B.E.(Power Engg.) 4th Year 2nd Semester 2023 **Digital Signal Processing**

Full Marks 100

Answer all Questions

Time 3 hours

1. If x[n] = u[n] and $h[n] = a^n u[n]$, |a| < 1 deduce y[n] = x[n] * h[n] deduce y[n] from first principles. Consider 2 discrete LTI signals $x[n] = 1, 0 \le n \le 4$ and $h[n] = 1, -2 \le n \le 2$. Obtain y[n] = x[n] * h[n] using tabular method. CO(1) 10

Or

Express the application

25Hz.

$$y[n] = a_0x[n] + a_1x[n-1] + a_2x[n-2] + a_3x[n-3] + a_4x[n-4] + a_5x[n-5]$$
 using branch, delay and summation operations.

Consider a causal sequence $x[n] = 0.3(-1)^n, n \ge 0$. Calculate its energy and power.

2. Obtain the Z-transform of a Unit Ramp function at t=0 with a sample time T. Hence deduce the Region of Convergence. Deduce the Z-transform for the same Unit Ramp commencing at = mT, m > 0. CO(2) 8+4+8

Prove that a continuous time signal x(t) may be expressed as

$$x(t) = c_0 + \sum_{k=-N}^{N} c_k e^{j\omega_k t}, k \neq 0$$
 CO(2) 20

3. Deduce the Fourier Transform of a single rectangular pulse of height H and duration D. How does it differ from the Fourier Transform of a train of the same pulse with time period T. Deduce the results CO(2) 10+10

Assume that $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ and a continuous time signal x(t) is sampled using p(t) to produce $x_s(t)$. Deduce an expression for $X_s(e^{j\omega})$, where the symbols have usual CO(2) 20 significance.

4. State and prove Nyquist's sampling theorem for a band limited signal. CO(3) 20

Enumerate the different re-construction techniques for discrete signals. Explain mathematically why an ideal sampler defined by $h(t) = \frac{sin(\frac{\pi t}{T})}{\frac{\pi t}{T}}$ is so named. CO(3) 20

5. Consider a discrete sequence given by x[n] = [2, -1, 1, 2]. Compute its Discrete Fourier Transform terms. Define Twiddle Factor and write the Matlab code to compute the FFT of a sine wave of CO(4)15

Or

For an IIR discrete filter with two complex Z-pane poles, compute the Z transfer function CO(4) 20 and deduce the Bandwidth with suitable assumptions