trigonometric thin set (page no. 74).
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Abstract

The thesis is concerned with certain kinds of generalized characterized subgroups of the
Circle group T and their applications in Trigonometric Series Theory or Fourier Analy-
sis. Due to its strong relation with the torsion subgroup, topologically torsion subgroup,
uniform distribution of sequence mod 1 and trigonometric thin set, the characterized
subgroup has deep roots in different branches of Mathematics as Topological Algebra,
Number Theory and Harmonic Analysis. However the study of generalized character-
ized subgroups has recently gained attention of researchers due to its ability to provide
more general view in this context. Many problems on generalized characterized sub-
groups as well as characterized subgroups are still open. In this thesis, some of these
open problems of the literature are considered and more general solutions are provided.

The thesis is divided into three parts. Part I of the thesis deals with some generalized
notions of convergence where we have discussed many interesting results related to
moduler simple density functions and corresponding ideals. These results enable us to
construct various generalized characterized subgroups of T in Part II. In this part we
have provided complete description of these generalized characterized subgroups for
arithmetic sequences and solved many open problems from literature. In Part III, as an
application, we have presented a new class of trigonometric thin sets namely statistical
Arbault sets properly containing the class of classical Arbault sets as well as a large
subfamily of N-sets. In particular this class happens to properly contain the types of
N-sets which have been extensively used in the literature. It is worthwhile to note that
this class provides uncountably many Fσδ subgroups which cannot be characterized.

The aim of this thesis is to present an elaborate description of the topic alongside all
the new results which would hopefully be useful to not only the experts working in this
field, but also a starting point for those who wish to enter this field.
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PREFACE

In this chapter we recall some classical results and notions which will be needed fre-
quently in this thesis.

0.1 Density functions and corresponding ideals
A family I ⊆ P(N) is called an ideal on N whenever

• N 6∈ I,

• if A,B ∈ I then A ∪B ∈ I,

• if A ⊆ B and B ∈ I then A ∈ I.

An ideal I is called a proper admissible ideal if I is not P(N) or φ and {n} ∈ I for all
n ∈ N. For an ideal I on N, the dual filter I∗ of I is defined as

I∗ = {A ∈ P(N) : N \ A ∈ I},

whereas the coideal I+ of I is defined as

I+ = {B ⊆ N : B /∈ I}.

The simplest example of proper admissible ideal is Fin which is the collection of all
finite subsets of N. A brief but useful account on ideals can be found in [32].

For two subsets A,B of N and an ideal I, we will write

• A ⊆I B if A \B ∈ I,

• A ⊆I B if A ⊆ B and B \ A ∈ I,

• A =I B if A4B ∈ I.

• A ⊂ N is called I-translation invariant ifA+n = {m+n ∈ N : m ∈ A} belongs
to I for all n ∈ Z.

Note that for any A ⊆I B and B ∈ I+ implies A ∈ I+.

Definition 0.1.1. An ideal I is called translation invariant if everyA ∈ I is I-translation
invariant.

xix



Definition 0.1.2. An ideal I is called dense if for every infiniteA ⊂ N there is an infinite
B ∈ I such that B ⊂ A.

Definition 0.1.3. An ideal I on N is called a P -ideal if for each sequence (An) of sets
in I there exists a set A in I such that An ⊆∗ A for all n ∈ N (by An ⊆∗ A we mean
An \ A ∈ Fin).

Next we will see a strong relation between a P -ideal and a submeasure. Recall that
a submeasures on N is a function ϕ : 2N → [0,∞] such that:

• ϕ(∅) = 0,

• if A ⊂ B then ϕ(A) ≤ ϕ(B),

• ϕ(A ∪B) ≤ ϕ(A) + ϕ(B),

• ϕ({n}) <∞ for all n ∈ N.

Definition 0.1.4. ([32]) A submeasure ϕ is called a lower semicontinuos submeasure
(in short, lscsm) if ϕ(A) = limn→∞ ϕ(A ∩ [1, n]) for all A ⊂ N.

Note that the above condition is equivalent to the classical lower semicontinuity of
the function ϕ : 2N → [0,∞]. For any lscsm ϕ, let us consider the exhaustive ideal
Exh(ϕ) defined as

Exh(ϕ) = {A ⊂ N : lim
n→∞

ϕ(A \ [1, n]) = 0}.

Our next theorem is an important observation in this direction which was provided by I.
Farah in [50, Lemma 1.2.2].

Theorem 0.1.5. For every lscsm ϕ on N, Exh(ϕ) is an Fσδ P -ideal.

Every ideal I on N can be treated as a subset of the Cantor space 2N in view of the
fact that P(N) and 2N can be identified via the characteristic functions.

Definition 0.1.6. An ideal I on N is called analytic if it corresponds to an analytic
subset of the Cantor space 2N.

In the literature about ideal convergence, a very prominent role has been played by
the class of analytic P -ideals (see for example [65], [69]) while these ideals had long
been topics of much interest in set theory (see [50, 58, 81] where more references can
be found).

Following theorem is a highly nontrivial result of Solecki [80] which gives a charac-
terization of analytic P -ideals on N.

Theorem 0.1.7. If I is an analytic P -ideal on N then it is of the form Exh(ϕ) for some
lscsm ϕ on N.

Let us now recall some of the density functions and their corresponding ideals which
will play crucial role in our following chapters. For n,m ∈ N with n < m, let [n,m]
denote the set {n, n+ 1, n+ 2, . . . ,m}.
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Definition 0.1.8. (see [24],[25]) The lower and the upper natural densities of A ⊂ N
are defined by

d(A) = lim inf
n→∞

|A ∩ [1, n]|
n

and

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

If d(A) = d(A), we say that the natural density of A exists and it is denoted by d(A).

As usual,
Id = {A ⊂ N : d(A) = 0}

denotes the ideal of “natural density zero” sets and I∗d is the dual filter, i.e., I∗d = {A ⊂
N : d(A) = 1}.

In [13] a natural extension of the notion of natural density was introduced. Here the
authors replaced the term n with a non linear term nα in the definition of natural density
where 0 < α ≤ 1. The motivation of this extension came from the urge to investigate
different kinds of densities and the problem of comparing them with the natural density.

Definition 0.1.9. (see [13]) The lower and the upper natural densities of order α of
A ⊂ N are defined by

dα(A) = lim inf
n→∞

|A ∩ [1, n]|
nα

and

dα(A) = lim sup
n→∞

|A ∩ [1, n]|
nα

.

If dα(A) = dα(A), we say that the natural density of order α ofA exists and it is denoted
by dα(A).

Similarly one can define the corresponding ideal by

Idα = {A ⊂ N : dα(A) = 0}.

On the other hand, in 2015 in [6] the authors defined a new class of densities us-
ing weight functions which again extended the concept of natural density of order α.
Though the main motivation of considering this new class was not just a mere exten-
sion. It was actually originated to construct a large number of non-comparable analytic
P -ideals. Eventually in [6], it was shown that one can construct uncountably many non-
comparable P -ideals corresponding to different choices of the weight function g, all
different from the natural density ideal Id.

Let g : N→ [0,∞) be a function with lim
n→∞

g (n) =∞. The upper density of weight
g was defined in [6] by the formula

dg(A) = lim sup
n→∞

|A ∩ [1, n]|
g (n)

for A ⊂ N. The lower density of weight g, dg(A) is defined in a similar way. Then the
family

Ig = {A ⊂ N : dg(A) = 0}
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also forms an ideal. It was observed in [6] that N ∈ Ig if and only if n
g(n)
→ 0. So we

additionally assume that n/g (n) 9 0 and denote the set of all such weight functions g
by G.

Lately there have been certain other as also more general versions of density func-
tions which we now recall. The modulus functions are defined as functions f : [0,∞)→
[0,∞) which satisfy the following properties.

(i) f(x) = 0⇔ x = 0

(ii) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ (0,∞) [Triangle inequality]

(iii) f is non-decreasing

(iv) f is right continuous at 0.

In 2014, a notion of density function was introduced using modulus functions. Pre-
cisely, the upper f density function [2] was defined in the following way:

d
f
(A) = lim sup

n→∞

f(|A ∩ [0, n− 1]|)
f(n)

.

Similarly the lower f density function df is defined. As a natural consequence, the
family

I(f) = {A ⊂ N : d
f
(A) = 0}

forms an ideal on N.
The approaches of [2], [6] and [13] were unified in [18]. Let us now recall the def-

inition of the density function dfg , henceforth called “moduler simple density function”
(where f is an unbounded modulus function) introduced in [18] which plays key role in
Chapter 4.

Definition 0.1.10. For A ⊆ N, the lower and upper moduler simple density function is
defined as

dfg (A) = lim inf
n→∞

f(|A ∩ [1, n]|)
f(g(n))

and d
f

g (A) = lim sup
n→∞

f(|A ∩ [1, n]|)
f(g(n))

.

If dfg (A) = d
f

g (A), we say that dfg (A) exists.

Following the nomenclature of [18], the collection

Ig(f) = {A ⊂ N : dfg (A) = 0}

denotes the corresponding ideal (henceforth called moduler simple density ideal) and
I∗g (f) is the dual filter, i.e.,

I∗g (f) = {A ⊂ N : dfg (N \ A) = 0}.

Further in view of our next result we can assume G to consist of only non-decreasing
weight functions g : N → [0,∞) such that lim

n→∞
g(n) = ∞ and n

g(n)
9 0 without any

loss of generality.
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Lemma 0.1.11. [18] Let f be an unbounded modulus function as specified. For each
function g ∈ G there exists a non-decreasing function g′ ∈ G such that Ig′(f) = Ig(f).
Moreover, f(g′(n)) ≤ f(g(n)) for all n ∈ N.

0.2 Some general notions of convergence
The idea of natural density was later used to define the notion of statistical convergence
([83], see also [53, 76]).

Definition 0.2.1. A sequence of real numbers (xn) is said to converge to a real number
x0 statistically if for any ε > 0, d({n ∈ N : |xn − x0| ≥ ε}) = 0.

Though the concrete notion of statistical convergence is quite new but the idea of
statistical convergence has been used extensively in different areas of mathematics for
a long period of time. Applications of statistical convergence to Number Theory and
Fourier Analysis can be found in [24, 25, 74]. Later on, statistical convergence was
further investigated from the sequence space point of view and linked with summability
theory.

Theorem 0.2.2. [76] A sequence of real numbers (xn) converges to a real number x0
statistically if and only if there exists a set M ∈ I∗d such that (xn)n∈M usually converges
to x0.

The following notion first appeared in the work of the celebrated mathematician
Henry Cartan [28] and then again reappeared in 2000.

Definition 0.2.3. [65] In a topological spaceX , given an ideal I, we say that a sequence
(xn)n∈N is I-convergent to x ∈ X whenever for every open set U containing x, the set
{n ∈ N : xn /∈ U} ∈ I (we will write xn → x w.r.t I).

Note that for the ideal Fin, corresponding ideal convergence coincides with the
usual convergence. For the ideals Id, Idα , Ig, I(f) and Ig(f) corresponding ideal con-
vergence are called statistical convergence, statistical convergence of order α, statistical
convergence of weight g, f -statistical convergence and f g-statistical convergence re-
spectively.

Definition 0.2.4. [65] In a topological spaceX , given an ideal I, we say that a sequence
(xn)n∈N is I∗-convergent to x0 ∈ X if there exists a set M ∈ I∗ such that (xn)n∈M
usually converges to x0.

In view of our above definitions and results it is straight forward to see that the con-
cept of I-convergence and I∗-convergence are nothing but a generalization of statistical
convergence and its equivalent form. We have already seen that both these notions are
equivalent for the natural density ideal Id. However for arbitrary ideals this is not in
general true. The following is one of the most important result in this direction.

Theorem 0.2.5. [65] For a proper admissible ideal I, I-convergence coincides with the
I∗-convergence if and only if I is a P -ideal.

In [18] it was shown that for any unbounded modulus function f and g ∈ G the
moduler simple density ideal Ig(f) is an analytic P -ideal. Therefore for all these ideals,
i.e., Id, Idα , Ig, I(f) and Ig(f), the I-convergence coincides with the corresponding
I∗-convergence.
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0.3 The circle group
In this section we recall some of the basic definitions and facts related to circle group
which is one of the main object studied in this thesis.

The circle group T is a subgroup of the complex numbers C consists of all complex
numbers on the unit circle, i.e.,

T = {z ∈ C : |z| = 1}.

Equivalently one can also define

T = {eix : x ∈ R}.

Consider the epimorphism φ : R→ T defined as φ(x) = e2πix. Now it is easy to check
that Ker(φ) = Z. Therefore φ induces an isomorphism ψ between R/Z and T.

Note that T with the subspace topology induced from the euclidean metric of C is a
topological group as well as R/Z with the quotient topology induced from the euclidean
metric of R. Moreover, ψ (defined above) is a topological isomorphism from R/Z to T.
In this thesis, it is preferable to deal with the additive notation of the circle group, i.e.,
R/Z which we denote by T.

In the circle group while considering the usual metric, the distance between two
points is the length of the minimal arc connecting them. However this metric is com-
patible with the usual topology, i.e., the quotient topology from the euclidean one in
R.

Sometimes, it is preferable to deal with elements of R rather than R/Z. So we
identify T with the interval [0,1] identifying 0 and 1. Any real valued function f defined
on T can be identified with a periodic function defined on the whole real line R with
period 1, i.e., f(x+ 1) = f(x) for every real x.

When referring to a set X ⊆ T we assume that X ⊆ [0, 1] and 0 ∈ X if and only if
1 ∈ X . For a real x, we denote its fractional part by {x}. In this way one can define the
norm in T in the following way. For x ∈ T we define

‖x‖ = min
{
{x}, 1− {x}

}
.

Observe that this norm ‖.‖ of T is nothing but the integer norm ‖.‖Z of R.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background
For a sequence of integers (vn) and x ∈ [0, 1], the behavior of the sequence (vnx) mod 1
has deep roots in Harmonic Analysis, Dynamical System, Number Theory and Topology
(see [3, 38, 46, 48, 66, 86]).

Recall that a sequence of real numbers (xn) is said to be uniformly distributed mod
1, if for every [c, d] ⊆ [0, 1) one has

lim
n→∞

|{i : 0 ≤ i < n, {xi} ∈ [c, d]}|
n

= d− c.

For a sequence of integers (vn), it is obvious that the set

Wv = {x ∈ [0, 1] : (vnx) is uniformly distributed mod 1}

is contained in [0, 1] \ Q. In his celebrated result [86], H. Weyl proved that the set
Wv = T \ Q/Z if vn = P (n) for some P (x) ∈ Z[x]. On the other hand, for every
number α ∈ [0, 1] \Q, there exists a sequence v = (vn) such that α /∈ Wv.

Now consider an irrational number α with the regular continued fraction approxi-
mation α = [u0;u1, u2, ...] with sequence of convergents rn

bn
= [u0;u1, u2, ..., un]. From

Theorem 4.3 [66] it follows that the sequence (bnβ) is uniformly distributed mod 1 for
almost all β ∈ R in the sense of Lebesgue measure. However note that as ||bnα||Z → 0,
so α /∈ Wb. Moreover, Larcher [70] proved in 1988 that “if the continued fraction
expansion of an irrational number α is bounded” then the set

{β ∈ R : ||bnβ||Z → 0}

is nothing but the subgroup 〈α〉+Z of R. This aspect of the distribution of the sequence
(vnx), notoriously “complementary” to the uniform distribution mod 1, paves the path
towards the study of characterized subgroups which is the backbone of the present The-
sis.

Instead of using the fractional part {xj} or working modulo 1 in R, one can also
work in the circle group R/Z = T by using the canonical epimorphism (projection)
π : R→ T (i.e., instead of considering ||bnβ||Z → 0 in R, one can equivalently consider
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bnπ(β)→ 0 in T).

The behavior of the sequence (vnx) mod 1, is related to different trigonometric thin
sets which play interesting role in the convergence of a trigonometric series in Harmonic
Analysis (see Chapter 6 for more details). For x ∈ T, the behavior of the sequence (vnx)
is also related to Hausdorff group topologies with or without non-trivial convergent se-
quences.

1.2 Characterized Subgroups
The sequence (vnx) in a topological abelian group is used to generalize the notion of tor-
sion subgroups. Consequently, it is closely related to the notion of topologically torsion
subgroups (later came to be known as characterized subgroups) which is fundamental in
the study of locally compact abelian groups.

Recall that an element x of an abelian group X is torsion if there exists an integer
k > 0 such that kx = 0 (more specifically called k-torsion in this case). An element x
of an abelian topological group X is [20]:

(i) topologically torsion if n!x→ 0;

(ii) topologically p-torsion, for a prime p, if pnx→ 0.

It is obvious that any p-torsion element is topologically p-torsion. Armacost [5]
defined the subgroups

Xp = {x ∈ X : pnx→ 0} and X! = {x ∈ X : n!x→ 0}

of an abelian topological group X , and started to describe the elements of these sub-
groups. Note that the above two notions are just special cases of the following general
notion considered in (Section 4.4.2, [46]).

Definition 1.2.1. Let (an) be a sequence of integers. An element x in an abelian topo-
logical group X is called (topologically) a-torsion element if anx→ 0.

When there is no confusion regarding the sequence (an), these elements are simply
called topologically torsion elements.

Definition 1.2.2. For a sequence of integers (an), the set

t(an)(T) := {x ∈ T : anx→ 0 in T}

is called a “characterized” (by (an)) “subgroup” of T.

Even if the notion was inspired by the various (earlier) instances mentioned above,
the term characterized appeared much later, coined in [15] and since then been of much
interest in different areas of Mathematics (one must see the excellent survey article [78]
where the rich history along with the results and references can be found). Again coming
back to Armacost,
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(a) obviously t(pn)(T) contains the Prüfer group Z(p∞). Armacost [5] proved that
t(pn)(T) simply coincides with Z(p∞) and x is a topologically p-torsion element
if and only if supp(x) (defined after Fact 3.1.2) is finite.

(b) at the same time, he [5] posed the problem to describe the group T! = t(n!)(T)
which was much later resolved independently and almost simultaneously in [46,
Chap. 4] and by J.-P. Borel [17].

In particular, in both the above mentioned instances, the sequences of integers, con-
cerned are arithmetic sequences. Recall that a sequence of positive integers (an) is
called an arithmetic sequence if

1 < a1 < a2 < a3 < . . . < an < . . . and an|an+1 for every n ∈ N.

For any sequence of integers (an), the sequence of ratios (qn) is defined as

q1 = a1 and qn =
an
an−1

for n ≥ 2.

Observe that (qn) becomes a sequence of integers when (an) is an arithmetic sequence.
For A ⊆ N, we say that A is

(i) q-bounded if the sequence of ratios (qn)n∈A is bounded.

(ii) q-divergent if the sequence of ratios (qn)n∈A diverges to∞.

We say that the sequence (an) is q-bounded (q-divergent) if the set of naturals, i.e., N is
q-bounded (q-divergent).

As has been seen, some of the most interesting cases studied are the topologically
torsion elements characterized by arithmetic sequences. The results of Armacost [5] and
Borel [17] were considered in full general settings with arbitrary arithmetic sequences
in [77] and then with more clarity in [41] where topologically torsion elements were
completely described for the class of general arithmetic sequences.

Another important result in this direction is Eggleston’s dichotomy [47], where
Eggleston observed (see [9]) that the asymptotic behavior of the sequence qn := an

an−1
of

ratios has a strong impact on the size of t(an)(T):

(E1) t(an)(T) is countable if (qn) is bounded;

(E2) |t(an)(T)| = c if qn →∞.

Bı́ró, Deshouillers and Sós [15] established the important fact that every countable sub-
group of T is characterized. The whole history concerning these investigations along
with relevant references can be found in the surveys [37, 78] as also the recent article
[38].

1.3 Generalized characterized subgroups
Recently in 2019 these characterized subgroups were considered in more general set-
tings where different models of convergence came into the picture. Even if the corre-
spondence (an) 7→ t(an)(T) is monotone decreasing (with respect to inclusion), in many
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cases (for example consider any q-bounded arithmetic sequence) the subgroup t(an)(T)
is rather small, even if the sequence (an) is not too dense (any arithmetic sequence is a
geometric progression, so has exponential growth). This suggests that asking anx → 0
maybe somewhat too restrictive. A very natural instinct should be to consider modes of
convergence which are more general than the notion of usual convergence and here the
idea of natural density came into picture, as motivated by the above mentioned observa-
tion, Dikranjan, Das and Bose [38] introduced the notion of statistically characterized
subgroups of T by relaxing the condition anx→ 0 with the condition anx→ 0 statisti-
cally.

Definition 1.3.1. [38] For a sequence of integers (an) the subgroup

ts(an)(T) := {x ∈ T : anx→ 0 statistically in T}

of T is called a statistically characterized (shortly, an s-characterized) (by (an)) sub-
group of T.

Definition 1.3.2. Let (an) be a sequence of integers. An element x ∈ T is called topo-
logically s-torsion if x ∈ ts(an)(T).

In [38], it was observed that the topologically s-torsion elements of T form a proper
Borel subgroup of T of cardinality c for any arithmetic sequence (an).

In [19] another attempt was made to generate nice subgroups of T using certain kinds
of density functions when the notion of natural density of order α was used to generate
corresponding characterized subgroups.

Definition 1.3.3. [19] For a sequence of integers (an) the subgroup

tα(an)(T) := {x ∈ T : anx→ 0 α-statistically in T}

of T is called an α-statistically characterized (shortly, an α-characterized) (by (an))
subgroup of T.

In [19, 38] these subgroups were studied in great details. In fact it was seen that
they indeed generate, for a given arithmetic sequence (an), new nontrivial subgroups
different from t(an)(T) as well as ts(an)(T).

1.4 Main results and Contribution
This thesis contains seven chapters. The first chapter is the Introduction and the last
chapter (i.e., Chapter 7) is devoted to open problems and future work where Chapter 2
to Chapter 6 includes the main contributions. Also, we divide this thesis into three parts.
The first part consists of a single chapter namely Chapter 2 where we have discussed
several modes of convergence and corresponding ideals with particular attention to the
modular simple density ideal. The second part contains three chapters namely Chapter
3, Chapter 4 and Chapter 5 where various generalized characterized subgroups are in-
vestigated in great details. The third part consists of two chapters namely Chapter 6 and
Chapter 7 where applications related to generalized characterized subgroups are given.
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Part-I : f g-DENSITY FUNCTIONS AND CORRESPONDING IDE-
ALS
In Chapter 2, we continue our investigation of the ideal Ig(f) from [18]. This chapter
deals with some properties of the ideal Ig(f) and many comparative results between
the ideals Ig(f), Ig and I(f). The first main result regarding the ideal Ig(f) is the
following:

Lemma 1.4.1. For any unbounded modulus function f there exists a strictly increasing
unbounded modulus function f ′ such that for any g ∈ G, Ig(f) = Ig(f ′) and f ′(n) ≤
f(n) for all n ∈ N.

Due to this lemma, rather considering f to be an unbounded modulus function, with-
out loss of any generality one can additionally consider f to be a strictly increasing open
continuous bijection. Using this strong property of the modulus function f , in our next
result we are able to construct a chain of ideals between Fin and I(f) which plays
key role to generate an uncountable tower of Borel subgroups between corresponding
generalized characterized subgroups.

Theorem 1.4.2. For any unbounded modulus function f there exists a G0 = {gα ∈ G :
α ∈ (0, 1)} ⊆ G such that the followings hold:

(a) Igα(f) ( Igβ(f) whenever α < β, α, β ∈ (0, 1).

(b)
⋂

α∈(0,1)
Igα(f) ) Fin.

(c)
⋃

α∈(0,1)
Igα(f) ( I(f).

Our next result is the most important observation regarding the ideals Ig(f) in this
chapter (which was left out in [18]) where we show that there exists an antichain of
cardinality c of such ideals.

Theorem 1.4.3. For any two unbounded modulus functions f1, f2, there exists a family
G0 ⊆ G of cardinality c such that Ig(fi) is incomparable with I(fj) for each g ∈ G0

and i, j ∈ {1, 2}. Also Ig1(fi), Ig2(fj) are incomparable for i, j ∈ {1, 2} and any two
distinct g1, g2 ∈ G0.

Part-II : GENERALIZED CHARACTERIZED SUBGROUPS
In Chapter 3, we provide a complete characterization of topologically s-torsion as well
as topologically α-torsion elements of T for a general arithmetic sequence.

Theorem 1.4.4. Let, (an) be an arithmetic sequence and x ∈ [0, 1). Then x is a topo-
logical α-torsion element (i.e. x ∈ tα(an)(T)) if and only if either dα(supp(x)) = 0 or if
dα(supp(x)) > 0, then for all A ⊆ N with dα(A) > 0 the following holds:

(a) If A is q-bounded, then:

5



(a1) If A ⊆α supp(x), then A + 1 ⊆α supp(x), A ⊆α suppq(x) and there exists
A′ ⊆ A with dα(A \ A′) = 0 such that lim

n∈A′
cn+1+1
qn+1

= 1 in R.

Moreover, if A+ 1 is q-bounded, then A+ 1 ⊆α suppq(x).

(a2) If dα(A ∩ supp(x)) = 0, then there exists A′ ⊆ A with dα(A \ A′) = 0 such
that lim

n∈A′
cn+1

qn+1
= 0 in R.

Moreover, if A+ 1 is q-bounded, then dα((A+ 1) ∩ supp(x)) = 0 as well.

(b) If A is q-divergent, then lim
n∈B

ϕ( cn
qn

) = 0 for some B ⊆ A with dα(A \B) = 0.

Due to complex nature of the above theorem sometimes it is not helpful to use this
characterization to determine whether an element x ∈ T is a topologically α-torsion or
not. In other words, for some sequences (α-splitting sequence) one can obtain simpler
characterizations of these elements.

Theorem 1.4.5. Let (an) be an arithmetic sequence and x ∈ [0, 1) has canonical repre-
sentation (3.1). If the sequence of ratios (qn) has the α-splitting property, then ϕ(x) is a
topological α-torsion element i.e. ϕ(x) ∈ tα(an)(T) if and only if the following conditions
hold:

(i) BS(x) + 1 ⊆α supp(x), BS(x) ⊆α suppq(x), and if dα(BS(x)) > 0 then
lim

n∈BS1 (x)

cn+1+1
qn+1

= 1 in R, where B1 ⊆ B with dα(B \B1) = 0.

(ii) If dα(BN(x)) > 0 then lim
n∈BN1 (x)

cn+1

qn+1
= 0 in R, whereB1 ⊆ B with dα(B\B1) = 0.

(iii) If dα(DS(x)) > 0 then lim
n∈DS1 (x)

ϕ

(
cn
qn

)
= 0, where D1 ⊆ D with dα(D \D1) = 0.

For notations and terminology we refer to Section 3.4.

In Chapter 4, using the notion of modular simple density function we define the
f g-characterized subgroups of T. Now it is easy to observe that the f g-characterized
subgroups generalize all such notion of generalized characterized subgroups that exist
in the literature. Consequently not only the main results of [38] and [19] follow as
special cases of our results but at the same time, the questions about simple density
and f -density are resolved. Our next results show that the f g-characterized subgroups
indeed form new nontrivial Borel subgroups of T.

Theorem 1.4.6. For any sequence of integers (an), tf,g(an)
(T) is an Fσδ (hence, Borel)

subgroup of T containing t(an)(T).

Theorem 1.4.7. For any arithmetic sequence (an), we have |tf,g(an)
(T)| = c.

Theorem 1.4.8. tf,g(an)
(T) 6= t(an)(T) for any arithmetic sequence (an).

A complete characterization of elements of tf,g(an)
(T) is not described in this chapter

(which will be given in the next chapter in a more general setting). Next we provide a
sufficient condition in this direction.
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Theorem 1.4.9. Let (an) be an arithmetic sequence and x ∈ T. If dfg (supp(x)) = 0,
then x ∈ tf,g(an)

(T).

After that we focus on the fact that whether this newly obtained characterized sub-
groups are really new compared to already investigated s-characterized or α-characterized
subgroups of T. Thanks to our next two theorems which show that for suitable modu-
lus function f and weight function g it is indeed possible to construct new generalized
characterized subgroups.

Theorem 1.4.10. For any unbounded modulus function f , there exists g ∈ G such that
tf,g(an)

(T) ( tα(an)(T) and tf,g(an)
(T) ( ts(an)(T).

Theorem 1.4.11. There exists an unbounded modulus function f such that for any g ∈
G, tf,g(an)

(T) 6= tα(an)(T) and tf,g(an)
(T) 6= ts(an)(T).

Finally in our next theorem we construct an uncountable tower of generalized char-
acterized subgroups which subsequently gives the solution of Problem 2.15 [19].

Theorem 1.4.12. For each arithmetic sequence (an) and for any unbounded modulus
function f there exists a family {Bα : α ∈ (0, 1)} of Borel subgroups of T such that the
following statements hold:

(i) Each Bα is f gα-characterized by the same arithmetic sequence (an).

(ii) |Bα| = c for all α ∈ (0, 1).

(iii) Bα ( Bβ whenever α < β for all α, β ∈ (0, 1).

(iv) For every α ∈ (0, 1), the group Bα properly contains the characterized subgroup
t(an)(T).

(v) For every α ∈ (0, 1), the group Bα is properly contained in the f -characterized
subgroup tf(an)(T).

(vi) Further
⋂

α∈(0,1)
Bα ) t(an)(T) and

⋃
α∈(0,1)

Bα ( tf(an)(T).

In Chapter 5, we provide a complete characterization of topologically I-torsion el-
ements of T for a general arithmetic sequence and for a fairly large class of ideals,
namely, all translation invariant analytic P -ideals. In particular our next theorem an-
swers the open problem [38, Problem 6.10.] in the most general form.

Theorem 1.4.13. (see also [41, Theorem 2.3]) Let x ∈ T and I ∈ =. Then x is a
topologically I-torsion element (i.e., x ∈ tI(an)(T)) if and only if either supp(x) ∈ I or
if supp(x) ∈ I+, then for all A ⊆ N with A ∈ I+ the following holds:

(a) If A is q-bounded, then:

(a1) If A ⊆I supp(x), then A + 1 ⊆I supp(x), A ⊆I suppq(x) and there exists
A′ ⊆I A such that lim

n∈A′
cn+1+1
qn+1

= 1 in R.

Moreover, if A+ 1 is q-bounded, then A+ 1 ⊆I suppq(x).
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(a2) If A ∩ supp(x) ∈ I, then there exists A′ ⊆I A such that lim
n∈A′

cn+1

qn+1
= 0 in R.

Moreover, if A+ 1 is q-bounded, then (A+ 1) ∩ supp(x) ∈ I as well.

(b) If A is q-divergent, then lim
n∈B

cn
qn

= 0 in T for some B ⊆I A.

After that our next two corollaries show that for any arithmetic sequence (an) and
0 < α1 < α2 < 1 we must have tα1

(an)
(T) ( tα2

(an)
(T) which solves Problem 2.14. posed

in [19] in the most general form.

Corollary 1.4.14. For I ∈ = and a subset B ⊂ N there exists x ∈ T with supp(x) ⊆ B
such that x 6∈ tI(an)(T) if and only if B ∈ I+.

Corollary 1.4.15. For any two I1, I2 ∈ =, if I1 ( I2 then tI1(an)(T) ( tI2(an)(T).

Part-III : APPLICATIONS AND OPEN QUESTIONS
In Chapter 6, we show that there are statistically characterized subgroups which can’t be
characterized by any sequence of integers establishing the “novelty” of the notion which
was missing when the notion of statistically characterized subgroups was introduced in
[38].

Theorem 1.4.16. For any arithmetic sequence (un), the subgroup ts(un)(T) is not an
A-set.

This naturally paves the way for a new class of sets generated by the class of sta-
tistically characterized subgroups as basis namely statistical Arbault sets. These sets
are introduced in Section 6.3 and some basic properties are established. Finally the
last section is devoted to the comparison of this new class with the existing classes of
trigonometric thin sets. Some of the main comparison results are presented below (for
notations see Chapter 6).

Theorem 1.4.17. sA ∩N * A.

Theorem 1.4.18. sA * N ∪A.

Chapter 7 is the last chapter of this thesis which contains final comments and open
questions regarding generalized characterized subgroups and statistical Arbault sets.
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Chapter 2

MODULAR SIMPLE DENSITY
IDEAL∗

2.1 Introduction
In this chapter we primarily continue the investigation of the ideal Ig(f) from [18] and
present several new observations all of which have interesting applications in Chapter 4.
To get an overview on the general development of the ideal Ig(f) we refer to the Section
0.1 of Preface. Before proceeding further we recall some basic definitions related to
ideals on N.

In general ideals generated by some kind of density function are called density ideals.
However here we will use the following definition in the sense of Farah ([50], Definition
1.13.1, p 42). For a positive measure µ defined on subsets of N, the support of µ is the
set {n ∈ N : µ({n}) > 0}. We say that an ideal I on N is a density ideal if

I = Exh(ϕ) = {A ⊂ N : lim
n→∞

ϕ(A \ [1, n]) = 0}

where ϕ := supi∈N µi and µi are positive measures with pairwise disjoint supports being
finite subsets of N. We then say that I is a density ideal generated by the sequence
(µi)i∈N (note that the set Exh(ϕ) may not be an ideal in general).

The modulus functions are defined as functions f : [0,∞) → [0,∞) which satisfy
the following properties.

(i) f(x) = 0⇔ x = 0

(ii) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ (0,∞) [Triangle inequality]

(iii) f is non-decreasing

(iv) f is right continuous at 0.

Note that the conditions (i)-(iv) imply the continuity of the modulus functions which
will be useful in certain proofs. Some examples of such modulus functions [2] are given
by

∗Content of this chapter has been published in “Indagationes Mathematicae and Quaestiones
Mathematicae”.
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1. f(x) = x, x ∈ [0,∞).

2. f(x) = x
1+x

, x ∈ [0,∞).

3. For any α ∈ (0, 1), f(x) = xα for x ∈ [0,∞).

4. f(x) = log(1 + x), x ∈ [0,∞).

Now one can easily observe that all the notions of density functions, precisely, nat-
ural density d [24], natural density dα of order α [13], their generalization with respect
to weight function g, dg [6] and natural density with respect to an unbounded modulus
function f , f -density df [2] are special cases of “f density of weight g”, i.e., dfg [18].
Therefore,

• for f(x) = x and g(n) = n the moduler simple density ideal Ig(f) coincides with
the ideal Id;

• for f(x) = x and g(n) = nα the moduler simple density ideal Ig(f) coincides
with the ideal Idα;

• for any unbounded modulus function f and g(n) = n the moduler simple density
ideal Ig(f) coincides with the ideal I(f);

• for f(x) = x and any weight function gG the moduler simple density ideal Ig(f)
coincides with the ideal Ig.

Let us now recall two main observations from [18] which provide the motivation for
further investigation of the ideal Ig(f).

Proposition 2.1.1. [18] For a modulus function f and g ∈ G, the ideal Zg(f) is a
P -ideal. In fact Zg(f) is equal to Exh(ϕ) where

ϕ(A) = sup
n∈ω

f(|A ∩ [1, n])

f(g(n))
for A ⊂ ω,

and ϕ is a lower semicontinuous submeasure on ω.

Proposition 2.1.2. [18] There exists an unbounded modulus function f and g′ ∈ G such
that Ig′(f) 6= Ig for each g ∈ G.

So the class Ig(f) properly contains the class Ig. As a consequence the properties of
the class Ig does not hold necessarily for the class Ig(f). Another important observation
is that one can actually generate uncountably many analytic P -ideals using different
choice of weight functions and modulus functions.

2.2 Certain properties of the ideal Ig(f )
We start with the observation that for any unbounded modulus function f and g ∈ G,
the generated ideal Ig(f) contains at least one infinite subset of N. From the next result
mentioned below one can easily verify that Ig(f) ) Fin.
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Proposition 2.2.1. For any unbounded modulus function f and g ∈ G, Ig(f) ) Fin.

Proof. Let f be an unbounded modulus function and let g ∈ G. Further let us define
a sequence (nk) inductively such that n0 := 1 and nk+1 := min{n ∈ N : f(g(n)) ≥
2f(g(nk))}. Then from [18, Lemma 3.6], we have

Ig(f) = {A ⊂ N : lim
k→∞

f(|A ∩ [nk, nk+1)|)
f(g(nk))

= 0}.

Now it is obvious that Ig(f) ⊇ Fin. Set A = {mk ∈ N : mk ∈ [nk, nk+1)} and note
that

dfg (A) = lim
k→∞

f(|A ∩ [nk, nk+1)|)
f(g(nk))

= lim
k→∞

f(1)

f(g(nk))
= 0.

Therefore there always exists an infinite A ⊂ N such that A ∈ Ig(f) \ Fin.

Proposition 2.2.2. For any unbounded modulus function f and for any g ∈ G, the ideal
Ig(f) is tall or dense.

Proof. Let f be an unbounded modulus function and g ∈ G. Then, from [18, Theorem
3.7] the density ideal Ig(f) is generated by the sequence of measures (µk) given by

µk(A) =
f(|A ∩ [nk, nk+1)|)

f(g(nk))
.

Therefore

lim
k→∞

sup
i∈N

µk({i}) = lim
k→∞

sup
i∈N

f(|{i} ∩ [nk, nk+1)|)
f(g(nk))

= lim
k→∞

f(1)

f(g(nk))
= 0.

Thus, from [6, Proposition 3.4], it follows that the density ideal Ig(f) is tall.

Let F denote the set of all unbounded modulus functions. We define

F = {f ∈ F : f is strictly increasing}.

Our next proposition is a modified version of Proposition 2.3 [18] whose proof is omit-
ted.

Proposition 2.2.3. If f, f ′ ∈ F are such that there exist c1, c2 > 0, k ∈ N for which
c1 ≤ f(x)/f ′(x) ≤ c2 for all x ≥ k then Ig(f) = Ig(f ′) for every g ∈ G.

Lemma 2.2.4. For any f ∈ F there exists an f ′ ∈ F such that for any g ∈ G, Ig(f) =
Ig(f ′) and f ′(n) ≤ f(n) for all n ∈ N.

Proof. Let f ∈ F . We construct a sequence (nk) recursively in the following way:

n1 = 1 and nk+1 = min{n ∈ N : f(n) > f(nk)} for all k ∈ N.

Note that if r1, r2 ∈ [nk, nk+1 − 1] then f(r1) = f(r2) and f(nk+1) > f(nk) for all
k ∈ N. Now we define f ′ : [0,∞)→ [0,∞) by

f ′(x) = f(nk − 1) + (x− nk + 1) · f(nk+1 − 1)− f(nk − 1)

nk+1 − nk
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when x ∈ [nk − 1, nk+1 − 1). From the construction it is easy to check that f ′ is a
strictly increasing modulus function (i.e. f ′ ∈ F) such that f ′(n) ≤ f(n) for all n ∈ N
and f ′(nk − 1) = f(nk − 1) for all k ∈ N.

Now for all x ≥ n2 we have x ∈ [nk+1 − 1, nk+2 − 1) for some k ∈ N. Therefore,
we can see that

f(x)

f ′(x)
≤ f(nk+2 − 1)

f ′(nk+1 − 1)
=

f(nk+1)

f(nk+1 − 1)
≤ f(nk+1 − 1) + f(1)

f(nk+1 − 1)
≤ 1 +

f(1)

f(nk)
≤ 2,

and at the same time we have

f(x)

f ′(x)
≥ f(nk+1 − 1)

f ′(nk+2 − 1)
=

f(nk+1 − 1)

f(nk+2 − 1)
=
f(nk+1 − 1)

f(nk+1)

≥ f(nk+1)− f(1)

f(nk+1)

≥ 1− f(1)

f(nk+1)
≥ 1− f(1)

f(n2)
.

In view of Proposition 2.2.3 it then follows that for any g ∈ G, Ig(f) = Ig(f ′) as
desired.

The above lemma is the most powerful result in this section. Due to this lemma,
rather considering f to be an unbounded modulus function, without loss of any general-
ity one can additionally consider f to be a strictly increasing homeomorphism.

Remark 2.2.5. For any f ∈ F the following conditions hold.
(1) f(n1) = f(n2)⇒ n1 = n2 i.e. f is injective.
(2) f is continuous over (0,∞).
(3) f(n)→∞ as n→∞.
(4) f is surjective.
(5) There exists a strictly increasing continuous function h : [0,∞)→ [0,∞) such that
f(h(x)) = x = h(f(x)).
(6) h(x+ y) ≥ h(x) + h(y) for all x, y ∈ (0,∞).

2.3 Some comparative results concerning the ideal Ig(f )
In [18] comparisons were made between the ideals Ig and Ig(f) showing that for suit-
able choice of the modulus function f , Ig 6= Ig(f) (see Proposition 2.5 and Remark
2.6 [18]). However no comparative study was carried out between the ideals I(f) and
Ig(f). So in this section our particular interest is the question whether there are instances
where these two ideals would be different.

Lemma 2.3.1. [18, Lemma 3.3] Let f be an unbounded modulus function and let g ∈ G
be such that f(n)

f(g(n))
→ ∞. Then there exists a set A ⊂ N such that the sequence

(f(|A∩[1,n]|)
f(g(n))

) is bounded but not convergent to 0.
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Lemma 2.3.2. [18, Lemma 3.4] If f1 and f2 are two modulus functions and g1, g2 ∈ G
are such that there exist c1, c2 > 0, k ∈ N for which f1(x)

f2(x)
≥ c1 for all x 6= 0 and

f1(g1(n))
f2(g2(n))

≤ c2 for all n ≥ k, then Ig1(f1) ⊆ Ig2(f2).

Proposition 2.3.3. Let f be an unbounded modulus function. If g1, g2 ∈ G are such that
f(n)

f(g2(n))
≥ a > 0 and f(g2(n))

f(g1(n))
→∞ then Ig1(f) ( Ig2(f).

Proof. Taking f1 = f2 = f in Lemma 2.3.2, we get Ig1(f) ⊆ Ig2(f). We choose a
function g3 : N → [0,∞] in such a way that f(g3(n)) :=

√
f(g1(n)) · f(g2(n)) holds

for all n ∈ N. The existence of such a function g3 is assured as also this function is
well-defined as the function f is non-decreasing. Now

lim
n→∞

f(g1(n))

f(g3(n))
= lim

n→∞

√
f(g1(n))

f(g2(n))
= lim

n→∞

f(g3(n))

f(g2(n))
= 0. (2.1)

Since f(n)
f(g2(n))

≥ a for some a ∈ (0,∞) and f(g2(n))
f(g1(n))

→∞, we have

f(n)

f(g1(n))
=

f(n)

f(g2(n))
· f(g2(n))

f(g1(n))
→∞

⇒ f(n)

f(g3(n))
=

√
f(n)2

f(g1(n))f(g2(n))
→∞.

Therefore, from Lemma 2.3.1, there exists A ⊂ N such that (f(|A∩[1,n]|)
f(g3(n))

)n∈N is bounded
but not convergent to zero. We claim that A ∈ Ig2(f) \ Ig1(f). Indeed from (2.1) we
have

f(|A ∩ [1, n]|)
f(g2(n))

=
f(|A ∩ [1, n]|)
f(g3(n))

· f(g3(n))

f(g2(n))
→ 0

whereas
f(|A ∩ [1, n]|)
f(g1(n))

=
f(|A ∩ [1, n]|)
f(g3(n))

· f(g3(n))

f(g1(n))
6→ 0.

This shows that A ∈ Ig2(f) \ Ig1(f).

Corollary 2.3.4. For any unbounded modulus function f and g ∈ G if f(n)/f(g(n))→
∞ then Ig(f) ( I(f).

Proof. Taking g2(n) = n for all n ∈ N and g1 = g in Proposition 2.3.3, we obtain
Ig(f) ( I(f).

Proposition 2.3.5. For any unbounded modulus function f , there exists g ∈ G such that
I(f) ( Ig(f).

Proof. Let f be an unbounded modulus function. Since f is non-decreasing, there exists
a strictly increasing sequence of natural numbers (an) such that f(an+1) > nf(an). Set
bn = a4n−2 and dn = a4n for all n ∈ N. Now we define a function g in the following
way

g(n) =

{
dk for bk < n ≤ dk

n for dk < n ≤ bk+1.
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From the construction, it is evident that g is non-decreasing. Since g(n) → ∞ and
dk
g(dk)

= 1 for all k ∈ N we have n
g(n)

9 0 and therefore g ∈ G. Note that g(n) ≥ n

for all n ∈ N. As f is non-decreasing, f(g(n)) ≥ f(n) i.e. f(n)
f(g(n))

≤ 1 for all n ∈ N.
Therefore, in view of Lemma 2.3.2, we have I(f) ⊆ Ig(f).

Let us define A =
∞⋃
k=1

(bk, ck] where ck = a4k−1 < dk. Consider any m ∈ N and

set nm = bm. Now for any n > nm we have either n ∈ (bm0 , cm0 ] or n ∈ (cm0 , dm0 ] or
n ∈ (dm0 , bm0+1] for some natural number m0 ≥ m.
For n ∈ (bm0 , cm0 ], we have

f(|A ∩ [1, n]|)
f(g(n))

≤ f(|A ∩ [1, cm0 ]|)
f(dm0)

≤ f(cm0)

f(dm0)
<

1

4m0 − 1
≤ 1

m
.

For n ∈ (cm0 , dm0 ], we have

f(|A ∩ [1, n]|)
f(g(n))

≤ f(|A ∩ [1, dm0 ]|)
f(dm0)

=
f(|A ∩ [1, cm0 ]|)

f(dm0)

≤ f(cm0)

f(dm0)
<

1

4m0 − 1
≤ 1

m
.

And, for n ∈ (dm0 , bm0+1] we also have

f(|A ∩ [1, n]|)
f(g(n))

≤ f(|A ∩ [1, bm0+1]|)
f(n)

=
f(|A ∩ [1, cm0 ]|)

f(n)

≤ f(cm0)

f(dm0)
<

1

4m0 − 1
≤ 1

m
.

As a result we can conclude that f(|A∩[1,n]|)
f(g(n))

< 1
m

for all n > nm. Since m ∈ N was

chosen arbitrarily we obtain f(|A∩[1,n]|)
f(g(n))

→ 0 i.e. A ∈ Ig(f). But A 6∈ I(f), because for
all k ∈ N, observe that

f(|A ∩ [1, ck]|)
f(ck)

≥ f(ck − bk)
f(ck)

≥ f(ck)− f(bk)

f(ck)
→ 1 (since, lim

k→∞
f(a4k−2)

f(a4k−1)
= 0).

Thus we conclude that I(f) ( Ig(f).

Remark 2.3.6. For each A = {n1 < n2 < . . . < nk < . . .} ⊆ N we can define

gA(n) =

{
dnk for bnk < n ≤ dnk
n otherwise

.

It is easy to verify that gA ∈ G and I(f) ( IgA(f). Therefore, there exists c many
choice of g ∈ G for which I(f) ( Ig(f).

Our next theorem provides a chain of ideals between Fin and I(f) for any un-
bounded modulus function f .

Theorem 2.3.7. For any f ∈ F there exists a G0 = {gα ∈ G : α ∈ (0, 1)} ⊆ G such
that the followings hold:
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(a) Igα(f) ( Igβ(f) whenever α < β, α, β ∈ (0, 1).

(b)
⋂

α∈(0,1)
Igα(f) ) Fin.

(c)
⋃

α∈(0,1)
Igα(f) ( I(f).

Proof. Let f ∈ F. In view of Remark 2.2.5 (5), there exists a strictly increasing con-
tinuous function h : [0,∞) → [0,∞) such that f(h(x)) = x = h(f(x)). Now for any
α ∈ (0, 1) we define gα : N→ [0,∞) by

gα(n) = h(rα) when bh(r)c+ 1 ≤ n < bh(r + 1)c+ 1 for some r ∈ N.

Since |h(r + 1) − h(r)| ≥ 1, the intervals [bh(r)c + 1, bh(r + 1)c + 1) are well de-
fined. Therefore gα is well defined for each α ∈ (0, 1). Clearly gα is nondecreasing
and lim

n→∞
gα(n) = ∞. Now, observe that gα(n) ≤ n for all n ∈ N which implies

lim
n→∞

n
gα(n)

9 0. So we conclude that gα ∈ G for each α ∈ (0, 1) and denote the set of
all such functions gα by G0.

(a) Note that for any n ∈ N, ∃ a r ∈ N such that n ∈ [bh(r)c + 1, bh(r + 1)c + 1).
Subsequently for any β ∈ (0, 1)

lim
n→∞

f(n)

f(gβ(n))
≥ lim

r→∞

f(h(r))

f(h(rβ))
= lim

r→∞

r

rβ
=∞ (2.2)

and whenever α < β, we have

lim
n→∞

f(gβ(n))

f(gα(n))
= lim

r→∞

f(h(rβ))

f(h(rα))
= lim

r→∞

rβ

rα
=∞.

Thus in view of Proposition 2.3.3 it follows that Igα(f) ( Igβ(f) whenever α <
β.

(b) It is obvious that Fin ⊆
⋂

α∈(0,1)
Igα(f). Consider the set A = {bh(2n)c + 1 : n ∈

N}. Now for any α ∈ (0, 1) we have

dfgα(A) = lim
n→∞

f(|A ∩ [1, n])

f(gα(n))
= lim

n→∞

f(n)

f(h(2αn))
≤ lim

n→∞

n

2αn
→ 0.

As this is true for all α ∈ (0, 1), A ∈
⋂

α∈(0,1)
Igα(f). As A is infinite, we can

conclude that Fin (
⋂

α∈(0,1)
Igα(f).

(c) From equation (2.2) and Corollary 2.3.4, we have Igα(f) ⊆ I(f) for all α ∈
(0, 1) i.e.

⋃
α∈(0,1)

Igα(f) ⊆ I(f).

Now let us define B = {bh(bf(n) log f(n)c)c+ 1 : n ∈ N}. Observe that for any
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α ∈ (0, 1) we have

dfgα(B) = lim
n→∞

f(|B ∩ [1, n])

f(gα(n))
= lim

n→∞

f(n)

f(gα(bh(bf(n) log f(n)c)c+ 1))

= lim
n→∞

f(n)

f(h((bf(n) log f(n)c)α))

≥ lim
n→∞

f(n)

f(h((f(n) log f(n))α))

= lim
n→∞

f(n)

(f(n) log f(n))α
(∞∞ form)

= (
1− α
α

) · lim
n→∞

(f(n) log f(n))(1−α)

= ∞,

and

df (B) = lim
n→∞

f(|B ∩ [1, n])

f(n)
= lim

n→∞

f(n)

f(bh(bf(n) log f(n)c)c+ 1)

≤ lim
n→∞

f(n)

f(h(bf(n) log f(n)c))

= lim
n→∞

f(n)

bf(n) log f(n)c

≤ lim
n→∞

f(n)

f(n) log f(n)− 1

= lim
n→∞

1

log f(n)− 1
f(n)

= 0.

Therefore B 6∈
⋃

α∈(0,1)
Igα(f) but B ∈ I(f). It now immediately follows that⋃

α∈(0,1)
Igα(f) ( I(f).

We end this section with some more comparative results which are interesting in
their own right and also come to our use in Chapter 4. The following lemma plays the
most vital role hereafter.

Lemma 2.3.8. For any two unbounded modulus functions f1, f2, there exists a strictly
increasing sequence (an) of natural numbers such that f1(an+1)

f1(an)
> n, f2(an+1)

f2(an)
> n and

an+1 > 2an.

Proof. Set a1=1. Choose a2 ∈ N in such a way that a2 > 2a1 while f1(a2) >
f1(1), f1(a2) > f2(1) and f2(a2) > f1(1), f2(a2) > f2(1) are satisfied. Now induc-
tively we define

an+1 = {r ∈ N : min{f1(r), f2(r)} > nmax{f1(an), f2(an)} and r > 2an}
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for all n ∈ N. Since f1(n) → ∞ and f2(n) → ∞, so an+1 is well defined for all
n ∈ N. From the construction, it is clear that (an) is strictly increasing and f1(an+1)

f1(an)
> n,

f2(an+1)
f2(an)

> n and an+1 > 2an for all n ∈ N.

Our next result is the most important observation regarding the ideals Ig(f) in this
section (which was left out in [18]). Here we show that there exists an antichain of
cardinality c of such ideals in line of Theorem 2.7 [6]. In order to prove the result, we
need the following: Two sets P,Q ⊆ N are said to be almost disjoint if P ∩Q is finite.
However [26, Theorem 5.35] assures the existence of a family J of infinite pairwise
almost disjoint subsets of N with |J | = c .

Theorem 2.3.9. For any two unbounded modulus functions f1, f2, there exists a family
G0 ⊆ G of cardinality c such that Ig(fi) is incomparable with I(fj) for each g ∈ G0

and i, j ∈ {1, 2}. Also Ig1(fi), Ig2(fj) are incomparable for i, j ∈ {1, 2} and any two
distinct g1, g2 ∈ G0.

Proof. Let f1, f2 be two unbounded modulus functions. In view of Lemma 2.3.8, we
can find a strictly increasing sequence of natural numbers (an) such that fi(an+1)

fi(an)
> n for

i ∈ {1, 2} and an+1 > 2an. Set bn = a4n−2 and dn = a4n for all n ∈ N. Now for any
P = {p1 < p2 < . . . < pk < . . .} ∈ J , we define

gP (n) =

{
dpk for bpk < n ≤ bpk+1

n otherwise.

Note that gP ∈ G. Consider the set

AP =
∞⋃
k=1

(bpk , c
′
pk

] where, c′pk = a4pk−1 < dpk .

We take any m ∈ N and set nm = bpm . Now for any n > nm we have either n ∈
(bpm0

, bpm0+1] or n ∈ (bpm0+1, bp(m0+1)
] for some natural number m0 ≥ m.

For n ∈ (bpm0
, bpm0+1] and i ∈ {1, 2}, we have

fi(|AP ∩ [1, n]|)
fi(gP (n))

≤
fi(|AP ∩ [1, bpm0+1]|)

fi(dpm0
)

=
fi(|AP ∩ [1, c′pm0

]|)
fi(dpm0

)

≤
fi(c

′
pm0

)

fi(dpm0
)
<

1

4m0 − 1
≤ 1

m
.

On the other hand, for n ∈ (bpm0+1, bp(m0+1)
] and i ∈ {1, 2} we also have

fi(|AP ∩ [1, n]|)
fi(gP (n))

≤
fi(|AP ∩ [1, bp(m0+1)

]|)
fi(n)

=
fi(|AP ∩ [1, c′pm0

]|)
fi(n)

≤
fi(c

′
pm0

)

fi(dpm0
)
<

1

4m0 − 1
≤ 1

m
.

As a result we can conclude that fi(|AP∩[1,n]|)
fi(gP (n))

< 1
m

for all n > nm. Since m ∈ N was
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chosen arbitrarily we obtain fi(|AP∩[1,n]|)
fi(gP (n))

→ 0, i.e., AP ∈ IgP (fi) for i ∈ {1, 2}. But
AP 6∈ I(fj) for j ∈ {1, 2}, because for all k ∈ N, observe that

fj(|AP ∩ [1, c′pk ]|)
fj(c′pk)

≥
fj(c

′
pk
− bpk)

fj(c′pk)

≥
fj(c

′
pk

)− fj(bpk)
fj(c′pk)

→ 1 (since, lim
k→∞

fj(a4pk−2)

fj(a4pk−1)
= 0).

Thus we conclude that AP ∈ IgP (fi) \ I(fj) where i, j ∈ {1, 2}.
Now consider the set

BP =
∞⋃
k=1

(cpk+1, bpk+1] where, cpk+1 = bpk+1 − dpk .

Observe that cpk+1 = bpk+1 − dpk = a4pk+2 − a4pk > 3a4pk > dpk . We take any
m ∈ N and set nm = bpm . Now for any n > nm we have either n ∈ (bpm0

, cpm0+1] or
n ∈ (cpm0+1, bp(m0+1)

] for some natural number m0 ≥ m.
For n ∈ (cpm0+1, bp(m0+1)

] and j ∈ {1, 2}, we have

fj(|BP ∩ [1, n]|)
fj(n)

≤
fj(|BP ∩ [1, bp(m0+1)

]|)
fj(cpm0+1)

=
fj(|BP ∩ [1, bpm0+1]|)

fj(cpm0+1)

≤
fj(pm0dpm0

)

fj(cpm0+1)
≤

pm0fj(dpm0
)

fj(a4pm0+2 − a4pm0
)

<
fj(a4pm0+1)

fj(a4pm0+2)− fj(a4pm0
)
≤ 1

4pm0

≤ 1

4m0

≤ 1

m

On the other hand, for n ∈ (bpm0
, cpm0+1] and j ∈ {1, 2} we also have

fj(|BP ∩ [1, n]|)
fj(n)

≤
fj(|BP ∩ [1, cpm0+1]|)

fj(bpm0
)

=
fj(|BP ∩ [1, bp(m0−1)+1]|)

fj(bpm0
)

≤
fj(p(m0−1)dp(m0−1)

)

fj(bpm0
)

≤
p(m0−1)fj(dp(m0−1)

)

fj(a4pm0−2)

<
fj(a4p(m0−1)+1)

fj(a4pm0−2)
≤
fj(a4pm0−3)

fj(a4pm0−2)
≤ 1

4m0 − 3
≤ 1

m

As a result we can conclude that fj(|BP∩[1,n]|)
fj(gP (n))

< 1
m

for all n > nm. Since m ∈ N was

chosen arbitrarily we obtain fj(|BP∩[1,n]|)
fj(gP (n))

→ 0 i.e. BP ∈ I(fj) where j ∈ {1, 2}. But
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BP 6∈ IgP (fi) for i ∈ {1, 2}, since for all k ∈ N we must have

fi(|BP ∩ [1, bpk+1]|)
fi(gP (bpk+1))

≥ fi(bpk+1 − cpk+1)

fi(dpk)
=
fi(dpk)

fi(dpk)
= 1.

Thus BP ∈ I(fj) \ IgP (fi) where i, j ∈ {1, 2}.
Let us next define G0 = {gP ∈ G : P ∈ J }. It has already been observed that

Ig(fi) is incomparable with I(fj) for any g ∈ G0 and i, j ∈ {1, 2}. Now, consider any
two distinct sets P = {p1 < p2 < . . . < pk < . . .}, Q = {q1 < q2 < . . . < qk < . . .} ∈
J . We intend to show that IgP (fi), IgQ(fj) are incomparable where i, j ∈ {1, 2}. We
already have AP ∈ IgP (fi) and AQ ∈ IgQ(fj) where i, j ∈ {1, 2} and AQ, gQ are
similarly constructed as AP , gP respectively.

In view of the fact that P,Q are infinite and almost disjoint there exists k0 ∈ N such
that for all k > k0 we have

qj(k) < pk < qj(k)+1

⇒ qj(k) + 1 ≤ pk < qj(k)+1

⇒ bqj(k)+1 ≤ bpk < bqj(k)+1

⇒ bqj(k)+1 ≤ bpk < cpk < bqj(k)+1
.

From the construction of gQ, it follows that gQ(cpk) = cpk and consequently for all
k ∈ N and j ∈ {1, 2} we have,

fj(|AP ∩ [1, cpk ]|)
fj(gQ(cpk))

≥ fj(cpk − bpk)
fj(cpk)

≥ fj(cpk)− fj(bpk)
fj(cpk)

→ 1.

This shows that AP 6∈ IgQ(fj) for j ∈ {1, 2}. Similarly we can also show that AQ 6∈
IgP (fi) for i ∈ {1, 2}. Thus, we can conclude that Ig1(fi) and Ig2(fj) are incomparable
for i, j ∈ {1, 2} and any two distinct g1, g2 ∈ G0.

Corollary 2.3.10. For any unbounded modulus function f , there exists g ∈ G such that
Ig(f) is not comparable with I(f).

Proposition 2.3.11. For any unbounded modulus function f , there exist g1, g2 ∈ G such
that Ig1(f) ( I(f) ( Ig2(f).

Proof. Let f be an unbounded modulus function. Therefore, from Proposition 2.3.5,
there exists a g2 ∈ G such that I(f) ( Ig2(f).

As I(f) 6= Fin, choose a set A = {n1 < n2 < . . . < nk < . . .} ⊆ N such that
A ∈ I(f) (i.e. df (A) = 0). Consequently we have lim

k→∞
f(k)
f(nk)

= 0. Next define,

g1(n) =

{
1 for 1 ≤ n < n1

k for nk ≤ n < nk+1.

It is easy to observe that g1 is non-decreasing while lim
n→∞

n
g1(n)

9 0 follows from the fact
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that nk
g1(nk)

= nk
k
> 1 for all k ∈ N i.e. g1 ∈ G. Note that

lim
n→∞

f(n)

f(g(n))
≥ lim

k→∞

f(nk)

f(k)
=∞.

Hence from Corollary 2.6, we have Ig1(f) ( I(f) and we are done.

2.4 Conclusion
In this chapter we continue our investigation of the ideal Ig(f) in the line of direction of
the article [18]. In Section 2.2, certain properties of these ideals are observed. Among
them the most crucial result is Lemma 2.2.4 which is fundamental to prove most of the
main results in the next section. In [18] the ideal Ig(f) was compared with the ideal
Ig but no comparison was done between the ideals Ig(f) and I(f). In Section 2.3, we
provide many comparison results between all these ideals which will play interesting
role in Chapter 4. Lastly we construct a chain (Theorem 2.3.7) as well as an antichain
(Theorem 2.3.9) of these ideals.
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Part II

GENERALIZED CHARACTERIZED
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Chapter 3

α-CHARACTERIZED SUBGROUPS
OF THE CIRCLE∗

3.1 Introduction
In [19, 38] the s-characterized and α-characterized subgroups were introduced and stud-
ied in great details. In fact it was seen that they indeed generate topologically nice Borel
subgroups of the Circle for any sequence of integers. Also, for a given arithmetic se-
quence (an), the α-characterized subgroups are new nontrivial subgroups different from
t(an)(T) as well as ts(an)(T). To get an overview on these subgroups we refer to the
Section 1.3 of Chapter 1.

Definition 3.1.1. Let (an) be a sequence of integers. An element x ∈ T is called topo-
logically α-torsion if x ∈ tα(an)(T).

The following fact is essential to represent an arbitrary element of T only in terms
of its support.

Fact 3.1.2. [41] For any arithmetic sequence (an) and x ∈ [0, 1), we can build a unique
sequence of integers (cn), where 0 ≤ cn < qn, such that

x =
∞∑
n=1

cn
an

(3.1)

and cn < qn − 1 for infinitely many n.

Proof. For better clarity we recall the construction of the sequence (cn). Consider c1 =
ba1xc, where b c denotes the integer part. Therefore, x− c1

a1
< 1

a1
.

Suppose, c1, c2, . . . , ck are defined for some k ≥ 1 with xk =
k∑

n=1

cn
an

and x−xk < 1
ak

.

Then the (k + 1)-th element is defined as ck+1 = bak+1(x− xk)c.

For x ∈ [0, 1) with canonical representation (3.1), we define

supp(x) = {n ∈ N : cn 6= 0}.
∗Content of this chapter has been published in “Acta Mathematica Hungarica”.

25



And,
suppq(x) = {n ∈ N : cn = qn − 1}.

One can easily observe that suppq(x) ⊆ supp(x).

Remark 3.1.3. For α = 1, the statistical convergence of order α simply coincides with
the usual statistical convergence. For our convenience, instead of considering α ∈
(0, 1), we would take α ∈ (0, 1] from which we can infer that all the results presented in
the next sections hold for both statistical convergence and α-statistical convergence.

In [38] several sufficient conditions are given to show whether an element is topolog-
ically s-torsion or not but a complete characterization of topologically s-torsion element
was missing. So the authors posed the following open problem:

Problem 3.1.4. [38, Problem 6.10.] Let (an) be an arithmetic sequence such that qn > 2
for infinitely many n. Does there exist a characterization of the elements of the subgroup
ts(an)(T) only in terms of the support.

In this chapter we are going to present a complete description of topologically s-
torsion as well as topologically α-torsion elements of T in a single frame (Theorem
3.3.1). And as a consequence we are able to provide a positive answer in the general
case for the next open problem considered in [19].

Problem 3.1.5. [35, Problem 2.14.] For any arithmetic sequence (an) and 0 < α1 <
α2 < 1, is tα1

(an)
(T) ( tα2

(an)
(T)?

Note that, the above problem was answered positively for the arithmetic sequence
(2n) in the very recent paper [34].

3.2 Basic definitions, notations and results
Before proceeding to our main result we present below certain basic definitions, nota-
tions and results which will be needed in the next section.

For two subsets A,B of N, we will write A ⊆α B if dα(A \ B) = 0 and A =α B if
dα(A4B) = 0. The following two characterizations of α-statistical convergence would
be of much help in our investigations. The following observation, though not explicitly
stated anywhere, follows from the fact that Idα = {A ⊂ N : dα(A) = 0} is a P -ideal
[6] and Theorem 3.2 [65].

Theorem 3.2.1. For a sequence of real numbers (xn), xn → x0 α-statistically if and
only if there exists a subset A of N with dα(N \ A) = 0, such that lim

n∈A
xn = x0.

It is known (folklore) that a sequence (xn) converges to ξ ∈ R α-statistically if
and only if for any A ⊆ N with dα(A) > 0, there exists an infinite A′ ⊆ A such that
lim
n∈A′

xn = ξ. We will make use of a similar result repeatedly which is stated below

without any proof.

Lemma 3.2.2. A sequence (xn) converges to ξ ∈ T α-statistically if and only if for any
A ⊆ N with dα(A) > 0, there exists an infinite A′ ⊆ A such that lim

n∈A′
xn = ξ.
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Now we are going to introduce some equations which will be used repeatedly in
our next section. Let (an) be an arithmetic sequence and x ∈ [0, 1) has canonical
representation (3.1). Then we have, for all non-negative integer k,

qn · qn+1 . . . qn+k =
an
an−1

· an+1

an
. . .

an+k
an+k−1

=
an+k
an−1

. (3.2)

Observe that for any natural m > n, we have

m∑
i=n

ci
ai
· an−1 ≤

m∑
i=n

qi − 1

ai
· an−1 = 1− an−1

am
< 1.

Therefore,

{an−1x} =
∞∑
i=n

ci
ai
· an−1 =

(
cn ·

an−1
an

+ cn+1 ·
an−1
an+1

+ . . .

)

=
cn
qn

+
cn+1

qnqn+1

+ . . .+
cn+k

qn · qn+1 . . . qn+k
+

∞∑
i=k+1

cn+i
qn · qn+1 . . . qn+i

. (3.3)

Similarly,

{an+kx} = {(qnqn+1 . . . qn+k)an−1x}

= qn · qn+1 . . . qn+k

(
cn
qn

+ . . .+
∞∑

i=k+1

cn+i
qn · qn+1 . . . qn+i

)

= qn · qn+1 . . . qn+k

∞∑
i=k+1

cn+i
qn · qn+1 . . . qn+i

. (3.4)

From equations (3.4) and equations (3.3), we get

{an−1x} =
cn
qn

+
cn+1

qn · qn+1

+ . . .+
cn+k

qn · qn+1 . . . qn+k
+

{an+kx}
qn · qn+1 . . . qn+k

. (3.5)

For all n ∈ N and k ∈ N ∪ {0}, we define

σn,k =
cn
qn

+
cn+1

qn · qn+1

+ . . .+
cn+k

qn · qn+1 . . . qn+k
. (3.6)

Therefore, equation (3.5) becomes,

{an−1x} = σn,k +
{an+kx}

qn · qn+1 . . . qn+k
. (3.7)

Further putting k = 0 in equation (3.5), we finally obtain

{an−1x} =
cn
qn

+
{anx}
qn

. (3.8)
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Let a = (an) be a given arithmetic sequence. Now for any B ⊆ N with dα(B) > 0
consider

t(aB)(T) = {x ∈ T : lim
n∈B

anx = 0 in T}

and

tα(aB)(T) = {x ∈ T : lim
n∈B′

anx = 0 in T for some B′ ⊆ B with dα(B \B′) = 0}.

(Note that we only consider B ⊆ N with dα(B) > 0 as otherwise for any B ⊆ N with
d(B) = 0 we will have tα(aB)(T) = T −which does not play any further roll in this
context). Therefore, for all B ⊆ N with dα(B) > 0, we have tα(an)(T) ⊆ tα(aB)(T) and
tα(an)(T) =

⋂
B∈[N]ℵ0 & dα(B)>0

tα(aB)(T).

Lemma 3.2.3. If B ⊆ N with dα(B) > 0 and x ∈ [0, 1) with x ∈ t(aB−1)(T) (where
B − 1 = {k − 1 : k ∈ B}) then the following hold:

i) If B ⊆α supp(x) and q-bounded, then B ⊆α suppq(x) and there exists B′ ⊆ B
with dα(B \B′) = 0 such that lim

n∈B′
{an−1x} = 1 in R.

ii) If dα(B ∩ supp(x)) = 0, then there exists B′ ⊆ B with dα(B \ B′) = 0 such that
lim
n∈B′
{an−1x} = 0 in R.

Proof. i) Let q = 1 + max
n∈B
{qn} and B′ = B ∩ supp(x). Since B′ ⊆ B and dα(B \

supp(x)) = 0, we get dα(B \B′) = dα(B \ (B ∩ supp(x))) = dα(B \ supp(x)) = 0.
Therefore,

{an−1x} ≥
cn
qn

>
1

q
∀ n ∈ B′ (since cn ≥ 1 for all n ∈ B′) .

But as x ∈ t(aB−1)(T), thus we can conclude that lim
n∈B′
{an−1x} = 1 in R.

Therefore,

1− 1

qn
< 1− 1

q
< {an−1x} =

cn
qn

+
{anx}
qn

<
cn + 1

qn
for almost all n ∈ B′ (from equation (3.8)).

⇒ qn − 1 < cn + 1 i.e. cn > qn − 2 for almost all n ∈ B′.

Hence, cn = qn − 1 for almost all n ∈ B′ i.e. B′ ⊆∗ suppq(x), which implies
B ⊆α suppq(x).

ii) Let B′ = B \ supp(x). Observe that B′ ⊆ B and dα(B \ B′) = dα(B \ (B \
supp(x))) = dα(B ∩ supp(x)) = 0. Now, from equation (3.8), we have

{an−1x} = 0 +
{anx}
qn

<
1

2
∀ n ∈ B′ (since cn = 0 ∀ n ∈ B′).
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Then in view of the fact that x ∈ t(aB−1)(T), we must have, lim
n∈B′
{an−1x} = 0 in R.

Our next lemma creates a bridge between a q-bounded and a q-divergent subsets of
N which is essential to prove our main result, i.e., Theorem 3.3.1.

Lemma 3.2.4. Let (an) be an arithmetic sequence. Consider A ⊆ N with dα(A) > 0
where A is not q-bounded. If there does not exists any q-bounded subset A′ ⊆ A with
dα(A′) > 0 then there exists a q-divergent set B ⊆ A with dα(A \B) = 0.

Proof. Let Am = {n ∈ A : qn = m} for some m ∈ N \ {1}. Since there does not
exists any q-bounded set A′ ⊆ A with dα(A′) > 0, we conclude that dα(Am) = 0 for all
m ∈ N \ {1}. If there exists k ∈ N such that Am is finite for all m > k, then setting

B =
∞⋃

m=k+1

Am, it is easy to observe that B is q-divergent with dα(A \ B) = 0 (since

dα(
k⋃

m=2

Am) = 0).

Otherwise without any loss of generality, we can assume that Am is infinite for all
m ∈ N \ {1}. Now, considering the sequence (Am)m∈N of α-density zero sets, one can
find C ⊂ N with dα(C) = 0 such that Am \ C is finite for all m ∈ N \ {1} (for explicit
construction of such a set, see [76], also the existence follows from the fact that Idα is a
P -ideal, see [6]).

Let, B = A \ C. Since dα(C) = 0, we conclude that dα(A \ B) = 0. Consider
any l ∈ N \ {1}. Let, nl = max {n : n ∈ Am \ C and m ≤ l}. Now, for all
n ∈ B with n > nl, we have qn > l. Since l was taken arbitrarily, it follows that B is
q-divergent.

3.3 Main results
Theorem 3.3.1. Let, (an) be an arithmetic sequence and x ∈ [0, 1). Then x is a topo-
logical α-torsion element (i.e. x ∈ tα(an)(T)) if and only if either dα(supp(x)) = 0 or if
dα(supp(x)) > 0, then for all A ⊆ N with dα(A) > 0 the following holds:

(a) If A is q-bounded, then:

(a1) If A ⊆α supp(x), then A + 1 ⊆α supp(x), A ⊆α suppq(x) and there exists
A′ ⊆ A with dα(A \ A′) = 0 such that lim

n∈A′
cn+1+1
qn+1

= 1 in R.

Moreover, if A+ 1 is q-bounded, then A+ 1 ⊆α suppq(x).

(a2) If dα(A ∩ supp(x)) = 0, then there exists A′ ⊆ A with dα(A \ A′) = 0 such
that lim

n∈A′
cn+1

qn+1
= 0 in R.

Moreover, if A+ 1 is q-bounded, then dα((A+ 1) ∩ supp(x)) = 0 as well.

(b) If A is q-divergent, then lim
n∈B

ϕ( cn
qn

) = 0 for some B ⊆ A with dα(A \B) = 0.

Proof. Necessity: Suppose dα(supp(x)) > 0 and x ∈ tα(an)(T). Therefore, there exists
M ⊆ N with dα(N \M) = 0 such that

lim
n∈M
{an−1x} = 0 in T. (3.9)
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Consider any A ⊆ N with dα(A) > 0. We take B = M ∩ A. Then B ⊆ A and dα(A \
B) = dα(A ∩ (N \M)) = 0. As B ⊆M , from equation (3.9), we get lim

n∈B
{an−1x} = 0

in T. Consequently, there exists B ⊆ A with dα(A \B) = 0 such that x ∈ t(aB−1)(T).
(a) Suppose first that A is q-bounded. The following two cases can arise:

(a1) First, suppose A ⊆α supp(x). Then B ⊆ A is q-bounded and B ⊆α supp(x).
Since, x ∈ t(aB−1)(T) and B is q-bounded, from Lemma 3.2.3 we conclude that B ⊆α
suppq(x) and lim

n∈A′
{an−1x} = 1 in R, where A′ ⊆ B with dα(B \ A′) = 0.

Therefore, from equation (3.8)

1 = lim
n∈A′

(
cn
qn

+
{anx}
qn

) = lim
n∈A′

(
qn − 1 + {anx}

qn
)

= lim
n∈A′

(1− 1− {anx}
qn

)⇒ lim
n∈A′

1− {anx}
qn

= 0.

Hence, we get
lim
n∈A′
{anx} = 1 (since, A′ ⊆ B is q-bounded). (3.10)

Now from the definition of canonical representation (3.1), cn+1 ≤ qn+1−1 for all n ∈ N.
Again from equation (3.8), we have

{anx} =
cn+1

qn+1

+
{an+1x}
qn+1

<
cn+1 + 1

qn+1

≤ 1.

Hence from equation (3.10), it follows that

1 = lim
n∈A′
{anx} ≤ lim

n∈A′
cn+1 + 1

qn+1

≤ 1 i.e. lim
n∈A′

cn+1 + 1

qn+1

= 1 (3.11)

Now, qn+1 ≥ 2 for all n ∈ N. From equation (3.11), we can observe that cn+1 + 1 > 1
( i.e. cn+1 6= 0 ) for almost all n ∈ A′. Which implies A′ + 1 ⊆∗ supp(x). Since,
dα(B \ A′) = 0, we obtain B + 1 ⊆α supp(x).

As B ⊆ A and dα(A \ B) = 0, we must have A + 1 ⊆α supp(x), A ⊆α suppq(x)
and lim

n∈A′
cn+1+1
qn+1

= 1 for some A′ ⊆ A where dα(A \ A′) = 0. If A + 1 is q-bounded,

proceeding as in the first part of the proof, we get A+ 1 ⊆α suppq(x).

(a2) Now let dα(A∩supp(x)) = 0. SinceB ⊆ A, we must have dα(B∩supp(x)) =
0. Then from Lemma 3.2.3, we can conclude that lim

n∈A′
{an−1x} = 0 in R for some

A′ ⊆ B with dα(B \ A′) = 0. Therefore putting k = 1 in equation (3.6) and equation
(3.7), we get

lim
n∈A′

(
cn
qn

+
cn+1

qnqn+1

+
{an+1x}
qnqn+1

) = lim
n∈A′
{an−1x} = 0

⇒ lim
n∈A′

cn+1

qnqn+1

= lim
n∈A′
{an+1x}
qnqn+1

= 0 (Since cn, {anx} ≥ 0 and qn > 0 ). (3.12)

Now as A′ ⊆ B is q-bounded, equation (3.12) implies that lim
n∈A′

cn+1

qn+1
= 0 in R, where
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A′ ⊆ B ⊆ A and dα(A \ A′) = 0.
Moreover, if A + 1 is q-bounded, then vanishing of the last limit implies that (A′ +

1)∩supp(x) is finite. Thus dα((A+1)∩supp(x)) = 0 (Since, dα((A+1)\ (A′+1)) =
dα(A \ A′) = 0).

(b) Suppose A is q-divergent i.e. lim
n∈A

qn =∞. Then from equation (3.8), we get

lim
n∈B

ϕ

(
cn
qn

+
{anx}
qn

)
= lim

n∈B
ϕ({an−1x}) = 0 in T for some B ⊆ A with dα(A\B) = 0

⇒ lim
n∈B

ϕ

(
cn
qn

)
= 0 in T (Since, {anx} < 1 and lim

n∈B
qn =∞).

Before proving the sufficiency of the conditions, we need to reformulate the neces-
sary conditions in a stronger iterated version. For any A ∈ [N]ℵ0 and k ∈ N ∪ {0}, we

define Lk(A) =
k⋃
i=0

(A+ i). Now putting k = k + 1 in equation (3.6), we obtain

σn,k+1 = σn,k +
cn+k+1

qnqn+1 . . . qn+k+1

. (3.13)

Therefore, from equation (3.7) and equation (3.13), it follows that

{an−1x} = σn,k+1+
{an+k+1x}

qnqn+1 . . . qn+k+1

= σn,k+
cn+k+1

qnqn+1 . . . qn+k+1

+
{an+k+1x}

qnqn+1 . . . qn+k+1

(3.14)

⇒ σn,k ≤ {an−1x} < σn,k +
cn+k+1

qnqn+1 . . . qn+k+1

+
1

2(k+2)
. (3.15)

Claim 3.3.2. Let x ∈ [0, 1) has canonical representation (3.1) such that (a) and (b) of
Theorem 3.3.1 hold. Let A ⊆ N be q-bounded with dα(A) > 0. If Lk(A) is q-bounded
for some k ∈ N ∪ {0}, then the following hold:

(i) If A ⊆α supp(x), then Lk(A) ⊆α suppq(x) and lim
n∈A′+k+1

cn+1
qn

= 1 in R for some

A′ ⊆ A with dα(A \ A′) = 0. Therefore there exists nk ∈ N such that for all
n ∈ A′ with n ≥ nk,

σn,k = 1− 1

qnqn+1 . . . qn+k
≥ 1− 1

2k+1
. (3.16)

Moreover if A+ k + 1 is q-divergent, then

lim
n∈A+k+1

cn
qn

= lim
n∈A

cn+k+1

qn+k+1

= 1 in R. (3.17)

(ii) If dα(A∩ supp(x)) = 0, then dα(Lk(A)∩ supp(x)) = 0 and lim
n∈A′

cn+k+1

qn+k+1
= 0 in R

for some A′ ⊆ A and dα(A \ A′) = 0.
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Proof. (i) Observe that dα(Lk(A)) > 0 follows from dα(A) > 0. Now the factLk(A)
is q-bounded implies that A + i is q-bounded for all i ∈ N ∪ {0}. In view of (a1)
of Theorem 3.3.1 recursively we get

A+ i ⊆α suppq(x) ⇒ Lk(A) ⊆α suppq(x).

Since A + k is q-bounded we also get lim
n∈A′+k+1

cn+1
qn

= 1 in R for some A′ ⊆ A

with dα(A \A′) = 0 and Lk(A′) ⊆ suppq(x). Therefore there exists nk ∈ N such
that for all n ∈ A′ with n ≥ nk,

σn,k = 1− 1

qnqn+1 . . . qn+k
≥ 1− 1

2k+1
. (3.18)

Moreover ifA+k+1 is q-divergent, then Equation (3.18) and (b) of [41, Theorem
2.3] implies

lim
n∈A+k+1

cn
qn

= lim
n∈A

cn+k+1

qn+k+1

= 1 in R. (3.19)

(ii) As in (i), we have A + i is q-bounded for all i ∈ N ∪ {0}. In view of (a2) of
Theorem 3.3.1 recursively we get

dα((A+ i) ∩ supp(x)) = 0 ⇒ dα(Lk(A) ∩ supp(x)) = 0

Since dα((A+k)∩supp(x)) = 0 then again from (a2) of Theorem 3.3.1 we finally
obtain lim

n∈A′
cn+k+1

qn+k+1
= 0 in R for some A′ ⊆ A and dα(A \ A′) = 0.

Sufficiency: If dα(supp(x)) = 0, then from [35, Proposition 2.6] it readily follows that
x ∈ tα(an)(T) (for α = 1 see [38, Theorem 4.3]). So let dα(supp(x)) > 0 and supp(x)

satisfy conditions (a) and (b). To show that x ∈ tα(an)(T), in view of Lemma 3.2.2 it is
sufficient to check the convergence criterion: for all A ⊆ N with dα(A) > 0, there exists
B′ ⊆ A such that lim

n∈B′
ϕ({an−1x}) = 0. Indeed without any loss of generality, we can

assume that either dα(A ∩ supp(x)) = 0 or A ⊆α supp(x).

Case (i): First let A be q-bounded.
Subcase (ia): Let us first assume that Lk(A) is q-bounded for all k ∈ N ∪ {0}. Let

ε > 0 be given. Choose k ∈ N such that 1
2k+1 < ε.

∗ Let A ⊆α supp(x). Then, from (i) of Claim 3.3.2, Lk(A) ⊆α suppq(x). There-
fore, there exists B′ ⊆ A such that for all n ∈ B′,

σn,k = 1− 1

qnqn+1 . . . qn+k
≥ 1− 1

2k+1
> 1− ε

⇒ 1− ε < σn,k ≤ {an−1x} < 1 ∀ n ∈ B′ (from equation (3.15)).

∗ Let dα(A∩supp(x)) = 0. Then, from (ii) of Claim 3.3.2, dα(Lk(A)∩supp(x)) =
0 and lim

n∈B
cn+k+1

qn+k+1
= 0 in R for someB ⊆ Awith dα(A\B) = 0. So, there existsB′ ⊆ B

such that σn,k = 0 and cn+k+1

qn+k+1
< ε for all n ∈ B′. Therefore, from equation (3.15), we
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get

{an−1x} < σn,k +
cn+k+1

qnqn+1 . . . qn+k+1

+
1

2(k+2)
< 2ε ∀ n ∈ B′.

Thus in both cases, we have lim
n∈B′

ϕ({an−1x}) = 0 for some B′ ⊆ A, as required.

Subcase (ib): We assume that there exists an integer k ≥ 0 such that A + k + 1 is
not q-bounded but A+ i is q-bounded for all i = 0, 1, 2, . . . , k. If there exists an A′ ⊆ A
such that dα(A′) > 0 and A′ + k + 1 is q-bounded, then without any loss of generality
we can start with A′ in place of A. If this process does not terminate after finitely many
steps then we can conclude that there exists B ⊆ A with dα(B) > 0 such that Lk(B) is
q-bounded for all k ∈ N. Consequently, we can consider B in place of A and proceed
as in Subcase (ia).

Now let us consider the case when there does not exist any A′ ⊆ A such that
dα(A′) > 0 and A′ + k + 1 is q-bounded. Therefore from Lemma 3.2.4, there ex-
ists B ⊆ A with dα(A \B) = 0 such that B+ k+ 1 is q-divergent i.e. lim

n∈B
qn+k+1 =∞.

Clearly Lk(B) is q-bounded. Further more

lim
n∈B

{an+k+1x}
qnqn+1 . . . qn+k+1

≤ lim
n∈B

1

qn+k+1

= 0. (3.20)

Therefore, from equation (3.14) and equation (3.20), we get

lim
n∈B
{an−1x} = lim

n∈B
σn,k + lim

n∈B

cn+k+1

qnqn+1 . . . qn+k+1

+ lim
n∈B

{an+k+1x}
qnqn+1 . . . qn+k+1

= lim
n∈B

σn,k + lim
n∈B

cn+k+1

qnqn+1 . . . qn+k+1

.

∗ Let A ⊆α supp(x). Therefore B ⊆α supp(x). Consequently from equation
(3.18) of Claim 3.3.2 and equation (3.21), we get

lim
n∈B′
{an−1x} = lim

n∈B′
(1− 1

qnqn+1 . . . qn+k
+

cn+k+1

qnqn+1 . . . qn+k+1

)

= lim
n∈B′

(1 +
1

qnqn+1 . . . qn+k
· (cn+k+1

qn+k+1

− 1)) = 1

for some B′ ⊆ B with dα(B \B′) = 0.
∗ Next let dα(A ∩ supp(x)) = 0. Then there exists B ⊆ A such that σn,k = 0 for

all n ∈ B. Subsequently from (ii) of Claim 3.3.2 and equation (3.21), we have

lim
n∈B′
{an−1x} = lim

n∈B′
cn+k+1

qnqn+1 . . . qn+k+1

≤ lim
n∈B′

cn+k+1

qn+k+1

= 0

for some B′ ⊆ B with dα(B \ B′) = 0. Thus in both cases, we again obtain that
lim
n∈B′

ϕ({an−1x}) = 0 for some B′ ⊆ A.

Case (ii): We assume thatA is not q-bounded. If there existsA′ ⊆ A such that dα(A′) >
0 and A′ is q-bounded then we can proceed as in Case (i) and consider A′ in place of A.
So, let us assume that there does not exist any A′ ⊆ A such that dα(A′) > 0 and A′ is
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q-bounded. Then from Lemma 3.2.4, there exists B ⊆ A with dα(A \ B) = 0 such that
B is q-divergent i.e. lim

n∈B
qn =∞. From hypothesis, we have lim

n∈B′
cn
qn

= 0 in T for some

B′ ⊆ B with dα(B \B′) = 0. Therefore, from equation (3.8), we obtain

lim
n∈B′

ϕ({an−1x}) = lim
n∈B′

ϕ(
cn
qn

+
{anx}
qn

) = 0 (since lim
n∈B′

{anx}
qn

< lim
n∈B′

1
qn

= 0 ).

Hence in all cases, we can conclude that for any A ⊆ N with dα(A) > 0, there exists an
infinite set B′ ⊆ A such that lim

n∈B′
ϕ({an−1x}) = 0. This shows that x ∈ tα(an)(T) i.e. x

is a topologically α-torsion element of T.

Remark 3.3.3. Since, for all n 6∈ supp(x), we have cn = 0, it is sufficient to consider
only subsets of supp(x) in item (b) of Theorem 3.3.1.

Now we are in a position to answer Problem 7.2.7.
Proof of Problem 7.2.7: We intend to show that for any arithmetic sequence (an) and
0 < α1 < α2 < 1, tα1

(an)
(T) ( tα2

(an)
(T). Since, for any A ⊂ N with dα1(A) = 0 implies

dα2(A) = 0, it is easy to observe that tα1

(an)
(T) ⊆ tα2

(an)
(T). So all we need to do is to find

a y ∈ tα2

(an)
(T) \ tα1

(an)
(T).

We choose β ∈ R such that 1
α2

< β < 1
α1

. Consider x ∈ [0, 1) with x ∈ T and
supp(x) = {bnβc : n ∈ N} and cn = b qn

2
c. Since α2 · β > 1, we get dα2(supp(x)) =

lim
n→∞

|supp(x)∩[1,n]|
nα2

= lim
n→∞

n
(nβ)α2

= 0. Therefore, from [35, Proposition 2.6] it follows

that x ∈ tα2

(an)
(T).

Similarly using the fact α1 · β < 1 we conclude that dα1(supp(x)) > 0. Let us
first assume that there exists B ⊆ supp(x) with dα1(B) > 0 such that B is q-bounded.
But from our construction of supp(x), we get B * suppq(x). Therefore, item (a1) of
Theorem 3.3.1 does not hold and we get x 6∈ tα1

(an)
(T). If there does not exists such aB ⊆

supp(x) then from Lemma 3.2.4 there must exists a B′ ⊆ supp(x) with dα1(supp(x) \
B′) = 0 such that B′ is q-divergent. But observe that lim

n∈C
cn
qn
6= 0 for any C ⊆ B′ i.e.

item (b) of Theorem 3.3.1 does not hold and again we get x 6∈ tα1

(an)
(T). Thus we find an

x ∈ tα2

(an)
(T) \ tα1

(an)
(T).

3.4 α-Splitting sequence
In the remaining part of the article we follow in the line of investigations of [41] which
would show that in certain circumstances, one can obtain more simplified equivalent cri-
terions for the α-torsion elements. Before proceeding further, let us recall the following
notion of “splitting” sequences which were considered in [41].

Definition 3.4.1. [41, Definition 3.10] A sequence (qn) of natural numbers has the split-
ting property if there exists a partition N = B ∪ I , such that the following statements
hold:

(a) B and I are either empty or infinite;

(b) I is q-divergent, in case I is infinite;
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(c) B is q-bounded, in case B is infinite.

Here, B and I witness the splitting property for (qn), where B and I can be uniquely
defined up to a finite set.

Proposition 3.4.2. [41, Proposition 3.11] A sequence (qn) has the splitting property if
and only if there exists a natural number M such that the set {n ∈ N : qn ∈ [M,m]} is
finite for every m > M .

As a natural consequence, we can think of generalizing the idea of a splitting se-
quence using natural density of order α.

Definition 3.4.3. We say that, a sequence (qn) of natural numbers has the α-splitting
property if there exists a partition N = B ∪D, such that the following statements hold:

(a) B and D are either empty or dα(B), dα(D) > 0.

(b) If dα(B) > 0, then there exists B′ ⊆ N with dα(B4B′) = 0 such that B′ is
q-bounded.

(b) If dα(D) > 0, then there exists D′ ⊆ N with dα(D4D′) = 0 such that D′ is
q-divergent.

Here,B andD witness the α-splitting property for (qn), whereB andD can be uniquely
determined up to a zero α-density set (i.e. ifB1∪D1 is another partition of N, witnessing
the α-splitting property for (qn), then B1 =α B and D1 =α D).

Proposition 3.4.4. A sequence (qn) has the α-splitting property if and only if there exists
a natural number M such that dα({n ∈ N : qn ∈ [M,m]}) = 0 for every m > M .

Proof. We assume that (qn) has the α-splitting property. Now two cases can arise:

* At first, we consider B = ∅. Then there exists a D′ ⊆ N with dα(N \ D′) = 0
such that D′ is q-divergent. Take any m ∈ N. Since D′ is q-divergent, there exists
an nm ∈ N such that qn > m for all n > nm and n ∈ D′. We set M = 1. Then it
is evident that for all m > M

dα({n ∈ N : qn ∈ [M,m]}) ≤ dα({n ∈ D′ : qn ∈ [M,m]}+ dα(N \D′)
≤ dα({n ∈ D′ : n ≤ nm}) = 0.

* LetB 6= ∅. Then we have dα(B) > 0 and consequently there exists aB′ ⊆ N with
dα(B4B′) = 0 such thatB′ is q-bounded. In this case, we setM = 1+max

n∈B′
{qn}.

Therefore, for any m > M , we obtain

dα({n ∈ N : qn ∈ [M,m]})
≤ dα({n ∈ B′ : qn ∈ [M,m]}) + dα(B \B′)
+ dα({n ∈ D′ : qn ∈ [M,m]}) + dα(D \D′)
= dα({n ∈ D′ : qn ∈ [M,m]}) = 0 (from equation (3.21).
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Conversely, let there exists a natural number M such that

dα({n ∈ N : qn ∈ [M,m]}) = 0 for all m > M.

We set B′ = {n ∈ N : qn ∈ [1,M − 1]} and D′ = N \B′.

* If dα(B′) > 0 and dα(D′) = 0, then we take B = N and D = ∅.

* If dα(B′) = 0 and dα(D′) > 0, then we take D = N and B = ∅.

* If dα(B′) > 0 and dα(D′) => 0, then we take B = B′ and D = D′.

Clearly, B and D witness the α-splitting property for the sequence (qn).

From Proposition 3.4.2 and Proposition 3.4.4, it is obvious that every splitting se-
quence is a α-splitting sequence. However the converse is not necessarily true, nor it
is true that every subset of N has the α-splitting property (an example not having the
splitting property was given in [41, Example 3.12] but one must take into consideration
that a non-splitting sequence can still be α-splitting).

Example 3.4.5. For any β > 1
α

and β ∈ N let us define

A1 = {n ∈ N : n = kβ for some k ∈ N},

A2 = {n ∈ N : n = kβ + 1 for some k ∈ N} \ A1, . . . ,

Ai+1 = {n ∈ N : n = kβ + i for some k ∈ N} \
i⋃

j=1

Aj.

Take any n ∈ N. One can find a k ∈ N such that kβ ≤ n < (k + 1)β . So we can write

n = kβ + i for some i ∈ N ∪ {0} i.e. n ∈ Ai. Therefore, N =
∞⋃
i=1

Ai i.e. (Ai)i∈N forms

a partition of N.
For each i ∈ N, we now define qn = i + 1 for all n ∈ Ai. Clearly, for m,M ∈ N

and m > M , we have {n ∈ N : qn ∈ [M,m]} =
m−1⋃
i=M−1

Ai. Since dα(Ai) = 0

for all i ∈ N, we get dα({n : qn ∈ [M,m]}) = 0 for all m,M ∈ N and m > M .
Therefore, from Proposition 3.4.4, (qn) is an α-splitting sequence. But, we can observe
that {n : qn ∈ [M,m]} cannot be finite for any m,M ∈ N and m > M (since Ai is
infinite for all i ∈ N). Therefore, from Proposition 3.4.2, (qn) is not a splitting sequence.

Example 3.4.6. Let us define qn = {i ∈ N : n = 2i−2(2k−1) for some k ∈ N}. For any
i ∈ N\{1}, setAi = {n ∈ N : qn = i} = {2i−1k−2i−2 : k ∈ N}. From the construction

it is evident that dα(Ai) > 0 for all i ∈ N \ {1} and N =
∞⋃
i=2

Ai. Now for any m,M ∈ N

with m > M , observe that dα({n ∈ N : qn ∈ [M,m]}) = dα(
m⋃
i=M

Ai) > 0. Therefore,

from Proposition 3.4.4, (qn) is not an α-splitting sequence.

Motivated by these two examples, we present below equivalent conditions for a se-
quence to be splitting or α-splitting (or in other words, equivalent formulations of Propo-
sition 3.4.2 and Proposition 3.4.4).
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Proposition 3.4.7. Let (qn) be a sequence of natural numbers. For all i ∈ N, we define
Ai = {n : qn = i}. Then

(i) (qn) is a splitting sequence if and only if there does not exist a subsequence
(Ank)k∈N of (An) such that Ank is infinite for all k ∈ N:

(ii) (qn) is an α-splitting sequence if and only if there does not exist a subsequence
(Ank)k∈N of (An) such that dα(Ank) > 0 for all k ∈ N.

For the next result we will use the following notations. Let (an) be an arithmetic
sequence and x ∈ [0, 1) with canonical representation (3.1). Assume that the sequence
of ratios (qn) has the α-splitting property which means that there exists a partition N =
B ∪D such that (a), (b) and (c) of Definition 3.4.3 hold. We will write

• BS(x) = B ∩ supp(x),

• BN(x) = B ∩ (N \ supp(x)),

• DS(x) = D ∩ supp(x).

From Remark 3.3.3, it follows thatD∩ (N\supp(x)) does not play any role in Theorem
3.3.1. Note that if B,D 6= ∅, then there exists B′ ⊆ N with dα(B4B′) = 0 and
D′ ⊆ N with dα(D4D′) = 0 such that B′S(x), B′N(x) are q-bounded while D′S(x)
is q-divergent. Our next result is a characterization of a topological α-torsion element,
when the sequence of ratios (qn) has the α-splitting property.

Theorem 3.4.8. Let (an) be an arithmetic sequence and x ∈ [0, 1) has canonical rep-
resentation (3.1). If the sequence of ratios (qn) has the α-splitting property, then x is a
topological α-torsion element i.e. x ∈ tα(an)(T) if and only if the following conditions
hold:

(i) BS(x) + 1 ⊆α supp(x), BS(x) ⊆α suppq(x), and if dα(BS(x)) > 0 then
lim

n∈BS1 (x)

cn+1+1
qn+1

= 1 in R, where B1 ⊆ B with dα(B \B1) = 0.

(ii) If dα(BN(x)) > 0 then lim
n∈BN1 (x)

cn+1

qn+1
= 0 in R, whereB1 ⊆ B with dα(B\B1) = 0.

(iii) If dα(DS(x)) > 0 then lim
n∈DS1 (x)

ϕ

(
cn
qn

)
= 0, where D1 ⊆ D with dα(D \D1) = 0.

Proof. Necessity: Let x ∈ tα(an)(T). Observe that (a) and (b) of Theorem 3.3.1 hold.

(i) If dα(BS(x)) = 0, then there is nothing to prove. So, we consider the case when
dα(BSx) > 0. Now, there exists a B′ ⊆ N with dα(B4B′) = 0 such that B′

is q-bounded. Since dα(B4B′) = 0, we get B′S(x) ⊆α supp(x). Therefore,
taking A = B′S(x) in Theorem 3.3.1 and applying (a1), we get B′S(x) + 1 ⊆α
supp(x), B′S(x) ⊆α suppq(x) and lim

n∈B′S1 (x)

cn+1+1
qn+1

= 1 in R, where B′1 ⊆ B′ and

dα(B′ \B′1) = 0.
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Again, since dα(B4B′) = 0, we finally get BS(x) + 1 ⊆α supp(x), BS(x) ⊆α
suppq(x) and lim

n∈BS1 (x)

cn+1+1
qn+1

= 1 in R, where B1 = (B ∩ B′1) ⊆ B with dα(B \

B1) = 0.

(ii) Let dα(BN(x)) > 0. Since dα(BN(x) ∩ supp(x)) = 0, applying (a2) of The-
orem 3.3.1 to A = B′N(x), we get lim

n∈BN1 (x)

cn+1

qn+1
= 0 in R, where B1 ⊆ B and

dα(B \B1) = 0.

(iii) Let dα(DS(x)) > 0. Since there exists D′ ⊆ N with dα(D4D′) = 0 such that D′

is q-divergent, applying (b) of Theorem 3.3.1 to A = D′S(x) (As, dα(D4D′) =

0 ⇒ dα(D′S(x)) = dα(DS(x)) > 0), we get lim
n∈DS1 (x)

ϕ

(
cn
qn

)
= 0 in T, where

D1 ⊆ D and dα(D \D1) = 0.

Sufficiency: Let the conditions hold. It suffices to show that the conditions of Theorem
3.3.1 hold. If dα(supp(x)) = 0 then there is nothing to prove. So let us assume that
dα(supp(x)) > 0. Consider any A ⊆ N with dα(A) > 0.

(a) First suppose that A is q-bounded.

(a1) LetA ⊆α supp(x). SinceA is q-bounded,A ⊆α B. Therefore,A ⊆α BS(x)
and we get dα(BS(x) > 0. By (i), we haveBS(x)+1 ⊆α supp(x), BS(x) ⊆α
suppq(x) and lim

n∈BS1 (x)

cn+1+1
qn+1

= 1 in R, where B1 ⊆ B and dα(B \ B1) = 0.

Again, since A ⊆α BS(x), we get A + 1 ⊆α supp(x), A ⊆α suppq(x) and
lim
n∈A′

cn+1+1
qn+1

= 1 in R, where A′ = A ∩B1 ⊆ A and dα(A \ A′) = 0.

(a2) Now, let dα(A ∩ supp(x)) = 0. Since A is q-bounded, A ⊆α B. Therefore,
A ⊆α BN(x) and we get dα(BN(x)) > 0. By (ii), we have lim

n∈BN1 (x)

cn+1

qn+1
= 0

in R, where B1 ⊆ B and dα(B \ B1) = 0. Now, taking A′ = A ∩ B1,
we get lim

n∈A′
cn+1

qn+1
= 0 in R, where A′ ⊆ A and dα(A \ A′) = 0 ( Since,

dα(A \ A′) = dα(A \B1) = dα(A \B) = 0).

(b) Let us now assume that A is q-divergent. Then we have A ⊆α D. From Remark
3.3.3, without any loss of generality we can assume that A ⊆ supp(x). Therefore,

A ⊆α DS(x) and we get dα(DS(x)) > 0. By (iii), we have lim
n∈DS1 (x)

ϕ

(
cn
qn

)
=

0, where D1 ⊆ D and dα(D \ D1) = 0. Now, taking A′ = A ∩ D1, we get

lim
n∈A′

ϕ

(
cn
qn

)
= 0, where A′ ⊆ A and dα(A \ A′) = 0 (since, dα(A \ A′) =

dα(A \D1) = dα(A \D) = 0). Therefore, from theorem 3.3.1, we can conclude
that x ∈ tα(an)(T).
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In particular, one can obtain simpler characterizations of topological α-torsion el-
ements when supp(x) is either q-bounded or q-divergent for the given arithmetic se-
quence.

Corollary 3.4.9. If supp(x) is q-bounded, then x ∈ tα(an)(T) if and only if the following
statements hold:

(i) dα((supp(x) + 1) \ supp(x)) = 0, and

(ii) dα(supp(x) \ suppq(x)) = 0.

Proof. Let x ∈ tα(an)(T). If dα(supp(x)) = 0 then there is nothing to prove. So, assume
that dα(supp(x)) > 0. Since supp(x) is q-bounded and dα(supp(x)) > 0, we set A =
supp(x). Therefore from item (a1) of Theorem 3.3.1, we get supp(x) + 1 ⊆α supp(x)
and supp(x) ⊆α suppq(x). Thus, we have (i) dα((supp(x) + 1) \ supp(x)) = 0, and (ii)
dα(supp(x) \ suppq(x)) = 0.

In order to prove the sufficiency of the conditions, if possible, suppose that there
is a x ∈ tα(an)(T) for which (i) does not hold i.e dα((supp(x) + 1) \ supp(x)) > 0.
Since, dα(supp(x) + 1) = dα(supp(x)), we must have dα(supp(x)) > 0. Now, taking
A = supp(x) and applying item (a1) of Theorem 3.3.1, we get A + 1 ⊆α supp(x) i.e.
dα(supp(x) + 1 \ supp(x)) = 0 − which is a contradiction. Therefore (i) holds true.

Now, let us consider that (ii) does not hold i.e. dα(supp(x) \ suppq(x)) > 0 but
x ∈ tα(an)(T). Set A = supp(x) \ suppq(x) and q = 1 + max

n∈supp(x)
{qn}. Consequently,

from equation (3.8), we obtain

1

q
< lim

n∈A

cn
qn
≤ lim

n∈A
{an−1x} < lim

n∈A

cn + 1

qn
≤ lim

n∈A

qn − 1

qn
= 1− lim

n∈A

1

qn
< 1− 1

q

⇒ lim
n∈A
{an−1x} 6= 0 in T for some dα(A) > 0

−Which is a contradiction. Therefore (ii) holds true.

Corollary 3.4.10. If supp(x) is q-divergent, then x ∈ tα(an)(T) if and only if the following
statements hold:

(i) lim
n∈D′

ϕ

(
cn
qn

)
= 0 for some D′ ⊆ supp(x) with dα(supp(x) \D′) = 0; and

(ii) For every D ⊆α supp(x) such that D − 1 is q-bounded, lim
n∈D′

cn
qn

= 0 in R, where

D′ ⊆ D and dα(D \D′) = 0.

Proof. First, let x ∈ tα(an)(T). If dα(supp(x)) = 0, then there is nothing to prove. So, let
us assume that dα(supp(x)) > 0. Now, taking A = supp(x) and applying item (b) of
Theorem 3.3.1, we can conclude that (i) holds true. Next let us suppose that A = D− 1
is q-bounded for some D ⊆ supp(x). If dα(A) = dα(D) = 0, then there is nothing to
prove. Therefore, we can assume dα(A) > 0. Since, supp(x) is q-divergent, we have
dα(A∩supp(x)) = 0. Now, applying item (a2) of Theorem 3.3.1, we have lim

n∈A′
cn+1

qn+1
= 0
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in R for some A′ ⊆ A with dα(A \A′) = 0. Putting D′ = A′ + 1, we get lim
n∈D′

cn
qn

= 0 in

R, where D′ ⊆ D and dα(D \D′) = 0.
Conversely, let us assume that the conditions hold. To prove that x ∈ tα(an)(T),

we need to show (a) and (b) of Theorem 3.3.1 hold. Since (b) follows from (i), it is
sufficient to show only (a). If dα(supp(x)) = 0, then x ∈ tα(an)(T). So, assume that
dα(supp(x)) > 0. Now, take any A ⊆ N with dα(A) > 0. If A is q-bounded, then
dα(supp(x)∩A) = 0. Therefore, we need to prove only (a2). If dα((A+1)∩supp(x)) =
0, then taking A′ + 1 = (A + 1) \ supp(x), we get lim

n∈A′
cn+1

qn+1
= 0 in R, where A′ ⊆ A

with dα(A \ A′) = 0. Now considering the situation when dα((A+ 1) ∩ supp(x)) > 0,
taking D = (A + 1) ∩ supp(x) and applying (ii), we get lim

n∈D′
cn
qn

= 0 in R for some

D′ ⊆ D with dα(D \D′) = 0. Thus, putting A′ = D′−1 in a similar manner, we obtain
that lim

n∈A′
cn+1

qn+1
= 0 in R for some A′ ⊆ A with dα(A \ A′) = 0. Therefore, (a2) holds

and we finally have x ∈ tα(an)(T).

The following observations follow from our main results, giving certain particular
cases of an element x of T being or not being a topologically α-torsion element.

• If supp(x) is q-divergent and lim
n∈A

cn
qn

= 0 in R for some A ⊆ supp(x) with

dα(supp(x) \ A) = 0, then x is a topologically α-torsion element of T.

• Suppose x ∈ [0, 1) has canonical representation (3.1) with q-divergent support. If
dα(supp(x) \ {n ∈ supp(x) : (cn) is bounded}) = 0, then x is a topologically
α-torsion element of T.

• Suppose there exists an A ⊆ N such that A is q-divergent and dα(N \ A) = 0.

Then x is a topologically α-torsion element of T if and only if lim
n∈D′

ϕ

(
cn
qn

)
= 0

for some D′ ⊆ supp(x) with dα(supp(x) \D′) = 0 (where D′ ⊆ A ∩ supp(x) as
in Corollary 3.4.10).

• Let (an) be an arithmetic sequence and x ∈ [0, 1) be such that

(i) supp(x) =
∞⋃
n=1

[pn, rn], pn, rn ∈ N, pn < rn + 1 < pn+1 for all n ∈ N;

(ii) there exist l ∈ N such that for all n ∈ N, |rn − pn| ≤ l and |pn+1 − rn| ≤ l;

(iii) supp(x) is q-bounded.

Then x is not a topologically α-torsion element of T.

• Let (an) be an arithmetic sequence and x ∈ [0, 1) be such that

(i) dα(supp(x)) > 0 and supp(x) is q-divergent;

(ii) for all n ∈ supp(x), cn
qn
∈ [r1, r2], where 0 < r1, r2 < 1.

Then x is not a topologically α-torsion element of T.

40



3.5 Conclusion
In this chapter we have described complete characterization of topologically s-torsion
as well as topologically α-torsion elements of T in our main result namely, Theorem
3.3.1. To prove this result several construction has to be done in Section 3.2 among
them Lemma 3.2.4 is most powerful which creates the bridge between q-bounded and
q-divergent sets. And as an outcome of our main result we are able to solve some
open problems regarding α-characterized subgroups considered in [19]. Finally we have
obtained a simpler characterization of topologically s-torsion as well as topologically α-
torsion elements of T for α-splitting sequences in Theorem 3.4.8.
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Chapter 4

fg-CHARACTERIZED SUBGROUPS
OF THE CIRCLE∗

4.1 Introduction
In this chapter we consider a more unified approach to the recent development of char-
acterized subgroups by considering the notion of moduler simple density function dfg .
As mentioned already, all the notions of density functions, precisely, natural density d
[24], natural density with respect to an unbounded modulus function f , f -density df [2],
natural density dα of order α [13] and their generalization with respect to weight func-
tion g, dg [6] are special cases of “f density of weight g”, i.e., dfg [18]. Consequently
all the results presented in the articles [38] and [19] become special cases of our results
that are presented in this chapter. To get an overview on the general development of the
density function dfg we refer to the Section 0.1 of Preface.

One can naturally think of the following general notion of convergence correspond-
ing to the density function dfg .

Definition 4.1.1. A sequence of real numbers (xn) is said to converge to a real number
x0 f

g-statistically if for any ε > 0, dfg ({n ∈ N : |xn − x0| ≥ ε}) = 0.

As a natural consequence we can introduce our main definition of this section.

Definition 4.1.2. For a sequence of integers (an) the subgroup

tf,g(an)
(T) := {x ∈ T : anx→ 0 f g-statistically in T} (4.1)

of T is called an f g-statistically characterized (shortly, an f g-characterized) (by (an))
subgroup of T.

Theorem 4.1.3. For any sequence of integers (an), tf,g(an)
(T) is an Fσδ (hence, Borel)

subgroup of T containing t(an)(T).

Proof. As the proof follows the same line of arguments as Theorem A [38], we only
provide a brief sketch. It is easy to check that tf,g(an)

(T) is a subgroup of the circle group

∗Content of this chapter has been published in “Indagationes Mathematicae and Quaestiones
Mathematicae”.
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T. Let us set Un,k :=
{
x ∈ T : ‖anx‖ > 1

k

}
for n, k ∈ N. From Definition 3.2, one can

write

tf,g(an)
(T) = {x ∈ T : (∀k ∈ N) dfg ({n : x ∈ Un,k}) = 0}

=
∞⋂
k=1

{
x ∈ T : dfg ({n : x ∈ Un,k}) = 0

}
=

∞⋂
k=1

{
x ∈ T : lim

m→∞

f(|{i ∈ N : x ∈ Ui,k} ∩ [1,m]|)
f(g(m))

= 0

}
=

∞⋂
k=1

{
x ∈ T : (∀j ∈ N)(∃m ∈ N) such that

f(|{i ∈ N : x ∈ Ui,k} ∩ [1, n]|)
f(g(n))

≤ 1

j
for all n ≥ m

}
.

Subsequently writing

Vk,j,n =

{
x ∈ T :

f(|{i ∈ N : x ∈ Ui,k} ∩ [1, n]|)
f(g(n))

≤ 1

j

}
one can show that Vk,j,n is closed in T for every fixed triple k, j and n. The assertion
then follows from the equality

tf,g(an)
(T) =

∞⋂
k=1

∞⋂
j=1

∞⋃
m=1

⋂
n≥m

Vk,j,n.

Clearly the non-triviality of the newly obtained subgroups tf,g(an)
(T) depends on

(i) whether tf,g(an)
(T) actually becomes the whole circle group T and

(ii) whether as subgroups of T, they are really ‘new’ compared to the already studied
characterized subgroups t(an)(T) or their versions ts(an)(T) and tα(an)(T).

The study of the first question (i) is easy, as it is known that t(an)(T) = T precisely
when an = 0 for almost all n [9, 46]. Using this fact one can conclude that tf,g(an)

(T) = T
precisely when dfg ({n : an 6= 0}) = 0. Since no arithmetic sequence (an) satisfies
dfg ({n : an 6= 0}) = 0, we deduce that tf,g(an)

(T) 6= T for such sequences.
The second question (ii) is far more complicated and seems worth studying. We

thoroughly investigate this problem for general arithmetic sequences.
As the general case seem quite complicated, so as in [38] we begin with a special

case providing a basic example considering the sequence (2n) and then step-by step,
generalize the idea.
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4.2 Main observations

4.2.1 The f g-characterized subgroup for the sequence an = 2n.

Note that t(2n)(T) is simply the Prüfer group Z(2∞). So it remains only to check that
tf,g(2n)(T) contains an element x that does not belong to Z(2∞). It is known that x ∈
Z(2∞) precisely when supp(x) is finite (see [41]). Note that, for an = 2n, cn can only
be 0 or 1. Below we take f(x) = log(1+x), g(n) = n

1
2 and construct an element which

belongs to tf,g(2n)(T) \ t(2n)(T).

Example 4.2.1. Choose x ∈ T with

supp(2n)(x) =
∞⋃
n=1

[(2n− 1)(2n−1), (2n)(2n)]. (4.2)

We will show that x ∈ tf,g(2n)(T) \ t(2n)(T). To check that x ∈ tf,g(2n)(T), pick an m ∈ N
and define a subset A of N as follows:

First let Bn := [(2n − 1)(2n−1), (2n)(2n)]. Clearly length of Bn diverges to ∞.
Consequently one can choose n0 ∈ N such that (2n0)

(2n0)− (2n0−1)(2n0−1) > m. Now
let

A0 := [(2n0)
2n0 −m, (2n0)

2n0 ] and A′0 := [(2n0 + 1)(2n0+1) −m, (2n0 + 1)(2n0+1)].

Similarly, let

Ak := [(2(n0 + k))(2(n0+k)) −m, (2(n0 + k))(2(n0+k))]

and
A′k := [(2(n0 + k) + 1)(2(n0+k)+1) −m, (2(n0 + k) + 1)(2(n0+k)+1)].

Finally, put B =
∞⋃
k=0

(Ak ∪ A′k) and A = B ∪ [1, (2n0 − 1)(2n0−1)]. Note that

|Ak| = |A′k| = m+ 1, and so

d
f

g (A) = lim sup
n→∞

f(|A ∩ [1, n]|)
f(g(n))

= max

{
lim
k→∞

f(2(m+ 1)(k + 1))

f((2(n0 + k) + 1)
1
2
·(2(n0+k)+1))

,

lim
k→∞

f(2(m+ 1)(k + 1)− (m+ 1))

f((2(n0 + k))
1
2
·(2(n0+k)))

}
= max

{
lim
k→∞

log(1 + 2(m+ 1)(k + 1))

log(1 + (2(n0 + k) + 1)
1
2
·(2(n0+k)+1))

,

lim
k→∞

log(1 + (2(m+ 1)(k + 1)−m))

log(1 + (2(n0 + k))
1
2
·(2(n0+k)))

}
= 0.
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We claim that ‖2nx‖ < 1/2m for all n ∈ N \ A. As n ∈ N \ A, by the choice of A and
the definition of Bn := [(2n− 1)(2n−1), (2n)(2n)], we can deduce that

(a) either n ∈ [(2r)(2r)+1, (2r+1)(2r+1)−m−1] for some r ∈ N which automatically
implies that n + 1, n + 2, . . . , n + m ∈ [(2r)(2r) + 1, (2r + 1)(2r+1) − 1] i.e.
n+ 1, n+ 2, . . . , n+m 6∈ supp(2n)(x), or

(b) n ∈ [(2r+ 1)(2r+1) + 1, (2(r+ 1))(2(r+1))−m− 1] for some r ∈ N i.e. n+ 1, n+
2, . . . , n+m ∈ [(2r + 1)(2r+1), (2(r + 1))(2(r+1))] ⊂ supp(2n)(x).

In both cases we have cn+1 = cn+2 = . . . = cn+m. In case (a) this leads to cn+1 =
cn+2 = . . . = cn+m = 0 which implies

2nx =
cn+1

2
+
cn+2

22
+ . . .+

cn+m
2m

+
cn+m+1

2m+1
+ . . . =

cn+m+1

2m+1
+ . . . .

Therefore ‖2nx‖ < 1/2m. In case (b) this leads to cn+1 = cn+2 = . . . = cn+m = 1, and
subsequently

2nx =
1

2
+

1

22
+ . . .+

1

2m
+
cn+m+1

2m+1
+ . . . = 1− 1

2m
+
cn+m+1

2m+1
+ . . . .

As a result we can again conclude that ‖2nx‖ < 1/2m. Since m ∈ N was chosen
arbitrarily and N \A ∈ I∗g (f), we obtain that (2nx) f g-statistically converges to 0 in T
i.e. x ∈ tf,g(2n)(T). According to [41], x /∈ t(2n)(T) as supp(x) is infinite.

However, we can actually prove that the newly obtained subgroup tf,g(2n)(T) contains
uncountably more elements compared to t(2n)(T) as had been observed for ts(2n)(T)
(Proposition 3.5 [38]). We prove that in Proposition 4.2.4.

Now we are in a position to see that the element x ∈ T in Example 4.2.1 can be
replaced by a more generally defined element of T without any restriction on f or g. To
explain the choice, we note that for every x as in (4.2) such that x 6∈ Z(2∞), the support
can be presented as a disjoint union of infinitely many consecutive intervals

⋃
n

Bn. Let

us define

Ifg =

{
∞⋃
r=1

Br : Br = [n(2r−1), n(2r)], for some A = {nr}r∈N ⊂ N with dfg (A) = 0

}
.

(4.3)
In Example 4.2.1 we used the following specific member of Ifg

B =
∞⋃
r=1

Br ∈ Ifg , with Br := [(2r − 1)(2r−1), (2r)(2r)]. (4.4)

Now we intend to show that Ifg 6⊆ Ig(f). If possible let us assume that Ifg ⊆ Ig(f)
for some unbounded modulus function f and g ∈ G. Note that for any unbounded
modulus function f and for any g ∈ G, we have Ig(f) 6= Fin. Therefore, we can

choose A = {n1 < n2 < n3 < . . . } ⊂ N such that IA =
∞⋃
r=1

Br ∈ Ifg ⊆ Ig(f), where
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Br = [n(2r−1), n(2r)]. Then, for A′ = (nr+1) ⊆ A, we have IA′ =
∞⋃
r=1

B′r ∈ Ifg ⊆ Ig(f),

where B′r = [n(2r), n(2r+1)]. But this implies that N ∈ Ig(f) which is a contradiction.
Our next observation is a result concerning both Ifg and Ig(f) in line of [38, Lemma 3.3]
that will be frequently used in the sequel.

Lemma 4.2.2. |Ifg | = |Ig(f)| = c.

Proof. Fix a specific member B =
∞⋃
r=1

Br ∈ Ifg , e.g., as in (4.4). Fix a sequence ξ =

(zi) ∈ {0, 1}N and define Bξ =
∞⋃
k=1

B2k+zk . In other words, this subset Bξ of B is

obtained by taking at each stage k either B2k of B2k+1 depending on the choice imposed
by ξ. As obviously Bξ 6= Bη for distinct ξ, η ∈ {0, 1}N, this provides an injective map
given by

{0, 1}N 3 ξ → Bξ ∈ Ifg ,

Since |{0, 1}N| = c, we are done.
A similar proof works for Ig(f).

Let us note that the element x ∈ T in Example 4.2.1 has the property supp(x) ∈ Ifg .
Now we see that the argument works with any element x of T with supp(x) ∈ Ifg where
f is an unbounded modulus function and g ∈ G.

Lemma 4.2.3. Let x ∈ T be such that supp(2n)(x) ∈ Ifg . Then x ∈ tf,g(2n)(T) \ t(2n)(T).

Proof. The fact that x /∈ t(2n)(T) follows from the fact that supp(x) ∈ Ifg implies
supp(x) is infinite.

We take supp(2n)(x) =
∞⋃
r=1

[n(2r−1), n(2r)], where A′ = (nr) ∈ Ig(f). Let us define

Br = [n(2r−1), n(2r)] andGr := [n(2r) +1, n(2r+1)−1]. Consider anym ∈ N. We choose
r0 ∈ N such that nr0 > m . Now we define, A0 = {nr : r ∈ N and r ≥ r0} and
Ai = {nr − i : r ∈ N and r ≥ r0} ∩ N. Consequently

dfg (Ai) = lim
n→∞

f(|(A0 − i) ∩ [1, n]|)
f(g(n))

≤ lim
n→∞

f(|A0 ∩ [1, n]|+ i)

f(g(n))
≤ dfg (A

′) + lim
n→∞

f(i)

f(g(n))
= 0

Finally put A =
m⋃
i=0

Ai ∪ [1, nr0 ]. We can then show that this A witnesses the needed

f g-statistical convergence with respect to ε = 1/2m following the line of the proof of
Example 4.2.1.

Immediately we have the following result.

Proposition 4.2.4. |tf,g(2n)(T) \ t(2n)(T)| = c.

Proof. In Lemma 4.2.3 we have shown that {x : supp(2n)(x) ∈ Ifg} ⊂ tf,g(2n)(T) \
t(2n)(T). Now as |{x : supp(2n)(x) ∈ Ifg}| = |Ifg |, so Lemma 4.2.2 tells us that
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|{x : supp(2n)(x) ∈ Ifg}| = |Ifg | = c. That is, |tf,g(2n)(T) \ t(2n)(T)| ≥ c which gives
our result.

On the basis of the existing knowledge that t(2n)(T) is countably infinite in size, an
obvious but important consequence coming from Proposition 4.2.4 is the following.

Corollary 4.2.5. |tf,g(2n)(T)| = c.

Proof. The observation immediately follows as

tf,g(2n)(T) \ t(2n)(T) ⊆ tf,g(2n)(T) ⊆ T.

.

4.2.2 The general case for arithmetic sequences
In this section, we generalize the whole idea of the last section for arbitrary arithmetic
sequences and try to generalize Example 4.2.1 and Corollary 4.2.5 in this context.

First we prove a lemma analogous to Lemma 4.2.3 which gives a sufficient condition
for some x to be in tf,g(an)

(T).

Lemma 4.2.6. Let (an) be an arithmetic sequence and let x ∈ T be such that supp(x) ∈
Ifg and cn = qn − 1 for all n ∈ supp(x). Then x ∈ tf,g(an)

(T).

Proof. Let x =
∞∑
n=1

cn
an

be the canonical representation of x ∈ T where c1 = 0, cn is

either 0 or (qn−1) for any n > 1 and {n : cn = qn−1} =
∞⋃
r=1

Br ∈ Ifg where as in 4.2.3

Br = [n(2r−1), n(2r)] and Gr := [n(2r) + 1, n(2r+1) − 1] for some infinite B = (nr) ⊆ N
(i.e. the sets Br and Gr, r ∈ N forming a partition of N). To show that x ∈ tf,g(an)

(T) we
proceed exactly as in Lemma 4.2.3. We take an arbitrarym ∈ N and get the same r0 ∈ N
and A ⊂ N with dfg (A) = 0 where as before A =

m⋃
i=0

Ai∪ [1, nr0 ], Ai = {nr− i : r ∈ N

and r ≥ r0}∩N. What is required now is to show that lim
n→∞
n∈N\A

‖anx‖ = 0. For n ∈ N\A,

by the choice of A and the definition of Br and Gr, we deduce that

(a) either n ∈ Br for some r ∈ N, which actually means that n ∈ [n2r−1 + 1, n2r −
m− 1] and consequently n+ 1, n+ 2, . . . , n+m ∈ Br, or

(b) n ∈ Gr for some r ∈ N, and by the same reasoning as above we can again
conclude that n+ 1, n+ 2, . . . , n+m ∈ Gr.

In case (b) this leads to cn+1 = cn+2 = . . . = cn+m = 0, and consequently

anx =
∞∑

k=n+1+m

ck
ak
· an ≤

∞∑
k=n+1+m

qk − 1

ak
· an =

∞∑
k=n+1+m

(
1

ak−1
− 1

ak

)
· an ≤

an
am+n

.
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In case (a) this leads to ck = qk − 1 for k = n+ 1, n+ 2, ..., n+m which implies that

anx =
n+m∑
k=n+1

qk − 1

ak
· an +

∞∑
k=n+1+m

ck
ak
· an.

Now the first part is

n+m∑
k=n+1

qk − 1

ak
· an =

n+m∑
k=n+1

(
1

ak−1
− 1

ak

)
· an = 1− an

an+m

and the second part

∞∑
k=n+1+m

ck
ak
.an ≤

∞∑
k=n+1+m

qk − 1

ak
· an =

∞∑
k=n+1+m

(
1

ak−1
− 1

ak

)
· an ≤

an
am+n

.

Therefore, we obtain that ‖anx‖ ≤ an
an+m

≤ 1
2m

. As m ∈ N was chosen arbitrarily, so
we conclude that ‖anx‖ converges f g-statistically to 0.

Now we are going to provide another, very natural, sufficient condition for x ∈
tf,g(an)

(T) in line of (Theorem 4.4 [38]).

Theorem 4.2.7. Let (an) be an arithmetic sequence and x ∈ T. If dfg (supp(x)) = 0,
then x ∈ tf,g(an)

(T).

Proof. Set A = supp(x). Then dfg (A) = 0, by hypothesis. Pick a positive k ∈ N and
note that for any i ∈ N ,

dfg (A− i) = lim
n→∞

f(|(A− i) ∩ [1, n]|)
f(g(n))

≤ lim
n→∞

f(|A ∩ [1, n]|+ i)

f(g(n))

≤ dfg (A) + lim
n→∞

f(i)

f(g(n))
= 0.

Therefore, A∗ =
⋃k
i=0(A− i)∩N ∈ Ig(f). Hence, it is enough to check that ‖anx‖ ≤ 1

k

for all n ∈ N\A∗. Note that n ∈ N\A∗ precisely when n+i 6∈ A for i = 0, 1, . . . k. This
means that in the canonical representation of x one has cn = cn+1 = . . . = cn+k = 0 for
all n ∈ N \ A∗. Hence,

{anx} = an ·
∞∑

i=n+k+1

ci
ai
≤ an ·

∞∑
i=n+k+1

qi − 1

ai

= an ·
∞∑

i=n+k+1

(
1

ai−1
− 1

ai

)
≤ an
an+k

≤ 1

2k
<

1

k
.

We shall invert this theorem in Corollary 4.2.15. Note that the following is the more
general version of Theorem B [38].
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Theorem 4.2.8. For any arithmetic sequence (an), we have |tf,g(an)
(T)| = c.

Proof. Clearly tf,g(an)
(T) ⊂ T implies |tf,g(an)

(T)| ≤ |T| = c.
To prove the inequality |tf,g(an)

(T)| ≥ |T| = c we use two alternative arguments.
Let B ∈ Ifg . Define xB ∈ T with supp(xB) = B and cn = qn − 1 for all n ∈ B.

According to Lemma 4.2.6, xB ∈ tf,g(an)
(T). Since the map Ifg 3 B 7→ xB ∈ tf,g(an)

(T) is
obviously injective, |tf,g(an)

(T)| = c by Lemma 4.2.2.
The second argument uses the fact that |Ig(f)| = c as has been shown in Proposition

4.2.2. This provides c many elements {xi : i ∈ I} in T with distinct supports of f g-
density 0 and as a result applying Theorem 4.2.7, we obtain that xi ∈ tf,g(an)

(T) for every
i ∈ I .

Below we have the more general version of Theorem C [38].

Theorem 4.2.9. tf,g(an)
(T) 6= t(an)(T) for any arithmetic sequence (an).

Proof. If (qn) is bounded then tf,g(an)
(T) 6= t(an)(T), as t(an)(T) is countable.

Therefore, we consider (qn) is not bounded. Then there exists B ⊂ N such that
(qn)n∈B diverges to∞. Now, in view of Proposition 2.2.2 there exists a B′ ⊆ B such
that dfg (B

′) = 0. So, in addition we can assume that dfg (B) = 0. Take

x =
∞∑
n=1

cn
an
∈ T with supp(x) = B and cn =

⌊qn
2

⌋
for all n ∈ B.

Then x ∈ tf,g(an)
(T) by Theorem 4.2.7, while x 6∈ t(an)(T) (by [41, Theorem 2.3]). This

proves tf,g(an)
(T) 6= t(an)(T).

It has already been showed that for any arithmetic sequence (an), the condition in
Theorem 4.2.7 is not necessary for some x ∈ T to be in tf,g(an)

(T) (see Example 4.5 [38]).
More precisely we have the following.

Example 4.2.10. We have already shown that Ifg 6⊆ Ig(f). Therefore, there exists a

B ∈ Ifg such that d
f

g (B) > 0. Let x =
∞∑
n=1

cn
an
∈ T be such that cn = 0 whenever n /∈ B

and for all n ∈ B, cn = qn − 1 as described in Lemma 4.2.6. Then applying Lemma
4.2.6 we can see that x ∈ tf,g(an)

(T). Since dfg (supp(x)) 6= 0, it follows that supp(x) does
not satisfy the criteria of Theorem 4.2.7 though x ∈ tf,g(an)

(T).

Finally, following [38], we address the natural question as to, for an arithmetic se-
quence (an), which specific elements of T would not surely belong to tf,g(an)

(T).

Proposition 4.2.11. Let (an) be a q-bounded arithmetic sequence, f be an unbounded
modulus function and g ∈ G. Consider x ∈ T be such that

(i) supp(x) =
∞⋃
n=1

[ln, kn], where ln, kn ∈ N, ln ≤ kn < ln+1 − 1 for all n ∈ N;
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(ii) d
f

g (A) > 0, where A = {ln : n ∈ N}.

Then x /∈ tf,g(an)
(T).

Proof. Let qn ≤ M for some M ∈ N \ {1}. We set B = {n− 2 : n ∈ A}. Therefore,
for any n ∈ B, we can observe that n + 1 6∈ supp(x) but n + 2 ∈ supp(x). Here,
d
f

g (B) > 0 by hypothesis. Now, for all n ∈ B, we have

{anx} = an

∞∑
i=n+1

ci
ai

= an

∞∑
i=n+2

ci
ai
≤ an
an+1

=
1

qn+1

≤ 1

2
.

But, for all n ∈ B, we also have

{anx} = an

∞∑
i=n+1

ci
ai

= an

∞∑
i=n+2

ci
ai
≥ an
an+2

=
1

qn+1qn+2

≥ 1

M2
.

Hence, we find a set B ⊆ N with d
f

g (B) > 0 such that for all n ∈ B, ‖anx‖ ∈ [ 1
M2 ,

1
2
]

i.e. x /∈ tf,g(an)
(T).

Corollary 4.2.12. Let (an) be a q-bounded arithmetic sequence, f be an unbounded
modulus function and g ∈ G. Consider x ∈ T be such that

(i) supp(x) =
∞⋃
n=1

[ln, kn], where ln, kn ∈ N, ln ≤ kn < ln+1 − 1 for all n ∈ N;

(ii) there exist m ∈ N such that for all n ∈ N, |kn − ln| ≤ m and |ln+1 − kn| ≤ m.

Then x /∈ tf,g(an)
(T).

Proof. Let us consider A = {ln : n ∈ N}. If possible we assume that dfg (A) = 0. We
have already seen that for each fixed i ∈ N, dfg (Ai) = 0 whereAi = {n−i : n ∈ A}∩N.

Since, |ln+1 − ln| ≤ |ln+1 − kn| + |kn − ln| ≤ 2m, it follows that N =
2m⋃
i=0

Ai ∈ Ig(f).

Therefore our assumption was wrong and we finally get d
f

g (A) > 0. Now, we can
observe that x satisfies all the conditions of Proposition 4.2.11. Thus x /∈ tf,g(an)

(T).

Again consider the following example.

Example 4.2.13. Consider any unbounded modulus function f and g ∈ G.Let, x = 1
pr−1

(where r ∈ N \ {1} and p is any prime) and an = pn. Take ln = kn = rn and m = r.

Therefore from Proposition 4.2.11 we obtain, x =
∞∑
n=1

1
pmn

= 1
pm−1 6∈ tf,g(pn)(T). A

particular example is 1
8
6∈ tf,g(3n)(T).

We will generalize the idea of the above example to construct x ∈ T in another way
(different from Proposition 3.15) which will lie outside tf,g(an)

(T).
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Proposition 4.2.14. Let (an) be an arithmetic sequence of integers, f be an unbounded
modulus function and g ∈ G. Consider x ∈ T with d

f

g (supp(x)) > 0. If there exists
m1,m2 ∈ R with 0 < m1 ≤ m2 <

1
2

and ∀ n ∈ supp(x), cn
qn
∈ [m1,m2], then

x 6∈ tf,g(an)
(T).

Proof. Let x =
∑

i∈supp(x)

ci
ai

be the canonical representation of x. We define, B = {(n−

1) ∈ N : n ∈ supp(x)}. Since d
f

g (supp(x)) > 0, we must have d
f

g (B) > 0.
Now ∀n ∈ B one has

{anx} = an ·
∑

i∈supp(x)
i>n

ci
ai
≥ an ·

∑
i∈supp(x)
i>n

m1 · ai
ai−1

ai
= an ·

∑
i∈supp(x)
i>n

m1

ai−1

= an ·
∑
i∈B
i≥n

m1

ai
≥ an ·

m1

an
= m1

and

{anx} = an ·
∑

i∈supp(x)
i>n

ci
ai
≤ an ·

∑
i∈supp(x)
i>n

m2 · ai
ai−1

ai
= an ·

∑
i∈B
i≥n

m2

ai

≤ m2(1 +
an
an+1

+
an
an+2

+ . . .) ≤ m2 ·
1

(1− 1
2
)

= 2m2.

Therefore ∀n ∈ B, {anx} ∈ [m1, 2m2] & B 6∈ Ig(f) which implies ‖anx‖ cannot
f g-statistically converge to 0. Thus x 6∈ tf,g(an)

(T).

Corollary 4.2.15. Let (an) be an arithmetic sequence. Then for a subset B ⊆ N there
exists x ∈ T with supp(an)(x) ⊆ B and x 6∈ tf,g(an)

(T) if and only if d
f

g (B) > 0.

Proof. The conjunction of x 6∈ tf,g(an)
(T) and supp(an)(x) ⊆ B implies d

f

g (B) > 0, by

Theorem 4.2.7. On the other hand, if d
f

g (B) > 0, then Proposition 4.2.14 provides an
element x ∈ T such that supp(an)(x) ⊆ B and x 6∈ tf,g(an)

(T).

4.3 Non-triviality of f g-characterized subgroups
In this section, our main aim is to check whether this newly obtained f g-characterized
subgroups are really new compared to the already studied s-characterized subgroups and
α-characterized subgroups.

Theorem 4.3.1. For any unbounded modulus function f , there exists g ∈ G such that
tf,g(an)

(T) ( tα(an)(T) and tf,g(an)
(T) ( ts(an)(T).

Proof. Write the identity function as f1 for brevity, take g(n) = log(1+n) for all n ∈ N
and g1(n) = nα for all n ∈ N, where 0 < α < 1. Observe that

lim
n→∞

f1(g1(n))

f1(g(n))
= lim

n→∞

nα

ln(1 + n)
= lim

n→∞
αnα · n+ 1

n
=∞

52



and

lim
n→∞

f1(n)

f1(g1(n))
= lim

n→∞

n

nα
→∞.

Therefore from Proposition 2.3.3, it follows that Ig ( Iα. Now, in view of (Proposition
2.6 [18]), for any unbounded modulus function f we have Ig(f) ⊆ Ig. Consequently
one can chooseA ∈ Iα\Ig(f). Clearly this means d

f

g (A) > 0 and from Corollary 4.2.15
it follows that x ∈ T with supp(x) ⊆ A satisfies x 6∈ tf,g(an)

(T). As supp(x) ⊆ A ∈ Iα
i.e. dα(supp(x)) = 0, from Theorem 4.2.7 we can conclude that x ∈ tα(an)(T). Thus
tf,g(an)

(T) ( tα(an)(T). Similarly taking α = 1, and choosing an appropriate support we
can show that tf,g(an)

(T) ( ts(an)(T).

Theorem 4.3.2. There exists an unbounded modulus function f such that for any g ∈ G,
tf,g(an)

(T) 6= tα(an)(T) and tf,g(an)
(T) 6= ts(an)(T).

Proof. We consider f(x) = log(1 + x) and any g ∈ G. Let A ⊂ N be such that
|A ∩ [1, n]| = bnβc (where 0 < β < α < 1).
Then

dα(A) = lim
n→∞

|(A ∩ [1, n])|
nα

≤ lim
n→∞

nβ

nα
= lim

n→∞

1

nα−β
= 0.

Since n
g(n)

9 0, there exists (nk) ⊆ N such that 1+g(nk) < (1+nk)
2. Now, we observe

that

f(|(A ∩ [1, nk])|)
f(g(nk))

=
log(1 + |(A ∩ [1, nk])|)

log(1 + g(nk))
≥ log(nβk)

log(1 + nk)2
→ β

2
> 0.

Therefore d
f

g (A) > 0 and again in view of Corollary 4.2.15, x ∈ T with supp(x) ⊆ A

lies outside tf,g(an)
(T). On the other hand supp(x) ⊆ A and dα(A) = 0 implies x ∈

tα(an)(T) ⊆ ts(an)(T) in view of Theorem 4.2.7. Hence tf,g(an)
(T) 6= tα(an)(T) and tf,g(an)

(T) 6=
ts(an)(T).

But we can actually say more. For each 0 < α ≤ 1, we can choose β from (0, α) in
c many ways. Therefore, we also have |tα(an)(T) \ tf,g(an)

(T)| = c.

Theorem 4.3.3. For any unbounded modulus function f , there exists c many g ∈ G such
that tf(an)(T) ( tf,g(an)

(T).

Proof. Let f be an unbounded modulus function. From Remark 2.3.6, there exists c
many g ∈ G such that I(f) ( Ig(f). Therefore, there exists A ⊆ N such that A ∈
Ig(f) \ I(f) i.e. dfg (A) = 0 while d

f
(A) > 0. The result then follows considering

x ∈ T with supp(x) ⊆ A from Corollary 4.2.15 and Theorem 4.2.7.

Finally we have the following observations about the relations between characterized
subgroups generated by two modulus functions which provides a broad picture about
these subgroups.
• For any two unbounded modulus functions f1, f2, there exists a family G0 ⊆ G

of cardinality c such that tfi,g(an)
(T) is incomparable with tfj(an)(T) for each g ∈ G0 and

i, j ∈ {1, 2}. Also tfi,g1(an)
(T), tfj ,g2(an)

(T) are incomparable for i, j ∈ {1, 2} and any two
distinct g1, g2 ∈ G0.
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The result follows from Theorem 2.3.9 following the line of the proof of Theorem
4.3.3.
• For any unbounded modulus function f , there exist g1, g2 ∈ G such that tf,g1(an)

(T) (
tf(an)(T) ( tf,g2(an)

(T).
The result follows from Proposition 2.3.11 with the proof being analogous to the

proof of Theorem 4.3.3.
In the recent article [19] the following open problem was posed:

Problem 4.3.4. For any arithmetic sequence (an) and 0 < α1 < α2 < 1, is tα1

(an)
(T) (

tα2

(an)
(T) ?

We end this section with the following result which gives a positive solution to the
above problem in the most general form.

Proposition 4.3.5. For any unbounded modulus function f , if g1, g2 ∈ G are such that
f(n)

f(g2(n))
≥ a > 0 and f(g2(n))

f(g1(n))
→∞, then tf,g1(an)

(T) ( tf,g2(an)
(T).

Proof. As from Proposition 2.3.3, it follows that Ig1(f) ( Ig2(f), the rest of the proof
can be done following the method of the proof of Theorem 4.3.3.

4.4 An uncountable tower of Borel subgroups
In this section our primary motivation is the question “whether one can construct a
tower of Borel (preferably characterized in certain sense) subgroups between two such
groups”. For example it is well known in the literature on the circle group T that there
exists an uncountable chain of polishable subgroups, each of size c between the Prüfer
group Z(2∞) and T (see [1] for details). Now the s-characterized group ts(2n)(T) (which
is uncountable and has size c) properly contains t(2n)(T) = Z(2∞) [38]. However this
result does not necessarily imply the existence of such a chain between t(2n)(T) and
ts(2n)(T). This question was considered in [34] and the following result was established.

Theorem 4.4.1. [34] There is a family {Bα : α ∈ (0, 1)} of Borel subgroups of the
circle group T that satisfies the following properties:

(1) each Bα is α-characterized by the same sequence (2n)n;
(2) Bα ( Bβ whenever α < β for all α, β ∈ (0, 1);
(3) |Bα| = c for every α ∈ (0, 1);
(4) for every α ∈ (0, 1), the group Bα contains the Prüfer group Z(2∞);
(5) for every α ∈ (0, 1), the group Bα is properly contained in the s-characterized

subgroup ts(2n)(T);

(6) further
⋂

α∈(0,1)

Bα ) Z(2∞) and
⋃

α∈(0,1)

Bα ( ts(2n)(T).

It is now natural to ask whether Theorem 4.4.1 holds for any arithmetic sequence
or whether a more general version could be established. Before establishing a more
general result, we start with an illustrative example taking the modulus function f(x) =
log(1 + x) and the arithmetic sequence (2n).
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Proposition 4.4.2. Consider the modulus function f(x) = log(1 + x). There exists a
family G0 = {gα ∈ G : α ∈ (0, 1)} ⊂ G such that tf,gα(2n)(T) ( t

f,gβ
(2n)(T) for any α < β.

Proof. For any α ∈ (0, 1) we define

gα(n) = er
α − 1 where r ∈ (0,∞) satisfies n+ 1 = er.

Take n1, n2 ∈ N and let n1 + 1 = er1 and n2 + 1 = er2 . Now n1 = n2 ⇒ log(1 +n1) =
log(1+n2) ⇒ r1 = r2 ⇒ er

α
1 −1 = er

α
2 −1 ⇒ gα(n1) = gα(n2) i.e. gα is well defined

for each α ∈ (0, 1). Clearly gα is non-decreasing, lim
n→∞

gα(n) = ∞ and gα(n) < n for

all n ∈ N and for each α ∈ (0, 1). Therefore lim
n→∞

n
gα(n)

9 0 and gα ∈ G. Now observe
that whenever α < β, we have

lim
n→∞

f(gα(n))

f(gβ(n))
= lim

r→∞

f(er
α − 1)

f(erβ − 1)
= lim

r→∞

log(er
α
)

log(erβ)
= lim

r→∞

rα

rβ
= 0.

Thus in view of [18, Lemma 3.4], it follows that Igα(f) ⊆ Igβ(f). So we conclude that
tf,gα(2n)(T) ⊆ t

f,gβ
(2n)(T) whenever α < β, α, β ∈ (0, 1).

Now consider the set A = {m ∈ N : m = be(log(1+n))
1
γ c − 1 for some n ∈ N and

α < γ < β} and define x ∈ T be such that supp(2n)(x) = A. Observe that

dfgα(A) = lim
n→∞

f(|A ∩ [1, n]|)
f(gα(n))

= lim
n→∞

log(1 + n)

log(1 + gα(be(log(1+n))
1
γ c − 1))

≥ lim
n→∞

log(1 + n)

log(1 + e(log(1+n))
α
γ − 1)

= lim
n→∞

(log(1 + n))(1−
α
γ
)

= ∞

whereas

dfgβ(A) = lim
n→∞

f(|A ∩ [1, n]|)
f(gβ(n))

= lim
n→∞

log(1 + n)

log(1 + gβ(be(log(1+n))
1
γ c − 1))

≤ lim
n→∞

log(1 + n)

log(1 + e(log(
1+n
2

))
β
γ − 1)

( for large n)

= lim
n→∞

log(1 + n)

(log(1+n
2

))
β
γ

= 0.

Since dfgβ(A) = 0, from Theorem 4.2.7 it follows that x ∈ t
f,gβ
(2n)(T). Now consider

B = ((A − 1) \ A) ∩ N. Observe that |e(log(1+n+1))
1
γ − e(log(1+n))

1
γ | → ∞ implies

(A− 1) ∩ A is finite. So we must have dfgα(B − 1) = dfgα(B) = dfgα(A) > 0. Note that
for all n ∈ B − 1, n + 1 6∈ supp(2n)(x) but n + 2 ∈ supp(2n)(x). Hence as in one hand
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we obtain

{2nx} = 2n ·
∞∑

k=n+1

ck
2k

= 2n ·
∞∑

k=n+2

ck
2k
≤ 2n ·

∞∑
k=n+1

1

2k
=

2n

2n+1
=

1

2
,

on the other hand we have

{2nx} = 2n ·
∞∑

k=n+2

ck
2k
≥ 2n

1

2n+2
=

1

4
.

Therefore we find a B ⊆ N with dfgα(B) > 0 such that for all n ∈ B we have
{anx} ∈ [1

4
, 1
2
] i.e. x 6∈ tf,gα(2n)(T). Consequently we can conclude that tf,gα(2n)(T) ( t

f,gβ
(2n)(T)

whenever α < β, α, β ∈ (0, 1).

Proposition 4.4.3. For any arithmetic sequence (an) and f ∈ F and g1, g2 ∈ G if
Ig1(f) ( Ig2(f) then tf,g1(an)

(T) ( tf,g2(an)
(T).

Proof. Since Ig1(f) ( Ig2(f) it is straight forward that tf,g1(an)
(T) ⊆ tf,g2(an)

(T). Consider

A ∈ Ig2(f) \ Ig1(f). Therefore d
f

g1
(A) > 0 and in view of Corollary 4.2.15 there

exists x ∈ T with supp(an)(x) ⊆ A and x 6∈ tf,g1(an)
(T). Observe that dfg2(supp(an)(x)) =

0. So Theorem 4.2.7 ensures that x ∈ tf,g2(an)
(T). Thus, we conclude that tf,g1(an)

(T) (
tf,g2(an)

(T).

Theorem 4.4.4. (cf. Theorem 4.4.1) For each arithmetic sequence (an) and for any
f ∈ F there exists a family {Bα : α ∈ (0, 1)} of Borel subgroups of T such that the
following statements hold:

(i) Each Bα is f gα-characterized by the same arithmetic sequence (an).

(ii) |Bα| = c for all α ∈ (0, 1).

(iii) Bα ( Bβ whenever α < β for all α, β ∈ (0, 1).

(iv) For every α ∈ (0, 1), the group Bα properly contains the characterized subgroup
t(an)(T).

(v) For every α ∈ (0, 1), the group Bα is properly contained in the f -characterized
subgroup tf(an)(T).

(vi) Further
⋂

α∈(0,1)
Bα ) t(an)(T) and

⋃
α∈(0,1)

Bα ( tf(an)(T).

Proof. Take Bα = tf,gα(an)
(T). Then (i) and (ii) immediately follows from Theorem 4.1.3

and Theorem 4.2.8.
In view of Lemma 2.2.4 and Theorem 2.3.7, there exists a G0 = {gα ∈ G : α ∈

(0, 1)} ⊆ G such that;

(a) Igα(f) ( Igβ(f) for any α < β.
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(b)
⋂

α∈(0,1)
Igα(f) ) Fin.

(c)
⋃

α∈(0,1)
Igα(f) ( I(f).

Note that (iii) follows directly from Proposition 4.4.3. Let α, β ∈ (0, 1) and α < β.
Therefore, tf,gα(an)

(T) ⊆ t
f,gβ
(an)

(T) follows from the fact that Igα(f) ⊆ Igβ(f). Now with
the help of (a) we can consider an infinite A1 ⊆ N such that A1 ∈ Igβ(f) \ Igα(f).

Since d
f

gα(A1) > 0, from Corollary 4.2.15 there is an x ∈ T with supp(x) ⊆ A1 such
that x 6∈ tf,gα(an)

(T). But dfgβ(A1) = 0 and in view of Theorem 4.2.7 we get x ∈ tf,gβ(an)
(T).

Thus, we obtain that tf,gα(an)
(T) ( t

f,gβ
(an)

(T) i.e. (ii) is satisfied.
Now, in view of (b) and (c) there exists A2, A3 ⊆ N such that A2 ∈

⋂
α∈(0,1)

Igα(f) \

Fin and A3 ∈ I(f) \
⋃

α∈(0,1)
Igα(f). Then following the line of argument as in (ii),

we conclude that (vi) holds. Lastly observe that (iv) and (v) are easy consequence of
(vi).

As a consequence, we obtain the solution of the following open problem.

Problem 4.4.5. [19, Problem 2.15] For any arithmetic sequence (an), is it true that
t(an)(T) 6=

⋂
α t

α
(an)

(T) and ts(an)(T) 6=
⋃
α t

α
(an)

(T) ?

Note that for the unbounded modulus function f(x) = x, tf(an)(T) is nothing but
ts(an)(T) and the inverse of f is defined as h(x) = x. Therefore in Theorem 2.3.7, the
weight function gα becomes gα = (n−1)α and we immediately get tf,gα(an)

(T) = tα(an)(T).
The positive solution of Problem 7.2.6 follows as an easy consequence of Theorem 4.4.4
(vi).

4.5 Conclusion
As one can observe that the f g-characterized subgroups generalize all such notion of
generalized characterized subgroups that exists in the literature and the consequence is
that, not only the main results of [38] and [19] follow as special cases of our results,
namely, Theorem 4.1.3 (extends Theorem A [38]), Theorem 4.2.8 (extending Theorem
B [38]) and Theorem 4.2.9 (extending Theorem C [38]), at the same time, the ques-
tions about simple density and f -density are resolved. Finally the justification for the
investigation is assured by Theorem 4.3.1 and Theorem 4.3.2 (proved in Section 4.3)
which shows that for a given arithmetic sequence, we can indeed construct non-trivial
Borel subgroups of T different from ts(an)(T) or tα(an)(T) for suitable choice of modulus
function f or the weight function g. Finally we end this chapter with some interesting
comparative results about the generated subgroups and a general construction of an un-
countable tower of characterized subgroups (Theorem 4.4.4) which subsequently gives
the solution of Problem 2.15 [19].
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Chapter 5

I-CHARACTERIZED SUBGROUPS
OF THE CIRCLE∗

5.1 Introduction
As mentioned before, the complete characterization of topologically s-torsion elements
and topologically α-torsion elements are described in Theorem 3.3.1 for arithmetic se-
quences. Our main quest in this section is to find the same, for much more general,
topologically I-torsion elements. Our method of proof for the Theorem 5.2.8 follows
exactly the same line of arguments used in Theorem 3.3.1 but as the situation for gen-
eral ideals is much more complex than the cases in Theorem 3.3.1 where basically the
natural density ideal of order α were used, so several suitable modifications have to be
brought in to tackle the new difficulties that arise. Before moving forward we refer to
the Section 2.1 of Chapter 2 and Section 0.2 of Preface for basic definitions connected
with ideals on N (cf. [50]).

In our recent article [36] we have introduced the following ideal version of char-
acterized subgroups to find out why “Eggleston’s dichotomy” [47] breaks down for s-
characterized subgroups.

Definition 5.1.1. [36] For a sequence of integers (an), the subgroup

tI(an)(T) := {x ∈ T : anx→ 0 in T w.r.t I} (5.1)

of T is called an I-characterized (by (an)) subgroup of T.

For any two ideals I1 and I2 of N, it is easy to note that I1 ⊆ I2 implies
tI1(an)(T) ⊆ tI2(an)(T), where (an) is a sequence of integers.

Definition 5.1.2. Let (an) be a sequence of integers. An element x ∈ T is called topo-
logically I-torsion element if x ∈ tI(an)(T).

In this chapter we will primarily be focused on the class of analytic P -ideals as they
are instrumental in generating topologically nice subgroups of T as can be observed
from the following result.

∗Content of this chapter has been published in “Ricerche di Matematica”.
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Theorem 5.1.3. [36] For any analytic P -ideal I, tI(an)(T) is a Fσδ (hence, Borel) sub-
group of T containing t(an)(T).

Theorem 5.1.4. [82] Let X be a Polish space. Then for every Borel set B in X there is
a finer Polish topology τB on X such that B is closed in X with respect to τB.

Remark 5.1.5. Since tI(an)(T) is a Borel set of T, it is measurable with respect to the
Haar measure µ of T. More precisely, µ(tI(an)(T)) = 1 when tI(an)(T) = T. Otherwise,
when tI(an)(T) 6= T, µ(tI(an)(T)) = 0 since in this case the subgroup tI(an)(T) will have
infinite index (as T/tI(an)(T) is divisible as a quotient of the divisible group T) and
µ(T) = 1.

By Theorem 5.1.3, the subgroup tI(an)(T) is a Fσδ set. In general, it may not be
complete with respect to the usual norm ‖.‖ prevalent in T as one can see by taking any
proper infinite I-characterized subgroup (for example tI(2n)(T)), where I is any analytic
P -ideal, which is dense, so non-closed, hence cannot be complete. However taking the
metric

δ(x, y) = sup
n∈N
{‖x− y‖, ‖an(x− y)‖}.

it can be shown as in [38] that tI(an)(T) is closed in (T, δ). Further in view of Theorem
5.1.4 we can conclude that for any sequence (an) of natural numbers, and analytic P -
ideal I, tI(an)(T) is Polishable.

5.2 Main results
Before proceeding to our main results we present below certain basic definitions, nota-
tions which will be needed.

Let = denote the set of all translation invariant analytic P -ideals over N except Fin
and in this section I will always stand for a translation invariant analytic P -ideal and
(an) will always denote an arithmetic sequence unless otherwise stated.

We start with a sufficient condition for an element of T to be a topologically I-
torsion element which will be used later.

Lemma 5.2.1. For any analytic P -ideal I and x ∈ T, if supp(x) ∈ I and supp(x) is
I-translation invariant, then x ∈ tI(an)(T).

Proof. We consider A = supp(x) ∈ I. Pick any k ∈ N and define B =
k⋃
i=0

(A − i).

As A is I-translation invariant, B ∈ I. It is enough to check that ‖anx‖ < 1
k

for all
n ∈ N \ B ∈ I∗. Note that n ∈ N \ B precisely when n+ i 6∈ A for i = 0, 1, 2, . . . , k.
Therefore, in the canonical representation of x one must have

cn+1 = cn+2 = . . . = cn+k = 0 n ∈ N \B.

This implies that

{anx} =
∞∑

i=n+k+1

ci
ai
· an ≤

∞∑
i=n+k+1

ai/ai−1 − 1

ai
· an ≤

an
an+k

≤ 1

2k
<

1

k
.
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As a consequence, we obtain that

‖anx‖ <
1

k
for all n ∈ N \B.

Hence, x ∈ tI(an)(T).

Our next three results portrait a generalized view of [38, Theorem 4.3, Theorem B,
Theorem C ] respectively.

Lemma 5.2.2. For any I ∈ = and x ∈ T, if supp(x) ∈ I then x ∈ tI(an)(T).

Proof. Since I ∈ =, every supp(x) ∈ I is I-translation invariant. Therefore, Lemma
5.2.1 ensures that x ∈ tI(an)(T).

Corollary 5.2.3. For any I ∈ =, |tI(an)(T)| = c.

Proof. First observe that tI(an)(T) ⊂ T implies |tI(an)(T)| ≤ |T| = c.
Fix a specific member B = (bn) ∈ I. Also fix a sequence ξ = (zn) ∈ {0, 1}N and

define Bξ = (b2n+zn). As obviously Bξ 6= Bη for distinct ξ, η ∈ {0, 1}N which provides
an injective map given by

{0, 1}N 3 ξ → Bξ ∈ I.

Note that |{0, 1}N| = c. Therefore, |I| = c. This provides c many elements {xi : i ∈ Λ}
in T with distinct supports in I. By Lemma 5.2.2, xi ∈ tI(an)(T) for every i ∈ Λ.

Corollary 5.2.4. For any I ∈ =, tI(an)(T) ) t(an)(T).

Proof. Consider an infinite subset B of N with B ∈ I. Let us choose x ∈ T such that

x =
∞∑
n=1

cn
an

with supp(x) = B and cn =
⌊qn

2

⌋
for all n ∈ B.

Then x ∈ tI(an)(T) by Lemma 5.2.2, while x 6∈ t(an)(T) by [41, Theorem 2.3]. This
proves tI(an)(T) ) t(an)(T).

The following folklore fact about ideal convergence would be frequently used from
now on.

Lemma 5.2.5. (Folklore) For a sequence (xn) and a P -ideal I, xn → x w.r.t I if and
only if for any A ∈ I+, there exists an infinite A′ ⊂ A such that lim

n∈A′
xn = x.

Let I ∈ =. Now for any B ∈ I+, let t(aB)(T) = {x ∈ T : lim
n∈B

anx = 0 in T}
and tI(aB)(T) = {x ∈ T : lim

n∈B′
anx = 0 in T for some B′ ⊆I B}. Therefore, for all

B ∈ I+, we have tI(an)(T) ⊆ tI(aB)(T).
Our next lemma is a suitable modification of [41, Lemma 2.6] which will play key

role in the proof of Theorem 5.2.8.
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Lemma 5.2.6. For B ∈ I+ and x ∈ t(aB−1)(T) the following hold:
i) IfB ⊆I supp(x) and is q-bounded, thenB ⊆I suppq(x) and there existsB′ ⊆I B

such that lim
n∈B′
{an−1x} = 1 in R.

ii) If B ∩ supp(x) ∈ I, then there exists B′ ⊆I B such that lim
n∈B′
{an−1x} = 0 in R.

Proof. i) Let q = 1+max
n∈B
{qn} andB′ = B∩supp(x). SinceB′ ⊆ B andB\supp(x) ∈

I, we get B ⊆I B′. Therefore

{an−1x} ≥
cn
qn

>
1

q
for all n ∈ B′ (Since cn ≥ 1 for all n ∈ B′) .

But as x ∈ t(aB−1)(T), we can conclude that lim
n∈B′
{an−1x} = 1 in R. Consequently

1− 1

qn
< 1− 1

q
< {an−1x} =

cn
qn

+
{anx}
qn

<
cn + 1

qn
for almost all n ∈ B′ (From equation (3.8)).

⇒ qn − 1 < cn + 1, i.e., cn > qn − 2 for almost all n ∈ B′.

Hence, cn = qn − 1 for almost all n ∈ B′, i.e., B′ ⊆∗ suppq(x), which implies
B ⊆I suppq(x).

ii) Let B′ = B \ supp(x). Observe that B′ ⊆ B and B \B′ = B \ (B \ supp(x)) =
B ∩ supp(x) ∈ I, i.e., B′ ⊆I B. Now from equation (3.8) we have

{an−1x} = 0 +
{anx}
qn

<
1

2
for all n ∈ B′ (Since cn = 0 ∀ n ∈ B′).

Then in view of the fact that x ∈ t(aB−1)(T), we must have lim
n∈B′
{an−1x} = 0 in R.

Lemma 5.2.7. Consider A ⊆ N with A ∈ I+ where A is not q-bounded. If there does
not exist any q-bounded subset A′ ⊆ A with A′ ∈ I+ then there exists a q-divergent set
B ⊆ N such that B ⊆I A.

Theorem 5.2.8. (see also [41, Theorem 2.3]) Let x ∈ T and I ∈ =. Then x is a
topologically I-torsion element (i.e., x ∈ tI(an)(T)) if and only if either supp(x) ∈ I or
if supp(x) ∈ I+, then for all A ⊆ N with A ∈ I+ the following holds:

(a) If A is q-bounded, then:

(a1) If A ⊆I supp(x), then A + 1 ⊆I supp(x), A ⊆I suppq(x) and there exists
A′ ⊆I A such that lim

n∈A′
cn+1+1
qn+1

= 1 in R.

Moreover, if A+ 1 is q-bounded, then A+ 1 ⊆I suppq(x).

(a2) If A ∩ supp(x) ∈ I, then there exists A′ ⊆I A such that lim
n∈A′

cn+1

qn+1
= 0 in R.

Moreover, if A+ 1 is q-bounded, then (A+ 1) ∩ supp(x) ∈ I as well.
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(b) If A is q-divergent, then lim
n∈B

cn
qn

= 0 in T for some B ⊆I A.

Proof. Necessity: Suppose supp(x) ∈ I+ and x ∈ tI(an)(T). Therefore there exists
M ⊆ N with M ∈ I∗ such that

lim
n∈M
{an−1x} = 0 in T. (5.2)

Consider any A ⊆ N with A ∈ I+. We take B = M ∩ A. Then B ⊆ A and
A \ B = A ∩ (N \ M) ∈ I, i.e., B ⊆I A. As B ⊆ M , from equation (5.2) we
get lim

n∈B
{an−1x} = 0 in T. Consequently, there exists B ⊆I A such that x ∈ t(aB−1)(T).

(a) Suppose first that A is q-bounded. The following two cases can arise:

(a1) First, suppose A ⊆I supp(x). Then B ⊆ A is q-bounded and B ⊆I supp(x).
Since, x ∈ t(aB−1)(T) and B is q-bounded, from Lemma 5.2.6 we conclude that B ⊆I
suppq(x) and lim

n∈A′
{an−1x} = 1 in R, whereA′ ⊆I B. Subsequently from equation (3.8)

1 = lim
n∈A′

(
cn
qn

+
{anx}
qn

) = lim
n∈A′

(
qn − 1 + {anx}

qn
)

= lim
n∈A′

(1− 1− {anx}
qn

)⇒ lim
n∈A′

1− {anx}
qn

= 0.

Hence we have
lim
n∈A′
{anx} = 1 (Since, A′ ⊆ B is q-bounded). (5.3)

Now from the definition of canonical representation (3.1), cn+1 ≤ qn+1−1 for all n ∈ N.
Again from equation (3.8), we have

{anx} =
cn+1

qn+1

+
{an+1x}
qn+1

<
cn+1 + 1

qn+1

≤ 1.

From equation (5.3) it then follows that

1 = lim
n∈A′
{anx} ≤ lim

n∈A′
cn+1 + 1

qn+1

≤ 1, i.e., lim
n∈A′

cn+1 + 1

qn+1

= 1. (5.4)

Note that qn+1 ≥ 2 for all n ∈ N. From equation (5.4), we can observe that cn+1 +1 > 1
(i.e., cn+1 6= 0) for almost all n ∈ A′. This impliesA′+1 ⊆∗ supp(x). SinceB\A′ ∈ I,
we obtain B + 1 ⊆I supp(x).

As B ⊆I A, we must have A+1 ⊆I supp(x), A ⊆I suppq(x) and lim
n∈A′

cn+1+1
qn+1

= 1

for some A′ ⊆I A. If A+ 1 is q-bounded, proceeding as in the first part of the proof we
can show that A+ 1 ⊆I suppq(x).

(a2) Now let A∩supp(x) ∈ I. Since B ⊆ A, we must have B∩supp(x) ∈ I. Then
from Lemma 5.2.6, we can conclude that lim

n∈A′
{an−1x} = 0 in R for some A′ ⊆I B.
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Therefore putting k = 1 in equation (3.6) and equation (3.7), we obtain

lim
n∈A′

(
cn
qn

+
cn+1

qnqn+1

+
{an+1x}
qnqn+1

) = lim
n∈A′
{an−1x} = 0

⇒ lim
n∈A′

cn+1

qnqn+1

= lim
n∈A′
{an+1x}
qnqn+1

= 0 (Since cn, {anx} ≥ 0 and qn > 0). (5.5)

As A′ ⊆ B is q-bounded, equation (5.5) implies that lim
n∈A′

cn+1

qn+1
= 0 in R, where A′ ⊆I

B ⊆I A.
Moreover, if A + 1 is q-bounded, then vanishing of the last limit implies that (A′ +

1) ∩ supp(x) is finite. Thus (A+ 1) ∩ supp(x) ∈ I (Since, (A+ 1) \ (A′ + 1) ∈ I).

(b) Suppose A is q-divergent, i.e., lim
n∈A

qn =∞. Then from equation (3.8), we have

lim
n∈B

(
cn
qn

+
{anx}
qn

) = lim
n∈B
{an−1x} = 0 in T for some B ⊆I A

⇒ lim
n∈B

cn
qn

= 0 in T (Since, {anx} < 1 and lim
n∈B

qn =∞).

Claim 5.2.9. Before proving the sufficiency of the conditions, we need to reformulate
the necessary conditions in a stronger iterated version. For an infinite subset A of N

and k ∈ N ∪ {0}, we define Lk(A) =
k⋃
i=0

(A + i). Now putting k = k + 1 in equation

(3.6), we obtain
σn,k+1 = σn,k +

cn+k+1

qnqn+1 . . . qn+k+1

. (5.6)

Consequently from equation (3.7) and equation (5.6) it follows that

{an−1x} = σn,k+1+
{an+k+1x}

qnqn+1 . . . qn+k+1

= σn,k+
cn+k+1

qnqn+1 . . . qn+k+1

+
{an+k+1x}

qnqn+1 . . . qn+k+1

(5.7)

⇒ σn,k ≤ {an−1x} < σn,k +
cn+k+1

qnqn+1 . . . qn+k+1

+
1

2(k+2)
. (5.8)

Let x ∈ T has canonical representation (3.1) such that (a) and (b) of Theorem 5.2.8 hold.
Let A ⊆ N be q-bounded with A ∈ I+. If Lk(A) is q-bounded for some k ∈ N ∪ {0},
then the following hold:

(i) If A ⊆I supp(x), then Lk(A) ⊆I suppq(x) and lim
n∈A′+k+1

cn+1
qn

= 1 in R for some

A′ ⊆I A. Therefore there exists nk ∈ N such that for all n ∈ A′ with n ≥ nk,

σn,k = 1− 1

qnqn+1 . . . qn+k
≥ 1− 1

2k+1
. (5.9)

Moreover if A+ k + 1 is q-divergent, then

lim
n∈A+k+1

cn
qn

= lim
n∈A

cn+k+1

qn+k+1

= 1 in R. (5.10)
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(ii) If A∩supp(x) ∈ I, then Lk(A)∩supp(x) ∈ I and lim
n∈A′

cn+k+1

qn+k+1
= 0 in R for some

A′ ⊆I A.

Sufficiency: If supp(x) ∈ I, then from Lemma 5.2.1 it readily follows that x ∈ tI(an)(T).
So let supp(x) ∈ I+ and supp(x) satisfy conditions (a) and (b). To show that x ∈
tI(an)(T), in view of Lemma 5.2.5 it is sufficient to check the convergence criterion: for
all A ⊆ N with A ∈ I+, there exists an infinite set B′ ⊆ A such that lim

n∈B′
an−1x = 0 in

T. Indeed without any loss of generality, we can assume that either A∩ supp(x) ∈ I or
A ⊆I supp(x).

Case (i): First let A be q-bounded.
Subcase (ia): Let us first assume that Lk(A) is q-bounded for all k ∈ N ∪ {0}. Let

ε > 0 be given. Choose k ∈ N such that 1
2k+1 < ε.

∗ Let A ⊆I supp(x). Then from (i) of Claim 5.2.9, Lk(A) ⊆I suppq(x). This
implies the existence of B′ ⊆ A such that for all n ∈ B′

σn,k = 1− 1

qnqn+1 . . . qn+k
≥ 1− 1

2k+1
> 1− ε

⇒ 1− ε < σn,k ≤ {an−1x} < 1 for all n ∈ B′ (From equation (5.8)).

∗ Let A ∩ supp(x) ∈ I. Then from (ii) of Claim 5.2.9, Lk(A) ∩ supp(x) ∈ I and
lim
n∈B

cn+k+1

qn+k+1
= 0 in R for some B ⊆I A. So there exists B′ ⊆ B such that σn,k = 0 and

cn+k+1

qn+k+1
< ε for all n ∈ B′. Therefore from equation (5.8), it follows that

{an−1x} < σn,k +
cn+k+1

qnqn+1 . . . qn+k+1

+
1

2(k+2)
< 2ε for all n ∈ B′.

Thus in both cases, we have lim
n∈B′
{an−1x} = 0 in T for some B′ ⊆ A, as required.

Subcase (ib): We assume that there exists an integer k ≥ 0 such that A + k + 1 is
not q-bounded but A+ i is q-bounded for all i = 0, 1, 2, . . . , k. If there exists an A′ ⊆ A
such that A′ ∈ I+ and A′ + k + 1 is q-bounded, then without any loss of generality we
can start with A′ in place of A. So let us consider the case when there does not exist any
A′ ⊆ A such that A′ ∈ I+ and A′ + k + 1 is q-bounded. Therefore from Lemma 5.2.7,
there exists B ⊆I A such that B + k + 1 is q-divergent, i.e., lim

n∈B
qn+k+1 = ∞. Clearly

Lk(B) is q-bounded. Further more

lim
n∈B

{an+k+1x}
qnqn+1 . . . qn+k+1

≤ lim
n∈B

1

qn+k+1

= 0. (5.11)

Subsequently from equation (5.7) and equation (5.11), we obtain

lim
n∈B
{an−1x} = lim

n∈B
σn,k + lim

n∈B

cn+k+1

qnqn+1 . . . qn+k+1

+ lim
n∈B

{an+k+1x}
qnqn+1 . . . qn+k+1

= lim
n∈B

σn,k + lim
n∈B

cn+k+1

qnqn+1 . . . qn+k+1

. (5.12)
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∗ Let A ⊆I supp(x). Therefore B ⊆I supp(x). Consequently in view of equation
(5.9) of Claim 5.2.9 and equation (5.12), we get

lim
n∈B′
{an−1x} = lim

n∈B′
(1− 1

qnqn+1 . . . qn+k
+

cn+k+1

qnqn+1 . . . qn+k+1

)

= lim
n∈B′

(1 +
1

qnqn+1 . . . qn+k
· (cn+k+1

qn+k+1

− 1)) = 1

for some B′ ⊆I B.
∗ Next let A ∩ supp(x) ∈ I. Then there exists B ⊆ A such that σn,k = 0 for all

n ∈ B. Subsequently from (ii) of Claim 5.2.9 and equation (5.12), we have

lim
n∈B′
{an−1x} = lim

n∈B′
cn+k+1

qnqn+1 . . . qn+k+1

≤ lim
n∈B′

cn+k+1

qn+k+1

= 0

for some B′ ⊆I B. Thus in both cases, we again obtain that lim
n∈B′
{an−1x} = 0 in T for

some B′ ⊆ A.

Case (ii): We assume that A is not q-bounded. If there exists A′ ⊆ A such that A′ ∈ I+
and A′ is q-bounded then we can proceed as in Case (i) and consider A′ in place of A.
So, let us assume that there does not exist any A′ ⊆ A such that A′ ∈ I+ and A′ is q-
bounded. Then from Lemma 5.2.7, there exists B ⊆I A such that B is q-divergent, i.e.,
lim
n∈B

qn =∞. From hypothesis, we have lim
n∈B′

cn
qn

= 0 in T for some B′ ⊆I B. Therefore

from equation (3.8), we obtain

lim
n∈B′
{an−1x} = lim

n∈B′
(
cn
qn

+
{anx}
qn

) = 0 in T (Since lim
n∈B′

{anx}
qn

< lim
n∈B′

1
qn

= 0 ).

Hence in all cases, we can conclude that for any A ⊆ N with A ∈ I+, there exists an
infinite set B′ ⊆ A such that lim

n∈B′
{an−1x} = 0 in T. This shows that x ∈ tI(an)(T), i.e.,

x is a topologically I-torsion element of T.

Remark 5.2.10. Since for all n 6∈ supp(x) we have cn = 0, it is sufficient to consider
only subsets of supp(x) in item (b) of Theorem 5.2.8.

The following two observations follow from our main result (i.e., Theorem 5.2.8 )
giving certain particular cases of an element x of T being or not being a topologically
I-torsion element. These observations play important role while proving the next two
corollaries and solve the open problem [19, Problem 2.14.] in the most general form.

Corollary 5.2.11. If supp(x) is q-bounded, then x ∈ tI(an)(T) if and only if the following
statements hold:

(i) (supp(x) + 1) \ supp(x) ∈ I, and

(ii) supp(x) \ suppq(x) ∈ I.

Proof. The proof follows from similar line of arguments as in Corollary 3.4.9 and so is
omitted.
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Proposition 5.2.12. Let I ∈ = and x ∈ T with supp(x) ∈ I+. If there exists m1,m2 ∈
R with 0 < m1 ≤ m2 <

1
2

and for all n ∈ supp(x), cn
qn
∈ [m1,m2], then x 6∈ tI(an)(T).

Proof. The proof follows from similar line of arguments as in [38, Proposition 5.2] and
so is omitted.

Corollary 5.2.13. For I ∈ = and a subset B ⊂ N there exists x ∈ T with supp(x) ⊆ B
such that x 6∈ tI(an)(T) if and only if B ∈ I+.

Proof. Let, x 6∈ tI(an)(T) and supp(x) ⊆ B. Then, from Lemma 5.2.2 we obtain that
B ∈ I+.

We consider B = {n1 < n2 < . . . nk < . . .} ∈ I+. If B is q-bounded then take
x ∈ T such that supp(x) = C ⊆ B where C + 1 ∩ C = ∅ and C ∈ I+ (In particular
one can consider C = (n2k) or C = (n2k−1)). Therefore, C + 1 \C = C + 1 ∈ I+ and
in view of Corollary 5.2.11 we get x 6∈ tI(an)(T).

Now let us consider B is not q-bounded. If there exists an A ⊆ B such that A is
q-bounded and A ∈ I+ then by previous argument we are done here. So, we assume
that there does not exist anyA ⊆ B such thatA is q-bounded andA ∈ I+. Therefore, in
view of Lemma 5.2.7 there exists C ⊆I B such that C is q-divergent. Consider x ∈ T
such that supp(x) = C and cn = b qn

3
c. Sine C ∈ I+, in view of Proposition 5.2.12 we

obtain that x 6∈ tI(an)(T).

Corollary 5.2.14. For any two I1, I2 ∈ =, if I1 ( I2 then tI1(an)(T) ( tI2(an)(T).

Proof. Note that tI1(an)(T) ⊆ tI2(an)(T) is obvious. Let B ∈ I2 \ I1. Therefore, from
Corollary 5.2.13 there exists an x ∈ T with supp(x) ⊆ B such that x 6∈ tI1(an)(T). But
observe that supp(x) ⊆ B ∈ I2. Therefore, in view of Lemma 5.2.2 we obtain that
x ∈ tI2(an)(T). Thus tI1(an)(T) ( tI2(an)(T).

5.3 I-splitting sequence
In this section we follow the same line of investigations described in [41, Section 3.2]
and show that in certain circumstances, one can obtain more simplified equivalent cri-
terions for the topologically I-torsion elements. Note that Definition 5.3.1, Proposition
5.3.2 and Theorem 5.3.6 are the counter parts of [41, Definition 3.10, Proposition 3.11,
Corollary 3.13] respectively.

Definition 5.3.1. We say that a sequence (qn) of natural numbers has the I-splitting
property if there exists a partition N = B ∪D such that the following statements hold:

(a) B and D are either empty or B,D ∈ I+.

(b) If B ∈ I+, then there exists B′ ⊆ N with B =I B′ such that B′ is q-bounded.

(c) If D ∈ I+, then there exists D′ ⊆ N with D =I D′ such that D′ is q-divergent.

Here, B and D witness the I-splitting property for (qn). Note that, if B1∪D1 is another
partition of N, witnessing the I-splitting property for (qn), thenB1 =I B andD1 =I D.
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Proposition 5.3.2. A sequence (qn) has the I-splitting property if and only if there exists
a natural number M such that {n ∈ N : qn ∈ [M,m]} ∈ I for every m > M .

Proof. We assume that (qn) has the I-splitting property. Now two cases can arise:

∗ At first, we consider B = ∅. Then there exists a D′ ⊆I N such that D′ is q-
divergent. Take any m ∈ N. Since D′ is q-divergent, there exists nm ∈ N such
that qn > m for all n > nm and n ∈ D′. We set M = 1. Then it is evident that
for all m > M

{n ∈ N : qn ∈ [M,m]} ⊆ {n ∈ D′ : qn ∈ [M,m]} ∪ N \D′ (5.13)

= {n ∈ D′ : n ≤ nm} ∪ N \D′ ∈ I.

∗ Let B 6= ∅. Then we have B ∈ I+ and consequently there exists a B′ ⊆ N with
B4B′ ∈ I such that B′ is q-bounded. In this case, we set M = 1 + max

n∈B′
{qn}.

Therefore for any m > M , we obtain

{n ∈ N : qn ∈ [M,m]}
⊆ {n ∈ B′ : qn ∈ [M,m]} ∪ (B \B′) ∪ {n ∈ D′ : qn ∈ [M,m]} ∪ (D \D′)
= {n ∈ D′ : qn ∈ [M,m]} ∪ (B \B′) ∪ (D \D′) ∈ I (From equation (5.13)).

Conversely, let there exist a natural number M such that {n ∈ N : qn ∈ [M,m]} ∈ I
for all m > M . We set B′ = {n ∈ N : qn ∈ [1,M − 1]} and D′ = N \B′.

∗ If B′ ∈ I+ and D′ ∈ I, then we take B = N and D = ∅.

∗ If B′ ∈ I and D′ ∈ I+, then we take D = N and B = ∅.

∗ If B′ ∈ I+ and D′ ∈ I+, then we take B = B′ and D = D′.

Clearly, B and D witness the I-splitting property for the sequence (qn).

Now we present below another equivalent condition for a sequence to be I-splitting
(or in other words, equivalent formulation of Proposition 5.3.2).

Proposition 5.3.3. Let (qn) be a sequence of natural numbers. For all i ∈ N, we define
Ai = {n : qn = i}. Then (qn) is an I-splitting sequence if and only if there does not
exist a subsequence (Ank)k∈N of (An) such that Ank ∈ I+ for all k ∈ N.

From Proposition 5.3.2, it is obvious that every splitting sequence is an I-splitting
sequence. However the converse is not necessarily true, nor it is true that every subset
of N has the I-splitting property (an example not having splitting property was given in
[41, Example 3.12] but one must take into consideration that a non-splitting sequence
can still be I-splitting).

Example 5.3.4. Consider an infinite A = {n1 < n2 < . . . < nk < . . .} ⊆ N such
that A ∈ I. Now let us define A1 = {r ∈ N : r ∈ [0, n1 − 1]} ∪ {nk : k ∈ N},

A2 = {nk + 1 : k ∈ N} \ A1, . . . , Ai+1 = {nk + i : k ∈ N} \
i⋃

j=1

Aj . Take any r ∈ N.
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One can find a unique k ∈ N such that nk ≤ r < nk+1. So we can write r = nk + i for

some i ∈ N ∪ {0}, i.e., n ∈ Ai+1. Therefore, N =
∞⋃
i=1

Ai, i.e., (Ai)i∈N forms a partition

of N.
For each i ∈ N, we now define qn = i+1 for all n ∈ Ai. Clearly, for m,M ∈ N and

m > M , we have {n ∈ N : qn ∈ [M,m]} =
m−1⋃
i=M−1

Ai. Since Ai ∈ I for all i ∈ N, we

get {n : qn ∈ [M,m]} ∈ I for all m,M ∈ N and m > M . Therefore, from Proposition
5.3.2, (qn) is an I-splitting sequence. But observe that {n : qn ∈ [M,m]} cannot be
finite for any m,M ∈ N and m > M (since Ai is infinite for all i ∈ N). Therefore from
[41] (qn) is not a splitting sequence.

Example 5.3.5. Let us define qn = {i ∈ N : n = 2i−2(2k − 1) for some k ∈ N}. Let
Ai = {n ∈ N : qn = i}. If there exists an i0 ∈ N \ {1} such that Ai0 ∈ I then observe

that N =
2(i0−1)−1⋃

r=0

Ai0 − r ∈ I which is a contradiction. Therefore it is evident that

Ai ∈ I+ for all i ∈ N \ {1} and N =
∞⋃
i=2

Ai. Now for any m,M ∈ N with m > M ,

observe that {n ∈ N : qn ∈ [M,m]} =
m⋃
i=M

Ai ∈ I+. Consequently from Proposition

5.3.2, it is evident that (qn) is not an I-splitting sequence.

For the next result we use the following notations. Consider x ∈ T with canonical
representation (3.1). Assume that the sequence of ratios (qn) has the I-splitting property
which means that there exists a partition N = B ∪ D such that (a), (b) and (c) of
Definition 5.3.1 hold. Note that if B,D 6= ∅, then there exists B′ ⊆ N with B4B′ ∈ I
and D′ ⊆ N with D4D′ ∈ I such that B′S(x), B′N(x) are q-bounded while D′S(x) is
q-divergent. Our next result is a characterization of a topologically I-torsion element,
when the sequence of ratios (qn) has the I-splitting property.

Theorem 5.3.6. Let x ∈ T has canonical representation (3.1). If the sequence of ratios
(qn) has the I-splitting property, then x is a topologically I-torsion element, i.e., x ∈
tI(an)(T) if and only if the following conditions hold:

(i) BS(x) + 1 ⊆I supp(x), BS(x) ⊆I suppq(x), and if BS(x) ∈ I+ then
lim

n∈BS1 (x)

cn+1+1
qn+1

= 1 in R, where B1 ⊆I B.

(ii) If BN(x) ∈ I+, then lim
n∈BN1 (x)

cn+1

qn+1
= 0 in R, where B1 ⊆I B.

(iii) If DS(x) ∈ I+, then lim
n∈DS1 (x)

cn
qn

= 0 in T, where D1 ⊆I D.

Proof. The proof follows similar line of arguments as in Theorem 3.4.8 with suitable
modifications and so is omitted.

5.4 Conclusion
In this chapter we provide a complete characterization of topologically I-torsion ele-
ments of T (Theorem 5.2.8) for a general arithmetic sequence and for a fairly large class
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of ideals, namely, all translation invariant analytic P -ideals. In particular Theorem 5.2.8
answers the open problem [38, Problem 6.10.] which is to give a characterization of the
elements of the subgroup ts(an)(T) only in terms of the support. After that our Corollary
5.2.14 shows that for any arithmetic sequence (an) and 0 < α1 < α2 < 1 we must have
tα1

(an)
(T) ( tα2

(an)
(T) which solves Problem 2.14. posed in [19] in the most general form.

Finally in the last section we provide a simplified version of this characterization (i.e.,
Theorem 5.2.8).
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Part III

APPLICATIONS AND OPEN
QUESTIONS
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Chapter 6

STATISTICAL ARBAULT SETS∗

6.1 Introduction and the background
Our principal interest in this chapter is in trigonometric thin sets. A series of the form

c0
2

+
∞∑
n=1

cn cos 2πnx+ dn sin 2πnx

is called a trigonometric series where cn−1, dn ∈ R for all n ∈ N. In [27], G. Cantor had
shown the first uniqueness result:

If a trigonometric series converges to zero for all x ∈ [0, 1] then all its coefficients
get vanished.

After the initial progress, several modifications and generalizations have been done
in this direction (see [72, 88] and also the survey articles [22, 71] for a general view) and
historically trigonometric thin sets came into play while trying to understand the seem-
ingly “bad” sets beyond which absolute convergence happens, precisely the families of
exceptional sets considered in trigonometric series theory or Fourier analysis.

Of particular interest have been the so called “thin sets” like Arbault sets, Dirich-
let sets, N-sets (also called a set of absolute convergence) which have been extensively
investigated in the literature. One can think of an axiomatic approach to define trigono-
metric thin sets in general parlance. Following [22] we define a family F of subsets of
T to be a family of thin sets if the next conditions hold:

(a) For each x ∈ T, {x} ∈ F ,

(b) if Y ⊆ X ∈ F then Y ∈ F ,

(c) F does not contain any open interval.

From the family F we may construct a new family Fσ by

Fσ =
{ ∞⋃
n=1

Xn : Xn ∈ F
}
.

∗Content of this chapter has been published in “Bulletin des Sciences Mathmatiques”.
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The typical small subsets of the unit interval [0, 1] are the meager sets (i.e. the sets
of the first Baire category), negligible sets (i.e. the sets of Lebesgue measure zero) and
the porous sets (for a complete description see [89]). Since these sets are going to play
some interesting roll in this article, we denote

M = {X ⊆ [0, 1] : X is meager},
L = {X ⊆ [0, 1] : X is negligible},
P = {X ⊆ [0, 1] : X is porous}.

A set X ⊆ [0, 1] is called an H-set if there exists an increasing (by the word increas-
ing it would always mean strictly increasing in this chapter) sequence of integers (kn)
and an interval I such that knX ∩ I = ∅. We denote the family of all H-sets by H. In
[22] the authors established thatHσ ⊆M∩L. Also in [89], it was shown thatH ⊆ P .
Combining these results one can conclude that

Hσ ⊆M∩L ∩ Pσ. (6.1)

A subfamily G ⊆ F is called a basis for F if for any X ∈ F there exists Y ∈ G such
that X ⊆ Y . If the basis G consists of Fσ-sets, Borel sets, etc., then the basis is called
Fσ basis, Borel basis, etc. It is well known that the familiesM, L and Pσ have a Fσ
basis, a Gδ basis and a Gδσ basis respectively.

The arithmetic difference of two sets A,B ⊆ T is defined as

A−B = {z ∈ T : z = x− y for some x ∈ A, y ∈ B}.

A family of thin sets F is called trigonometric if for any A ∈ F , A− A ∈ F .

An infinite sequence (an) (or, an infinite subset of N) is called lacunary if

an+1 − an → ∞ ∀ n ∈ N.

Note that any lacunary subset of N has natural density zero. For a real x it is well known
that

2‖x‖ ≤ | sinπx| ≤ π‖x‖.

As is customary we will use the inequality by replacing | sin πx| and ‖x‖ one by
another, wherever required to serve our purpose. Let us now recall some definitions of
classical thin sets have been of much interest (some equivalent definitions can be found
in [22, 23, 49, 62]) and some of them will significantly influence our discoveries.

A set X ⊆ [0, 1] is called

(1) a D-set (Dirichlet set) if there exists an increasing sequence of naturals (an) such
that ‖anx‖ converges uniformly to 0 on X .

(2) an A-set (Arbault set) if there exists an increasing sequence of naturals (an) such
that ‖anx‖ converges pointwise to 0 on X .
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(3) an R-set if there exists a sequence of naturals (an) and a sequence of reals (rn)

such that rn 9 0 and
∞∑
n=1

rn‖anx‖ <∞ for all x ∈ X .

(4) an N-set if there exists a sequence of naturals (an) and a sequence of non-negative

reals (rn) such that
∞∑
n=1

rn =∞ and
∞∑
n=1

rn‖anx‖ <∞ for all x ∈ X .

(5) an N0-set if there exists a sequence of naturals (an) such that
∞∑
n=1

‖anx‖ <∞ for

all x ∈ X .

(6) a wD-set if X is universally measurable and for every positive Borel measure µ
on [0, 1] there exists an increasing sequence of naturals (an) such that

lim
n→∞

∫
X

|e2πianx − 1|dµ(x) = 0.

The family of all D-sets, N-sets, N0-sets, A-sets, R-sets, wD-sets will be denoted
by D, N , N0, A, R, wD respectively. It is known that D, N , N0, A are the typical
example of a family of trigonometric thin sets with a Borel basis (see [3]). Now we
present some well known results about these classical families of trigonometric thin sets
(for exact references and proofs we refer to the survey paper [22], see also [3, 12, 23,
63, 64, 75]):

(R1) D ( N0 ( A = R ( wD,
(R2) D ( N0 ( N ( wD,
(R3) A ( Hσ ( Pσ,
(R4) N * Pσ,
(R5) A * Nσ.

Our main interest in this chapter is a class of trigonometric thin sets formed by statisti-
cally characterized subgroups as basis, which we call, statistical Arbault sets that does
not seem to have been studied before. The first importance of this class is that it forms a
new class of thin sets properly containing the class of classical Arbault sets. The other
advantage is that unlike the class of Arbault sets, it is much bigger and actually contains
a large subfamily of N-sets, in particular, containing types of N-sets which have been
extensively used in Fourier analysis. In this particular respect this new class seems much
more beneficial than the class of Arbault sets which is only known to contain N0-sets.
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6.2 Background and the novelty of s-characterized sub-
groups

In [38] while developing the theory of s-characterized subgroups it was established that
for any arithmetic sequence (an), the s-characterized subgroup ts(an)(T) is always of
size c and strictly larger than the corresponding characterized subgroup t(an)(T) (even
when t(an)(T) is uncountable). However this does not imply that using the notion of
s-characterized subgroups one would actually obtain a new subgroup which can never
be generated as in Definition 1.2.2, i.e., it can’t be characterized by any sequence of nat-
urals. So the natural question is whether there exists a s-characterized subgroup which
is unequal with every possible characterized subgroup. The primary aim of this section
is to fill that gap and show that we indeed can generate “new” subgroups following the
process of [38].

The essence of the next lemma is to build a bridge between an arbitrary arithmetic
sequence and an increasing sequence of naturals and subsequently it will play a very
prominent role in the development of the main result of this section.

Lemma 6.2.1. Let (un) be an arithmetic sequence and (an) be an increasing sequence
of naturals. If G = { 1

un
: n ∈ N} ⊆ t(an)(T) then an must be of the form uknvn where

kn →∞ and qkn+1 does not divide vn for any n ∈ N.

Proof. Note that an can always be written in the form uknvn (taking ukn = u1 = 1 and
vn = an for all n ∈ N). So if we can show that (kn) has no bounded subsequence then
we are done.

If possible assume that there exists a subsequence (kni) of (kn) such that kni ≤ m0

for all i ∈ N. Without any loss of generality we can consider ani = um0vni . Since
un+1 = qn+1un, the condition qkn+1 does not divide vn for all n ∈ N is necessary to
obtain a unique representation of an.

Now consider the element x = 1
um0+1

∈ G. Then observe that

anix = um0vni
1

um0+1

=
vni
qm0+1

.

Since kni = m0 for all i ∈ N (as assumed), we must have

qm0+1 - vni for all i ∈ N

⇒ ‖anix‖ ≥
1

qm0+1

for all i ∈ N.

This shows that x 6∈ t(an)(T) −which is a contradiction as G ⊆ t(an)(T) by our assump-
tion. Thus we can conclude that kn →∞.

Corollary 6.2.2. LetG = { 1
pn

: n ∈ N} and (an) be an increasing sequence of naturals.
If G ⊆ t(an)(T) then an must be of the form pknvn where kn →∞ and p - vn.

We are now ready to prove the main result of this section, namely, Theorem 6.2.3.
The importance of Theorem 6.2.3 is that we have been able to establish that every mem-
ber of the class of s-characterized subgroups considered in [38] is essentially new i.e.
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they can never be “characterized” by a sequence of integers. This observation not only
vindicates the new approach taken in [38] but at the same time points to the possible
existence of a new class of thin sets, not studied in the literature before. To be more
precise, if one extends the notion of Arbault sets by replacing usual convergence by
statistical convergence, which we will call “statistical Arbault sets” (officially given in
the next section in Definition 6.3.1) then Theorem 6.2.3 can be reformulated as “the
statistical Arbault set defined by any arithmetic sequence are not an Arbault set”.

Theorem 6.2.3. For any arithmetic sequence (un), the subgroup ts(un)(T) is not an A-
set.

Proof. Let (un) be an arithmetic sequence. If possible assume that there exists an in-
creasing sequence of naturals (an) such that

ts(un)(T) ⊆ t(an)(T).

Observe that ts(un)(T) contains the set G = { 1
un

: n ∈ N}. From Lemma 6.2.1 it then
follows that an must be of the form uknvn where kn →∞ and qkn+1 does not divide vn
for all n ∈ N.

Now, we choose a subsequence (ani) of (an) (with an1 = a1) which satisfies the
following properties:

(i) |kn(i+1)
− kni | → ∞,

(ii) ukn(i+1)
≥ 4ani .

Let us define an element x ∈ T such that

supp(un)(x) = {kni + 1 : i ∈ N} and cr =

⌊
qr
mr

⌋
for all r ∈ supp(un)(x). (6.2)

(where 1 < mr ≤ qr ). Then observe that

anix ≡Z vniukni

∞∑
r=kni+1

cr
ur

≡Z vnickni+1

ukni
ukni+1

+ vniukni

∞∑
r=kn(i+1)

+1

cr
ur

⇒ anix ≡Z ckni+1

vni
qkni+1

+ ani

∞∑
r=kn(i+1)

+1

cr
ur
.

Since qkni+1 - vni for all i ∈ N, we must have

‖ vni
qkni+1

‖ =
li

qkni+1

for some li ∈ {1, 2, . . . ,
⌊qkni+1

2

⌋
}. (6.3)
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Set mkni+1 = 2li. Then from Eq (6.2), we can write

ckni+1 =
qkni+1 − ei

2li
= pi (say) for some ei ∈ {1, 2, . . . , 2li − 1}.

Clearly, pi ∈ N and in view of Eq (6.3), we conclude that

‖ckni+1

vni
qkni+1

‖ = ‖ pili
ei + 2pili

‖

⇒ 1

4
≤
{
ckni+1

vni
qkni+1

}
≤ 3

4
.

From Property (ii), we also have

0 ≤ ani

∞∑
r=kn(i+1)

+1

cr
ur
≤ ani
ukn(i+1)

≤ 1

8

⇒ 1

4
≤ {anix} ≤

{
ckni+1

vni
qkni+1

}
+

{
vniukni

∞∑
r=kn(i+1)

+1

cr
ur

}
≤ 7

8
.

This shows that x 6∈ t(an)(T). As we also have d(supp(un)(x)) = 0 so Theorem B
[38] ensures that x ∈ ts(un)(T) −which is a contradiction. Therefore we must have
ts(un)(T) * t(an)(T). Since the collection of all characterized subgroups form a basis of
the family A, we conclude that ts(un)(T) is not an A-set.

6.3 Statistical Arbault sets and basic properties of the
family sA

Now we are in a position to introduce the notion of a statistical Arbault set (in short
sA-set) which is our prime interest in this chapter.

Definition 6.3.1. A set X ⊆ [0, 1] is called a statistical Arbault set (sA-set in short)
if there exists an increasing sequence of naturals (an) such that ‖anx‖ converges to 0
statistically for all x ∈ X .

Throughout, the family of all sA-sets will be denoted by sA. In this section we
will primarily investigate certain basic properties of the family sA in line of the existing
observations regarding the family A.

We start with the known observation that the collection of all characterized sub-
groups form a Fσδ basis of the family A. Along the same line we have the following.

Proposition 6.3.2. The family sA has an Fσδ basis consisting of some subgroups of T.

Proof. Let G denote the family of all s-characterized subgroups of the circle i.e.

G = {ts(an)(T) : (an) is an increasing sequence of naturals}.
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Since every member ts(an)(T) of the family G is an sA-set by definition of an s-characterized
subgroup, it is obvious that G is a subfamily of sA.

Now consider any A ∈ sA. Then there exists an increasing sequence of naturals
(bn) such that ‖bnx‖ → 0 statistically for all x ∈ A. Therefore, A ⊆ ts(bn)(T) and we
conclude that G is a basis for the family sA. In [38] the authors have shown that every
s-characterized subgroup is an Fσδ subset of T. Thus G is a Fσδ basis for the family
sA.

Proposition 6.3.3. The family sA is a family of trigonometric thin sets.

Proof. Consider any x ∈ T. Since every countable set is an Arbault set (so a statistical
Arbault set as well) by the main theorem of [17], we conclude that {x} ∈ sA. If A ⊆ B
and B ∈ sA, it is easy to observe that A ∈ sA.

Take any A ∈ sA. Then from Proposition 6.3.2 there exists a s-characterized sub-
group H such that A ⊆ H . It is known that µ(H) = 0 (see [38]) from which one can
conclude that the family sA cannot contain an open interval. Also observe that

A− A ⊆ H −H = H ∈ sA.

Thus sA is a family of trigonometric thin sets.

Proposition 6.3.4. If A ∈ sA and G is a subgroup of T generated by A, then G ∈ sA.

Proof. Let A ∈ sA and G be the subgroup of T generated by A. In view of Proposition
6.3.2 there exists a s-characterized subgroup ts(an)(T) of T containing A. But from the
definition of G, we must have A ⊆ G ⊆ ts(an)(T). Since the family sA is a family of
thin sets, we conclude that G ∈ sA.

Lemma 6.3.5. [21] Let F be a family of trigonometric thin sets such that D ⊆ F . Then
any base of F has cardinality at least c.

Proposition 6.3.6. For the family sA, the following hold:

(i) It cannot have a Fσ basis,

(ii) Every basis of sA has cardinality at least c.

Proof. (i) Since usual convergence implies statistical convergence it is easy to observe
that every A-set is an sA-set i.e. A ⊆ sA. Note that A does not have a Fσ basis (for
example the characterized subgroup t22n (T) which is clearly an A-set, cannot be con-
tained in a Fσ subset of T [3]). Therefore, the family sA cannot have a Fσ basis.

(ii) Since D ⊆ A ⊆ sA, the result follows directly from Lemma 6.3.5 .

Lemma 6.3.7. [21] Let F be a family of trigonometric thin sets. Then every member of
F is meager and has Lebesgue measure zero.

Corollary 6.3.8. sA ⊆M∩L.

Proposition 6.3.9. The family sA is not an ideal.

Proof. There are two perfect Dirichlet sets A,B such that A + B = T. Note that
A,B ∈ sA. Now observe that if A ∪ B ∈ sA then Proposition 6.3.4 ensures that
A+B ∈ sA; which is a contradiction. Thus the family sA is not an ideal.
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6.4 Inclusions between sA and other trigonometric thin
families

In this section we will compare sA with classical trigonometric thin families. The
following diagrams show the relationships between the class sA with other classes of
trigonometric thin sets which we will discover in this section. Here an arrow indicates a
proper inclusion and a crossed arrow indicates a non-inclusion.

Our next two theorems ensure that this family sA is really new compared to already
investigated classical trigonometric thin families (such asD,N0,A,N etc.) and provide
a clear view regarding the families sA, A and N .

Theorem 6.4.1. sA ∩N * A.

Proof. Let us define

A = {x ∈ T : d(supp(pn)(x)) = 0 and
∑ 1

n
| sin pnπx| <∞}.

Considering the sequence (rn) where rn = 1
n

for all n ∈ N, from definition it follows
thatA is a N-set. In view of Theorem 4.3 [38], we also haveA ⊆ ts(pn)(T). Consequently
in view of Proposition 6.3.2, we have A ∈ sA ∩N .

Now it is left to be shown that A 6∈ A. Since the class of characterized subgroups
forms a basis of A [8] so if possible assume that A ⊆ t(an)(T) for some sequence of
naturals (an). It is easy to observe thatA contains all the p-adic numbers of certain rank.
Then Corollary 6.2.2 ensures that the sequence (an) will be of the form an = pknun
where kn → ∞ and p - un. We are going to show that we can always construct an
element x ∈ A depending on the sequence (an) such that x 6∈ t(an)(T).

Consider an element x of T such that

supp(pn)(x) = {kni + 1 : n1 = 1 and kni ≥ kn(i−1)
+ (2n(i−1) + 1)un(i−1)

}
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and cr(x) = 1 for all r ∈ supp(pn)(x) i.e. x =
∑

r∈supp(pn)(x)

1
pr

.

Since (kn(i+1)
−kni) ≥ (2ni+1)uni we haveB = (kni) is lacunary and consequently

d(supp(pn)(x)) = d(B) = 0. Let j be any integer such that kn(i−1)
< j ≤ kni . Note that

{pjx} = pj
∞∑
r=i

1

pknr+1
≤ 1

pkni−j

⇒ | sin pjπx| ≤ sin
π

pkni−j
≤ π

pkni−j

⇒
kni∑

j=kn(i−1)
+1

| sin pjπx|
j

< π

kni∑
j=kn(i−1)

+1

1

jpkni−j
<

2π

kn(i−1)

.

Consequently we have
∑ | sin pnπx|

n
≤
∞∑
i=1

2π
kni
≤
∞∑
i=1

2π
n2
i
<∞ and so x ∈ A.

Now observe that

anix ≡Z uni

∞∑
r=1

ckni+r(x)

pr

⇒ {anix} =

{
uni
p

}
+ uni

∞∑
r=bi+1

ckni+r(x)

pr
where bi = kn(i+1)

− kni .

Since bi > niuni implies pbi > niuni , we must have uni
pbi

< 1
p2

.

So it is evident that

1

p
≤ {anix} ≤

p− 1

p
+
uni
pbi

< 1− p− 1

p2

which implies ‖anix‖ >
p−1
p2

. This shows that x 6∈ t(an)(T) −which is a contradiction
since A ⊆ t(an)(T) and we have already shown that x ∈ A. Thus, there does not exist
any increasing sequence (an) for which A ⊆ t(an)(T). Therefore, A 6∈ A.

Corollary 6.4.2. A ( sA.

Proof. The assertion follows directly from Theorem 6.4.1.

Corollary 6.4.3. sA * Nσ.

Proof. Since A * Nσ [63], the result follows directly from Corollary 6.4.2.

Our next result plays a crucial role in the proof of Theorem 6.4.5.

Lemma 6.4.4. Let (pn) be a lacunary sequence of naturals. Then for any increasing
sequence of naturals (qn), one of the following conditions hold:

(i) There exists a sequence of naturals (ln) with the following properties.
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a) (ln) diverges to∞.

b) ln < p(n+1) − pn for all n ∈ N.

c) The set L =
∞⋃
n=1

[pn, pn + ln] does not contain at least one subsequence of

(qn).

(ii) There exists a m ∈ N such that qn ∈ L′ =
∞⋃
r=1

[pr, pr +m] for all n ∈ N.

Proof. Since (pn) is lacunary (i.e. |p(n+1) − pn| → ∞) it is obvious that if (ii) holds
then (i) cannot be true. Therefore, it is sufficient to show that if (ii) does not hold then
(i) must hold.

So let us assume that there does not exist anym ∈ N for which qn ∈ L′ =
∞⋃
r=1

[pr, pr+

m] for all n ∈ N. For all i ∈ N we define

ni = min{n ∈ N : qn 6∈ Li =
∞⋃
r=1

[pr, pr + i]}.

It is evident that n(i+1) ≥ ni. So instead of considering an increasing subsequence
(nik) of (ni), without any loss of generality we simply assume that the sequence (ni) is
increasing. Now choose a subsequence (pri) of (pr) such that qni ∈ [pri + i + 1, pri+1].
Let us now define

ln = i when ri ≤ n < r(i+1).

It can be readily checked that the set L =
∞⋃
n=1

[pn, pn + ln] does not contain the sub-

sequence (qni) of (qn). By construction (ln) is divergent and ln < p(n+1) − pn for all
n ∈ N.

Theorem 6.4.5. sA * N ∪A.

Proof. In order to prove the result we are going to find an A ∈ sA \A which cannot be
contained in an Fσ set which in turn would imply that A cannot be an N-set since the
family N has a Fσ-basis.

Consider A = ts
(22n )

(T). Arbault have already shown that the set t(22n )(T) cannot be
contained in an Fσ set [3]. Since t(22n )(T) ( ts

(22n )
(T) = A (by Theorem B [38]), we

can conclude that A also cannot be contained in a Fσ set. Therefore, A ∈ sA \ N .
To show that A 6∈ A it is sufficient to show that there cannot exist an increasing

sequence of naturals (bn) such that t(bn)(T) ⊇ A. On the contrary let us assume that
such a sequence exists i.e. A ⊆ t(bn)(T). Now observe that A contains all 2-adic
numbers of certain ranks. In view of Corollary 6.2.2, consequently bn has to be of the
form bn = 2knun where un must be odd and kn →∞. Set B = t(bn)(T).

Taking into account the two sequences (kn) and (2n) two possibilities can arise in
view of Lemma 6.4.4.

(i) There exists an increasing sequence of naturals (ln) satisfying the following.

a) (ln) diverges to∞.
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b) ln < 2n for all n ∈ N.

c) The set L =
∞⋃
n=1

[2n, 2n + ln] does not contain at least one subsequence of

(kn).

So, there exists a subsequence (kni) of (kn) such that kni 6∈ L and kni > kn(i−1)
+

4un(i−1)
for all i ∈ N.

Let us now define
supp(2n)(x) = {kni + 1 : i ∈ N}.

Now proceeding exactly as in Theorem 6.4.1 we obtain that

1

2
≤ {2kniunix} ≤

3

4

⇒ lim
i→∞
‖bnix‖ 6= 0 i.e. x 6∈ t(bn)(T).

Consider any arbitrary ε > 0. Since the sequence ln → ∞, there exists a n0 ∈ N
such that 1

2ln
< ε for all n > n0. Therefore for all n > n0 we have

{22nx} = 22n
∞∑

r=2n+1

cr
2r

= 22n
∞∑

r=2n+ln+1

cr
2r
≤ 22n

22n+ln
=

1

2ln
< ε

⇒ lim
n→∞

‖22nx‖ = 0 i.e. x ∈ t(22n )(T) ⊆ A

−which is a contradiction because A ⊆ t(bn)(T).

(ii) On the other hand now suppose that there does not exist any sequence (ln) with
the properties a), b), c) described in (i). Then in view of Lemma 6.4.4 we can
conclude that there exists a m ∈ N such that

(kn) ⊆ L′ =
∞⋃
r=1

Ir where Ir = [2r, 2r +m].

Note that we can construct a subsequence (Iri) of (Ir) with the following proper-
ties:

• Iri ∩ (kn) 6= ∅ for each i ∈ N,

• 2ri > 2r(i−1) +m+ 4un(i−1)
,

• d({ri : i ∈ N}) = 0.

Now we choose a subsequence (kni) of (kn) such that kni ∈ Iri for each i ∈ N.
Let us define

supp(2n)(x) = {kni + 1 : i ∈ N}

Now proceeding as in (i), we obtain that x 6∈ B. Again observe that for every
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n ∈ N \ {ri : i ∈ N} we have kni 6∈ In and so

{22nx} = 22n
∞∑

r=2n+1

cr
2r

= 22n
∞∑

r=2n+1

cr
2r
≤ 22n

22(n+1)−1
<

1

2n
.

Since d({ri : i ∈ N}) = 0, from the above argument it follows that x ∈ A−which
is again a contradiction.

Therefore in either case we come to the conclusion thatA cannot be contained in t(bn)(T)
for any increasing sequence of naturals (bn). Thus A ∈ sA \ A and this completes the
proof.

It is well known that a subfamily ofN , namelyN0 is contained inA. When it comes
to the larger class sA, one can again find a suitable subfamily ofN which we denote by
N ′ (containing N0) which is contained in sA but not in A.

X ⊆ [0, 1] is in N ′ if there exists an increasing sequence of naturals (an) and a

sequence of reals (rn) with nrn ≥ c for some c > 0 such that
∞∑
n=1

rn‖anx‖ < ∞ for all

x ∈ X . Clearly N ′ ⊆ N .
For an increasing sequence of naturals (an), let us define

O(an)(T) =

{
x ∈ T :

∞∑
n=1

‖anx‖
n

<∞
}
.

Clearly O(an)(T) ∈ N ′. Then Equation 6.4 entails that the family

G = {O(an)(T) : (an) is an increasing sequence of naturals}

forms a Fσ basis for the family N ′. Since for any increasing sequence of naturals

‖anx‖
n
≤ ‖anx‖ for all n ∈ N,

each N0-set is contained in a set of the formO(an)(T). Therefore, we also haveN0 ( N ′
(the strict inclusion follows from the fact that O(22

n
)(T) is not a N0-set [3]).

Remark 6.4.6. The class N ′ have always found to play a special role among the mem-
bers of the familyN , particularly in the instances of constructing N-sets for counterex-
amples. In [3], in order to construct a N-set which is not an A-set, Arbault had chosen
the N′-set O(2n)(T). Again the N′-set O(2n)(T) was used in [63] to give an example of
a N-set which is not a Lσ0 -set. The N′-set O(n!)(T) is a N-set which is not σ-porus [64]
etc.

Theorem 6.4.7. N ′ ( sA.

Proof. Let A ∈ N ′. Then there exists an increasing sequence of naturals (an) and a

sequence of reals (rn) with nrn ≥ c for some c > 0 such that
∞∑
n=1

rn‖anx‖ < ∞ for all

x ∈ A. First we show that A ⊆ ts(an)(T).
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Take any x ∈ A. From the fact
∞∑
n=1

rn‖anx‖ <∞ it readily follows that lim
n→∞

rn‖anx‖ =

0. If lim
n→∞

‖anx‖ = 0 then x ∈ t(an)(T) ⊆ ts(an)(T) and we are done. Now assume that

lim
n→∞

‖anx‖ 6= 0. Consequently, there exists a subsequence (ank) of (an) such that

‖ankx‖ ≥ ε0 for some ε0 ∈ (0, 1
2
].

Observe that
∞∑
k=1

ε0
nk
≤

∞∑
n=1

‖anx‖
n

≤ 1

c

∞∑
n=1

rn‖anx‖ < ∞ (6.4)

which shows that the series
∞∑
k=1

1
nk

is convergent. Since ( 1
nk

) is a monotone decreasing

sequence of positive reals, from Abel-Pringsheim’s Theorem it follows that

lim
k→∞

k

nk
= 0 i.e. d({nk : k ∈ N}) = 0.

From the above we can conclude that there does not exist any subsequence (ank) of
(an) with d({nk : k ∈ N}) > 0 for which ‖ankx‖ ≥ ε for some ε ∈ (0, 1

2
]. Hence (anx)

must converge to 0 statistically and so x ∈ ts(an)(T). Since x was chosen arbitrarily,
we obtain A ⊆ ts(an)(T). Therefore Proposition 6.3.2 entails that A ∈ sA and we get
N ′ ⊆ sA. Finally the strictness of the inclusion follows from Corollary 6.4.14.

Corollary 6.4.8. For any increasing sequence of naturals (an), the N-set O(an)(T) is
contained in the sA-set ts(an)(T).

Proof. The proof uses similar technics as in Theorem 6.4.7 and so is omitted.

Corollary 6.4.9. N ′ * Pσ.

Proof. In 1985, S.V. Konyagin had shown that the set O(n!)(T) is not σ-porous (for a
proof see [89]). Thus N ′ * Pσ.

Corollary 6.4.10. sA * Pσ.

Proof. The proof follows directly from Theorem 6.4.7 and Corollary 6.4.9. For a general
view consider the set ts(n!)(T). Then Corollary 6.4.8 entails that

O(n!)(T) ⊆ tsn!(T).

Since Pσ is an ideal, we conclude that tsn!(T) 6∈ Pσ. Consequently we have sA *
Pσ.

Corollary 6.4.11. sA * Hσ.

Proof. SinceHσ ⊆ Pσ (see [89]), the result follows directly from Corollary 6.4.16.

Corollary 6.4.12. sA * Aσ.

Proof. Since A ⊆ Hσ (see [3]), the proof follows directly from Corollary 6.4.17.
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Recall that an uncountable set X is a Luzin set if every meager subset of X is count-
able.

Proposition 6.4.13. sA ⊆ wD.

Proof. Take a s-characterized subgroup ts(an)(T) of T. In [38] it has been shown that
ts(an)(T) is closed and therefore a complete subgroup of T and µ(ts(an)(T)\t(an)(T)) = 0.
Therefore, (e2πianx) converges to 1 µ-almost every where on ts(an)(T). Since |e2πianx| ≤
1, in view of Dominated Convergence Theorem we observe that

lim
n→∞

∫
ts
(an)

(T)
|e2πianx − 1|dµ = 0.

Consequently ts(an)(T) is a wD-set. Therefore, from Proposition 6.3.2 we conclude that
sA ⊆ wD.

Corollary 6.4.14. Under CH (the continuum hypothesis), sA ( wD.

Proof. Since every Luzin set which is non-meager while having strong measure zero
is a wD-set [22] (for example see [61]), Corollary 6.3.8 ensures that these sets do not
belong to the family sA. Thus we get sA ( wD.

The following three corollaries give a clearer picture about the class sA as it is seen
that though the classes D and A are contained in sA the same do not remain true when
countable unions of D-sets and A-sets come into consideration. Further it is also noted
that the class Nσ is definitely not contained in the class sA.

Proposition 6.4.15. [22, Corollary 8.13] There are two perfect D-sets whose union is
not a wD-set. Consequently, Dσ * wD.

Corollary 6.4.16. Dσ * sA.

Proof. Follows directly from Proposition 6.4.13 and Proposition 6.4.15.

Our next two corollaries follow from Corollary 6.4.16 and from the fact that a D-set
is an A-set as well as a N-set i.e. Dσ ⊆ Aσ ∩Nσ.

Corollary 6.4.17. Aσ * sA.

Corollary 6.4.18. Nσ * sA.

Proposition 6.4.19. [60] Every Fσ wD-set is an N-set.

Corollary 6.4.20. Every Fσ sA-set is an N-set.
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6.5 Conclusion
In Section 6.2 of this chapter it is shown (in Theorem 6.2.3) that there are statistically
characterized subgroups which can’t be characterized by any sequence of integers es-
tablishing the “novelty” of the notion which was missing when the notion of statistically
characterized subgroups was introduced in [38]. This naturally paves the way for a
new class of sets generated by the class of statistically characterized subgroups as ba-
sis namely statistical Arbault sets which is introduced in Section 6.3 where some basic
properties are established. Finally the last section is devoted to the comparison of this
new class with the existing classes of trigonometric thin sets.
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Chapter 7

OPEN PROBLEMS

The thesis consists significant contributions in the area of generalized characterized sub-
groups. Here we present some open questions and possible directions for future work.

7.1 Generalized characterized subgroups
In Theorem 5.1.3, we have shown that for any analytic P -ideal I the corresponding I-
characterized subgroup is a Borel subgroup of T (Observe that this is the most general
version of a characterized subgroup which encompass all such notions exist in the liter-
ature of characterized subgroups). After that a characterization of these subgroups are
given in Theorem 5.2.8 for an analytic translation invariant P -ideal. So one can easily
think of the following problem:

Problem 7.1.1. Give a characterization of topologically I-torsion elements for any an-
alytic P -ideal I.

Problem 7.1.2. For any I ∈ = and for any increasing sequence of naturals (an) is it
true that |tI(an)(T)| = c?

Problem 7.1.3. For any I ∈ = and for any increasing sequence of naturals (an) is it
true that tI(an)(T) ) t(an)(T)?

A notoriously non-arithmetic sequence is the Fibonacci sequence (fn), defined by
f0 = f1 = 1 and fn = fn−1 + fn−2 for n > 1. It is known that t(fn)(T) is infinite cyclic
[9, 15, 37, 70].

Problem 7.1.4. For any I ∈ = give a characterization of tI(fn)(T). Is it distinct from
t(fn)(T)?

The Fibonacci sequence is recursive. It obviously satisfies the condition fn−1|fn −
fn−2, so one can consider the most general sequences an with this property, which means
that

an = bn−1an−1 + an−2 (7.1)

for some sequences (bn) of naturals. One can consider even a more complicated recur-
sion as

an = b
(1)
n−1an−1 + b

(2)
n−1an−2 + . . .+ b

(k)
n−1an−k (7.2)
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for some k-tuple of sequences (b
(j)
n ) (j = 1, 2, . . . , k) of naturals (see [10] for topo-

logically torsion related to such sequences). In particular, one may extend the above
question to recursive sequences of integers satisfying (7.1) and (7.2):

Problem 7.1.5. Let (an) be a recursive sequence as in (7.1) or (7.2). For an analytic
P -ideal I, compute tI(an)(T). When is it countable? Is it distinct from t(an)(T)?

Finally, one is left with the general problem to explore generalized characterized
subgroups of (compact-like) topological abelian groups:

Problem 7.1.6. For an analytic P -ideal I, study the I-characterized subgroups of the
compact metrizable abelian groups, following the standard way already used for the
characterized subgroups in [40, 42, 44, 45, 55].

7.2 Statistical Arbault sets
Kunen [67] had proved that there are no Luzin sets under the assumption of MA (Mar-
tin’s Axiom) and the negation of CH. As in Corollary 6.4.14 the strict inclusion could
only be obtained using Luzin sets, so a natural question arises whether one can obtain
the result without using Luzin sets, i.e. without explicitly using CH.

Problem 7.2.1. Is sA ( wD provable in ZFC?

Problem 7.2.2. Does there exists an N-set which is not an sA-set?

We have just observed sets from the familyN belonging to sA still it seems unlikely
that N ⊆ sA. Though we are unable to provide a clear answer in this direction we
conjecture this problem positively.

Conjecture 7.2.3. The N-set

E = {x ∈ [0, 1] :
∞∑
n=1

1

n lnn
| sin 2nπx| <∞}

is not an sA-set.

A set F ⊆ T is sA-permitted if X ∪ F ∈ sA for all X ∈ sA.

Problem 7.2.4. Is every countable set sA-permitted?

More generally we consider the following problem.

Problem 7.2.5. Give a characterization of sA-permitted Sets.

In this direction the following problem will be crucial.

Problem 7.2.6. Given two sequences u and v in Z when can we conclude tsu(T) ⊆ tsv(T)
or not?
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A subgroup K of R is called s-characterized if

K = τ su(R) := {x ∈ R : ‖unx‖ → 0 statistically}

for some sequence u in R. Then naturally next question arises.

Problem 7.2.7. Given two sequences u and v in R when can we conclude τ su(R) ⊆
τ sv(R) or not?

For two subgroups H,K of an infinite group G, say that H is almost contained in K
if [H : K ∩H] is finite. Similarly, say that H is weakly contained in K if [H : K ∩H]
is at most countable.

Problem 7.2.8. What can you conclude when the inclusion in Problem 7.2.6, Problem
7.2.7 are replaced by almost inclusion and weak inclusion in the above sense?

A subgroupK of T is s-factorizable ifK = tsv(T)+tsw(T) for proper s-characterized
subgroups tsv(T) and tsw(T) of K.

Problem 7.2.9. When a given s-factorizable subgroup is s-characterized and when a
given s-characterized subgroup is s-factorizable?

Problem 7.2.10. Does there exist a s-characterized subgroup of T which is Fσ?

It is well known that the group generated by a Kronecker set cannot be characterized.

Problem 7.2.11. Can a group generated by a Kronecker set be s-characterized?
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[48] P. Eliaš, A classification of trigonometrical thin sets and their interrelations, Proc.
Amer. Math. Soc., 125(4) (1997), 1111–1121.
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↑-idéaux, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 355–357.

[63] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J. Math. 37
(1993), 186–223.

[64] S. V. Konyagin, Every set of resolution is an Arbault set, C. R. Acad. Sci. Paris Sr.
I Math. 314 (1992), no. 2, 101-104.
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[89] L. Zajı́ček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-350.

[90] A. Zygmund, Trigonometric Series, vols. I,II, Cambridge University Press, Cam-
bridge, New York, Melbourne (1977).

98



99


	Dedication
	Acknowledgements
	Notation
	List of definitions
	Abstract
	Publications
	PREFACE
	Density functions and corresponding ideals
	Some general notions of convergence
	The circle group

	INTRODUCTION
	Motivation and Background
	Characterized Subgroups
	Generalized characterized subgroups
	Main results and Contribution

	I fg-DENSITY FUNCTIONS AND CORRESPONDING IDEALS
	MODULAR SIMPLE DENSITY IDEAL
	Introduction
	Certain properties of the ideal Ig(f)
	Some comparative results concerning the ideal Ig(f)
	Conclusion


	II GENERALIZED CHARACTERIZED SUBGROUPS
	-CHARACTERIZED SUBGROUPS OF THE CIRCLE
	Introduction
	Basic definitions, notations and results
	Main results
	-Splitting sequence
	Conclusion

	fg-CHARACTERIZED SUBGROUPS OF THE CIRCLE
	Introduction
	Main observations
	The fg-characterized subgroup for the sequence an=2n.
	The general case for arithmetic sequences

	Non-triviality of fg-characterized subgroups
	An uncountable tower of Borel subgroups
	Conclusion

	I-CHARACTERIZED SUBGROUPS OF THE CIRCLE
	Introduction
	Main results
	I-splitting sequence
	Conclusion


	III APPLICATIONS AND OPEN QUESTIONS
	STATISTICAL ARBAULT SETS
	Introduction and the background
	Background and the novelty of s-characterized subgroups
	 Statistical Arbault sets and basic properties of the family sA
	Inclusions between sA and other trigonometric thin families
	Conclusion

	OPEN PROBLEMS
	Generalized characterized subgroups
	Statistical Arbault sets

	Bibliography


