B.E. Power Engineering - Fourth Year - Second Semester Examination, 2023

SUBJECT: Computational Fluid Dynamic (Hons.)

Time: Four Hours Full Marks 100

		Group A (CO1) (25 Marks)	Marks
1	a	The region of interest for analysis in CFD is called	1
		a) Cell; b) domain c) range d) node	
	b	Analysis of steady flow of water through a turbine can be treated as	1
		a) Initial value problem, b) boundary value problem c) Marching	
		problem, d) all of the a, b and c	
	c	The solution in CFD is obtained at different points within the zone of	1
		interest. These points are known as	
		a) Grids; b) elements; c) nodes; d) cells;	
ļ i	d	CFD can give results than experiments.	1
		Detailed; b) Accurate; c) Reliable; d) Approximate	
	e	The mass flux out should be equal to the mass flux in. This is	1
		mathematically expressed by	;
		a) energy equation; b) momentum equation; c) continuity equation; d)	
		flux conservation	
	f		2 +8
		What are the advantages and disadvantages of numerical methods over	
		other methods of solving a fluid flow problem?	
	g	Explain how classification of linear 2 nd order differential equation is carried	10
		out into hyperbolic parabolic and elliptic types? Give example in each	
•		case	
		Group B (CO2) (20 Marks)	
2	a		1
		heat source, where heat flux is constant. This kind of boundary condition is	
		known as	
		a) Dirichlet bc; b) Neumann bc; c) mixed bc; b) none of these	
	b	Only boundary conditions are required to given in a problems.	1
		a) time-dependent problems; b) marching problems; c) Steady state	
		problems; d) none of these;	
	c	A nonlinear partial differential equation (related to fluid flow) can be	1
		solved using CFD by following method.	
		Direct; b) iterative; c) analytical d) none of these	
	d	Which of these methods is not a method of solving a set of linear algebraic	1
		equation?	
		a) Matrix inversion b) TDMA c) Gauss-Seidel method d) Spectral element	
		method	

Ref. No. <u>Ex/PE/PE/H/T/422C/2023</u>

B.E. Power Engineering - Fourth Year - Second Semester Examination, 2023

SUBJECT: Computational Fluid Dynamic (Hons.)

Time: Four Hours Full Marks 100

	e	Discretization of the governing equations result in	1
	·	a) Integral equations	1
		b) Quasi-linear partial differential equations	
		c) Partial differential equations	
	•	d) Algebraic equations	
	f		6
!		types of discretization techniques?	
	g	Explain how one dimensional continuity equation can be discretized by	9
		Finite Difference Method (Forward, Backward and central)	
		Group C (CO3) (45 Marks)	
3	a	Discuss how equations $a_i T_i = b_i T_{i+1} + c_i T_{i-1} + d_i$ $(N \ge i \ge 1)$ can be solved	10
		by TDMA, when T_1 and T_N are known. (a, b, c) and d are constants).	
	b	How a set of algebraic equations can be solved by direct method and	15
		Gauss-Siedel method? Discuss why these methods are discouraged to solve	
		a fluid flow problem. In this context describe the Scarborough criterion	
	c	Show that for 1D convection diffusion equation $\frac{d}{dx}(\rho u\phi) = \frac{d}{dx}(\Gamma\frac{d\phi}{dx})$, the	20
		exponential scheme yields the following discretised equation.	
		$a_P \phi_P = a_E \phi_E + a_W \phi_W ,$	
		where $a_E = \frac{F_e}{Exp(F_e/D_e)-1}$, $a_W = \frac{F_w Exp(F_w/D_w)}{Exp(F_w/D_w)-1}$ and	,
		$a_P = a_E + a_W + (F_e - F_W).$	
		Group D (CO4) (10 Marks)	
4	a		2+1+3
		Name three such commercial software available in the market. Why these software are costly?	
	b	What are the main activities required to be done before execute solver of a commercial CFD software.	4