Subject Code: PE/ES/B/T/222

Full Marks: 100

B.E. POWER ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2023

Subject: Materials Science

Time: 3 Hr

1.	Chose the co	orrect Answer (A my INTERPREDICTION		1×1515			
••	Chose the co	Allswei (A	Any FIF LEEN)		1x15=15			
i.			crystal structueform at room temp		deformed at high			
	(a) FCC	(b) BC	CC (c)	НСР	(d) SC			
ii.	Screw Disloc	ation is moved b	y s	tress				
				(d) A	ll of the above.			
iii.	•	Primary stage _						
	(a) Decreases (b) starts at slow rate and rapids with time							
	(c) Increases		(d) starts at a rapid	I rate and slows w	ith time			
iv.		In a single-component condensed system, if degree of freedom is zero, maximum number of phases that can co-exist						
	(a) 0	(b) I	(c) 2	(d) 3				
v.	A solid phase cooling	produces two no	ew solid phases du	ring r	eaction up on			
	(a) Eutectic	(b) Eutectoid	(c) Peritect	ic (d) Pe	ritectoid			
vi.	Weight perce	ntage of Carbon	present in Eutectoi	d steel				
	(a) 0.008	-	(c)		(d) 1.8			
vii.	Liquid- Solid	-1 + Solid-2. Thi	s type of reaction i	s known as	reaction.			
•			(c) Peritecto					
viii.	Usually mater	rials with followi	ing crystal structure	e fail in ductile m	ode			
	(a) BCC			(d) Al				
ix.	Ternary stage	creep is associat	ted with					
	(a) Strain hard	dening	(b) Recovery	(c) Necking	(d) None			
x.		Ruthery condition						
		(a) Crystal structure of each element of solid solution must be the same.						
			elements must not	<u>-</u>	an 15%.			
	-	should form com should have the s	pounds with each o	otner.				

xii.	(a) 0	((b) I				
xii.			(0) 1		(c) 2		(d) 3
	wt.% of carl	bon in mild	steels:				
	(a) <0.008	(b) 0.008	3-0.3	(c) 03	3-0.8	(d) 0.8-2	.11
xiii.	Strong	hyb	ridized b	onds make	Graphene mec	chanically s	strong
	(a) sp ¹	(b) sp ²		(c) sp	3	(d) Hydr	ogen bond
xiv.	CNT s are the	he stronges	t and stiff	fest materi	als in		,
	(a) Tensile st	trength (b) Ductili	ity	(c) Elasticity	(0	d) Energy
xv.	is one of the most important materials is also known as solar grade silicon.						
	(a) Crushed s (c) Powdered				(b) Crystallir (d) Silicon		
xvi.		is a direct	band gap	material.	•		
					(b) Copper S		ium Diaglamida
	(c) Copper G	Jamum Ter	iuriqe		(d) Copper II	idium Gan	ium Diselenide
xvii.					(a) Sauci aan		1) lua ŝa una un atul
	(a) Good Col	nductor	(b) Ilisui	ator	(c) Senii con	ductor (C	l) Impure metal
xviii.			C) of su	perconduc	tor around		
	(a) 0 K	(b) 33K			(c) 133K	٠. (۵	l) 233K
ix.	CNT is						
	(a) Non toxic	: (t	o) Toxic	(c) Ve	ery Safe	(d) Not h	aving graphene
XX.	Which of the	following	is not a N	lanotube s	tructure		
	(a) Zig-zag-t	ype Nanotu	ibe		(b) armchair	type Nano	tube
	(c) Helical N	anotube		(d) S	piral Nanotube		
xxi.	Which of the	following	is/are not	a Solid In	sulating Mater	ials	
	(a) Polyvinyl	chloride		(b) Ce	eramics	(c) Rubbe	er (d) None
	Which of the	following		•	ogen Storage?	•	
xxii.	(a) Boron nit	ride Nanotı	ibes	(b) Sil	licon carbide N	anotubes	

2. Match the following (Any THREE) 5x3=15A. Column-1 Column-2 (i) Fatigue (a) Time dependent yield (ii) Creep (b) Energy absorbed up to elastic limit (iii) Hardness (c) Repeated load (iv) Resilience (d) Ductile to Brittle transition (v) Impact Test (e) Shore's Scleroscope В. Component Material used (i) High-pressure steam piping (a) 1.25%Cr, 0.5Mo Steel (ii) Superheater and Reheater (b) Feritic steels 12%Cr steels (iii) High pressure Rotor (c) Ferritic/martensitic steels (iv) Waterwall tubing (d) Ferritic/martensitic steels (v) Rotating buckets (e) 422 stainless steel C. Method of Production Product (i) Czochralski Method (a) Amorphous Metal (ii) Solid-state reaction (b) Single walled Nanotubes (iii) Catalyzed Chemical Vapor Deposition (c) Crystalline Silicon (iv) Arc Method with 1% Y, 4.2% Ni (d)·MWNT (v) Arc Method (e) SWNT D. Type of Materials Example (i) Lower bond strength materials (a) Diamond (ii) High bond strength materials (b) Germanium (iii) Semiconductor (c) Nitrogen (iv) Insulator (d) Niobium-titanium (e) CNT (v) Super conductor

3. Answer the following Questions (Any TEN)

2X10=20

- i. What is the Miller Indices of the points: (2, 3, 6); (-2, 1, 2).
- ii. What is low angle grain boundary?

iii.	Define Yield Strength.	
iv.	What is Larson Miller parameter?	
v.	Write down the ranges of Carbon (%) present in (a) Hypoeutectoid Steel, (b) Low Carbon Steel.	
vi.	Why maximum 6.67% Carbon is dissolved in Iron- Carbon system?	
vii.	What is the Degree of Freedom (F) for two component (C) system? Only Temperatu	re is
	variable in the system and three phase is present in the system?	
viii.	What is Frenkel defect and schottky defect?	
ix.	What is Magnetic hysteresis?	
х.	Give definition with example of each type: (a) Ferro-Magnetic, (b) Ferri-Magnetic	
хi.	What is Chiral Vector?	
xii.	What is Amorphous Metal? Write the use of Amorphous Metal.	
xiii.	How Nanotubes used for Hydrogen Storage?	
xiv.	What is CRGO and CRNO material?	
xv.	Write down advantage of Hydrogen Fuel cell over fossil fuel.	
,	·.	
4.	Answer the following Questions (Any FIVE) 4X5=	20
i.	Define with neat sketch: (i) Stacking faults, (ii) Twin Boundary	2+2
ii.	What is Yield point Phenomenon? Explain the reason behind it.	2+2
iii.	Calculate Effective no and Packing Efficiency of BCC crystal system.	1+3
iv.	What is Pearlite and Cementite? Draw the diagrams of microstructure of each.	2+2
v.	What is Normalizing process? Write its importance.	2+2
vi.	What is Nanofluid? Write the Application of Nanofluid.	1+3
vii.	Explain the working principle of Hydrogen Fuel cell with neat sketch and reactions.	4
·viii.	Explain how Lamination decreases Eddy Current Losses.	4

Define with example: (a) Supercapacitor (b) Superconductor.

2+2

ix.

6X5=30

5. Answer the following Questions (Any Five)

i.	(a) What is the Miller Indices of the point (2, 3, 4); (-2, 1, 3).	
	(b) Show the following crystal planes and crystal directions in a simple cubic system:	
	$(110), (111) [110], [\bar{1}\bar{1}1]$	+4
ii.	(a) If the atomic radius for Ni 0.163nm, find the volume of the unit cell. It has FCC crystal structure.	
	(b) Calculate the lattice parameter of Potassium Chloride (KCl) Crystal. It has FCC	
	crystal structure. [$\rho_{KCl} = 1.98 \text{g/cm}^3$] [Avogadro No.= 6.023×10^{23}]	+3
iii.	Tensile test was conducted on a mild steel specimen. Initial Dimensions are as follow	vs:
	Diameter: 12.5 mm, Gauge length: 50mm. Final Dimensions: Diameter: 8mm, Gau	ge
	length: 62.5mm. Load: Yield: 4500kg, Maximum: 7500, Fracture load: 5000kg. At lo	ad
	1200kg, $\Delta I = 0.035$ mm.	
	Find out: (a) Yield Stress (σ_y) , (b) Ultimate Tensile stress (UTS) (σ_u) , (c) Fraction (1) (σ_u) , (d) Fraction (1) (σ_u) , (e) Fraction (1) (σ_u) , (f) (σ_u) , (f) (σ_u) , (f) (σ_u) , (g) (σ_u) , (g) (σ_u) , (e) Fraction (1) (σ_u) , (f) (σ_u) , (f) (σ_u) , (g)	
	Stress (σ_f) , (d) Young Modulus (E), (e) Modulus of Resilience, (f) Percentage	
	Elongation,	6
iv.	Consider 1.0 kg of Austenite containing 1.15 wt% C, cooled to below 727°C. (a) Ho	w
iv.	Consider 1.0 kg of Austenite containing 1.15 wt% C, cooled to below 727°C. (a) Ho many kilograms each of total ferrite and cementite form? (b) How many kilograms ea	
iv.		
iv. v.	many kilograms each of total ferrite and cementite form? (b) How many kilograms ea	ch 6
	many kilograms each of total ferrite and cementite form? (b) How many kilograms ea of Pearlite and the Proeutectoid phase form?	ch 6
v.	many kilograms each of total ferrite and cementite form? (b) How many kilograms ea of Pearlite and the Proeutectoid phase form? Explain the production procedure of CNT with sketch for Chemical Vapor Deposition.	6 6
v. vi.	many kilograms each of total ferrite and cementite form? (b) How many kilograms ea of Pearlite and the Proeutectoid phase form? Explain the production procedure of CNT with sketch for Chemical Vapor Deposition. How CNT can use for better efficiency of Lithium Ion Battery.	6 6
v. vi.	many kilograms each of total ferrite and cementite form? (b) How many kilograms each of Pearlite and the Proeutectoid phase form? Explain the production procedure of CNT with sketch for Chemical Vapor Deposition. How CNT can use for better efficiency of Lithium Ion Battery. How to produce single Crystalline doped Silicon semiconductor Material usi	6 6 6
v. vi. vii.	many kilograms each of total ferrite and cementite form? (b) How many kilograms ear of Pearlite and the Proeutectoid phase form? Explain the production procedure of CNT with sketch for Chemical Vapor Deposition. How CNT can use for better efficiency of Lithium Ion Battery. How to produce single Crystalline doped Silicon semiconductor Material usi Czochralski method.	6 6 6 6