Ref. No.: Ex/PE/PC/B/T/322/2023

B.E. POWER ENGINEERING THIRD YEAR

SECOND SEMESTER

EXAM - 2023

NUCLEAR POWER GENERATION

Time: 3 hours Full Marks: 100

All Sections (A, B & C) are compulsory.

0.0005486(u) R_0 931.5 $\frac{MeV}{c^2}$ 6.022 × 10²³ 1.007825(u) m_p 1.008665(u) m_n

Boltzman Constant = 1.3806 × $10^{-23} \frac{Joule}{keV}$; = $8.6 \times 10^{-5} \frac{eV}{K}$;

All questions are compulsory and carry 3 marks each.

- Neutrons are classified based on their energies. What is the typical energy for thermal, epithermal and fast neutrons, what can you predict about the approximate wavelength of these three categories.
- What do you understand by the term "rest mass" of an sub-atomic particle. What is the rest 2 mass energy for an electron $(m_e = 9 \times 10^{-31} \, kg)$ in eV.
- 3 Prove that the Roentgen represents the energy absorption which corresponds to 83.8 $\frac{ergs}{am}$ of
- 4 What is the most important property for a material to be used as a "control rod" as well as a
- Define "microscopic cross section" and how is it related to "macroscopic cross section".
- 6 18 grams of water contain how many moles and molecules.
- 7 What do you comprehend by "Loss of Coolant" accidents
- 8 Name the three nuclear reactor accidents till date.
- What is "average logarithmic energy decrement".
- 10 We have 100 number of radioactive atoms, whose half-life is 2 days. How many atoms are present after 2 half lives.

Section B

Attempt any 5 questions each carry 6 marks.

Given the reactions

$$\begin{split} H^2 + H^3 & \longrightarrow He^4 + n \, \& \\ n + U^{235} & \longrightarrow X^{97} + Y^{137} + 2n \\ m_{H2} &= 2.014102 \, (u); \, m_{H3} = 3.016049 \, (u); \, m_{He} = 4.002602 \, (u) \\ m_{U235} &= 235.043924 \, (u); \, m_X = 96.92120 \, (u); \, m_Y = 136.9060 \, (u) \end{split}$$

Which of the two reactions produces more energy.

- 2 Compute the ratio of the nuclear density for ¹²C(Z=6) and ²⁰⁸Pb(Z=82) nuclei.
- 3a Given the observations that the elastic scattering cross section is directly proportional to the surface area of the nucleus viz.

$$\sigma = 4\pi R^2 \& R = R_0 A^{1/3}$$

 $\sigma=4\pi~R^2~\&~R=~R_0A^{1/3}$ Sketch the plot of $\frac{\sigma}{2\sqrt{\pi}}$ and $A^{1/3}$ with $A^{1/3}$ along the x-axis. How would you deduce the value of R_0 from this plot.

- Suppose a quantity B_v is directly proportional to the volume of the nucleus, (the nucleus is spherical in shape), deduce a relationship between B_v and A. Sketch the plot of $\frac{B_v}{A}$ (y-axis) and A.
- From the data given below prove that ²³⁵U would undergo fission under the absorption of a thermal neutron, whereas ²³⁸U would not.

$$\begin{array}{l} m_{235U} = 235.04393 \ (u); \ m_{236U} = 236.04556 \ (u) \\ m_{238U} = 238.05071 \ (u); \ m_{239U} = 239.0543 \ (u) \\ E_{critical}^{235U} = 6.4 \ MeV \ \& E_{critical}^{238U} = 7.0 \ MeV \end{array}$$

Using the data in the following table compute the atomic weight of naturally occurring oxygen.

Isotope	Abundance (%)	Atomic weight
¹⁶ O	99.759	15.99492
¹⁷ O	0.037	16.99913
¹⁸ O	0.204	17.99916

- How much energy would be required to assemble U_{92}^{238} nucleus, given $m_U = 238.05078826 u$ for individual and independent components. From this information compute the Packing fraction for this nucleus.
- 7 The microscopic cross section of Cu is 3.85 barns. Density of Copper is 8940 kg-m3. Atomic weight of copper is 63.55 gm/mole. Calculate the macroscopic absorption cross section and the mean free path of the neutron.

Section C

Attempt any four questions. All questions carry 10 marks each. Attempt all sub-sections within one question.

- 1 a) What is the conventional unit used to describe the mass of sub-atomic particle. 4 Prove that one such unit is equal to the reciprocal of Avogadro's Number (N_A) .
 - b) Define Binding Energy. Plot the B.E per nucleon as a function of the nucleon 6 number and use this to explain the observation that fission is energetically favourable.
- 2 a) What is Reactivity. What are units used to quantify "reactivity". Explain the 6 significance of delayed neutrons in controlling the reactivity of the reactor.
 - b) What do you understand by the term "neutron poison".

4

- 3 a) What are the different mechanizms with which a neutron undergoes interaction with 10 matter. Prove mathematically that a light material is a better moderator than a heavier element.
- 4 a) For a successive disintegration show that $N_2 = \frac{N_0 * \lambda_1}{\lambda_2 \lambda_1} \left\{ e^{-\lambda_1 t} e^{-\lambda_2 t} \right\}$

Where the symbols have their usual meaning. Define the unit of activity.

- 5 a) Describe briefly the general components of a nuclear reactor, with a suitable 4 diagram.
 - b) What do you comprehend by the term "fission" for a heavy nucleus and how does 6 it explain the working of a nuclear reactor. What is the energy released in fission of one heavy nucleus.

- What do you comprehend by the term "chain reaction" and "criticality of a reactor". 10 Describe in detail the components which constitute the formula describing the multiplication factor for an infinite reactor. How does one modify the same to describe the multiplication factor for a real / practical reactor.
- 7 a) Why does a light water reactor have to be operated at high pressure? Why should 5 the fuel used in there be enriched? What is the advantage of Heavy Water Moderated Reactor?

b) Using the data in the following table compute the atomic weight of naturally 5 occurring Uranium.

Isotope	Abundance (%)	Atomic weight
²³⁴ U	0.0054	234.040 9523
²³⁵ U	0.7204	235.043 9301
²³⁸ U	99.2742	238.050 7884

8 Explain the principle and operation of a Fast Breeder Reactor. Describe briefly the desirable and undesirable characteristics of Liquid Na as a coolant. Enumerate the need for two Na loops and sketch either the Loop Design or the Pool Design for LMFBR. Define the Conversion ratio and state the condition for breeding.