Ref No. Ex/PE/PC/B/T/215/2023(S)

B. POWER ENGINEERING EXAMINATION -2023
(2nd Year, 1st Semester Supplementary)
SUBJECT – Circuit Theory

Time: Three hours

Full Marks: 100

Answer any seven questions

Assume suitable value for missing data, if any All parts of a question to be answered at one place.

All parts of a question to be answered at one place.			
No. of		Marks	
Question			
Q. 1. (a)	Define and explain the following with suitable examples:		
	(i) Half wave symmetry of periodic function (ii) Cut set and fundamental cut set (iii) Fundamental Tie set matrix	2+2+2	
(b)	What is incidence matrix? The incidence matrix of a directed graph is given below. Draw the directed graph.	8	
	$[A] = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 1 \end{bmatrix}$		
2.	For the network as shown in fig. 1, draw the directed graph and write down the fundamental tie set matrix for a particular tree of your choice. Use it to determine the current I . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	14	
3.	Determine the two parameters, power consumed by the circuit and the power factor of the circuit whose expression for the voltage and currents are as follows:	14	
	$v(t) = 269 \sin (314t + 10^{\circ}) + 79 \sin (942t + 48^{\circ})$ $i(t) = 19.8 \sin (314t - 47^{\circ}) + 2.2257 \sin (942t - 29.7^{\circ})$		

4.	Discuss the half wave symmetry of a periodic function with suitable example. Hence show that Fourier Series of periodic function having half wave symmetry contains only odd harmonics	4+10
5. (a)	State and explain Norton's Theorem with suitable example.	4
(b)	Find the current through the 1.0Ω resistance connected between the terminals a and b for the network as shown in fig. 2 using Norton's Theorem.	10
	$\begin{array}{c c} & & & & & & \\ \hline 2 - 2 & & & & & \\ & & & & & \\ \hline 8 & & & & & \\ \hline & & & & & \\ \hline$	
6. (a)	State and explain Superposition Theorem with suitable example.	4
(b)	Determine the current through the resistance $R_L = 2 \Omega$ for the network as shown in fig. 3 using Superposition Theorem.	10
	$\frac{2}{1-2} \frac{6}{6} \frac{4}{4} \frac{2}{6} \frac{1}{6} \frac{2}{6} \frac{1}{6} \frac{2}{6} \frac{1}{6} \frac{1}{6} \frac{2}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{2}{6} \frac{1}{6} $	
7. (a)	State and prove initial value theorem and final value theorem.	7
(b)	For the network shown as fig. 4, the switch is thrown from position A to position B at time, $t = 0$, the current having previously reached its steady state value. Determine the current through inductor after	
	switching. 50 50 50 50 50 50 50 50	7

8.	Determine the current $i(t)$ in a series RLC circuit consisting of R = 5 Ohm, L = 1 H and C = 0.25 F when a ramp input voltage $12r(t-2)$ is applied.	14
9.	What is reciprocity and symmetry of two port networks? Derive the conditions for reciprocity and symmetry in z-parameter representation of a two port network.	14
10.	Find the y-parameters and h-parameters for network as shown in fig.5 below. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	14