B.E. POWER ENGINEERING FOURTH YEAR SECOND SEMESTER EXAMINATION - 2023 ## **DESIGN OF HYBRID ENERGY SYSTEMS** Time: Three Hours Full Marks: 100 | Number | | | | | | | | Mark | |---------------------------------|--|--|--|---|-------------------------|--------------------------|---|-------------------| | | | | (Ansv | Unit-I
ver any <u>one</u> ; Mai | rks: 30) | | | | | 1. | a) i) Define the fuel consumption of diesel generator ii) Define LOLP. b) Explain the power output variation for PV system with proper expression c) Compare DC bus, AC bus and Hybrid bus systems. | | | | | | 5+5
10
10 | | | 2. | a) i) What is capacity factor? How does it affect the power output from wind turbine? ii) What the advantages of optimal PMC? b) Derive the expression for total net present cost of a system designed for 25 years? c) Find total PV power and numbers of Series and parallel connected PV panels for a 24V I bus PV system designed for 5000Wh/day energy requirement. Consider followings: η_{bat}=95 η_{el}=90%; η_{dc}=80%; V_{oc}=43V, Energy produced (worst) =300Wh/day/Panel and P_{pv}=150W. | | | | | | | 2+4+4
10
10 | | | | | (Ansv | Unit-II
ver any <u>one;</u> Mai | rks: 15) | | | | | 3.4. | a) Write the significance of ocean energy systems in renewable energy systems. b) Explain the operation of tidal energy system with proper schematic diagram. a) Define the following terms: i) Highest astronomical tide ii) Lowest astronomical tide and cha datum b) Briefly explain the Operating cycle of a two-way barrage scheme with proper schematic. | | | | | | | 5
10
5 | | | 1 ' | Brieffy explain the Operati | | or a two-way bar | rrage sche | eme with prope | r schematic. | 10 | | 5. | a) | | (Answ | Unit-III
ver any <u>one</u> ; Mai | rks: 30) | | | | | 5. | a) | Calculate the net present co | (Answ | Unit-III
ver any <u>one</u> ; Mai | rks: 30) | | | 10 | | 5. | a) | Calculate the net present co | (Answost of a sy | Unit-III
ver any <u>one;</u> Man
stem designed fo
Replacement | rks: 30)
for 30 year | rs considering f | Collowing data | | | 5. | a) | Calculate the net present co | (Answost of a sy | Unit-III
ver any <u>one;</u> Mar
stem designed fo
Replacement
Cost () | or 30 year OMC (%) | s considering f | Collowing data Lifetime (Yrs.) | | | 5. | a) | Calculate the net present co | (Answost of a sy Price () | Unit-III ver any <u>one;</u> Mar stem designed for Replacement Cost () | or 30 year OMC (%) | Scrap value (%) | Collowing data Lifetime (Yrs.) | | | 5. | a) | Calculate the net present co Item Wind Turbine (kW) Civil work for wind (kW) | (Answort of a sy Price () 2500 500 | Unit-III ver any <u>one;</u> Mar stem designed for Replacement Cost () 1500 300 | or 30 year OMC (%) | Scrap value (%) 20 20 | Collowing data Lifetime (Yrs.) 20 30 | | | 5. | a) | Calculate the net present content of them Wind Turbine (kW) Civil work for wind (kW) PV (kW) | (Answort of a sy Price () 2500 500 1000 | Unit-III ver any <u>one;</u> Mar stem designed for Replacement Cost () 1500 300 700 | or 30 year OMC (%) | Scrap value (%) 20 20 10 | Collowing data Lifetime (Yrs.) 20 30 30 | | [Turn over | | energy system considering minimized dummy load and maximized LOLP as other objective parameters | | |----|--|----| | 6. | a) What are NPC, CRF, and COE? | 5 | | | b) What do you mean by <i>objective function</i> in designing and optimization of hybrid energy system? | 5 | | | c) What are the design constraints while designing a hybrid energy system consisting of PV, wind, battery, Diesel generator set and dummy load? | 10 | | | d) Define the power management strategy while designing a hybrid energy system consisting of PV, wind, battery, Diesel generator set and dummy load. | 10 | | | Unit-IV | | | _ | (Answer any <u>one;</u> Marks: 25) | | | 7 | a) What are different deterministic features of energy storage systems (ESS)? | 5 | | | b) Compare the power and energy density of batteries, fuel cell and super capacitors? Briefly explain the application areas of each and state the reasons for such niche applications. | 10 | | | c) What is Kinetic or Flywheel Electric Energy Storage (FEES)? State the principle and identify the application areas and briefly explain/demonstrate the operation with an example. | 10 | | 8 | | | | | a) What are technological challenges of ESS? | 5 | | | b) What is Superconducting Magnetic Energy Storage (SMEs)? State the principle and briefly | | | | explain/demonstrate the operation of SMEs with an example. | 10 | | | c) Explain the operation and utility of SCs/Battery hybrid storage in Wind Turbine system | 10 |