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Preface

The complementarity problem is identified as a mathematical programming prob-

lem and provides a framework for several optimization problems. Optimization

problems which arise in different branches of science, technology, economics and

applied fields may be identified with finding a best solution of an objective func-

tion defined on a given domain. More specifically, it refers to the minimization

(or maximization) problem of a given objective function subject to a set of con-

straints. Linear programming, an important class of optimization problems which

is used to solve decision problems, became popular during Second World War. In

nonlinear programming at least one of the objective function and the constraints

is nonlinear. Among many facets of research in complementarity theory, the issue

that has received wide attention is the existence of the solutions and development

of efficient algorithms for finding solutions. In complementarity theory many of

the available algorithms are developed based on a pivotal kind of technique that

converges to a solution with a finite number of steps. The role of complemen-

tary slackness principal is an important consideration in complementarity theory.

This principle holds not only for linear programming problems but also for more

general programming problems. The complementary slackness principle for more

general programming problems is based on the Karush-Kuhn-Tucker condition

of optimality. For linear and quadratic programs, the Karush-Kuhn-Tucker opti-

mality conditions finally reduce to the study of linear complementarity problems

(LCP) and this observation was the early motivation for studying the linear

complementarity problem. More specifically, the problem which can be posed

as an LCP includes linear programming, linear fractional programming, convex

quadratic programming and the bimatrix game problem. It is well studied in

the literature on mathematical programming and a number of applications are

reported in operations research, multiple objective programming problem, math-
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ematical economics, geometry and engineering.

The linear complementarity problem (LCP) is the problem of finding a com-

plementary pair of nonnegative vectors in a finite dimensional real vector space

that satisfies the feasibility condition or to show that no such vector exists.

Many of the matrix classes encountered in the context of linear complemen-

tarity problems are commonly found in several applications. Matrix classes char-

acterize properties of the linear complementarity problems and offer certain fea-

tures from the view point of algorithms. Several algorithms have been designed

for the solution of the linear complementarity problem. The algorithm presented

by Lemke and Howson to compute an equilibrium pair of strategies to a bimatrix

game, later extended by Lemke known as Lemke’s algorithm, a pivotal kind of

technique to solve the linear complementarity problem contributed significantly

to the development of the linear complementarity theory. This algorithm does

not solve every instance of the linear complementarity problem and in some in-

stances, the problem may terminate inconclusively without either computing a

solution to it or showing that no solution exists. This observation motivated me

to pursue research in the area of complementarity theory.

Many of the results of linear complementarity problems can be stated in

terms of the value of a matrix game. In this connection Kaplansky’s result on

matrix games is useful for deriving certain results. The principal pivot transform

(PPT) is a fundamental concept for developing many theories and algorithms

in complementarity theory and plays an important role in the study of matrix

classes. Tucker introduced the concept of principal pivot transform and proved

that if the diagonal entries for every principal pivot transform of a matrix are

positive, then the matrix is a P-matrix. The notion of principal pivot transform

is originally motivated by the well-known linear complementarity problem.

The idea of nonlinear complementarity problem (NCP) is based on the con-

cept of linear complementarity problem. The concept of complementarity is
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synonymous with the notion of system equilibrium. A number of applications of

nonlinear complementarity problems are reported in operations research, multi-

ple objective programming problem, mathematical economics and engineering.

A wide class of problems, which arise in complementarity theory, can be studied

based on the nonlinear system of equations using various techniques. Finding a

solution of a system of nonlinear equations has an important role to deal with

problems in various fields such as chemical production processes, engineering de-

sign, economic equilibrium, transportation and applied physics. A number of

methods are proposed to solve systems of equations. In this context Newton

and quasi-Newton methods are well-known iterative methods to solve nonlinear

systems of equations.

The fundamental idea of many iterative methods is to solve a problem by

tracing a continuous path that leads to a solution of the problem. Defining an

appropriate mapping that yields a finite continuation path plays an essential

role in a homotopy continuation method. Homotopy methods are proposed for

constructive proof of the existence of solutions to systems of nonlinear equa-

tions, nonlinear optimization problems, Brouwer fixed point problems, nonlinear

programming, game problem and complementarity problems.

The results included in this dissertation are divided into eight chapters. The

chapterwise summary is given below.

Chapter 1 includes the general introduction about the research work along-

with the required definitions and notations which will be used in the subsequent

chapters. This section also includes a survey of the results in complementarity

theory.

Chapter 2 considers the study of hidden Z-matrix in the context of linear

complementarity problem. It is shown that the linear complementarity problem

with hidden Z-matrix is processable by Lemke’s algorithm as well as criss-cross

method. To prove the results, the concept of principal pivot transform and game
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theoretic approach are applied. Certain matrix theoretic characterizations of hid-

den Z-matrix are provided to establish P0 properties. Mangasarian showed that

a linear complementarity problem with hidden Z-matrix can be solved with the

help of a linear programming problem. We extend the result of Fiedler and Pták

that a Z-matrix to be P -matrix is also true for hidden Z-matrix and propose

a new formulation of linear complementarity problem as a linear programming

problem. It is shown that for a non-degenerate feasible basis alongwith some ad-

ditional assumptions, the linear complementarity problem with hidden Z-matrix

has a unique non-degenerate solution.

Chapter 3 contains a study of column competent matrix and its matrix theo-

retic properties. The local w-uniqueness of the solution to the linear complemen-

tarity problem can be identified by the column competent matrices. Some new

results on w-uniqueness as well as locally w-uniqueness properties in connection

with column competent matrices are established. These results are significant in

the context of matrix theory as well as algorithms in operations research. Finally,

a connection between column competent matrices and column adequate matrices

is established with the help of degree theory.

In chapter 4, K-type block matrices are introduced which include two new

classes of block matrices namely block triangular K-matrices and hidden block

triangular K-matrices. It is shown that the block triangular K-matrices sat-

isfy least element property and the solution of linear complementarity problem

with K-type block matrices can be obtained by solving a linear programming

problem. It is also proved that the hidden block triangular K-matrices are Q0

and processable by Lemke’s algorithm. The purpose of this article is to study

the properties of K-type block matrices in the context of the solution of linear

complementarity problem.

Chapter 5 deals with solution approach of linear complementarity problem

as an initial value problem. A new function alongwith interior point approach
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is proposed to trace a path for finding a solution. We parameterize the path

with respect to arc length and obtain the solution of the proposed function by

solving the initial value problem with predictor-corrector method. It is shown

that the path approaching to the solution is smooth and bounded. To ensure

continuous trajectory we introduce a new scheme of choosing step length with

the help of predictor-corrector method. We show that under some conditions

the solution of the proposed function can provide the solution of linear com-

plementarity problem. We ensure that the solution of linear complementarity

problem with P0 matrix or nondegenerate matrix is obtained by the predictor-

corrector method. Several examples are illustrated to show the effectiveness of

the proposed algorithm.

Chapter 6 contains a solution method for finding the solution of two-person

zero-sum discounted stochastic game with additive rewards and additive tran-

sitions (ARAT) structure as an application of LCP. Usually, two-person zero-

sum discounted stochastic ARAT game is solved by pivoting algorithm namely,

Lemke method and Cottole-Dantzig algorithm. Here we take an approach to

solve this problem by an iterative method introducing a new function alongwith

the complementarity condition. It is shown that the algorithm has higher order

of convergence and the trajectory as obtained by the algorithm is bounded.

The results in chapter 7 are concerned with the solution approaches to non-

linear complementarity problem using homotopy approach. A new homotopy

function is developed for finding the solution of nonlinear complementarity prob-

lem through a continuous path ensuring the boundedness property of the trajec-

tory obtained from the homotopy function. It is proved that a path approaching

to solution is smooth and bounded. We establish some conditions under which

the continuation method gives a solution of nonlinear complementarity problem.

Some numerical examples are considered to show the method approaching to the

soution along a smooth and bounded homotopy path.
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Chapter 8 contains a formulation of oligopolistic market equilibrium problem

as an application of NCP. In this study the equivalence between nonlinear com-

plementarity problem and the system of nonlinear equations is established and

a homotopy method with vector parameter is proposed for finding the solution

of oligopoly market equilibrium problem through system of nonlinear equations.

It is shown that the trajectory to obtain the solution of the system of nonlinear

equations with the help of the proposed method with vector parameter is smooth

and bounded under some additional conditions. In this context it is shown that

a newly introduced modified Newton method with higher order convergence can

also be applied to obtain the solution of oligopoly market equilibrium problem.

Numbering

For internal referencing, Section j in Chapter i is denoted by i.j and i.j.k is

used to refer Item k of Section j in Chapter i. For example, the triple 2.3.5 refers

to Item 5 in Section 3 of Chapter 2. All items (e.g., Lemma, Theorem, Example,

Remark etc.) are identified in this fashion. Equation (i.j.k) is used to refer

Equation k in Section j of Chapter i. We use brackets [ ] for a bibliographical

reference.
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List of Notations

The special notations pertaining to a particular chapter are provided in Sec-

tion 2 of each chapter. The most frequently used notations are given below:

Spaces

Rn real n-dimensional space

R the real line

R+ the nonnegative orthant of R

Rn×n the space of n× n real matrices

Rn
+ the nonnegative orthant of Rn

Rn
++ positive orthant of Rn

N the set of natural numbers

Vectors

xT the transpose of a vector x

xTy the standard inner product of vectors in Rn

x ≥ y xi ≥ yi, i = 1, . . . , n

x > y xi > yi, i = 1, . . . , n

y ∈ Rn is unisigned if either y ∈ Rn
+ or −y ∈ Rn

+

e the vector of all 1.

Sets

∈ element membership

̸∈ not an element of

⊆ set inclusion

⊂ proper set inclusion

∪,∩,× union, intersection, cartesian product

∅ the empty set

ᾱ complement of an index set α

|α| cardinality of a finite set α



viii

Matrices

A = [aij] a matrix with real entries aij

det(A) the determinant of a square matrix A

A−1 the inverse of a matrix A

AT the transpose of a matrix A

I the identity matrix

Aαβ submatrix formed by the rows and columns of A

whose indices are in α and β, respectively

Aα· submatrix formed by the rows of A

whose indices are in α

A·α submatrix formed by the columns of A

whose indices are in α

Aαα the principal submatrix of A

det(Aαα) the principal minor of A

Miscellaneous Symbols

LCP(q, A) the LCP with data (q, A)

FEA(q, A) the feasible region of LCP(q, A)

SOL(q, A) the solution set of LCP(q, A)
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Chapter 1

General Introduction And Some

Basic Concepts

1.1 Introduction

The complementarity problem is identified as a mathematical programming prob-

lem and provides a framework for several optimization problems. The role of

complementary slackness principal is an important consideration in complemen-

tarity theory. This principle holds not only for linear programming problems

but also for more general programming problems. The complementary slack-

ness principle for more general programming problems is based on the Karush-

Kuhn-Tucker condition of optimality. For linear and quadratic programs, the

Karush-Kuhn-Tucker optimality conditions finally reduce to the study of linear

complementarity problems (LCP) and this observation was the early motivation

for studying the linear complementarity problem. It is well studied in the litera-

ture on mathematical programming. Many of the matrix classes encountered in

the context of linear complementarity problems are commonly found in several

applications. Matrix classes characterize properties of the linear complementarity

1
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problems and offer certain features from the view point of algorithms. Several

algorithms have been designed for the solution of the linear complementarity

problem. Some of the available algorithms are developed based on a pivotal kind

of technique that converges to a solution with a finite number of steps.

The idea of nonlinear complementarity problem (NCP) is based on the con-

cept of linear complementarity problem. The concept of complementarity is

synonymous with the notion of system equilibrium. A number of applications of

nonlinear complementarity problems are reported in operations research, multi-

ple objective programming problem, mathematical economics and engineering.

A wide class of problems in complementarity theory can be studied based on

the nonlinear system of equations using various techniques. Finding a solution

of a system of nonlinear equations has an important role to deal with prob-

lems in various fields such as chemical production processes, engineering design,

economic equilibrium, transportation and applied physics. The idea of many

iterative methods is to solve a problem by tracing a continuous path that leads

to a solution of the problem.

The algorithm presented by Lemke and Howson to compute an equilibrium

pair of strategies to a bimatrix game, later extended by Lemke known as Lemke’s

algorithm, a pivotal kind of technique to solve the linear complementarity prob-

lem contributed significantly to the development of the linear complementarity

theory. This algorithm does not solve every instance of the linear complementar-

ity problem and in some instances, the algorithm may terminate inconclusively

without either computing a solution to it or showing that no solution exists.

This observation motivated me to pursue research in the area of complementar-

ity theory. The dissertation highlights a contribution to complementarity theory

in terms of the matrix theoretic properties and the computational aspects. At-

tempts have been taken to establish w-uniqueness as well as least element prop-

erties and show that various matrix classes play a significant roles. A connection
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between two matrix classes considered for the study is being established with the

help of degree theory. It is shown that the linear complementarity problem with

the newly introduced matrix class is processable by Lemke’s algorithm. A new

type of function is considered to find the solution of the nonlinear complemen-

tarity problem through a continuous path ensuring the boundedness property

of the trajectory. As applications, two-person zero-sum discounted stochastic

game with additive rewards and additive transitions (ARAT) structure and the

oligopolistic market equilibrium problem are considered to address their compu-

tational aspects. Some basic concepts, definitions, notations and results which

will be used in the next chapters are discussed in the next sections. The details

of the studies are given in the subsequent chapters.

1.2 Linear Complementarity Problem

The linear complementarity problem is considered as a problem of mathematical

programming to unify several optimization problems. The problem may be stated

as follows:

Given a square matrix A of order n with real entries and an n dimensional vector

q, find n dimensional vectors w and z satisfying

w − Az = q, w ≥ 0, z ≥ 0 (1.2.1)

wT z = 0. (1.2.2)

This problem is denoted as LCP(q, A). The condition 1.2.1 is called feasibility

condition and the condition 1.2.2 is called complementarity condition. If a pair of

vectors (w, z) satisfies (1.2.1), then the problem LCP(q, A) has a feasible solution.

A pair (w, z) of vectors satisfying (1.2.1) and (1.2.2) is said to be a solution to

the LCP(q, A). For details see [69]. The problem has undergone several name
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changes, from composite problem to complementary pivot problem. Cottle [113,

p. 37] proposed the current name linear complementarity problem.

Given a matrix A ∈ Rn×n and a vector q ∈ Rn, the feasible set is defined by

FEA(q, A) = {z ∈ Rn : z ≥ 0, q + Az ≥ 0} and the solution set of LCP(q, A) is

defined by SOL(q, A) = {z ∈ FEA(q, A) : zT (q + Az) = 0}.

The role of complementary slackness principal is an important consideration

in optimization theory. The problems which can be posed as an LCP include

linear programming, linear fractional programming, convex quadratic program-

ming and the bimatrix game problem. The problem of computing the value vector

and optimal stationary strategies for structured stochastic games for discounted

and undiscounded zero-sum games and quadratic multi-objective programming

problem are formulated as linear complementary problems. For details see [201],

[192], [198] and [199]. It is stated in the literature on mathematical programming

and a number of applications are available in operations research [24], multiple

objective programming problem [117], mathematical economics [61], geometry

and engineering [25] and [206].

1.2.1 Some Preliminaries in Linear Complementarity

Theory

We introduce required terminologies related to linear complementarity problem

LCP(q, A). The idea of using complementary cones to study LCP was considered

by Samelson et. al. [133]. Later Murty studied LCP through complementary

cones extensively and obtained some remarkable results. For details see [60].

Definition 1.2.1. Given A ∈ Rn×n and α ⊆ {1, 2, · · · , n}, CA(α) is called a

complementary matrix of A with respect to α where CA(α).j = −A.j if j ∈ α and

CA(α).j = I.j if j /∈ α. The associated cone CA(α) is called complementary cone

relative to A with respect to α. If det(CA(α)) ̸= 0, then it is called complementary
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basis.

Definition 1.2.2. The complementary cone with respect to α is said to be non-

degenerate if det(Aαα) ̸= 0. Otherwise it is said to be degenerate. A degenerate

pos CA(α) is said to be strongly degenerate if there exists 0 ̸= x ≥ 0, x ∈ Rn

such that CA(α)x = 0.

Definition 1.2.3. Given A ∈ Rn×n and α ⊆ {1, 2, · · · , n}, the matrix A is said

to be nondegenerate if det(Aαα) ̸= 0 ∀ α ⊆ {1, 2, · · · , n}. Any solution (w, z)

of LCP(q, A) is said to be nondegenerate if w + z > 0. Otherwise it is called a

degenerate solution. A vector q ∈ Rn is said to be nondegenerate with respect to

A if every solution of LCP(q, A) is nondegenerate.

Let C(A) be the union of the strongly degenerate complementary cones of A

and let K(A) denote the union of all facets of all the complementary cones of A.

Definition 1.2.4. A set C ⊆ Rn is connected if there do not exist disjoint open

sets U, V ⊆ Rn such that U ∩ C ̸= ∅, V ∩ C ̸= ∅ and C ⊆ U ∪ V . A connected

component of a set S containing a point x is defined as the union of all connected

sets C such that x ∈ C ⊆ S.

Tucker [10] introduced the concept of principal pivot transforms (PPTs)

which is an important concept in the context of linear complementarity problem.

The principal pivot transform (PPT) of A with respect to α ⊆ {1, 2, . . . , n} is

defined as the matrix M given by

M =

 Mαα Mαᾱ

Mᾱα Mᾱᾱ


where ᾱ = {1, 2, . . . , n} \ α, Mαα = (Aαα)

−1, Mαᾱ=−(Aαα)
−1Aαᾱ, Mᾱα =

Aᾱα(Aαα)
−1, Mᾱᾱ = Aᾱᾱ−Aᾱα(Aαα)−1Aαᾱ. The PPT of LCP(q, A) with respect
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to α (obtained by pivoting on Aαα) is given by LCP(q
′
,M) where q

′
α = −A−1

ααqα

and q
′
ᾱ = qᾱ − AᾱαA

−1
ααqα.

Note that PPT is only defined with respect to those α for which detAαα ̸= 0.

When α = ∅, by convention detAαα = 1 and M = A. For further details, see

[113] and [90] in this connection. Aαα.

Let A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ

, where α ⊆ {1, 2, . . . , n}, ᾱ = {1, 2, . . . , n} \ α. If Aαα

is invertible, then the schur complement of Aαα of the matrix A is the matrix

defined by A/Aαα = Aᾱᾱ − Aᾱα(Aαα)
−1Aαᾱ.

If Aᾱᾱ is invertible, then the schur complement of Aᾱᾱ of the matrix A is the

matrix defined by A/Aᾱᾱ = Aαα − Aαᾱ(Aᾱᾱ)
−1Aᾱα.

1.2.2 Matrix Games

The linear complementarity problem and the matrix game have some important

connections. We state the results of two person matrix games in linear comple-

mentarity problem due to von Neumann [66] and Kaplansky [51]. The results

say that ∃ x∗ ∈ Rm, y∗ ∈ Rn and v ∈ R such that

∑m
i=1 x

∗
i aij ≤ v, ∀ j = 1, 2, · · · , n,∑n

j=1 y
∗
jaij ≥ v, ∀ i = 1, 2, · · · ,m.

The strategies (x∗, y∗) are said to be optimal strategies where m and n are pure

strategies for player I and player II respectively and v is said to be minimax value

of the game. The amount aij may be positive, negative or zero. The probability

vectors x ∈ Rm and y ∈ Rn are the mixed strategies for player I and player II

where xi ≥ 0 ∀i,
∑m

i=1 xi = 1 and yj ≥ 0 ∀j,
∑n

j=1 yj = 1.

The value of the game v(A) is said to be positive(nonnegative) if there exists

a 0 ̸= x ≥ 0 such that Ax > 0 (Ax ≥ 0). Likewise, v(A) is negative(nonpositive)

if there exists a 0 ̸= y ≥ 0 such that yTA < 0 (yTA ≤ 0.) For a payoff matrix
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A ∈ Rn×n, v(A) is preserved in its PPTs.

1.2.3 Lemke’s Method

To solve (1.2.1) and (1.2.2) the complementary pivot method as a result of Lemke

[22] which is identified as Lemke’s algorithm, has become faster with an appre-

ciable amount of investigation in the matrix class of what the algorithm is in a

position to process LCP(q, A). If nondegeneracy is considered, the method deter-

mines either a ray termination or a solution to (1.2.1) and (1.2.2). Eaves [17] has

pointed out some procedures to bypass cycling in the event that the degenerate

almost complementary solutions are developed. For further details on Lemke’s

algorithm see [113].

An algorithm is appropriate for a given problem if the algorithm is able to

work out a solution in case of its existence or confirm the existence of no solution.

Assuming A ∈ L(d) for which d > 0, the processability of Lemke method with

d > 0 for LCP(q, A) with all matrices A ∈ L1(d) was proved by Todd [91].

Moreover Lemke method process LCP(q, A) when A is row sufficient. For more

details see [115]. Ramamurthy [68] show that Lemke’s algorithm for the linear

complementarity problem can be used to check whether a given Z-matrix is a P0

matrix and it can also be used to analyze the structure of finite Markov chains.

1.3 Some Relevant Definitions and Results

Various matrix classes arise in linear complementarity problem which are found

in many applications. Some of the matrix classes characterize specific properties

of the linear complementarity problem and provide interesting features from the

view point of algorithms. Most of the algorithms depend on matrix classes. Hence

the study of matrix classes is an important issue and form the basis for further
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discussions. In addition, some relevant results in connection with mapping are

included in this section.

Let A be a given n× n real square matrix, not necessarily symmetric.

Definition 1.3.5. A = [aij] is said to be nonnegative or A ≥ 0 if aij ≥ 0 ∀ i, j ∈

{1, 2, · · · , n}.

Definition 1.3.6. A = [aij] is said to be positive if aij > 0 ∀ i, j ∈ {1, 2, · · · , n}.

Let A and B be two matrices with A ≥ B, then A−B ≥ 0.

Definition 1.3.7. A = [aij] is said to be a Z-matrix if aij ≤ 0, ∀ i ̸= j.

The class of Z-matrices has been introduced by Fiedler and Pták [83].

Definition 1.3.8. A is said to be hidden Z-matrix if there exist Z-matrices X,

Y ∈ Rn×n and r, s ∈ Rn
+ such that

AX = Y, (1.3.1)

rTX + sTY > 0. (1.3.2)

A hidden Z-matrix is said to be completely hidden Z-matrix if all its principal

submatrices are hidden Z-matrix. For details on hidden Z-matrix, see [136],

[134], [138].

Definition 1.3.9. A is said to be a positive semidefinite (PSD) if zTAz ≥

0 ∀ z ∈ Rn and A is positive definite (PD) if zTAz > 0 ∀ 0 ̸= z ∈ Rn.

A is called PSD(PD) of order k, 0 ≤ k ≤ n, if every principal submatrix of

order k is PSD (PD).

Definition 1.3.10. A is said to be a P (P0)-matrix if all its principal minors

are positive (nonnegative).
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Definition 1.3.11. A is called a N(N0)-matrix if all its principal minors are

negative (nonpositive).

An N -matrix is called an N -matrix of the first category if it contains atleast

one positive entry otherwise it is called an N -matrix of the second category.

Definition 1.3.12. A is called copositive (C0) (strictly copositive (C)) if z
TAz ≥

0 ∀ z ≥ 0 (zTAz > 0 ∀ 0 ̸= z ≥ 0). A is said to be copositive-plus (C+
0 ) if A ∈ C0

and the following implication holds:

[zTAz = 0, z ≥ 0] ⇒ (A+ AT )z = 0.

We say that A ∈ Rn×n is copositive-star (C∗
0) if A ∈ C0 and the following

implication holds:

[zTAz = 0, Az ≥ 0, z ≥ 0] ⇒ AT z ≤ 0.

Definition 1.3.13. A matrix A is called fully copositive (Cf
0 ) matrix if every

legitimate PPT of A is C0.

Definition 1.3.14. A matrix A is called P∗-matrix if ∃ a constant τ > 0 such

that for any x ∈ Rn,

(1 + τ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0

where I+(x) = {i ∈ N : xi(Mx)i > 0} and I−(x) = {i ∈ N : xi(Mx)i ≤ 0}.

Definition 1.3.15. A is said to be column sufficient if for all z ∈ Rn the fol-
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lowing implication holds:

zi(Az)i ≤ 0 ∀ i ⇒ zi(Az)i = 0 ∀ i.

A is said to be row sufficient if AT is column sufficient.

A is sufficient if A and AT are both column sufficient.

For details on sufficient matrices, see [112], [115] and [223].

Definition 1.3.16. A is said to be column competent if zi(Az)i = 0, i =

1, 2, · · · , n =⇒ Az = 0.

A is said to be row competent if AT is column competent.

A is competent if A and AT are both column competent.

Definition 1.3.17. A is said to be column adequate if zi(Az)i ≤ 0, i =

1, 2, · · · , n =⇒ Az = 0.

A is said to be row adequate if AT is column adequate.

A is competent if A and AT are both column adequate. For details on competent

and adequate matrices, see [139].

Definition 1.3.18. A ∈ Rn×n is called a Q-matrix (or a matrix satisfying Q-

property) if for every q ∈ Rn, LCP(q, A) has a solution.

We say that A is a Q0-matrix (or a matrix satisfying Q0-property) if

F (q, A) ̸= ∅ implies S(q, A) ̸= ∅.

A is said to be a completely Q (Q0)-matrix if all its principal submatrices are

Q (Q0)-matrices.

Definition 1.3.19. A ∈ Rn×n is said to be a semimonotone matrix ( E0-matrix)

if for every 0 ̸= z ≥ 0, z ∈ Rn, ∃ an i such that zi > 0 and (Az)i ≥ 0.

Definition 1.3.20. A ∈ Rn×n is said to be a strictly semimonotone matrix (E-

matrix) if for every 0 ̸= z ≥ 0, z ∈ Rn, ∃ an i such that zi > 0 and (Az)i > 0.
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Definition 1.3.21. A matrix A is called fully semimonotone (Ef
0 ) matrix if

every legitimate PPT of A is E0.

Definition 1.3.22. A is said to be an R-matrix (introduced by Karamardian)

if for all t ≥ 0, LCP(te, A) has only the trivial solution.

Definition 1.3.23. A is said to be an R0-matrix if LCP(0, A) has only the trivial

solution.

Definition 1.3.24. A matrix A ∈ Rn×n is said to be an L2-matrix if for every

0 ̸= z ≥ 0, z ∈ Rn, such that Az ≥ 0, zTAz = 0, ∃ two diagonal matrices

D1 ≥ 0 and D2 ≥ 0 such that D2z ̸= 0 and (D1A+ ATD2)z = 0.

A ∈ Rn×n is said to be an L-matrix if A ∈ E0 ∩ L2.

Definition 1.3.25. A real square matrix A ∈ E(d), d ∈ Rn if (y, x), x ̸= 0 is

a solution for given LCP(d,A) indicates that ∃ nonzero z̄ ≥ 0, w̄ = −AT z̄ ≥ 0,

z̄ ≤ x, w̄ ≤ y.

Definition 1.3.26. A square matrix A with real entries belongs to E∗(d) for

d ∈ Rn if (y, x) is a solution of the given LCP(d,A) ⇒ y = d, x = 0.

According to [17] E(d) = E∗(d) for each d > 0 or d < 0, E(0) = L2 and

L(d) = E(d) ∩ E(0). Hence, for d > 0, A ∈ E(d) if LCP(d,A) has only zero

solution y = d, x = 0. Todd [91] identifies a wider E1(d) and L1(d) enlarging

E(d) and L(d) of Garcia [131] as follows:

Suppose (y, x) solves LCP(d,A) at least one d ∈ Rn where A ∈ Rn×n.

(a) For each β identified as {j | xj > 0 } ⊆ β ⊆ {j | yj = 0}, determinant of

principal submatrix of A considering β has positive value.

(b) For nonzero z ≥ 0 with w = −AT z ≥ 0 and z ≤ x, w ≤ y.

Todd identifies E1(d) = {A | Condition (a) or (b) holds} and L1(d) = E1(d) ∩

E1(0). Note that L(d) ⊆ Q0 [131] and L1(d) ⊆ Q0 [91] if d > 0.
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Definition 1.3.27. Let S ⊂ Rn. If for any two vectors x, y ∈ S, their meet,

which is defined by the vector z = min(x, y), also belongs to S, then S is called a

meet semi-sublattice,

Theorem 1.3.1. [113] Let A ∈ Rn×n be a Z-matrix and q ∈ Rn be an arbitrary

vector. Then the feasible region of LCP(q, A), which is denoted by FEA(q, A) is

a meet semi-sublattice.

Definition 1.3.28. Let S ⊂ Rn. If there exists a vector u ∈ Rn such that

x ≥ u ∀ x ∈ S, then S is called bounded below. If such a vector u belongs to S,

then u is called a least element of the set S.

Note that, if there exists a least element of a set, it must be unique.

Theorem 1.3.2. [113] Let S be a nonempty meet semi sub-lattice, which is closed

and bounded below. Then S has a least element.

Theorem 1.3.3. [113] Let A ∈ Rn×n be a Z-matrix and q ∈ Rn be an arbitrary

vector. If LCP(q, A) is feasible, then FEA(q, A) contains a least element u, which

solves LCP(q, A).

Theorem 1.3.4. [113] A ∈ Rn×n is a Z-matrix if and only if for all vectors

q ∈ pos(I,−A), the feasible region of LCP(q, A) contains a least element, which

is the solution of LCP.

Lemma 1.3.1. [135] If z solves the linear program

min pTx

subject to Ax+ q ≥ 0, x ≥ 0,

for an easily determined p ∈ Rn

and if a corresponding optimal dual variable y satisfies (I − AT )y + p > 0,

where I is the identity matrix, then z solves the linear complementarity prob-

lem LCP(q, A).
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Theorem 1.3.5. [135] Consider the linear complementarity problem LCP(q, A),

where A is a Z-matrix. If FEA(q, A) ̸= ∅, the least element solution u can be

computed by the following linear program.

min pTx

subject to Ax+ q ≥ 0, x ≥ 0,

where p ≥ 0.

Corollary 1.3.1. Consider the linear complementarity problem LCP(q, A),

where A is a Z-matrix. If FEA(q, A) ̸= ∅, then LCP(q, A) has a solution which

can be obtained by solving the linear program

min eTx

subject to Ax+ q ≥ 0, x ≥ 0,

where e is the vector of all 1’s.

Theorem 1.3.6. [135] Consider the linear complementarity problem LCP(q, A),

where A is a hidden Z-matrix with X, Y ∈ Rn×n and r, s ∈ Rn
+ such that

AX = Y, rTX + sTY > 0. If FEA(q, A) ̸= ∅, then the solution of linear

complementarity problem can be computed by the following linear program.

min pTx

subject to Ax+ q ≥ 0, x ≥ 0,

where p = r + AT s.

Definition 1.3.29. The function sgn : R → R is defined by

sgn(x) =

 1 if x > 0

−1 if x < 0

Lemma 1.3.2. (Generalizations of Sard’s Theorem[49]) Let U ⊂ Rn be an open

set and f : Rn → Rp be smooth. We say y ∈ Rp is a regular value for f if



General Introduction and Some Basic Concepts 14

RangeDf(x) = Rp ∀x ∈ f−1(y), where Df(x) denotes the n×p matrix of partial

derivatives of f(x).

Lemma 1.3.3. (Parameterized Sard Theorem [39]) Let V ⊂ Rn, U ⊂ Rm be open

sets, and let ϕ : V × U → Rk be a Cα mapping, where α > max{0,m − k}. If

0 ∈ Rk is a regular value of ϕ, then for almost all a ∈ V, 0 is a regular value of

ϕa = ϕ(a, .).

Lemma 1.3.4. (The inverse image theorem [39]) Let ϕ : U ⊂ Rn → Rp be

Cα mapping, where α > max{0, n − p}. Then ϕ−1(0) consists of some (n − p)

dimensional Cα manifolds.

Lemma 1.3.5. (Classification theorem of one-dimensional smooth manifold [40])

One-dimensional smooth manifold is diffeomorphic to a unit circle or a unit

interval.

1.4 Nonlinear Complementarity Problem

The nonlinear complementarity problems is well studied in the literature on

operations research [113], multiple objective programming problem [140], control

theory, mathematical economics and engineering.

Consider a function f : Rn → Rn , and a vector z ∈ Rn such that f =


f1

f2
...

fn



and z =


z1

z2
...

zn

 . The complementarity problem is to find a vector z ∈ Rn such

that

zTf(z) = 0, f(z) ≥ 0, z ≥ 0. (1.4.1)
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When the function f is a nonlinear function, then it is called nonlinear comple-

mentarity problem. For details see [144].

In the literature, various techniques are developed to solve nonlinear comple-

mentarity problems. Several approaches such as fixed point, homotopy, projec-

tion and Newton method have appeared. For an extensive survey of the non-

linear complementarity problem see [67] and [70]. Josephy [71] presented a gen-

eralized Newton method for solving nonlinear complementarity problem. The

Josephy–Newton method was shown to be convergent locally as well as quadrat-

ically. The basic idea is to linearize the nonlinear function f(x) around the

current iteration xk and generate the next iteration xk+1 by solving the following

problem:

f(xk) +∇f(xk)(x− xk) ≥ 0, x ≥ 0,

[f(xk) +∇f(xk)(x− xk)]Txk = 0.

However, this method does not converge globally. Therefore, the design of effi-

cient global methods for solving the nonlinear complementarity problem becomes

a challenging endeavor. Based on the above motivation, Pang [141] reformulated

the nonlinear complementarity problem as a system of nonsmooth equations.

They extend the classical Newton method for solving smooth equations generat-

ing from nonsmooth function. Harker and Xiao [72] also converted the nonlinear

complementarity problem into a system of nonsmooth equations in a different

way. They formulated the nonlinear complementarity problem as a system of B-

differentiable equations through the use of the Minty-map. Pang and Gabriel

[143] further combined the nonsmooth equations reformulation with sequen-

tial quadratic programming which is based on nonsmooth equations/successive

quadratic programming (NE/SQP) based method. They established that the

NE/SQP method converges both globally and locally under certain conditions.

Mangasarian [186] reformulated the nonlinear complementarity problem as a sys-



General Introduction and Some Basic Concepts 16

tem of smooth equations. Chen and Mangasarian [99] proposed smoothing meth-

ods where a class of smooth functions approximate certain nonsmooth functions

arising in the reformulations of the nonlinear complementarity problem. The

further study of those methods has been done by Chen and Harker [160]. An-

other approach is to reformulate the nonlinear complementarity problem as a

smooth unconstrained minimization problem. Mangasarian and Solodov [152]

introduced a smooth function in such a way that any global minimizer of the un-

constrained minimization problem is a solution of the nonlinear complementarity

problem. Yamashita and Fukushima [153] prove that any stationary point of the

unconstrained minimization problem proposed by Mangasarian and Solodov is

a solution of the nonlinear complementarity problem if the associated function

f is continuously differentiable and strongly monotone in Rn. This shows that

any method for solving unconstrained minimization problem is applicable for the

nonlinear complementarity problem as a special case. Kanzow [159] gave some

approaches to characterize the nonlinear complementarity problem as uncon-

strained minimization problems. Reformulating the nonlinear complementarity

problem as a smooth constrained minimization problem due to Fukushima’s [168]

and Auchmuty [169] is considered to be another direction. For further details

of nonsmooth constrained minimization reformulations of the nonlinear comple-

mentarity problem, see [167]. Jiang and Qi [147] proposed a new nonsmooth

equations-based method for the nonlinear complementarity problem. This work

is more related to nonsmooth equations and smooth unconstrained minimiza-

tion based methods. They transformed the nonlinear complementarity problem

into a system of nonsmooth equations by employing a function introduced by

Fischer [173]. Fischer [173] introduced the function ϕ : R2 → R such that

ϕ(a, b) =
√
a2 + b2− a− b to reformulate the Karush–Kuhn–Tucker (KKT) opti-

mality conditions of nonlinear programming problems as systems of nonsmooth

equations. Kanzow [159], [164] used this same function to reformulate nonlinear
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complementarity problems as smooth nonlinear programs or systems of smooth

equations. In this connection Kostreva [204], [156] proposed a block-pivoting al-

gorithm to exchange the basic and nonbasic variables. This algorithm extended

Murty’s scheme [155] known as Bard-type scheme for nonlinear complementarity

problem. This method solves a system of nonlinear equations at each iteration.

Kostreva established some convergence results for the case in which the nonlinear

function f is a nondegenerate P -function. Kojima, Mizuno, Nome and Yoshise

[187], [185], [80], [86] have developed interior-point algorithms for solving mono-

tone linear and nonlinear complementarity problems. For the nonlinear case, the

convergence theory exists for uniform P-functions, but only limited convergence

results exist when the nonlinear function f is monotone.

Mangasarian[186] showed the equivalence of the nonlinear complementarity

problem to a system of nonlinear equations. A number of methods are proposed

to solve systems of equations. Newton and quasi-Newton methods are well-

known iterative methods to solve nonlinear systems of equations. In recent years,

researchers are interested to solve system of nonlinear equations both analytically

and numerically. Several iterative methods have been developed using different

techniques such as Taylor’s series expansion, quadrature formulas, interpolation,

decomposition and its various modification. For details, see [171], [172], [174],

[157], [158], [177] and [178].



Chapter 2

Matrix Theoretic Properties And

Solution Aspects Of Linear

Complementarity Problem With

Hidden Z- Matrix

2.1 Introduction

A generalization of Z-matrix was addressed by Mangasarian [135] to study the

linear complementarity problems solvable as linear program. Pang [65] proposed

this class as hidden Z-matrix. Though the class of hidden Z-matrix generalizes

the class of Z-matrix, the completeness property of the class of Z-matrix is not

carried over to the class of hidden Z matrix. That is for a hidden Z-matrix A, it

is not guranteed that all proper principal submatrices of A are hidden Z. If all

the principal submatrices of A are hidden Z then A is called completely hidden

*A part of this work has been published in the journal Linear and Multilinear Algebra
[123].

�Another part of this work has been published in the journal Opsearch [124].
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Z-matrix. Chu [138] studied the generalization of the class of hidden Z ∩ P

matrix. Neogy [134] proved that hidden Z-matrix is a Q0-matrix. They showed

that the LCP(q, A) with hidden Z-matrix A is processable by Lemke’s method.

The linear complementarity problem alongwith a hidden Z-matrix received wide

attention in the literature. The class of hidden Z-matrix is important in the

context of mathematical programming and game theory.

The purpose of this chapter is to study some properties of hidden Z-matrix.

Fiedler and Pták [83] studied Z-matrix in the context of linear complementar-

ity problem. They showed that existence of a strictly positive vector x for a

Z-matrix A such that Ax ≥ 0 allows A to be P0-matrix. In this chapter we

extend this result in terms of hidden Z-matrix. The chapter is organized as fol-

lows. Section 2.2 presents some basic notations, required definitions and some

relevant results used in this chapter. In section 2.3 main results are proved. We

show a hidden Z-matrix under some additional conditions to be a P0 matrix.

We settle a result related to singular hidden Z-matrix. We illustrate our result

by giving a suitable example of singular hidden Z-matrix. We show that linear

complementarity problem with hidden Z-matrix has unique nondegenerate so-

lution under some assumptions. Finally we show that a linear complementarity

problem with hidden Z-matrix can be solved using linear programming problem.

In this chapter we propose an interior point based iterative algorithm to solve

LCP(q, A). We show that the proposed algorithm converges to a solution under

certain feasibility conditions.

2.2 Preliminaries

Definition 2.2.1. [113] A matrix A ∈ Rn×n is said to be almost P (P0)-matrix if

all its principal minors upto order (n−1) are positive (nonnegative) and det(A) <

0.
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Definition 2.2.2. [113] A matrix A ∈ Rn×n is said to be S-matrix if there exists

a vector z > 0 such that Az > 0 and S̄-matrix if all its principal submatrices are

S-matrix.

Definition 2.2.3. [113] A matrix A ∈ Rn×n is said to be K (K0)-matrix if it is

a Z-matrix as well as P (P0)-matrix.

Definition 2.2.4. [77] A matrix A ∈ Rn×n is said to be type D if there exist

some real numbers {αi}ni=1 with αn > αn−1 > · · · > α1, such that

aij =

αi if i ≤ j;

αj if i > j.

Now we give some theorems which will be required for discussion in the next

section.

Theorem 2.2.1. [113] Every Z-matrix is a hidden Z-matrix.

Theorem 2.2.2. [113] Let A ∈ Rn×n be a K-matrix. Then the schur complement

A/Aαα is a K-matrix, where α ⊂ {12, · · ·n}.

Theorem 2.2.3. [113] Let A be a Z matrix and A−1
αα ≥ 0. Then A/Aαα ∈ Z.

Theorem 2.2.4. [1] Let A be a K-matrix. Then A−1 ≥ 0.

Theorem 2.2.5. [113] Let A ∈ Rn×n be a hidden Z-matrix. Then for any two

Z-matrices X and Y satisfying AX = Y and rTX+sTY > 0 for some r, s ∈ Rn
+,

the followings hold.

(i) X is nonsingular and

(ii) there exists an index set α ⊆ {1, 2, · · · , n} such that the matrix Xαα Xαᾱ

Yᾱα Yᾱᾱ

 is a K-matrix.
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Theorem 2.2.6. [136] Let A ∈ Rn×n be a hidden Z-matrix. Then A is a P -

matrix if and only if A is an S-matrix.

Theorem 2.2.7. [83] Let A be a Z-matrix. If v(A) is strictly greater than zero

then A is a P -matrix.

Theorem 2.2.8. [83] Let A be a Z-matrix. If there exists a vector x strictly

greater than zero such that Ax ≥ 0, then A is a P0-matrix.

Theorem 2.2.9. [113] The classes E and S̄ are identical i.e. E = S̄.

Theorem 2.2.10. [134] PPT of hidden Z-matrix is hidden Z.

Theorem 2.2.11. [134] Let A ∈ hidden Z. Then A ∈ Q0.

Theorem 2.2.12. [113] The classes Q0 and Q are related through the following

equation.

Q = Q0 ∩ S.

2.3 Main Results On Hidden Z-Matrix

We first show that hidden Z-matrices are invariant under principal rearrange-

ment.

Theorem 2.3.1. Suppose A ∈ Rn×n is a hidden Z-matrix. Then PAP T is a

hidden Z-matrix for any permutation matrix P.

Proof. Let A be a hidden Z-matrix. Then by the definition of hidden Z-matrix

there exist two Z-matricesX, Y and two nonnegative vectors r, s such that AX =

Y and rTX+sTY > 0. Now for any permutation matrix P, P−1PAP T (P T )−1X =

Y. Thus, (PAP T )(P T )−1X = PY. Therefore (PAP T )(P T )−1XP T = PY P T .

Now letting X1 = (P T )−1XP T and Y1 = PY P T , we get (PAP T )X1 = Y1. It

is easy to show that X1 and Y1 are Z-matrices. Now for r1, s1 ∈ Rn
+, r

T
1X1 +
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sT1 Y1 = rTP T ((P T )−1XP T )+sTP−1(PY P T ). Therefore rT1X1+s
T
1 Y1 = rTXP T+

sTY P T = (rTX + sTY )P T > 0. Thus PAP T satisfies the definition of hidden

Z-matrix.

Fiedler and Pták [83] proved that if there exists a vector x > 0 such that

Ax ≥ 0 for a Z-matrix A, then A is a P0-matrix. We extend this result to hidden

Z-matrix.

Theorem 2.3.2. Let A be a hidden Z-matrix with real entries. Suppose there

exists a vector x > 0 such that Ax ≥ 0. Then A is a P0-matrix.

Proof. We prove this result by induction method on n. The result is trivially

true for n = 1. Consider that the result holds for all matrices of order less than

n. Now A is a hidden Z-matrix with real entries. Then for some Z-matrices

X and Y, AX = Y. Then there exists a vector x > 0 such that Ax ≥ 0. This

implies Y X−1x ≥ 0 since X is nonsingular. Let x1 = X−1x which implies

Xx1 = x > 0. Hence Y x1 ≥ 0. Then by the Theorem 2.2.5, there exists an

index set α ⊆ {1, 2, · · · , n} such that the matrix W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 is a K-

matrix and Wx1 ≥ 0. This gives x1 ≥ 0. Therefore X is a K-matrix and for

x > 0, X−1x > 0 since X is nonsingular. Therefore x1 > 0 with Y x1 ≥ 0. Then

by the Theorem 2.2.8 of [83], Y is a P0-matrix. This implies Y is a K0-matrix.

Therefore det(A) ≥ 0. Now it is sufficient to prove that for any β̄ ⊂ {1, 2, · · · , n},

the principal submatrix Aβ̄β̄ of A is a hidden Z-matrix and there exists a y > 0

such that Aβ̄β̄y ≥ 0. Now Aβ̄β̄(Xβ̄β̄ − Xβ̄βX
−1
ββXββ̄) = Yβ̄β̄ − Yβ̄βX

−1
ββXββ̄ which

implies Aβ̄β̄(X/Xββ) = (M/Xββ), where M =

 Xββ Xββ̄

Yβ̄β Yβ̄β̄

 . Since X ∈ K,

Xββ ∈ K. By Theorem 2.2.4, X−1
ββ ≥ 0. Hence (X/Xββ) is a K-matrix and

(M/Xββ) is a Z-matrix by Theorems 2.2.2 and 2.2.3. Therefore Aβ̄β̄ is a hidden

Z-matrix. Consider x1 =

 uβ

uβ̄

 > 0 such that Xx1 > 0 and Y x1 ≥ 0. Then
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[
−Xβ̄βX

−1
ββ I

] Xββ Xββ̄

Xβ̄β Xβ̄β̄

 uβ

uβ̄

 =
[
0 X/Xββ

] uβ

uβ̄

 .
Now as Xx1 > 0,

[
−Xβ̄βX

−1
ββ I

] Xββ Xββ̄

Xβ̄β Xβ̄β̄

 uβ

uβ̄

 > 0. Then

(X/Xββ)uβ̄ > 0. Now consider yβ̄ = (X/Xββ)uβ̄ > 0. Since Xx1 >

0, Y x1 ≥ 0, thenMx1 ≥ 0. Therefore
[
−Yβ̄βX−1

ββ I
] Xββ Xββ̄

Yβ̄β Yβ̄β̄

 uβ

uβ̄

 =

[
0 M/Xββ

] uβ

uβ̄

 = (M/Xββ)uβ̄ ≥ 0. So for yβ̄ > 0, Aβ̄β̄yβ̄ ≥ 0. This implies

det(Aβ̄β̄) ≥ 0. Therefore A is a P0-matrix.

Remark 2.3.1. The above result may not hold if the condition x > 0 is changed

to x ≥ 0. To illustrate our result we consider A =

 −1 0

−1 2

 . It is easy to show

that there exists an x ≥ 0 such that Ax ≥ 0. Note that A is a hidden Z-matrix

but not a P0-matrix..

Corollary 2.3.1. Let A be a hidden Z-matrix with real entries and there exists

a vector x > 0 such that Ax ≥ 0. Then every Schur complement in A is a hidden

Z-matrix as well as P0-matrix.

Corollary 2.3.2. Let A be a hidden Z-matrix with real entries. If there exists

a vector x > 0 such that Ax ≥ 0, then the class of all the linear complementarity

problems with the matrix A is NP-complete.

Proof. Suppose A is a hidden Z-matrix with real entries and there exists a vector

x > 0 such that Ax ≥ 0. Then it follows from Theorem 2.3.2, A is a P0-matrix.

Now by using the result of [187] the class of LCP(q, A) is NP-complete.

Consider a singular matrix A =

 1 1

1 1

 . It is easy to show that v(A) > 0.

We show the following result in the context of singular hidden Z-matrix.
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Theorem 2.3.3. Let A be a singular hidden Z-matrix. Then v(A) ̸> 0.

Proof. We prove this result by contradiction. Let A be a singular hidden Z-

matrix and v(A) > 0. We show that there exists an x̃ > 0 such that Ax̃ > 0.

By definition of value positivity there exists an x ∈ Rn
+ such that Ax > 0. Let

x̃ = x+ ϵe > 0, where ϵ > 0. Then Ax̃ = A(x+ ϵe) = Ax+ ϵAe. If Ae ≥ 0, it is

enough to choose any ϵ > 0. If not. Let a = mini(Ax)i > 0 and b = maxi |(Ae)i|.

Now choose ϵ such that a > ϵb. This implies ϵ < a/b. Now for 0 < ϵ < a/b, we

can get x̃ = x + ϵe such that x̃ > 0 and Ax̃ > 0. Now A is a hidden Z-matrix

with v(A) > 0. We say that there exists an x̃ > 0 such that Ax̃ > 0. Again as

A is hidden Z-matrix then for some Z-matrices X and Y, AX = Y. Since X

is nonsingular by the Theorem 2.2.5, then Y X−1x̃ > 0. Let x̃1 = X−1x̃. Then

Xx̃1 > 0 and Ax̃ > 0 implies Y x̃1 > 0. Then by the Theorem 2.2.5, there exists

an index set α ⊆ {1, 2, · · · , n} such that the matrix W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 is a

K-matrix and Wx̃1 > 0. Let x̃2 = Wx̃1 > 0. Then x̃1 = W−1x̃2 > 0 since

W−1 ≥ 0. Hence for any x̃1 ≥ 0, Xx̃1 > 0 and Y x̃1 > 0. Therefore v(X) > 0

and v(Y ) > 0. Now as X and Y are Z-matrices then by the Theorem 2.2.7, X

and Y are P -matrices. Thus we have det(Y ) > 0 and det(X−1) > 0. Therefore

det(A) > 0 which contradicts the fact that A is singular matrix.

We consider a singular hidden Z-matrix A to show that v(A) ̸> 0 with the

help of the Theorem 2.3.3.

Example 2.3.1. Let A =


1 1 0

−1 −1 0

0 0 1

 . Note that A is singular matrix. Now

A is a hidden Z-matrix with X =


2 −1 0

−1 1 0

0 −1 3

 and Y =


1 0 0

−1 0 0

0 −1 3

 .
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Take r =


1.6

4

2

 and s =


4

0

0.1

 , then it is concluded that rTX + sTY =

[
3.2 0.3 6.3

]
> 0. Then by Theorem 2.3.4, v(A) ̸> 0.

Neogy et al. [134] show that if A is a hidden Z-matrix with v(A) > 0 and

some additional assumptions, then A is a E0-matrix. In this paper we show that

a hidden Z-matrix with v(A) > 0 is a P -matrix.

Theorem 2.3.4. Let A be a hidden Z-matrix and v(A) > 0. Then A is a P -

matrix.

Proof. Let A ∈ Rn×n with v(A) > 0. Then there exists an x ∈ Rn
+ such that

Ax > 0. In view of Theorem 2.3.3 ∃ x̃ > 0 such that Ax̃ > 0. Then by Theorem

2.2.6, A is a P -matrix.

Remark 2.3.2. For a hidden Z-matrix A with v(A) > 0, LCP(q, A) is processable

by criss-cross method [5].

Now we illustrate our result considering the following example.

Example 2.3.2. Let A =


1 2 0

0 1 0

−1 0 1

 . For X =


1 −2 0

0 1 0

−1 −2 1

 and

Y =


1 0 0

0 1 0

−2 0 1

 , r =


3

8

0

 and s =


0

0

1

 , we obtain rTX + sTY =

[
1 2 1

]
> 0. Hence A is a hidden Z-matrix. For x =


1

4

5

 , v(A) > 0.

Therefore by Theorem 2.3.4, the system LCP(q, A) has a unique solution for each

q ∈ Rn.
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Here we propose a method to find whether a hidden Z-matrix A is P -matrix

or P0-matrix or not.

Algorithm:

Step I: Choose ϵ, δ > 0. Consider the following linear programming problem

minimize s

subject to Ax− se ≥ 0

x ≥ δe

s ≥ ϵ

(2.3.1)

If solution of the linear programming problem exists then by Theorem 2.3.4, A

is a P -matrix, else go to Step II.

Step II: Choose ϵ = 0, δ > 0 and consider the linear programming problem

(2.3.1). If the solution of the linear programming problem exists then by Theorem

2.3.2, A is a P0-matrix, else decision is inconclusive.

Note that all 2 × 2 P -matrices are hidden Z but in general there are P -

matrices which are not hidden Z [65]. Now we show the condition under which

a P -matrix is a hidden Z-matrix. For this purpose we consider the D-matrix.

Theorem 2.3.5. Suppose A is positive type D-matrix. Then A is a hidden Z-

matrix.

Proof. Suppose A is positive type D-matrix. It is easy to show that positive

type D-matrices are P -matrices. Then A is nonsingular and A−1 is Z-matrix as

shown in [77] which in turn implies A−1 is hidden Z-matrix. Now A is a PPT of

A−1. Therefore, by Theorem 2.2.10 A is a hidden Z-matrix.

It is known that inverse of an almost P -matrix is an N -matrix. To illustrate

our result we consider A =

 1 2

1 1

 . It is easy to show that A is an almost
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P -matrix and A−1 is an N -matrix of first category. For further details see [42].

Now we prove the following theorem.

Theorem 2.3.6. Let A be a hidden Z-matrix with real entries. If A is an almost

P -matrix then A−1 is an N-matrix of second category.

Proof. Let A be a hidden Z-matrix with real entries. If A is an almost P -matrix

then A−1 is an N -matrix. Suppose A−1 is an N -matrix of first category. Then

by [203], A−1 is a Q-matrix. Therefore by Theorem 2.2.12 and Theorem 2.3.4 we

arrive at a contradiction. This implies A−1 is an N -matrix of second category.

Theorem 2.3.7. Let A be a hidden Z-matrix with real entries. Assume that

A is a E0-matrix and every feasible basis of FEA(q, A) is nondegenerate. Let

LCP(q, A) have a solution. Then the problem has a unique nondegenerate solu-

tion.

Proof. Suppose A is a hidden Z-matrix with real entries then there exist two

Z-matrices X, Y with two nonnegative vectors r, s such that

AX = Y,

rTX + sTY > 0.

Consider A(ϵ) = A+ ϵI for all ϵ ∈ (0, l), where

l =
mini(r

TX + sTY )i
maxi | (sTX)i |

.

As X is nonsingular by the Theorem 2.2.5, it is clear that sTX ̸= 0. Now

(A + ϵI)X = AX + ϵX = Y + ϵX. Note that Y + ϵX is a Z-matrix. Again

rTX + sT (Y + ϵX) > 0 by the choice of ϵ. Hence A(ϵ) is a hidden Z-matrix.

Note that A is a E0-matrix. It is easy show that (A + ϵI) is a E-matrix. Let

(−A.k, I.k̄), where k ⊆ {1, 2, · · · , n} and k̄ ⊆ {1, 2, · · ·n} \ k denote a basis.

By our assumption, zk = −(Akk)
−1qk > 0, wk̄ = qk̄ − Ak̄k(Akk)

−1qk > 0. For
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sufficiently small ϵ ∈ (0, l), A(ϵ)kk is nonsingular and z′k = −(A(ϵ)kk)
−1qk >

0 and w′
k̄
= qk̄ − A(ϵ)k̄k(A(ϵ)kk)

−1qk > 0. Therefore z′ = (z′k, 0), w
′ = (0, w′

k̄
)

is a nondegenerate solution to LCP (q, A(ϵ)). Assume that (−A.p, I.p̄) denotes

another complementary feasible basis for LCP(q, A), where k ̸= p ⊆ {1, 2, · · ·n}

and p̄ ⊆ {1, 2, · · ·n} \ p. Hence (w′′, z′′) is another nondegenerate solution to the

LCP(q, A(ϵ)). Note that by the Theorem 2.2.9, A(ϵ) is an S̄-matrix. Then by the

property 2 of [127], it contradicts that LCP(q, A(ϵ)) has unique solution as A(ϵ)

is a P -matrix. Therefore LCP(q, A) has a unique nondegenerate solution.

Now we show some sufficient conditions under which a principal submatrix

of a hidden Z-matrix will be hidden Z.

Theorem 2.3.8. Let A be a hidden Z-matrix with real entries such that AX = Y

and rTX + sTY > 0 where X, Y are Z-matrices and r, s ∈ Rn
+. If there

exists an index set α ⊂ {1, 2, · · · , n} such that W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 and

W̄ =

 Yαα Yαᾱ

Xᾱα Xᾱᾱ

 are E-matrices. Then Aαα and Aᾱᾱ are hidden Z-matrices.

Proof. Note that A is a hidden Z-matrix with real entries then there exist two

Z-matrices X, Y with two nonnegative vectors r, s such that

AX = Y,

rTX + sTY > 0.

For an index set α ⊂ {1, 2, · · ·n}, W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 and W̄ =

 Yαα Yαᾱ

Xᾱα Xᾱᾱ


are Z-matrices as well as E-matrices. By Theorems 2.2.9, 2.2.1 and 2.2.6, W

and W̄ are K-matrices. Therefore, by Theorem 2.2.2 W/Xαα, W̄/Xᾱᾱ are K-

matrices. Also note that X/Xαα, X/Xᾱᾱ are Z-matrices. This implies that Aαα

is a hidden Z-matrix with nonsingular Z-matrix X/Xᾱᾱ and K–matrix W̄/Xᾱᾱ

such that Aαα(X/Xᾱᾱ) = W̄/Xᾱᾱ. Similarly the principal submatrix Aᾱᾱ is a
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hidden Z-matrix with nonsingular Z-matrix X/Xαα and K–matrix W/Xαα such

that Aᾱᾱ(X/Xαα) = W/Xαα.

Corollary 2.3.3. Let A be a hidden Z-matrix with real entries such that

AX = Y and rTX + sTY > 0 where X, Y are Z-matrices and r, s ∈ Rn
+. If

there exists an index set α = {1, 2, · · · , n} such that W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 and

W̄ =

 Yαα Yαᾱ

Xᾱα Xᾱᾱ

 are E-matrices, then A is a completely hidden Z-matrix.

Proof. Note that A is a hidden Z-matrix with real entries then there exist two

Z-matrices X, Y with two nonnegative vectors r, s such that

AX = Y,

rTX + sTY > 0.

For an index set α = {1, 2, · · · , n}, W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 = X and

W̄ =

 Yαα Yαᾱ

Xᾱα Xᾱᾱ

 = Y are Z-matrices as well as E-matrices. By Theo-

rems 2.2.9, 2.2.1 and 2.2.6, X and Y are K-matrices. This implies that for

any β ⊂ {1, 2, · · · , n}, by Theorem 2.2.2 X/Xββ and X/Xβ̄β̄ are K-matrices.

Then the principal submatrix Aββ of A is a hidden Z-matrix with K-matrix

X/Xβ̄β̄ and Z-matrix M̄/Xβ̄β̄ such that Aββ(X/Xβ̄β̄) = M̄/Xβ̄β̄, where M̄ = Yββ Yββ̄

Xβ̄β Xβ̄β̄

 .
Corollary 2.3.4. Let A be a hidden Z-matrix with real entries such that

AX = Y and rTX + sTY > 0 where X, Y are Z-matrices and r, s ∈ Rn
+ and

suppose there exists an empty index set α such that W =

 Xαα Xαᾱ

Yᾱα Yᾱᾱ

 and

W̄ =

 Yαα Yαᾱ

Xᾱα Xᾱᾱ

 are E-matrices. Then A is a completely hidden Z-matrix.
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Now we introduce an alternative linear programming problem to solve linear

complementarity problem with hidden Z-matrix.

Theorem 2.3.9. Let A be a hidden Z-matrix with real entries such that AX = Y

and rTX + sTY > 0 where X, Y are Z-matrices and r, s ∈ Rn
+. Then the linear

complementarity problem denoted by LCP(q, A) can be written as

minimize (r + AT s)T z1 + qT z2

subject to AT s+ r − AT z2 ≥ 0,

Az1 + q ≥ 0,

z1, z2 ≥ 0.

Proof. To prove our result we consider LCP(q̃,A) where A =

 0 −AT

A 0

 and

q̃ =

 p

q

 with p = r + AT s. By Lemma 1 of [135] and Lemma 3.3 of [134],

LCP(q, A) and LCP(q̃,A) are equivalent. Assume z̃ =

 z1

z2

 be the solution

of LCP(q̃,A). Note that A is a skew symmetric matrix. Now LCP(q̃,A) can be

written as

minimize q̃T z̃ + 1
2
z̃T (A+AT )z̃

subject to q̃ +Az̃ ≥ 0,

z̃ ≥ 0.

Again equivalent quadratic programming problem can be rewritten as

minimize (r + AT s)T z1 + qT z2

subject to AT s+ r − AT z2 ≥ 0,

Az1 + q ≥ 0,

z1, z2 ≥ 0.
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2.4 Hidden Z-matrix and Interior Point Algo-

rithm

It is well-known that the linear complementarity problem can be solved by a lin-

ear program if A or its inverse is a Z-matrix. A number of authors have consid-

ered the special case of the linear complementarity problem under the restriction

that A is a Z-matrix. Chandrasekharan [6] considered solving a sequence of lin-

ear inequalities. Lemke’s algorithm is a well-known technique for solving linear

complementarity problem [5]. In this chapter we propose an interior point based

iterative algorithm to solve LCP(q, A). We show that the proposed algorithm

converges to a solution under certain feasibility conditions.

Consider the potential function

ψ(u, v) = κ log(uTv)−
∑n

i=1 log (uivi),

where κ > n.We start with a interior feasible point (u0, v0) such that ψ(u0, v0) ≤

O(κL), where L is the size of input data A and q. The algorithm generates a

sequence of interior feasible points {uk, vk : k ∈ N} so that ψ(uk, vk) ≤ −(κ−n)L.



Hidden Z-matrix 32

Algorithm:

Step 1: u0 be a strictly feasible point of LCP(q, A) so that v0 = q + Au0 > 0

and β ∈ (0, 1).

Step 2: Let (dku, d
k
v) be the direction in the kth iteration. Now to find the search

direction, consider the following problem

minimize (∇uψk)
Tdu + (∇vψk)

Tdv

subject to dv = Adu, ∥(Uk)−1du∥2 + ∥(V k)−1dv∥2 ≤ β2.

Step 3: Then we have (Uk)−1dku

(V k)−1dkv

 = −β αk

∥αk∥ ,

where

αk =

αku
αkv

 =

 κ
(uT v)k

Uk(vk + ATπk)− e

κ
(uT v)k

V k(uk − πk)− e

 ,
πk = ((V k)2+A(Uk)2AT )−1(V k−AUk)(Ukvk− (uT v)k

κ
e) and e be the vector

of all 1.

Step 4: Let β = min{∥α
k∥

κ+2
, 1
κ+2

} ≤ 1/2. We can write,

ψ(uk + dku, v
k + dkv)− ψ(uk, vk) ≤ −ξ(

∥∥αk∥∥2
),

where

ξ(
∥∥αk∥∥2

) =


∥αk∥2

2(κ+2)
, if

∥∥αk∥∥2 ≤ (κ+2)2

4

(κ+2)
8
, otherwise.
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Step 5: Set

uk+1 = uk + dku,

vk+1 = vk + dkv .

Step 6: If (uk+1)Tvk+1 ≤ ϵ, stop where ϵ is a very small positive quantity, else

k = k + 1.

Now
∥∥αk∥∥2

= hT (uk, vk)H(uk, vk)h(uk, vk). We define the condition number

ζ(q, A) for the LCP(q, A) as

ζ(q, A) = inf{∥h(u, v)∥2H : uTv ≥ 2−L, ψ(u, v) ≤ O(κL), u > 0, v = q +Au > 0}.

The condition number ζ(q, A) represents the degree of difficulty for the proposed

algorithm. If the condition number is bounded away from zero, the potential

reduction algorithm will solve LCP(q, A) where A is a PSD matrix [129].

Proposition 2.4.1. [80] Let κ ≥ 2n +
√
2n. Then, for A being a PSD matrix

and any q ∈ Rn, ζ(q, A) ≥ 1.

Now we prove the following result.

Theorem 2.4.1. The proposed algorithm with κ ≥ 2n+
√
2n solves the LCP(q, A)

in polynomial time where A is a hidden Z-matrix.

Proof. To prove our result consider the LCP(q, A) where A ∈ Rn×n is a hidden

Z-matrix with AX = Y and rTX + sTY > 0 for some r, s ≥ 0. Now construct

LCP(q̃,A) such that A =

0 −AT

A 0

 and q̃ =

p
q

 , where p = r+AT s, r, s ≥ 0.

If

x
y

 ∈ F (q̃,A), then it can be derived from the Lemma 1.3.1 in line with

Mangasarian [135] that (I −AT )y + p > 0. Note that, A given in the LCP(q̃,A)
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is a skew symmetric matrix. Therefore A is a PSD matrix. Now as κ ≥ 2n+
√
2n

and A is a PSD matrix then ζ(q̃,A) ≥ 1 by the Proposition 2.4.1.

We consider the merit function ψ(u, v) = κ log(uTv)−
∑n

i=1 log (uivi) for solving

LCP(q̃,A), provided LCP(q̃,A) has a strictly feasible solution. Based on the

concavity of log function and Lemma 3.1 of [129], we have

ψ(uk + dku, v
k + dkv)− ψ(uk, vk) ≤ −β

∥∥αk∥∥+ β2

2
(κ+ 1

1−β ).

Now by using Step 4 of the algorithm, we can write

ψ(uk + dku, v
k + dkv)− ψ(uk, vk) ≤ −ξ(

∥∥αk∥∥2
), (2.4.1)

where

ξ(
∥∥αk∥∥2

) =


∥αk∥2

2(κ+2)
, if

∥∥αk∥∥2 ≤ (κ+2)2

4

κ+2
8
, otherwise.

(2.4.2)

Here
∥∥αk∥∥2

is used as the amount of reduction of the potential function at kth

iteration. Now we find an interior feasible point for which each component is less

than 2L. The resulting point has a potential value less than O(nL). Now from

Equation (2.4.1) we say that the potential function is reduced by O(ξ(ζ(q̃,A)))

at every step of iteration. Hence in total of O( nL
ξ(ζ(q̃,A))

) iterations. Now we have

ψ(uk, vk) < −(κ− n)L and (uk)Tvk < 2−L [80]. It is easy to show from Lemma

1.3.1 that LCP(q, A) has a solution if and only if LCP(q̃,A) has a solution.

Therefore the proposed algorithm with κ ≥ 2n +
√
2n solves the LCP(q, A) in

polynomial time where A is a hidden Z-matrix.
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2.5 Numerical Illustration

Two numerical examples are considered to demonstrate the effectiveness and

efficiency of the proposed algorithm.

Example 2.5.3. We consider the following example of LCP(q, A), where

A =


1 −1 −1

−2 6 −2

1 −1 3

 and q =


5

0

−2

 .

Note that A is a hidden Z-matrix with X =


1 0 0

0 1 0

−1 0 1

 . Therefore

Y = AX =


1 −1 −1

−2 6 −2

1 −1 3




1 0 0

0 1 0

−1 0 1

=


2 −1 −1

0 6 −2

−2 −1 3

 .
It is clear that Y is a Z-matrix.

Now consider r, s ≥ 0 such that r =


10

2

0

 and s =


0

1

4

.

Hence rTX + sTY =
[
10 2 0

] 
1 0 0

0 1 0

−1 0 1

 +
[
0 1 4

] 
2 −1 −1

0 6 −2

−2 −1 3


=

[
10 2 0

]
+

[
−8 2 10

]
=

[
2 4 10

]
> 0.

Therefore A is a hidden Z-matrix. Consider a matrix A in the following

form A =

 O −AT

A O

 , where A =


1 −1 −1

−2 6 −2

1 −1 3

 . Therefore A =
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

0 0 0 −1 2 −1

0 0 0 1 −6 1

0 0 0 1 2 −3

1 −1 −1 0 0 0

−2 6 −2 0 0 0

1 −1 3 0 0 0


.

Now we have to find p = r + AT s as shown in Theorem 1.3.6. Hence p =


10

2

0



+


1 −2 1

−1 6 −1

−1 −2 3



0

1

4

 =


10

2

0

 +


2

2

10

 =


12

4

10

 .

Now consider the LCP(q̃,A), where A =



0 0 0 −1 2 −1

0 0 0 1 −6 1

0 0 0 1 2 −3

1 −1 −1 0 0 0

−2 6 −2 0 0 0

1 −1 3 0 0 0


and

q̃ =



12

4

10

5

0

−2


. Now consider u0 =



3

4

3

2

1

1


. It is easy to show that A u0+ q̃ > 0.

Therefore u0 is strictly feasible vector of the LCP(q̃,A). Let us consider vk =A

uk+ q̃.
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Iteration (k) uk vk ψ(uk, vk) dku dkv

1



2.8719
3.9097
2.9305
2.0487
1.0095
1.0458





10.9244
1.0378

10.9302
1.0317

11.8535
5.7537

 22.6493



−0.1281
−0.0902
−0.0694
0.0486
0.0095
0.0458





−0.0756
0.0378

−0.0698
0.0317

−0.1465
−0.2463



2



2.7492
3.8209
2.8640
2.0962
1.0189
1.0943





10.8472
1.0772

10.8508
1.0642

11.6990
5.5203

 22.4402



−0.1226
−0.0888
−0.0664
0.0474
0.0094
0.0485





−0.0772
0.0394

−0.0793
0.0325

−0.1545
−0.2333



3



2.6317
3.7335
2.8003
2.1422
1.0282
1.1458





10.7684
1.1184

10.7611
1.0977

11.5373
5.2992

 22.2348



−0.1174
−0.0873
−0.0636
0.0460
0.0093
0.0515





−0.0787
0.0412

−0.0897
0.0335

−0.1616
−0.2211


...

...
...

...
...

...

100



0.0581
0.3856
0.8266
0.1532
1.0813
3.8672





10.1421
1.5326
0.7140
3.8458
0.5445
0.1523

 13.3456



−0.0020
−0.0053
−0.0029
−0.0055
0.0058
0.0093





0.0078
−0.0312
−0.0219
0.0062

−0.0218
−0.0056


...

...
...

...
...

...

500



0.0000001
0.25
0.75

0.0000004
1.3749
4.2499





10.5
0.000006
0.000002

4
0.000001
0.0000003

 −12.21552



−0
−0
−0
−0
0
0





0
−0
−0
0

−0
−0


Table 2.1: Summary of computation for the proposed algorithm

Table 2.1 summarizes the computations for the first 3 iterations, 100th it-

eration and 500th iteration. At the 500th iteration, sequence {uk} and {vk}

produced by the proposed algorithm converges to the solution u∗ and v∗ of the
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given LCP(q, A) where z = u∗ =


0

0.25

0.75

 and w = v∗ =


4

0

0

 .

Example 2.5.4. We consider another example of LCP(q, A), where

A =


1 1 0

−1 0 0

0 −2 1

 and q =


−2

1

4

 .
It is easy to show that A is not a positive definite matrix. Note that A is a hidden

Z-matrix with X =


1 −1 0

0 0.8 0

−0.5 0 1

 , Y =


1 −0.2 0

−1 1 0

−0.5 −1.6 1

 and r, s ≥ 0

such that r =


2

4

2

 and s =


1

0

0

 respectively. Now consider a matrix A in the

following form A =

 O −AT

A O

 . Again p = r + AT s =


3

5

2

 . We consider

the LCP(q̃,A), where A =



0 0 0 −1 1 0

0 0 0 −1 0 2

0 0 0 0 0 −1

1 1 0 0 0 0

−1 0 0 0 0 0

0 −2 1 0 0 0


and q̃ =



3

5

2

−2

1

4


. Now
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consider u0 =



0.5

2

3

1

2

1


. It is easy to show that A u0+ q̃ > 0. Therefore u0 is strictly

feasible vector of the LCP(q̃,A). Let us consider vk =A uk+ q̃.

Iteration (k) uk vk ψ(uk, vk) dku dkv

1


0.5067
1.9926
2.9724
1.0738
2.0847
0.9702




4.0109
5.8666
1.0297
0.4993
0.4932
2.9871

 19.8622


0.0067

−0.0073
−0.0275
0.0738
0.0847
0.0297




0.0109

−0.1333
0.0297

−0.0006
−0.0067
−0.0128



2


0.5131
1.9851
2.9438
1.1545
2.1721
0.9421




4.0175
5.7297
1.0578
0.4983
0.4868
2.9734

 19.6938


0.0064

−0.0074
−0.0285
0.0807
0.0873

−0.0281




0.0066

−0.1369
0.0281

−0.0009
−0.0064
−0.0136


...

...
...

...
...

...

600


1
1
0
5
2
0




0
0
2
0
0
2

 −21.4802


0

−0
−0
−0
−0
−0




−0
−0
0

−0
−0
0


Table 2.2: Summary of computation for the proposed algorithm

Table 2.2 summarizes the computations for the first 2 iterations and 600th

iteration. At the 600th iteration, sequence {uk} and {vk} produced by the pro-

posed algorithm converges to the solution u∗ and v∗ of the given LCP(q, A) where
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z = u∗ =


1

1

0

 and w = v∗ =


0

0

2

 .

In this chapter, we study the class of hidden Z-matrix in the context of

linear complementarity problem. We extend the results of Fiedler and Pták for

the linear system in complementarity problem using game theoretic approach.

We establish a result related to singular hidden Z-matrix. We show that for

a nondegenerate feasible basis, linear complementarity problem with hidden Z-

matrix has unique nondegenerate solution under some assumptions. To prove

our result we apply the concept of principal pivot transform and game theoretic

approach. We establish certain matrix theoretic characterization of hidden Z-

matrix to show the P0 properties. We show that linear complementarity problem

with hidden Z-matrix is processable by Lemke’s algorithm as well as criss-cross

method. We propose an interior point method to compute solution of linear

complementarity problem LCP(q, A) given that A is a real square hidden Z-

matrix and q is a real vector. We observe that our proposed algorithm can

process LCP(q, A) in polynomial time under some assumptions. Two numerical

examples are illustrated to support our result.



Chapter 3

Column Competent Matrices

And Linear Complementarity

Problem

3.1 Introduction

The w-uniqueness property is important in the context of dynamical systems

under smooth unilateral constraints. Xu [139] introduced the column competent

matrices. On uniqueness, quite a large number of results are available in the

literature of operations research. The study of uniqueness property of the solu-

tion is important in the context of the theory of the complementarity system as

well as the method applied for finding the solution. For details see [133], [42],

[120], [5]. Ingleton [132] studied the w-uniqueness solutions to linear comple-

mentarity problem in the context of adequate matrices. Pang [111] studied local

z-uniqueness of solutions of a linear complementarity problem. The LCP(q, A)

has unique z-solution for all q ∈ Rn iff A is a P -matrix [113]. The w-uniqueness

*The work of this chapter has been published in an international conference proceedings
ICMC 2021 by Springer Publication [76].
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property is identified by a condition on A related to the notion of sign-reversing.

Motivated by the w-uniqueness results, we consider column competent matrices

in the context of LCP(q, A). The sufficient matrices capture many properties of

positive semi definite matrices. The aim of this chapter is to study some matrix

theoretic properties of the class of column competent matrix and establish some

new results which are useful to the solution of the LCP(q, A).

The chapter is organised as follows. In section 3.2, we include few related

notations and results. Section 3.3 presents some new results related to col-

umn competent matrices. We develop several matrix theoretic results of column

competent matrices which are related to the solution of linear complementarity

problem.

3.2 Preliminaries

We write z = z+−z− where z+i = max(0, zi) and z
−
i = max(0,−zi) for any index

i. A z-solution, z̃ is called locally unique if ∃ a neighborhood of z̃ within which

z̃ is the only z-solution. A w-solution, w̃ = Az+ q, is called locally unique if ∃ a

neighborhood of w̃ in which w̃ is the only w-solution. Let ψ : Rn → Rn and the

kernel of the function ψ is defined by kerψ = {z ∈ Rn : ψ(z) = 0}. The kernel of

a matrix A ∈ Rn×n is defined by kerA = {z ∈ Rn : Az = 0}.

Column competent matrices can be singular or nonsingular matrices. Note

that all singular matrices need not be column competent matrices. Consider A = 1 0

1 0

 which is a singular matrix. For any z =

 0

k

 , k ∈ R, zi(Az)i = 0 ∀ i

implies that Az = 0. Consider another A =

 1 1

0 0

 . It is easy to show that

zi(Az)i = 0 ∀ i does not imply Az = 0. Hence A is not a column compe-
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tent matrix. Let A =


1 4 3

2 1 5

3 2 0

 . For z =


0

0

1

 , zi(Az)i = 0 ∀ i. But

Az =


3

5

0

 ̸= 0. Here A is a nonsingular matrix but not a column competent

matrix.

Now we define ψ : Rn → Rn where ψ(z) = z ∗ (Az). z ∗ (Az) is the Hadamard

product defined by (z ∗ (Az))i = zi ∗ (Az)i, ∀ i. Note that the product is asso-

ciative, distributive and commutative.

Definition 3.2.1. [139] In view of Hadamard product, a matrix A is said to be

column competent if kerψ = kerA.

Column adequate matrices are related to column competent matrices. We

start with definition of column adequate matrix.

Definition 3.2.2. [113] The matrix A is said to be column adequate if zi(Az)i ≤

0, ∀ i =⇒ Az = 0.

We state the following lemma and theorems which are useful for the subse-

quent sections.

Lemma 3.2.1. [139] The matrix A is said to be nondegenerate if and only if

kerψ = {0}.

Theorem 3.2.1. [139] The following statements are equivalent.

(i) A is column competent.

(ii) For all vector q, the LCP(q, A) has a finite number (possibly zero) of w-

solutions.
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(iii) For all vector q, any w-solution of the LCP(q, A), if it exists, must be locally

w-unique.

Theorem 3.2.2. [139] The following statements are equivalent.

(i) (a) A is column competent.

(b) A is a P0-matrix.

(ii) A is column adequate.

Theorem 3.2.3. [113] Let A ∈ Rn×n be a E0-matrix. Then the following state-

ments are equivalent.

(i) A ∈ R0.

(ii) A ∈ R.

Definition 3.2.3. [113] A ∈ Rn×n is a principally nondegenerate matrix if it

has no principal submatrix which has determinant zero.

We establish a connection between competent matrices and adequate matrices

using degree theoretic approach. We provide a brief details about degree theory

in the subsequent section.

3.2.1 Degree theory

Let fA : Rn → Rn be a piecewise linear mapping for a given matrix A ∈ Rn×n

defined as fA(ei) = ei and fA(−ei) = −Aei ∀ i. We write for any z ∈ Rn,

fA(z) = z+ − Az−.

For details see [120]. It is clear that LCP(q, A) is equivalent to find a vector

z ∈ Rn such that fA(z) = q. If z belongs to the interior of some orthants of Rn
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and detAαα ̸= 0 where α = {i : zi < 0}, then the index of fA(z) at z is well

defined and can be written as

indfA(q, z) = sgn(detAαα).

Note that the cardinality of f−1
A (q) denotes the number of solutions of LCP(q, A).

Particularly, if q is nondegenerate with respect to A, each index of fA is well

defined and we can define local degree of A at q. It can be denoted as degA(q).

For details see [113]. We state the following theorem from [120], which will be

required to prove one of our result.

Theorem 3.2.4. [113] Let A ∈Rn×n and K(A) denotes the union of all the facets

of the complementary cones of (I, −A). Consider q ∈ Rn \K(A) where q is non-

degenerate with respect to A. Let β ⊆ {1, 2, · · · , n} be such that detAββ ̸= 0. Sup-

pose A′ is a PPT of A with respect to β. Then degA′(q′) = sgn(detAββ)degA(q).

3.3 Results on Column Competent Matrices

Hadamard product is important to characterize the complementary condition.

Here we show that the property of column competent matrix is related to

Hadamard product.

Theorem 3.3.1. Suppose A is a column competent matrix and the function ψ :

Rn → Rn defined by ψ(z) = z ∗ (Az) where z ∗ (Az) is the Hadamard product.

Then kerψ = kerA.

Proof. Let A be a column competent matrix. Then for a vector z ∈ Rn, zi(Az)i =

0, i = 1, 2, · · · , n =⇒ Az = 0. Hence z ∈ kerψ implies z ∈ kerA. So we write

kerψ ⊆ kerA. Again by definition kerA ⊆ kerψ. Therefore kerψ = kerA.
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The following result provides a characterization of nondegenerate column

competent matrices.

Theorem 3.3.2. Let A ∈ Rn×n be a nondegenerate column competent matrix.

Then A ∈ R0.

Proof. Let A be a nondegenerate column competent matrix. By Lemma 3.2.1,

kerψ = {0} where ψ(z) = z ∗Az. By Theorem 3.3.1, we can write kerψ = kerA =

{0}. Let z be the solution of LCP(0, A). Then zi(Az)i = 0 ∀ i. This implies that

Az = 0. Hence z = 0. Therefore, LCP(0, A) has only one solution which is zero.

Hence A is an R0- matrix.

Note that column competent matrix need not be a P0- matrix in general.

Consider the matrix A =

 2 1

1 −1

 . We show that A is a column competent

matrix but not a P0-matrix. Now we establish the following result.

Theorem 3.3.3. Suppose A is a column competent matrix with A ∈ P0. Then

for 0 ̸= z ≥ 0, (z, 0) is the solution of LCP(0, A).

Proof. Let A ∈ Rn×n be a column competent matrix with A ∈ P0. Then for each

0 ̸= z ∈ Rn, maxi zi(Az)i ≥ 0, zi ̸= 0. If zi(Az)i = 0 ∀ i implies that Az = 0,

then (z, 0), z ≥ 0 is the solution of LCP(0, A).

Now we consider the matrix A =

 2 −1

−4 2

 is column competent as well

as P0 and (

 1

2

 ,
 0

0

) is a solution of LCP(0, A). Note that this can be

explained using the Theorem 3.3.3.

Theorem 3.3.4. Let A be a column competent matrix. Suppose z ≥ 0 and

zi(Az)i = 0 ∀ i. Then LCP(0, A) has the solution (z, 0).
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Proof. Since A is a column competent matrix, then for z ≥ 0 and zi(Az)i = 0 ∀ i.

This implies that Az = 0. Therefore (z, 0) is the solution of LCP(0, A).

Xu [139] showed that if A is a column competent matrix then DADT is a

column competent matrix where D is a diagonal matrix. In the next theorem,

we prove that column competent matrices with some additional assumptions are

invariant under principal rearrangement.

Theorem 3.3.5. Suppose A is a column competent matrix. If for any z ∈ Rn,

either zi(Az)i ≥ 0 or zi(Az)i ≤ 0 for all i, then PAP T is also column competent

where P is a permutation matrix.

Proof. Let for any z ∈ Rn, y = Pz. Consider yi(PAP
Ty)i = 0 for all i. This

implies that (Pz)i(PAP
TPz)i = 0 for all i. We know that

zTP TPAP TPz =
∑n

i=1(Pz)i(PAP
TPz)i = 0.

Hence zTAz = 0 as P TP = I. We write
∑n

i=1 zi(Az)i = 0. Considering the

additional assumption that either zi(Az)i ≥ 0 or zi(Az)i ≤ 0 for all i, we obtain

zi(Az)i = 0 ∀ i. As A is a column competent matrix, Az = 0. Therefore AP TPz =

0. Hence (PAP T )(Pz) = 0. Hence PAP T is column competent.

Consider A =


1 1 4

2 2 5

3 4 1

 . Note that A is an R0-matrix. Now for z =


1

−1

0

 , zi(Az)i = 0 ∀ i but Az ̸= 0. Hence A is not a column competent ma-

trix. The class of nondegenerate matrices plays an important role to characterize

certain uniqueness properties of the solutions of LCP(q, A).We prove the follow-

ing theorem to establish the relation between principally nondegenerate matrices

and column competent matrices.
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Theorem 3.3.6. Let A be a principally nondegenerate matrix. Then A is column

competent.

Proof. Let A be a principally nondegenerate matrix. Assume that A is not a

column competent matrix. Hence ∃ a 0 ̸= z ∈ Rn such that zi(Az)i = 0, i =

1, 2, · · · , n but Az ̸= 0. Without loss of generality, consider z =

 zα

zβ

 ̸= 0

where zα ̸= 0, zβ = 0 and A =

 Aαα Aαβ

Aβα Aββ

 . Then we consider the following

cases.

Case 1: Let α = {1, 2, · · · , n} and β = ∅. Then z = zα and zi(Az)i = 0, i ∈ α.

This implies (Az)i = 0 ∀ i. As z ̸= 0, Az = 0 implies that A is singular. This

contradicts that the matrix A is a principally nondegenerate matrix.

Case 2: Let α ⊂ {1, 2, · · · , n} and β = {1, 2, · · · , n}\α. Consider (zα)i(Aααzα)i =

0, for i ∈ α. This implies Aααzα = 0. As zα ̸= 0, Aαα is a singular matrix. This

contradicts that the matrix A is a principally nondegenerate matrix.

Therefore A is a column competent matrix.

Here we consider A =


3 −2 0

−2 1 1

−3 2 0

 . For z =


2k

3k

k

 , k ∈ R, zi(Az)i = 0 ∀ i

implies that Az = 0. Hence A is a column competent matrix. However A is

neither an adequate matrix nor a sufficient matrix. For details of sufficient matrix

see [44], [45], [46].

Now we prove the following sufficient condition related to the PPT of column

competent matrices.

Theorem 3.3.7. Let Aαα and the Schur complement A/Aαα of the square matrix

A =

 Aαα Aαβ

Aβα Aββ

 be nonsingular, where α∪β = {1, 2, · · · , n} and α∩β = ∅. If
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A is column competent, then A′ = Pα(A) is column competent, where the matrix

A′ is the principal pivot transform of the matrix A.

Proof. Let w = A′z and z ∗ w = 0 where ∗ is the Hadamard product. Thus we

write  wα

wβ

 =

 A′
αα A′

αβ

A′
βα A′

ββ

 zα

zβ

 . (3.3.1)

Now z ∗ w = 0 can be written as

 zα

zβ

 ∗

 wα

wβ

 =

 wα ∗ zα
wβ ∗ zβ

 = 0. Hence zα

zβ


i

 A′
αα A′

αβ

A′
βα A′

ββ

 zα

zβ


i

= 0 ∀ i. Since A′ = Pα(A), we have

 zα

wβ

 =

 Aαα Aαβ

Aβα Aββ

 wα

zβ

 . (3.3.2)

For z ∗ w = 0,

 wα

zβ


i

 Aαα Aαβ

Aβα Aββ

 wα

zβ


i

= 0 ∀ i.

The matrix A is column competent. This implies that

 Aαα Aαβ

Aβα Aββ

 wα

zβ

 =

0. This follows that

 zα

wβ

 = 0. From (3.3.1), we obtain A′
βαzα + A′

ββzβ = 0.

Then A′
ββzβ = 0 implies that zβ = 0 as A′

ββ = A/Aαα is nonsingular. Clearly,

wα = 0. Hence

 wα

wβ

 =

 A′
αα A′

αβ

A′
βα A′

ββ

 zα

zβ

 = 0. Therefore A′ is column

competent.

Theorem 3.3.8. Let A be a column competent matrix where Aαα and the Schur

complement A/Aαα of the square matrix A =

 Aαα Aαβ

Aβα Aββ

 be nonsingular. If

A ∈ E0∩R0 and A′ is an R-matrix, where A′ is the PPT of A, then A is column
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adequate.

Proof. Suppose A is not a column adequate matrix but is column competent.

By Theorem 3.2.2, A is not a P0- matrix. Then there exists β ⊆ {1, 2, · · · , n}

such that det(Aββ) < 0. Let A ∈ E0∩R0. It follows from the Theorem 3.2.3 that

A ∈ R. Then degA(q) = 1 for any q. Let A′ be a PPT of A and A′ ∈ R. Hence

degA′(q′) = 1. By Theorem 3.2.4, degA′(q′) = degA(q).sgn(det(Aββ)). It implies

that degA′(q′) = −1. This contradicts that A is not a P0-matrix. Therefore A is

column adequate matrix.

3.3.1 Solution of Linear Complementarity Problem with

Column Competent Matrices

We begin with some examples of w-uniqueness of the solution. Consider the

column competent matrix A =

 −1 3

2 −6

 , q =
 1

−2

 . This LCP(q, A) has
solution z =

 4

1

 and w =

 0

0

 . In the neighbourhood of z there is another

solution z′ =

 4.0099

1.0033

 and w′ = w =

 0

0

 .
We consider another matrix A =


−2 1 3

4 −2 −6

1 −1 −1

 , q =


1

−2

1

 . For

z =


2k

k

k

 , k ∈ R, zi(Az)i = 0 ∀ i implies that Az = 0. So A is a column com-

petent matrix. This LCP(q, A) has solution z =


4

4

1

 and w =


0

0

0

 . In the
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neighbourhood of z there is another solution z′ =


4.02

4.01

1.01

 and w′ = w =


0

0

0

 .
Now we prove the following two results in connection with locally w-

uniqueness property of the column competent matrices. The following two results

state the necessary and sufficient condition that A is a column competent matrix

in the system of linear complementarity problem.

Theorem 3.3.9. Suppose (w∗, z∗) is the solution of LCP(q, A) such that w∗ =

q + Az∗. Let α = {i : wi∗ > 0}, β = {i : wi∗ = 0} be the index sets. Further

consider that the submatrix Aαα is nonsingular. If A =

 Aαα Aαβ

Aβα Aββ

 is a

column competent matrix, then (wα, zβ) = (0, 0) is the only solution of the system:

zα = A′
ααwα + A′

αβzβ = 0

wβ = A′
βαwα + A′

ββzβ = 0

wα > 0

zβ > 0,

(3.3.3)

where A′
αα = (Aαα)

−1, A′
αβ = −(Aαα)

−1Aαβ, A
′
βα = Aβα(Aαα)

−1 and A′
ββ =

Aββ − Aβα(Aαα)
−1Aαβ.

Proof. Let A be a column competent matrix. Then by Theorem 3.2.1, it is lo-

cally w-unique. Suppose w∗ is locally unique solution of LCP(q, A) such that

w∗ = q + Az∗ and the system (3.3.3) has a nonzero solution (w̄α, z̄β).

Now

 z̄α

w̄β

 =

 A′
αα A′

αβ

A′
βα A′

ββ

 w̄α

z̄β

 = 0 implies that

 w̄α

w̄β

 = Aαα Aαβ

Aβα Aββ

 z̄α

z̄β

 . Clearly, w̄ = Az̄ and (w∗)T z̄ = 0, (w̄)T z∗ = 0. Hence
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(w∗ + λw̄, z∗ + λz̄) solves LCP(q, A) for all λ ≥ 0. This contradicts the local

uniqueness of w∗. Therefore, (wα, zβ) = (0, 0) is the only solution of the system

(3.3.3).

Theorem 3.3.10. Suppose (w∗, z∗) is the solution of LCP(q, A) such that w∗ =

q + Az∗ where α = {i : wi
∗ > 0} and β = {i : wi

∗ = 0}. Further suppose zα

wβ

 =

 A′
αα A′

αβ

A′
βα A′

ββ

 wα

zβ

 = 0, wα > 0, zβ > 0. If (zα, zβ) = (0, 0) is the

only solution of wβ = Aβαzα + Aββzβ = 0 then A =

 Aαα Aαβ

Aβα Aββ

 is column

competent.

Proof. Suppose the matrix A is not column competent. So w∗ is not locally

unique. Now

 zα

wβ

 =

 A′
αα A′

αβ

A′
βα A′

ββ

 wα

zβ

 = 0 implies that

 wα

wβ

 = Aαα Aαβ

Aβα Aββ

 zα

zβ

 and (w∗)T z = 0, (w)T z∗ = 0. Hence (w∗ + λw, z∗ + λz)

solves LCP(q, A) for all λ ≥ 0. Hence ∃ a sequence of vectors {w̄k} such that

each (w̄k, z̄k) = (w∗ + λkw, z∗ + λkz) is a solution of LCP(q, A) with w̄k =

q + Az̄k and w̄kα > 0, z̄kβ > 0. By complementarity z̄kα = 0, w̄kβ = 0. Consider

vk = w̄k −w∗ and uk = z̄k − z∗. The normalized sequence {vk/∥vk∥} is bounded

and converges to v∗ as k → ∞. Similarly, the normalized sequence {uk/∥uk∥} is

bounded and converges to u∗ as k → ∞. Now for all large k, we have w̄kβ −w∗
β =

λkwβ = 0 = Aβαu
k
α + Aββu

k
β. Thus dividing by ∥uk∥ and k → ∞, we have

Aβαuα
∗ + Aββuβ

∗ = 0. Therefore, u∗ =

 uα
∗

uβ
∗

 ̸= 0 is the nonzero solution of

system wβ = Aβαzα + Aββzβ = 0. It contradicts that (zα, zβ) = (0, 0) is the only

solution of the system wβ = Aβαzα + Aββzβ = 0. Hence A is column competent.

The complementary condition is an important issue in operations research.
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The concept of matrix theoretic approach helps to develop many theories of lin-

ear complementary problem. In this study we consider column competent matrix

in the context of local w-uniqueness property which is important both for the

theory as well as solution method of complementarity problrm. We study some

matrix theoretic properties of this class. The local w-uniqueness of the solutions

to the linear complementarity problem can be identified by the column com-

petent matrices. We establish some new results on w-uniqueness properties in

connection with column competent matrices. These results are significant in the

context of matrix theory as well as algorithms in operations research. We prove

some results in connection with locally w-uniqueness property of column com-

petent matrices. Finally we establish a connection between column competent

matrices and column adequate matrices with the help of degree theory.



Chapter 4

Properties Of K- Type Block

Matrices In The Context Of

Complementarity Problem

4.1 Introduction

It is well-known that the linear complementarity problem can be solved by a

linear program if A or its inverse is a Z-matrix [135]. A number of authors

have considered the special case of the linear complementarity problem under

the restriction that A is a Z-matrix. Chandrasekharan [6] considered Z-matrix

solving a sequence of linear inequalities. Lemke’s algorithm is a well-known

technique for solving linear complementarity problem [113]. Mangasarian [135]

proved that least element of the polyhedral set {u : q + Au ≥ 0, u ≥ 0} in

the sense of Cottle-Veinott can be obtained by a single linear program. It is

*Results of this chapter have been published in an international conference proceedings by
Springer [225].
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well-known that the quadratic programming problem

minimize qTu+ 1
2
uTAu

subject to u ≥ 0

can be formulated as a linear complementarity problem when A is symmetric

positive semidefinite. Mangasarian showed that this problem can be solved using

single linear program if A is a Z-matrix. For details see the Theorems 1.3.5, 1.3.6

given in chapter 1. In this chapter we introduce block triangular K-matrix and

hidden block triangular K-matrix. We call these two classes collectively as K-

type block matrix. We discuss the class of K-type block matrices in solution

aspects for linear complementarity problem.

This chapter is organized as follows. Section 4.2 presents some basic notations,

definitions and results. In section 4.3, we establish some results of these two

matrix classes. We show that a linear complementarity problem with K-type

block matrix can be solved using linear programming problem.

4.2 Preliminaries

Now we give some definitions, lemmas, theorems which will be required for dis-

cussions in the next section.

Lemma 4.2.1. [113] If A is a P -matrix, then AT is also a P -matrix.

Lemma 4.2.2. [113] Let A be a P -matrix. Then v(A) > 0.

Definition 4.2.1. [83] The spectral radius σ(A) of A is defined as the maximum

of the moduli |λ| of all proper values λ of A.

Lemma 4.2.3. [83] Let A be a nonnegative matrix. Then there exists a proper

value p(A) of A, the Perron root of A, such that p(A) ≥ 0 and |λ| ≤ p(A)
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for every proper value λ of A. If 0 ≤ A ≤ B then p(A) ≤ p(B). Moreover,

if A is irreducible, the Perron-Frobenius root p(A) is positive, simple and the

corresponding proper value may be chosen positive. According to the Perron-

Frobenius theorem, we have σ(A) = p(A) for nonnegative matrices.

Definition 4.2.2. [83] A matrix A is said to have dominant principal diagonal

if |aii| >
∑

k ̸=i |aik| for each i.

Lemma 4.2.4. [83] If A is a matrix with dominant principal diagonal, then σ(I−

H−1A) < 1, where H is the diagonal of A.

Theorem 4.2.1. [83] The following four properties of a matrix are equivalent:

(i) All principal minors of A are positive.

(ii) To every vector x ̸= 0 there exists an index k such that xkyk > 0 where

y = Ax.

(iii)To every vector x ̸= 0, there exists a diagonal matrix Dx with positive diag-

onal elements such that the inner product (Ax,Dxx) > 0.

(iv)To every vector x ̸= 0 there exists a diagonal matrix Hx ≥ 0 such that the

inner product ⟨Ax,Hxx⟩ > 0.

(v)Every real proper value of A as well as of each principal minor of A is positive.

4.3 Main Results

In this chapter we introduce block triangular K-matrix and hidden block

triangular K-matrix, which are defined as follows:

A matrix A ∈ Rmn×mn is said to be a block triangular K-matrix if it is formed

with block of K-matrices Aij ∈ Rm×m, either in upper triangular forms or in

lower triangular forms. Here i and j vary from 1 to n. For block upper triangular

form of A, the blocks Aij = 0 for i < j and for block lower triangular form of A,
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the blocks Aij = 0 for i > j.

Consider A =



1 −1

−1.5 2

0 0

0 0

0 0

0 0

3 −1

−1 4

1 −1

−0.75 1

0 0

0 0

1 −1

−0.5 1

1 −0.5

−0.5 1

5 −1

−10 6


,

which is a block triangular K-matrix.

The matrix A ∈ Rmn×mn is said to be hidden block triangular K-matrix if

there exist two block triangular K-matrices X and Y such that AX = Y. As

X and Y are block triangular K-matrices, there exist vectors r, s ≥ 0 such that

rTX+sTY > 0. A is formed with block matrices either in upper triangular forms

or in lower triangular forms. For block upper triangular form of A, the blocks

Aij = 0 for i < j and X, Y are formed with K matrices in upper triangular

form. Similarly for block lower triangular form of A, the blocks Aij = 0 for i > j

and X, Y are formed with K matrices in lower triangular form.

Consider A =


−1 −1

5 4

0 0

0 0

−4.5 −3

6.5 3.875

1 0.5

−0.25 0.3125

 ,

X =


2 −1

−3 2

0 0

0 0

3 0

−2 1

4 −1

0 2

 and Y =


1 −1

−2 3

0 0

0 0

2 −1

0 1.5625

4 0

−1 0.875

 ,
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such that AX = Y. Consider r =


3

2

1

1

 and s =


1

0

1

2

. Note that r
TX+sTY >

0. Then A is a hidden block triangular K-matrix.

Theorem 4.3.1. Let A be a block triangular K-matrix. Then LCP(q, A) is pro-

cessable by Lemke’s algorithm.

Proof. Let A be a block triangular K-matrix. Then ∃ z =



z1

z2

z3
...

zn


∈ Rmn, where

zi ∈ Rm is a block column vector such that zi(Az)i ≤ 0 ∀i =⇒ (z1)i(A11z1)i ≤

0 ∀i =⇒ z1 = 0, as A11 ∈ K; (z2)i(A21z1 + A22z2)i ≤ 0 ∀i =⇒ (z2)i(A22z2)i ≤

0 ∀i =⇒ z2 = 0, as A22 ∈ K. In similar way (zn)i(An1z1 + An2z2 + · · · +

Annzn)i ≤ 0 ∀i =⇒ (zn)i(Annzn)i ≤ 0 ∀i =⇒ zn = 0, as Ann ∈ K and

z1 = z2 = · · · = zn−1 = 0. Hence A is a P -matrix. Therefore LCP(q, A) is

processable by Lemke’s algorithm.

Remark 4.3.1. Let A be a block triangular K-matrix. Then LCP(q, A) is solvable

by criss-cross method. For details see [5].

Theorem 4.3.2. If A is a block triangular K-matrix and q is an arbitrary vector,

then the feasible region of LCP(q, A) is a meet semi-sublattice.

Proof. Let F =FEA(q, A). Let x =



x1

x2

x3
...

xn


, y =



y1

y2

y3
...

yn


∈ F
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are two feasible vectors, where x, y ∈ Rmn and xi, yi ∈ Rm ∀ i. So

x ≥ 0, y ≥ 0, Ax+ q ≥ 0, Ay + q ≥ 0.

Let z =



z1

z2

z3
...

zn


= min(x, y). Then

Ax+ q =



A11x1 + q1

A21x1 + A22x2 + q2

A31x1 + A32x2 + A33x3 + q3
...

An1x1 + An2x2 + An3x3 + · · ·+ Annxn + qn


≥ 0.

=⇒ x1 ∈ FEA(q1, A11, ), x2 ∈ FEA(A21x1+ q1, A22), · · · , xn ∈ FEA(An1x1+

An2x2 + · · · + An(n−1)xn−1 + qn, Ann). In similar way Ay + q ≥ 0 =⇒ y1 ∈

FEA(q1, A11), y2 ∈ FEA(A21x1 + q1, A22), · · · , yn ∈ FEA(An1x1 + An2x2 + · · ·+

An(n−1)xn−1 + qn, Ann). Suppose z = min(x, y) =⇒ z1 = min(x1, y1), z2 =

min(x2, y2), · · · , zn = min(xn, yn). Aij ∈ K =⇒ z1 ∈ FEA(q1, A11) =⇒

A11z1 + q1 ≥ 0, z2 ∈ FEA(A21z1 + q2, A22) =⇒ A22z2 +A21z1 + q2 ≥ 0, · · · , zn ∈

FEA(An1z1 + An2z2 + · · · + An(n−1)zn−1 + qn, Ann) =⇒ An1z1 + An2z2 + · · · +

An(n−1)zn−1 +Annzn + qn ≥ 0. So z = min(x, y) ∈ FEA(q, A). Hence the feasible

region is a meet semi-sublattice.

Cottle et al. [113] showed that if F is a nonempty meet semi-sublattice, i.e.

closed and bounded below, then F has a least element by Lemma 1.3.2. Now we

show that if LCP(q, A) is feasible, where A is a block triangular K-matrix, then

FEA(q, A) contains a least element l.
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Theorem 4.3.3. Let A be a block triangular K-matrix and q be an arbitrary

vector. If the LCP(q, A) is feasible, then FEA(q, A) contains a least element

l ∈ Rmn, where l solves the LCP(q, A).

Proof. Let F =FEA(q, A). By Theorem 4.3.2, F is a meet semi-sublattice. Let

LCP(q, A) be feasible. Then the set F is obviously nonempty and bounded below

by zero. Then the existence of the least element l =



l1

l2

l3
...

ln


∈ Rmn, li ∈ Rm ∀ i

follows from Lemma 1.3.2. That is l =



l1

l2

l3
...

ln


≤



x1

x2

x3
...

xn


= x ∀ x ∈ F and l ∈ F.

Let Fi = FEA(Ai(i−1)xi−1 + Ai(i−2)xi−2 + · · · + Ai2x2 + Ai1x1 + qi, Aii). Now it

is clear that x1, l1 ∈ F1, x2, l2 ∈ F2, · · · , xn, ln ∈ Fn, where x, l ∈ F. As Aii

are Z- matrices, li is the least element of Fi ∀ i ∈ {1, 2, · · · , n} and li solves

LCP(Ai(i−1)li−1 + Ai(i−2)li−2 + · · ·+ Ai2l2 + Ai1l1 + qi, Aii). So l =



l1

l2

l3
...

ln


solves

LCP(q, A).

Mangasarian [135] showed that if z solves the linear program to minimize pTx

subject to Ax + q ≥ 0, x ≥ 0 and the corresponding optimal dual variable y
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satisfies (I − AT )y + p > 0, then x solves the linear complementarity problem

LCP(q, A) by Lemma 1.3.1. Here we show that if LCP(q, A) where A belongs

to a block triangular K-matrix, has a solution which can be obtained by solving

the linear program to minimize pTx subject to Ax+ q ≥ 0, x ≥ 0.

Theorem 4.3.4. The linear complementarity problem LCP(q, A), where A is a

block triangular K-matrix, has a solution which can be obtained by solving the

linear program to minimize pTx subject to Ax + q ≥ 0, x ≥ 0, where p = r ≥ 0

and Z1 is a block triangular K-matrix with rTZ1 > 0.

Proof. Let A be a block triangular K-matrix. The linear program

min pTx

subject to Ax+ q ≥ 0, x ≥ 0

and the dual linear program,

max−qTy

subject to −ATy + p ≥ 0, y ≥ 0

have solutions x and y respectively. The matrix A can be written as D − U,

where

D =



D11 0 0 · · · 0

D21 D22 0 · · · 0

D31 D32 D33 · · · 0
...

...
...

...
...

Dn1 Dn2 Dn3 · · · Dnn


,

Dij’s are diagonal matrices with positive entries and
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U =



U11 0 0 · · · 0

U21 U22 0 · · · 0

U31 U32 U33 · · · 0
...

...
...

...
...

Un1 Un2 Un3 · · · Unn


,

Uij’s are matrices with nonnegative entries. Consider Z1 = D − V, a block

triangular K-matrix and the matrix product AZ1 = D −W , where

V =



V11 0 0 · · · 0

V21 V22 0 · · · 0

V31 V32 V33 · · · 0
...

...
...

...
...

Vn1 Vn2 Vn3 · · · Vnn


,

Vij’s are matrices with nonnegative entries and

W =



W11 0 0 · · · 0

W21 W22 0 · · · 0

W31 W32 W33 · · · 0
...

...
...

...
...

Wn1 Wn2 Wn3 · · · Wnn


,

Wij’s are matrices with nonnegtive entries. Since Z1 is a block triangular K-

matrix, Z1 is a P -matrix. Hence v(Z1) > 0 and by Lemma 4.2.1 v(Z1
T ) > 0.

Let r ≥ 0 be the value of ZT
1 , then rTZ1 > 0. Now 0 < rTZ1 = pTZ1 =

pTZ1 + yT (−AZ1 +D −W ) = (pT − yTA)Z1 + yT (D −W ) = (pT − yTA)(D −

V ) + yT (D −W ) ≤ (pT − yTA + yT )D as pT − yTA ≥ 0, y ≥ 0, U ≥ 0, V ≥ 0.

This implies (I −AT )y+ p > 0, since Dij’s are positive diagonal matrices. So by

Lemma 1.3.1, x solves LCP(q, A), which is a solution of the problem to minimize

ptx subject to Ax+ q ≥ 0, x ≥ 0.

Corollary 4.3.1. The solution of linear complementarity problem LCP(q, A)

with A ∈ block triangular K-matrix can be obtained by solving the linear program
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to minimize eTx subject to Ax+ q ≥ 0, x ≥ 0.

Theorem 4.3.5. Let A be a block triangular K-matrix. Then A−1 exists and

A−1 ≥ 0.

Proof. Assume that Q = I − tA ≥ 0, t > 0. Let p(Q) be the Perron-root of

Q. Then we have det((1 − p(Q))I − tA) = det(Q − p(Q)I) = 0. By Theorem

4.2.1, 0 < p(Q) < 1. Thus the series I + Q + Q2 + · · · converges to the matrix

(I −Q)−1 = (tA)−1 ≥ 0, since Qk ≥ 0 for k = 1, 2, · · · . Therefore A−1 exists and

A−1 ≥ 0.

Theorem 4.3.6. Let A be a block triangular K-matrix and M be a Z-matrix

such that M ≤ A. Then both M−1 and A−1 exist and M−1 ≥ A−1 ≥ 0.

Proof. Let A be a block triangular K-matrix and M ba a Z-matrix such that

M ≤ A. Assume that R = I − αA ≥ 0, α > 0. Then S = I − αM ≥ R ≥ 0. Let

p(R) be a Perron root of R. Then we have det((1 − p(R))I − αA) = det(R −

p(R)I) = 0. By Theorem 4.2.1, 0 < p(R) < 1. Thus the series I + R + R2 + · · ·

converges to the matrix (I−R)−1 = (αA)−1. Since Sk ≥ Rk ≥ 0, for k = 1, 2, · · · ,

and the series I + S + S2 + · · · converges to the matrix (I − S)−1 = (αM)−1.

Therefore M−1 and A−1 exist and M−1 ≥ A−1 ≥ 0.

Corollary 4.3.2. Assume that A,B are block triangular K-matrices such that

A ≤ B. Then both A−1 and B−1 exist and A−1 ≥ B−1 ≥ 0.

Theorem 4.3.7. Let A be a hidden block triangular K- matrix. Then every

diagonal block of A is a hidden Z- matrix.

Proof. Let A be a hidden block triangular K- matrix with AX = Y, where X

and Y are block triangular K-matrices. Let
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A =



A11 0 0 · · · 0

A21 A22 0 · · · 0

A31 A32 A33 · · · 0
...

...
...

...
...

An1 An2 An3 · · · Ann


,

X =



X11 0 0 · · · 0

X21 X22 0 · · · 0

X31 X32 X33 · · · 0
...

...
...

...
...

Xn1 Xn2 Xn3 · · · Xnn


and

Y =



Y11 0 0 · · · 0

Y21 Y22 0 · · · 0

Y31 Y32 Y33 · · · 0
...

...
...

...
...

Yn1 Yn2 Yn3 · · · Ynn


.

The block diagonal of AX are AiiXii for i ∈ {1, 2, · · ·n}. So AiiXii = Yii for

i ∈ {1, 2, · · ·n}. Xii, Yii are K-matrices. Then XT
ii , Y

T
ii are also K-matrices. So

v(XT
ii ) > 0, v(Y T

ii ) > 0. Let ri, si ∈ Rm
+ such that XT

ii ri + Y T
ii si > 0 =⇒

rTi Xii + sTi Yii > 0. Hence the block diagonals of A are hidden Z-matrices.

Theorem 4.3.8. Let A be a hidden block triangular K-matrix. Then every de-

terminant of block diagonal matrices of A are positive.

Proof. Let A be a hidden block triangular K-matrix with AX = Y, where X and

Y are block triangular K-matrices. Let
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A =



A11 0 0 · · · 0

A21 A22 0 · · · 0

A31 A32 A33 · · · 0
...

...
...

...
...

An1 An2 An3 · · · Ann


,

X =



X11 0 0 · · · 0

X21 X22 0 · · · 0

X31 X32 X33 · · · 0
...

...
...

...
...

Xn1 Xn2 Xn3 · · · Xnn


and Y =



Y11 0 0 · · · 0

Y21 Y22 0 · · · 0

Y31 Y32 Y33 · · · 0
...

...
...

...
...

Yn1 Yn2 Yn3 · · · Ynn


.

The block diagonal of AX are AiiXii for i ∈ {1, 2, · · ·n}. So AiiXii = Yii for

i ∈ {1, 2, · · ·n}. Xii, Yii are K-matrices. Then det(Xii), det(Yii) > 0 ∀ i. Hence

det(Aii) > 0 ∀ i.

Corollary 4.3.3. Every block triangular K-matrix is a hidden block triangular

K-matrix.

Proof. Let A be a block triangularK-matrix. Taking X = I, the identity matrix,

it is clear that A is a hidden block triangular K-matrix.

Theorem 4.3.9. The linear complementarity problem LCP(q, A), where A is a

hidden block triangular K-matrix with AX = Y, X and Y are block triangular

K-matrices, has a solution which can be obtained by solving the linear program

to minimize pTx subject to Ax + q ≥ 0, x ≥ 0, where p = r + AT s ≥ 0 and

r, s ≥ 0 such that XT r > 0 and Y T s > 0.

Proof. Let A be a hidden block triangular K- matrix with AX = Y, where

X and Y are block triangular K-matrices. The linear program to minimize pTx

subject to Ax + q ≥ 0, x ≥ 0 and the dual linear program to maximize − qTy

subject to −ATy + p ≥ 0, y ≥ 0 have solutions x and y respectively. X can be
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written as D − U, where

D =



D11 0 0 · · · 0

D21 D22 0 · · · 0

D31 D32 D33 · · · 0
...

...
...

...
...

Dn1 Dn2 Dn3 · · · Dnn


,

Dij’s are diagonal matrices with positive entries and

U =



U11 0 0 · · · 0

U21 U22 0 · · · 0

U31 U32 U33 · · · 0
...

...
...

...
...

Un1 Un2 Un3 · · · Unn


,

Uij’s are matrices with nonnegative entries.

Y can be written as D − V. Then the matrix product AX can be written as

D − V, where

V =



V11 0 0 · · · 0

V21 V22 0 · · · 0

V31 V32 V33 · · · 0
...

...
...

...
...

Vn1 Vn2 Vn3 · · · Vnn


,

Vij’s are matrices with nonnegative entries.

As X, Y are block triangular K-matrices, so they are P -matrices. So v(X) >

0, v(Y ) > 0. Let r ≥ 0 be the value of XT and s ≥ 0 be the value of Y T . Then

0 < rTX + sTY = (rT + sTA)X = pTX = pT (D − U)

= pT (D − U) + yT (−AD + AU +D − V ), since A(D − U) = D − V

= (pT − yTA)(D − U) + yT (D − V )

≤ (yT (I − A) + pT )D, since −yTA+ pT ≥ 0, U ≥ 0, V ≥ 0, y ≥ 0.
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Now Dij’s are diagonal matrices with positive entries and D is formed with the

block matrices Dij’s. Hence yT (I − A) + pT > 0. By Lemma 1.3.1, x solves

the LCP(q, A), which is a solution of the problem to minimize pTx subject to

Ax+ q ≥ 0, x ≥ 0, where p = r + AT s ≥ 0 and r, s ≥ 0 such that XT r > 0 and

Y T s > 0.

Lemma 4.3.1. Let A be a hidden block triangular K-matrix. Consider the

LCP(A,q̄), where A =

 0 −AT

A 0

 , q̃ =

 r + AT s

q

 and r, s as mentioned

in Theorem 4.3.9. If

 x

y

 ∈ FEA(q̃, A), then (I − AT )y + p > 0, where

p = r + AT s.

Proof. Suppose

 x

y

 ∈ FEA(q̃,A). Since A is a hidden block triangular K-

matrix, there exist two block triangular K-matrices X and Y such that AX = Y

and r, s ≥ 0, rTX + sTY > 0. Let X = D − U and Y = D − V, where U

and V are two square matrices with all nonnegative entries and D is a block

triangular diagonal matrix with positive entries as mentioned in Theorem 4.3.9.

Then 0 < rTX+sTY = rTX+sTAX = pT (D−U) = pT (D−U)+yT (Y −AX) =

pT (D − U) + yT (D − V − A(D − U)) = (−yTA + pT )(D − U) + yT (D − V ) ≤

(yT (I − A) + pT )D since

 x

y

 ∈ FEA(q̃, A), U ≥ 0, V ≥ 0. Since D is a

positive block triangular diagonal matrix, (I − AT )y + p > 0.

Theorem 4.3.10. LCP(q̃, A) has a solution iff LCP(q, A) has a solution.

Proof. Suppose LCP(q̃, A) has a solution. Let z̄ =

 x

y

 ∈ SOL(q̃, A). From

the complementarity condition it follows that xT (p − ATy) + yT (Ax + q) = 0.

Since p−ATy, Ax+q, x, y ≥ 0, and xT (p−ATy) = 0, yT (Ax+q) = 0. By Lemma

4.3.1, it follows that y+(p−ATy) > 0. This implies for all i either (p−ATy)i > 0
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or yi > 0. Now if (p−ATy)i > 0, then xi = 0. If yi > 0 then (q +Ax)i = 0. This

implies xi(q + Ax)i = 0 ∀ i. Therefore x solves LCP(q, A).

Conversely, x solves LCP(q, A). Let y = s, where s as mentioned in Theorem

4.3.9. Here p−ATy = r+AT s−ATy = r+AT s−AT s = r ≥ 0. So z̄ =

 x

s

 ∈

FEA(q̃, A). Further A is PSD-matrix, which implies that A ∈ Q0. Therefore z̄

solves the LCP(q̃, A).

Theorem 4.3.11. All hidden block triangular K-matrices are Q0.

Proof. LetA be a hidden block triangularK-matrix. It is clear that the feasibility

of LCP(q, A) implies the feasibility of LCP(q̃, A). Note that A ∈ Q0. This implies

that the feasible point of LCP(q̃, A) is also a solution of LCP(q̃, A). Hence by

Theorem 4.3.10, feasibility of LCP(q, A) ensures the solvability of LCP(q, A).

Therefore A is a Q0-matrix.

Remark 4.3.2. Let A =



A11 0 0 · · · 0

A21 A22 0 · · · 0

A31 A32 A33 · · · 0
...

...
...

...
...

An1 An2 An3 · · · Ann


, where Aij ∈ Rm×m are

K-matrices.

Let z =



z1

z2

z3
...

zn


and q =



q1

q2

q3
...

qn


, where zi, qi ∈ Rm.



K-type Block Matrix 69

Then Az + q =



A11z1 + q1

A21z1 + A22z2 + q2

A31z1 + A32z2 + A33z3 + q3
...

An1z1 + An2z2 + An3z3 + · · ·+ Annzn + qn


.

First we solve LCP(q1, A11) and obtain the solution w1 = A11z1+ q1, w1
T z1 =

0. Then we solve LCP(A21z1 + q2, A22) and obtain the solution w2 = A22z2 +

A21z1 + q2, w2
T z2 = 0. Finally we solve LCP(An1z1 + An2z2 + An3z3 + · · · +

An(n−1)zn−1 + qn, Ann) and obtain the solution wn = Annzn + An1z1 + An2z2 +

An3z3 + · · ·+ An(n−1)zn−1 + qn, wn
T zn = 0.

So w =



w1

w2

w3

...

wn


∈ Rmn and z =



z1

z2

z3
...

zn


∈ Rmn solve LCP(q, A), where

wi, zi ∈ Rm.

In this chapter, we introduce K-type block matrices which include two new

classes of block matrices namely block triangular K-matrices and hidden block

triangular K-matrices in the context of solution of linear complementarity prob-

lem. We show that the linear complementarity problem with K-type block ma-

trix is solvable by linear program. The linear complementarity problem with

block triangular K-matrix is also processable by Lemke’s algorithm as well as

criss-cross method. We show that the hidden block triangular K-matrix is a Q0-

matrix. The purpose of this article is to study the properties of newly introduced

K-type block matrices in the context of the solution of linear complementarity

problem.



Chapter 5

Solution Method Of Linear

Complementarity Problem Using

Predictor-Corrector Approach

5.1 Introduction

Among the many facets of research in linear complementarity problems, the area

that has received thorough attention in recent years is the development of robust

and efficient algorithms for solving linear complementarity problems. Lemke’s

algorithm is a well-known technique to solve linear complementarity problem.

But this algorithm does not solve every instance of the linear complementarity

problem and in some situations the algorithm may terminate inconclusively with-

out either computing a solution of it or showing that no solution exists. Later a

path following method to solve linear complementarity problem was developed

by Kojima et al. [187] based on Karmarkar’s polynomial time algorithm [98]

for linear programming. This polynomial time-bound method is widely used to

*Results of this chapter have been communicated.
�The work has been arxived [179].
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solve LCP(q, A), but for some matrix classes the LCP(q, A) is not processable by

this method. The linear complementarity problem arising from a free boundary

problem can be reformulated as a fixed-point equation. Zhang [36] presented

a modified modulus-based multigrid method to solve this fixed-point equation.

The concept of complementarity is synonymous with the notion of system equi-

librium. Modulus based algorithm is one of the proposed iterative method to

solve linear complementarity problem. It was proved by van Bokhoven that the

modulus algorithm works when the matrix involved is a symmetric P -matrix.

Kappel et al.[188] extended van Bokhoven’s results by showing that the modu-

lus algorithm can be applied to a class of non-symmetric P -matrices. Schafer

[189] showed the convergence of the modulus algorithm for three subclasses of

P -matrices. Hadjidimos et al. [190], [191] proposed a new method, the scaled

extrapolated block modulus algorithm as well as an improved version of recently

introduced modulus-based matrix splitting modified accelerated overrelaxation

(AOR) iterative method to find the solution of the linear complementarity prob-

lem withH+-matrix. For the large sparse linear complementarity problem, Zheng

et al. [210], [211], [212] established a relaxation modulus-based matrix splitting

iteration method, a class of accelerated modulus-based matrix splitting iteration

methods by reformulating it as a general implicit fixed-point equation which

covered the known modulus-based matrix splitting iteration methods and pre-

sented the convergence conditions when the matrix involved is either a positive

definite matrix or an H+-matrix. Dai et al. [213] proposed a preconditioned

two-step modulus-based matrix splitting iteration method for linear complemen-

tarity problems associated with an M -matrix. For further details see [215], [216]

and [217]. Eaves and Saigal [182] formed an important class of globally conver-

gent methods for solving systems of non-linear equations. Such methods have

been used to constructively prove the existence of solutions to many economic

and engineering problems. A continuation method was proposed based on such
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methods to solve LCP(q, A) with some restricted matrix classes. For details see

[37], [38] and [41].

Now the purpose of this chapter is to solve linear complementarity problem

with various matrix classes through a initial value problem. Milne’s method [180]

is the classic predictor-corrector method for solving ordinary differential equation

with initial condition. Based on this predictor corrector approach along with

interior point we find the solution of LCP(q, A) through a continuous trajectory.

The chapter is organized as follows. Section 5.2 presents some basic notations

and results. In section 5.3, we propose a new function to find the solution

of LCP(q, A). We construct a smooth and bounded path approaching to the

solution. To ensure a continuos trajectory approaching to the solution a new

scheme of choosing step length is introduced. We show that under some instances

the proposed function can give the solution of linear complementarity problem.

Finally in section 5.4, we consider various classes of numerical examples to present

the effectiveness of the algorithm.

5.2 Preliminaries

An ordinary differential equation with initial values is known as initial value

problem. Consider the initial value problem

y′ = f(x, y), y(x0) = y0 (5.2.1)

We can obtain the solution of the problem (5.2.1) by using predictor-corrector

approach. A simple predictor-corrector method can be constructed from the

explicit method, known as Euler method and the implicit method known as

trapezoidal method.
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5.2.1 Predictor-Corrector Approach

Predictor–corrector method is designed to solve ordinary differential equations

with initial values. Considering the initial value problem, a predictor–corrector

method typically uses an explicit method for the predictor step and an implicit

method for the corrector step. Such algorithm is processed in two steps. The first

step known as prediction step, starts from a function fitted to the function-values

and derivative-values at a preceding set of points to extrapolate this function’s

value at a subsequent point. The next step known as corrector step refines the

initial approximation by using the predicted value of the function and interpolate

the function’s value at the same subsequent point.

5.3 Main Results

We define F = {x ∈ Rn : x > 0, Ax + q > 0}, F̄ = {x ∈ Rn : x ≥ 0, Ax + q ≥

0},F1 = F ×Rn
++ ×Rn

++ and F̄1 = F̄ ×Rn
+ ×Rn

+. ∂F1 denotes the boundary of

F1. We propose a new function to solve wider classes of LCP(q, A)

G(y, y(0), λ) =


(1− λ)[(A+ AT )x+ q − z1 − AT z2] + λ(x− x(0))

Z1x− λZ
(0)
1 x(0)

Z2(Ax+ q)− λZ
(0)
2 (Ax(0) + q)

 = 0

(5.3.1)

where Z1 = diag(z1), Z2 = diag(z2), Z
(0)
1 = diag(z

(0)
1 ), Z

(0)
2 = diag(z

(0)
2 ), y =

(x, z1, z2) ∈ F̄1, y
(0) = (x(0), z1

(0), z2
(0)) ∈ F1 and λ ∈ (0, 1]. We denote Γ

(0)
y =

{(y, λ) ∈ R3n × (0, 1] : G(y, y(0), λ) = 0} ⊂ F1 × (0, 1]. To find the solution of

LCP(q, A), we go along the path Γ
(0)
y for the scalar λ goes from 1 to 0.

First we show that the smooth curve for our proposed function exists.

Theorem 5.3.1. For almost all initial points y(0) ∈ F1, 0 is a regular value of
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the proposed function G : R3n × (0, 1] → R3n and the zero point set G−1
y(0)

(0) =

{(y, λ) ∈ F1 : Gy(0)(y, λ) = 0} contains a smooth curve Γ
(0)
y starting from (y(0), 1).

Proof. The Jacobian matrix of the proposed function G(y, y(0), λ)

is denoted by DG(y, y(0), λ)) and we have DG(y, y(0), λ)) =[
∂G(y,y(0),λ)

∂y
∂G(y,y(0),λ)

∂y(0)
∂G(y,y(0),λ)

∂λ

]
. For all y(0) ∈ F1 and λ ∈ (0, 1],

we have ∂G(y,y(0),λ)
∂y(0)

=


−λI 0 0

−λZ(0)
1 −λX(0) 0

−λZ(0)
2 A 0 −λY (0)

 , where Y (0) =

diag(Ax(0) + q), X(0) = diag(x(0)) and det( ∂G
∂y(0)

) = (−1)3nλ3n
∏n

i=1 x
(0)
i y

(0)
i

̸= 0 for λ ∈ (0, 1]. Thus DG(y, y(0), λ) is of full row rank. Therefore, 0 is a

regular value of G(y, y(0), λ) by the Lemma 1.3.2. By Lemma 1.3.3 and Lemma

1.3.4, for almost all y(0) ∈ F1, 0 is a regular value of Gy(0)(y, λ) and G−1
y(0)

(0)

consists of some smooth curves and Gy(0)(y(0), 1) = 0. Hence there must be a

smooth curve Γ
(0)
y starting from (y(0), 1).

Now we show that the smooth curve Γ
(0)
y for the proposed function (5.3.1) is

bounded and convergent.

Theorem 5.3.2. Let F be a non-empty set and A be a nonsingular matrix and

assume that there exists a sequence of points {(xk, zk1 , zk2 , λk)} ⊂ Γ
(0)
y ⊂ F1×(0, 1]

such that ∥xk∥ < ∞ as k → ∞. Further suppose for λk → 1, ∥zk2∥ < ∞ as k →

∞. Suppose that for a given y(0) ∈ F1, 0 is a regular value of G(y, y(0), λ). Then

Γ
(0)
y is a bounded curve in F1 × (0, 1].

Proof. Note that 0 is a regular value of G(y, y(0), λ) by Theorem 5.3.1.

Now we assume that Γ
(0)
y ⊂ F1 × (0, 1] is an unbounded curve.

Then there exists a sequence of points {(yk, λk)} ⊂ Γ
(0)
y such that

∥(yk, λk)∥ → ∞. As (0, 1] is a bounded set and x component of Γ
(0)
y

is bounded, there exists a subsequence of points {(yk, λk)} such that
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xk → x̄, λk → λ̄ ∈ [0, 1] and ∥zk∥ → ∞ as k → ∞, where zk =

 zk1

zk2

 . Since
Γ
(0)
y ⊂ G−1

y(0)
(0), we have

(1− λk)[(A+ AT )xk + q − zk1 − AT zk2 ] + λk(x
k − x(0)) = 0 (5.3.2)

Zk
1x

k − λkZ
(0)
1 x(0) = 0 (5.3.3)

Zk
2 (Ax

k + q)− λkZ
(0)
2 (Ax(0) + q) = 0 (5.3.4)

where Zk
1 = diag(zk1 ) and Z

k
2 = diag(zk2 ). Now we consider following three cases:

Case 1: λ̄ ∈ [0, 1], ∥zk1∥ = ∞ and ∥zk2∥ <∞.

Let ∥zk1∥ = ∞. Then ∃ i ∈ {1, 2, · · ·n} such that zk1i → ∞ as k → ∞. Let

I1z = {i ∈ {1, 2, · · ·n}; lim
k→∞

zk1i = ∞}. When λ̄ ∈ [0, 1) for i ∈ I1z, we can obtain

from Equation (5.3.2)

(1−λk)[((A+AT )xk)i+ qi−zk1i− (AT zk2 )i]+λk(x
k
i −x

(0)
i ) = 0 =⇒ (1−λk)zk1i =

(1−λk)[((A+AT )xk)i+ qi− (AT zk2 )i]+λk(x
k
i −x

(0)
i ) =⇒ zk1i = [((A+AT )xk)i+

qi − (AT zk2 )i] +
λk

(1−λk)
(xki − x

(0)
i ). As k → ∞ right hand side is bounded, but

left hand side is unbounded. It contradicts that ∥zk1∥ = ∞. When λ̄ = 1, then

from Equation (5.3.3) we obtain xki =
λkz

(0)
1i x

(0)
i

zk1i
for i ∈ I1z. As k → ∞, xki → 0.

Again from Equation (5.3.2), we obtain x
(0)
i = (1−λk)

λk
[((A+ AT )xk)i + qi − zk1i −

(AT zk2 )i] + xki for i ∈ I1z. As k → ∞, we have x
(0)
i = − lim

k→∞
(1−λk)
λk

zk1i ≤ 0. It

contradicts that ∥zk1∥ = ∞.

Case 2: λ̄ ∈ [0, 1], ∥zk1∥ <∞ and ∥zk2∥ = ∞.

Let ∥zk2∥ = ∞. Then ∃ j ∈ {1, 2, · · ·n} such that zk2j → ∞ as k → ∞. Let I2z =

{j ∈ {1, 2, · · ·n}; lim
k→∞

zk2j = ∞}. When λ̄ ∈ [0, 1), for j ∈ I2z we can obtain from

Equation (5.3.2) zk2j = (A−t(A+AT )xk)j + (A−tq)j − (A−tzk1 )j +
λk

1−λk
(xkj − x

(0)
j ).

As k → ∞, right hand side is bounded, but left hand side is not. This also

contradicts that ∥zk2∥ = ∞. By our assumption ∥zk2∥ <∞ as k → ∞ for λ̄ = 1.
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Case 3: λ̄ ∈ [0, 1], ∥zk1∥ = ∞ and ∥zk2∥ = ∞.

Let ∥zk1∥ = ∞, ∥zk2∥ = ∞. Then either ∃ i ∈ {1, 2, · · ·n} such that zk1i → ∞

zk2i → ∞ as k → ∞ or ∃ i, j ∈ {1, 2, · · ·n}, i ̸= j such that zk1i → ∞ and

zk2j → ∞ as k → ∞. When zk1i → ∞ zk2i → ∞ as k → ∞ and λ̄ ∈ [0, 1), we have,

zk1i+(AT zk2 )i = ((A+AT )xk)i+ qi+
λk

(1−λk)
(xki −x

(0)
i ). Now as k → ∞, right hand

side is bounded, but left hand side is not, which is impossible. When λ̄ = 1, then

our assumption ∥zk2∥ < ∞ as k → ∞ and the argument of case 1 contradicts

that zk1i → ∞, zk2i → ∞ as k → ∞. As k → ∞, when zk1i → ∞, zk2j → ∞ for

i ̸= j as k → ∞ then considering the ith and jth component and using same

argument similar to case 1 and case 2, we will obtain a contradiction.

Thus Γ
(0)
y is a bounded curve in F1 × (0, 1].

Theorem 5.3.3. Let F be a non-empty set and A be a nonsingular matrix and

assume that there exists a sequence of points {(xk, zk1 , zk2 , λk)} ⊂ Γ
(0)
y ⊂ F1×(0, 1]

such that ∥xk∥ < ∞ as k → ∞. Further suppose for λk → 1, ∥zk2∥ < ∞ as k →

∞. Suppose that for a given y(0) ∈ F1, 0 is a regular value of G(y, y(0), λ). For

y(0) = (x(0), z
(0)
1 , z

(0)
2 ) ∈ F1, the proposed function finds a bounded smooth curve

Γ
(0)
y ⊂ F1 × (0, 1] which starts from (y(0), 1) and approaches the hyperplane at

λ = 0. As λ→ 0, the limit set L×{0} ⊂ F̄1×{0} of Γ
(0)
y is nonempty and every

point in L is a solution of the following system:

(A+ AT )x+ q − z1 − AT z2 = 0,

Z1x = 0,

Z2(Ax+ q) = 0.

(5.3.5)

Proof. Note that Γ
(0)
y is diffeomorphic to a unit circle or a unit interval (0, 1]

in view of Lemma 1.3.5. As ∂G(y,y(0),1)
∂y(0)

is nonsingular, Γ
(0)
y is diffeomorphic to a
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unit interval (0, 1]. Again Γ
(0)
y is a bounded smooth curve by the Theorem 5.3.2.

Let (ȳ, λ̄) be a limit point of Γ
(0)
y . We consider four cases:

Case 1: (ȳ, λ̄) ∈ F1 × {1}.

Case 2: (ȳ, λ̄) ∈ ∂F1 × {1}.

Case 3: (ȳ, λ̄) ∈ ∂F1 × (0, 1).

Case 4: (ȳ, λ̄) ∈ F̄1 × {0}.

As Gy(0)(y, 1) = 0 has only one solution y(0) ∈ F1, the case 1 is impossible. In

case 2 and 3, there exists a subsequence of (yk, λk) ∈ Γ
(0)
y such that xki → 0

or (Axk + q)i → 0 for i ⊆ {1, 2, · · ·n}. From the last two equations of the

proposed function (5.3.1), we have zk1 → ∞ or zk2 → ∞. Hence it contradicts the

boundedness of the path obtained from the proposed function by the Theorem

5.3.2. Therefore case 4 is the only possible option. Hence ȳ = (x̄, z̄1, z̄2) is a

solution of the system (A+AT )x+ q− z1−AT z2 = 0, Z1x = 0, Z2(Ax+ q) = 0.

Remark 5.3.1. From the proposed function (5.3.1), we obtain z̄1ix̄i = 0 and

z̄2i(Ax̄+ q)i = 0 ∀i. Now z̄1 and z̄2 can be decomposed as z̄1 = w̄ −∆w̄ ≥ 0 and

z̄2 = x̄−∆x̄ ≥ 0 where w̄ = Ax̄+ q. It is clear that w̄ix̄i = ∆w̄ix̄i = ∆x̄iw̄i ∀i.

We demonstrate the condition under which the proposed function will give

the solution of LCP(q, A).

Theorem 5.3.4. The component x̄ of (x̄, z̄1, z̄2, 0) ∈ L × {0} gives the solution

of LCP(q, A) if and only if ∆x̄i∆w̄i = 0 or z̄1i + z̄2i > 0 ∀i.

Proof. Suppose x̄ ≥ 0 and w̄ = Ax̄+ q ≥ 0 give the solution of LCP(q, A). Then

x̄iw̄i = 0 ∀i. This implies that x̄i = 0 or w̄i = 0 ∀i. We consider the following

three cases.
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Case 1: For atleast one i ∈ {1, 2, · · ·n}, let w̄i > 0, x̄i = 0. In view of Remark

5.3.1, this implies that ∆x̄i = 0 =⇒ ∆x̄i∆w̄i = 0.

Case 2: For atleast one i ∈ {1, 2, · · ·n}, let x̄i > 0, w̄i = 0. In view of 5.3.1, this

implies that ∆w̄i = 0 =⇒ ∆x̄i∆w̄i = 0.

Case 3: For atleast one i ∈ {1, 2, · · ·n}, let w̄i = 0, x̄i = 0. This implies that

either ∆w̄i∆x̄i = 0 or z̄1i + z̄2i > 0.

For the converse part, consider ∆x̄i∆w̄i = 0 or z̄1i + z̄2i > 0 ∀i. Let for each

i ∈ {1, 2, · · ·n}, ∆x̄i∆w̄i = 0 implies either ∆x̄i = 0 or ∆w̄i = 0. This implies

that w̄ix̄i = 0 ∀i. Therefore w̄ and x̄ are the solution of given LCP(q, A). Consider

z̄1i + z̄2i > 0 ∀ i. Then following three cases will arise.

Case 1: Let z̄1i > 0, z̄2i = 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

x̄i = 0 and w̄i ≥ 0.

Case 2: Let z̄1i = 0, z̄2i > 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

x̄i ≥ 0 and w̄i = 0.

Case 3: Let z̄1i > 0, z̄2i > 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

x̄i = 0 and w̄i = 0. Considering the above three cases x̄, w̄ solve the LCP(q, A).

Corollary 5.3.1. If A is a P0-matrix, then the component x̄ of (x̄, z̄1, z̄2, 0) ∈

L× {0} gives the solution of LCP(q, A).

Proof. Let A be a P0-matrix. Assume that the component x̄ of (x̄, z̄1, z̄2, 0) ∈ L×

{0} does not give the solution of LCP(q, A). Hence ∆x̄i∆w̄i ̸= 0 and z̄1i+ z̄2i = 0

for atleast one i. Then ∆x̄i ̸= 0,∆w̄i ̸= 0, z̄1i = 0, z̄2i = 0.Now z̄1i = w̄i−∆w̄i = 0

and ∆x̄i∆w̄i ̸= 0 =⇒ w̄i = ∆w̄i > 0. In similar way z̄2i = x̄i − ∆x̄i = 0 and

∆x̄i∆w̄i ̸= 0 =⇒ x̄i = ∆x̄i > 0. From Equation (5.3.5), ∆w̄i + (AT∆x̄)i = 0.

This implies that (AT∆x̄)i < 0 and also (x̄)i(A
T∆x̄)i < 0. This contradicts that

A is a P0-matrix. Therefore the component x̄ of (x̄, z̄1, z̄2, 0) ∈ L×{0} gives the

solution of LCP(q, A).
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Theorem 5.3.5. Suppose the matrix (W̄ + X̄AT ) is nonsingular where W̄ =

diag(w̄) and X̄ = diag(x̄). Then x̄ solves the LCP(q, A).

Proof. Let the matrix (W̄ + X̄AT ) be nonsingular. We obtain from the solution

of the system of equation (5.3.5), ∆w̄ + AT∆x̄ = 0 and X̄∆w̄ = W̄∆x̄, where

W̄ =diag(w̄) =diag(Ax̄ + q). Now X̄∆w̄ + X̄AT∆x̄ = 0 implies that W̄∆x̄ +

X̄AT∆x̄ = 0 =⇒ (W̄ + X̄AT )∆x̄ = 0. Since the matrix (W̄ + X̄AT ) is

nonsingular, this implies that ∆x̄ = 0. Then x̄ solves the LCP(q, A).

5.3.1 Tracing Path Using Predictor-Corrector Approach

We trace the path Γ
(0)
y ⊂ F1 × (0, 1] from the initial point (y(0), 1) as λ → 0.

To find the solution of the given LCP(q, A) we consider continuous path. Let s

denote the arc length of Γ
(0)
y . We parameterize the path Γ

(0)
y with respect to s

in the following form

Gy(0)(y(s), λ(s)) = 0, y(0) = y(0), λ(0) = 1. (5.3.6)

Differentiating (5.3.6) with respect to s, we obtain the following system of ordi-

nary differential equations with given initial values

G ′
y(0)(y(s), λ(s))

 dy
ds

dλ
ds

 = 0, ∥(dy
ds
,
dλ

ds
)∥ = 1, y(0) = y(0), λ(0) = 1, (5.3.7)

Hence the system (5.3.7) reduces to the following initial value problem

(dλ
ds
)−1 dy

ds
= p(y, λ), y(0) = y(0), λ(0) = 1

where

p(y, λ) = − ∂
∂y
G(y, λ)−1 ∂

∂λ
G(y, λ)
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This problem will be solved by predictor-corrector method and the y-component

of (y(s), λ(s)) gives the solution of LCP(q, A).

Note that the parameter λ is updated from Moore-Penrose inverse of the

Jacobian matrix for tracing the path. However this approach does not ensure that

the updated value of the parameter λ is in (0, 1]. Value of λ beyond (0, 1] leads

to a nonconsiderable path. To eliminate deviation, we propose a modification by

introducing a method ensuring feasibility by changing step length. In this method

it is necessary to check whether 0 < (λ̃i−λ̂i) < 1 and (ỹ(i)−ŷ(i)) ∈ F̄1 holds or not.

If any of the above mentioned criteria fails, then the step length will be changed

appropriately using geometric series to trace the path Γ
(0)
y . This guarantees a

continuous trajectory leading to the solution of the proposed function (5.3.1).

Algorithm

Step 0: Initialize (y(0), λ0). Set l0 ∈ (0, 1). Choose ϵ3 >> ϵ1 > 0 which are small

positive quantities.

Step 1: τ (0) = ξ(0) = ( 1
n
)

 s

−1

 for i = 0, where n = ∥

 s

−1

 ∥ and s =

(∂G
∂y
(y(0), λ0))

−1(∂G
∂λ
(y(0), λ0)). If det(

∂G
∂y
(y(i), λi)) > 0, τ (i) = ξ(i) else τ (i) = −ξ(i),

i ≥ 1. Set l = 0.

Step 2: (Predictor point calculation) (ỹ(i), λ̃i) = (y(i), λi) + aτ (i), where a = l0
l.

Compute (ŷ(i), λ̂i) = G ′
y(0)

(ỹ(i), λ̃i)
+G(ỹ(i), λ̃i). If 0 < (λ̃i − λ̂i) < 1, go to Step

3. Otherwise if m = min(a, ∥(ỹ(i), λ̃i) − (ŷ(i), λ̂i) − (y(i), λi)∥) > a0, update l by

l + 1, and recompute (λ̃i, λ̂i) else go to Step 3.

(Corrector point calculation) (y(i+1), λi+1) = (ỹ(i), λ̃i) − (ŷ(i), λ̂i). Determine the

norm, r = ∥G(y(i+1), λi+1)∥. If r ≤ 1 and y(i+1) > 0 go to Step 3, otherwise if
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a > ϵ3, update l by l + 1 and compute (ỹ(i), λ̃i) else go to Step 3.

Step 3: If |λi+1| ≤ ϵ1, then stop with solution (y(i+1), λi+1), else i = i + 1 and

go to Step 1.

Note that in Step 2, G ′
y(0)

(y, λ)+ = G ′
y(0)

(y, λ)T (G ′
y(0)

(y, λ)G ′
y(0)

(y, λ)T )−1 is the

Moore-Penrose inverse of G ′
y(0)

(y, λ). We prove the following result to obtain the

positive direction of the proposed algorithm.

Theorem 5.3.6. If the curve Γ
(0)
y is smooth, then the positive predictor direction

τ (0) at the initial point y(0) satisfies det(

 ∂G
∂y∂λ

(y(0), 1)

τ (0)
T

) < 0.

Proof. From the Equation (5.3.1), we consider the following function

G(y, y(0), λ) =


(1− λ)[(A+ AT )x+ q − z1 − AT z2] + λ(x− x(0))

Z1x− λZ
(0)
1 x(0)

Z2(Ax+ q)− λZ
(0)
2 (Ax(0) + q)

 = 0.

Now,

∂G
∂y∂λ

(y, λ) =


(1− λ)(A+ AT ) + λI −(1− λ)I −(1− λ)AT P

Z1 X 0 −Z(0)
1 x(0)

Z2A 0 Y −Z(0)
2 (Ax(0) + q)

 ,
where P = (x− x(0))− [(A + AT )x + q − z1 − AT z2] and Y = diag(Ax + q). At

the initial point (y(0), 1)

∂G
∂y∂λ

(y(0), 1) =


I 0 0 −[(A+ AT )x(0) + q − z

(0)
1 − AT z

(0)
2 ]

Z
(0)
1 X(0) 0 −Z(0)

1 x(0)

Z
(0)
2 A 0 Y (0) −Z(0)

2 (Ax(0) + q)

 .
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Let positive predictor direction be τ (0) =

 κ

−1

 =

 (R
(0)
1 )(−1)R

(0)
2

−1

 , where
R

(0)
1 =


I 0 0

Z
(0)
1 X(0) 0

Z
(0)
2 A 0 Y (0)

 ,

R
(0)
2 =


−[(A+ AT )x(0) + q − z

(0)
1 − AT z

(0)
2 ]

−Z(0)
1 x(0)

−Z(0)
2 (Ax(0) + q)

 and κ is a column vector.

Hence, det(

 ∂G
∂y∂λ

(y(0), 1)

τ (0)
T

)
= det(

 R
(0)
1 R

(0)
2

(R
(0)
2 )T (R

(0)
1 )(−T ) −1

)
= det(

 R
(0)
1 R

(0)
2

0 −1− (R
(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2

)
= det(R

(0)
1 ) det(−1− (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 )

= − det(R
(0)
1 ) det(1 + (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 )

= −
∏n

i=1 x
(0)
i y

(0)
i det(1 + (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 ) < 0.

Remark 5.3.2. We conclude from the Theorem 5.3.6 that the positive tangent

direction τ of the path Γ
(0)
y at any point (y, λ) be negative and it depends on
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det(R1), where R1 =


(1− λ)(A+ AT ) + λI −(1− λ)I −(1− λ)AT

Z1 X 0

Z2A 0 Y

 .

5.4 Numerical Examples

In this section we consider some examples of LCP(q, A) to demonstrate the ef-

fectiveness of the proposed algorithm. Note that many of the examples given

below are not processable by Lemke’s algorithm. We show that the pro-

posed algorithm can process these examples to find the solution. Consider

ϵ1 = 10−9, ϵ3 = 10−5, a0 = 10−12, l0 =
1
2
.

Example 5.4.1. Consider A =

 −1 2

3 −1

 and q =

 1

−0.5

 . Note that A

is an N-matrix. Now choose the initial point x(0) =

 0.4

0.1

 , z1(0) =

 1

1


and z2

(0) =

 1

1

 . Using the proposed algorithm we obtain the optimal solution

of the function (5.3.1) after 20 iterations and the solution is given by (ȳ, λ̄) =

(1, 0, 0, 2.5, 1, 0, 0). Therefore x̄ =

 1

0

 solves LCP(q, A). The path shown in

Figure 5.1 illustrates the convergence with respect to the solution vector x and λ.
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Figure 5.1:

Example 5.4.2. Let A =


−1 2 1

1 −0.50 −0.25

−0.50 −1 −1

 and q =


−0.25

−0.10

3

 .

Now choose the initial point x(0) =


2.3

1

0.7

 , z1
(0) =


1

1

1

 and z2
(0) =


1

1

1

 . Using the proposed algorithm we obtain (ȳ, λ̄) = (1.8333, 0, 2.0833,

0, 1, 2125, 0, 1.8333, 0, 2.0833, 0) after 17 iterations. Note that x̄ =


1.8333

0

2.0833


is the solution of LCP(q, A). The convergence of the path is shown in the Figure

5.2. The first, second and third components of x are represented by data1, data2

and data3 respectively.
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Figure 5.2:

Example 5.4.3. Let A =


1 −2 0

0 1 −2

−2 0 1

 and q =


−1

1

7

 . It is easy to

show that A is an almost C0-matrix. Now choose the initial point x(0) =
3

0.5

0.5

 , z1(0) =


1

1

1

 and z2
(0) =


1

1

1

 . Using the proposed algorithm we

obtain (ȳ, λ̄) = (1, 0, 0, 0, 1, 5, 1, 0, 0, 0) after 24 iterations. Note that x̄ =


1

0

0


solves LCP(q, A), which is a degenerate solution. The convergence of the homo-

topy function is shown in the Figure 5.3. The first, second and third components

of x are represented by data1, data2 and data3 respectively.
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Figure 5.3:

Example 5.4.4. Let A =


−1 1 1 1

1 0 0 0

1 0 0 −1

1 0 −1 0

 and q =


−1

1

−1

1

 . A is a Q-

matrix. See [42]. Now choose the initial point x(0) =


4

4

1

1

 , z1
(0) =


1

1

1

1



and z2
(0) =


1

1

1

1

 . We apply our proposed algorithm to this LCP(q, A) and

after 17 iterations we obtain the approximate optimal solution of the function
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(5.3.1), which is (ȳ, λ̄) = (1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0). Note that x̄ =


1

0

2

0


solves LCP(q, A), which gives a degenerate solution. The convergence of the

function is shown in the Figure 5.4. Data1, data2, data3 and data4 represent the

first, second, third and fourth components of x respectively.

Figure 5.4:

Example 5.4.5. Consider A =



0 0 0 1 2

0 0 −1 −1 2

0 −1 0 −1 1

1 −1 −1 0 0

2 1 0 0 0


and q =



−2

−1

7

2

−1


.

A is an N0-matrix of exact order 2. Now choose the initial point x(0) =
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

3

1

1

1

3


, z1

(0) =



1

1

1

1

1


and z2

(0) =



1

1

1

1

1


. Using the proposed algo-

rithm, we obtain the optimal solution of the function (5.3.1), (ȳ, λ̄) =

(0.5, 0, 0, 0, 1, 0, 1, 8, 2.5, 0, 0.5, 0, 0, 0, 1, 0) after 27 iterations. Note that x̄ =

0.5

0

0

0

1


solves LCP(q, A). The convergence of the function is shown in Figure

5.5. Data1, data2, data3, data4 and data5 represent the first, second, third,

fourth and fifth components of x respectively.

Figure 5.5:
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In this study, we propose a new function to solve linear complementarity

problem. The key idea to solve LCP(q, A) by the method is to solve an initial

value problem using predictor-corrector approach. The value of λ will start from

1 and goes to 0. In this way one can find the solution of LCP(q, A) tracing a

continuous path. We prove that the smooth curve for the proposed function is

bounded and also converges. To ensure a continuous trajectory approaching to

the solution we introduce a new scheme of choosing step length. Several numer-

ical examples are provided to demonstrate the processability of larger classes of

LCP(q, A).



Chapter 6

Solution Approaches Of

Discounted Zero-Sum Stochastic

Game With ARAT Structure

.

.

6.1 Introduction

In this chapter, we consider two-person zero-sum discounted stochastic game

with additive reward and additive transition (ARAT) structure. Shapley [218]

introduced stochastic game and showed that there exist an optimal value and op-

timal stationary strategies for a stochastic game with discounted payoff, which

depends only on the current state and not on the history. There are many applica-

tions of stochastic games like search problems, military applications, advertising

*Results of this chapter have been accepted in the journal International Game Theory
Review

�Results of this chapter have been arxived [181]
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problems, the traveling inspector model and various economic applications. For

details see [63]. There are significant research on theoretical as well as compu-

tational aspects of stochastic games. For details see [227], [209], [226],[219] and

[228].

Raghaban et al. [209] studied ARAT games and showed that for a β-

discounted zero-sum ARAT game, the value exists and both players have

stationary optimal strategies, which may also be taken as pure strategies. A

stochastic game is said to be an Additive Reward & Additive Transition game

(ARAT game) if the reward and and the transition probabilities satisfy

(i) r(s, i, j) = R1
i (s) +R2

j (s) for i ∈ As, j ∈ Bs, s ∈ S.

(ii) pij(s, s
′) = p1i (s, s

′) + p2j(s, s
′) for i ∈ As, j ∈ Bs, (s, s

′) ∈ S × S.

We denote the matrix ((p1i (s, s
′), s, s′ ∈ S, i ∈ As))) as P1(s) where S is the

set of states. This is a m1(s)×d matrix where m1(s) is the cardinality of As and

d is the cardinality of s. Similarly the matrix P2(s) of order m2(s)× d is defined

where m2(s) denotes the cardinality of the set Bs. The Shapley equations for

state s, s′ ∈ S can be stated as

Val[r(s, i, j) + β
∑

s′ pij(s, s
′)vβ(s

′)] = vβ(s).

This implies the following inequalities.

For player I: For any fixed j

r(s, i, j) + β
∑
s′

pij(s, s
′)vβ(s

′) ≤ vβ(s) ∀ i. (6.1.1)

For playeer II: For any fixed i

r(s, i, j) + β
∑
s′

pij(s, s
′)vβ(s

′) ≥ vβ(s) ∀ j (6.1.2)
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Both the discounted and limiting average criterion of evaluation of strategies

have been considered. For details see [209],[208] and [63]. A finite step method

to compute a pair of pure stationary optimal strategies and the value of the game

is suggested in [209]. This approach involve solving a series of Markov decision

problems. In recent days various approaches have been proposed for solving dif-

ferent classes of stochastic games. One such approach is to formulate the ARAT

game as complementarity problem. A pair of pure stationary optimal strategies

and the corresponding value for a zero-sum discounted ARAT game with some

additional assumptions can be computed by solving a single vertical linear com-

plementarity problem. The well known Lemke’s algorithm solves LCPs when the

underlying matrix class belongs to a particular class. Cottle and Dantzig [229]

extended Lemke’s algorithm to vetical linear complementarity problems (VL-

CPs). There are some pivotal kind techniques to solve VLCP based on Lemke’s

algorithm. The processability of Lemke’s algorithm and Cottle-Dantzig’s algo-

rithm is restricted on some classes of matrices. For details see [17] and [230].

One sufficient condition for the processibility of Lemke’s algorithm and Cottle-

Dantzig algorithm is that the underlying matrix should be both E0 and R0 matrix

[231],[69],[70] and [73].

In earlier the methods which are proposed to solve discounted zero-sum

stochastic game with ARAT structure are pivotal kind techniques. But in this

chapter we introduce an iterative method to obtain the solution of discounted

zero-sum stochastic game with ARAT structure. The chapter is organized as

follows. In section 6.2 we define the vertical linear complementarity problem and

supply relevant results which will be used in the next section. In section 6.3,

we propose a new iterative method to find the solution of discounted zero-sum

stochastic ARAT game. We show that the proposed iterative method possesses

a smooth and bounded path to find the solution. To find the solution of the

proposed function we modify the steps of the iterative method to increase the
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order of convergency of the algorithm. We also find the sign of the tangential di-

rection of the path. Finally, in section 6.4, we illustrate two numerical examples

of ARAT stochastic games to present the effectiveness of the proposed iterative

method.

6.2 Preliminaries

6.2.1 Discounted Stochastic Game with the Structure of

Additive Reward and Additive Transition

Consider a state space S = {1, 2, · · · , N}. For each s ∈ S, consider the finite

action sets As = {1, 2, ...,ms} for Player I and Bs = {1, 2, ..., ns} for Player II.

For state s ∈ S a reward law R(s) = [r(s, i, j)] is an ms×ns matrix whose (i, j)th

entry is the payoff from Player II to Player I when Player I chooses an action

i ∈ As and player II chooses an action j ∈ Bs, while the game is being played

in state s and the payoff from player I to player II is −r(s, i, j). Let pij(s, s′)

denotes the probability of a transition from state s to state s′, given that Player

I and Player II choose actions i ∈ As, j ∈ Bs respectively. Then transition law is

defined by

p = (pij(s, s
′) : (s, s′) ∈ S × S, i ∈ As, j ∈ Bs).

Let the game be played in stages t = 0, 1, 2, · · · . At some stage t, the players find

themselves in a state s ∈ S and independently choose actions i ∈ As, j ∈ Bs.

Player II pays Player I an amount r(s, i, j) and at stage (t + 1), the new

state is s′ with probability pij(s, s
′). Play continues at this new state. The

players guide the game via strategies and in general, strategies can depend

on complete histories of the game until the current stage. We are however

concerned with the simpler class of stationary strategies which depend only on
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the current state s and not on stages. So for Player I, a stationary strategy

k ∈ Ks = {ki(s)|s ∈ S, i ∈ As, ki(s) ≥ 0,
∑

i∈As
ki(s) = 1} indicates that the

action i ∈ As should be chosen by Player I with probability ki(s) when the game

is in state s.

Similarly for Player II, a stationary strategy l ∈ Ls = {lj(s)|s ∈ S, j ∈ Bs,

lj(s) ≥ 0,
∑

j∈Bs
lj(s) = 1} indicates that the action j ∈ Bs should be chosen

with probability lj(s) when the game is in state s. Here Ks and Ls denote the

set of all stationary strategies for Player I and Player II respectively. Let k(s)

and l(s) be the corresponding ms and ns dimensional vectors respectively. Fixed

stationary strategies k and l induce a Markov chain on S with transition matrix

P (k, l) whose (s, s′)th entry is given by

Pss′(k, l) =
∑

i∈As

∑
j∈Bs

pij(s, s
′)ki(s)lj(s)

and the expected current reward vector has entries defined by

Rs(k, l) =
∑

i∈As

∑
j∈Bs

r(s, i, j)ki(s)lj(s) = kT (s)R(s)l(s) .

With fixed general strategies k, l and an initial state s, the stream of expected

payoff to Player I at stage t, denoted by vTs (k, l), t = 0, 1, 2, · · · is well defined and

the resulting discounted payoff is ϕβs (k, l) =
∑∞

0 βTvTs (k, l) for a β ∈ (0, 1), where

β is the discount factor. Due to this additive property assumed on the transition

and reward functions, the game is called β-discounted zero-sum ARAT(Additive

Reward Additive Transition) game. For futther details see [232], [209] and [233].

Vertical Linear Complementarity Problem

Cottle and Dantzig [234] extended the linear complementarity problem to ver-

tical linear complementarity problem. Consider a vertical block matrix A ∈
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Rm×k(m ≥ k), A =



A1

A2

A3

...

Ak


such that Aj ∈ Rmj×k, 1 ≤ j ≤ k,

∑k
j=1mj = m.

This matrix is called vertical block matrix of type (m1,m2, · · ·mk) and consider

q ∈ Rm where m =
∑k

j=1mj, the generalized linear complementarity problem is

to find w ∈ Rm and x ∈ Rk such that

w − Ax = q, w ≥ 0, x ≥ 0, (6.2.1)

xj

mj∏
i

wij, j = 1, 2, · · · k. (6.2.2)

This generalization is known as vertical linear complementarity problem and de-

noted by VLCP(q, A). For further details see [234]. The vertical block matrix

arises naturally in the literature of stochastic games where the states are rep-

resented by the columns and actions in each state are represented by rows in a

particular block. For details see [235], [236] and [200].

An equivalent square matrix M can be constructed from a vertical block ma-

trix A of type (m1, ...,mk) by copying A.j,mj times for j = 1, 2, · · · , k. Therefore

M.p = A.j ∀p ∈ Jj . LCP(q,M) is called as equivalent LCP of VLCP(q, A). For

more details see [236] and [237]. Mohan et al. [236] proposed techniques to con-

vert a VLCP to an LCP and also showed that processibility conditions as well.

Mohan et al. [200] formulated zero-sum discounted Additive Reward Additive

Transition (ARAT) games as a VLCP.

Definition 6.2.1. [200] A is said to be a vertical block E(d)-matrix for some

d > 0 if VLCP(d,A) has a unique solution w = d, z = 0.

Definition 6.2.2. [200] A is said to be a vertical block R0-matrix if VLCP(0, A)
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has a unique solution w = 0, z = 0.

We denote the class of vertical block E(d) matrices as VBE(d) and the class

of vertical block R0 matrices by VBR0.

Theorem 6.2.1. [63] For ARAT stochastic games

(i) Both players possess β discounted optimal stationary strategies that are pure.

(ii) These strategies are optimal for the average reward criterion as well.

(iii) The ordered field property holds for the discounted as well as the average

reward criterion.

Now we observe the following property of the additive components P1 and P2

of the transition probability matrix P. For details see [200].

Lemma 6.2.1. If p2j(s, s
′) = 0 for all s′ ∈ S and for some j ∈ B(s), then

P2(s) = 0.

Theorem 6.2.2. [200]Consider the vertical block matrix A arising from the zero-

sum ARAT game. Then A ∈ VBE(e) where e is the vector each of whose entries

is 1.

Theorem 6.2.3. [200] Consider the vertical block matrix A arising from zero-

sum ARAT game. Then A ∈VBR0 if either the condition (a) or the set of

conditions (b) stated below is satisfied.

(a) For each s and each j ∈ Bs, p
2
j(s, s) > 0.

(b) (i) For each s, the matrix P1(s) does not contain any zero column and

(ii)the matrix P2(s) is not a null matrix.

Lemma 6.2.2. [88] Let f : Rn → Rn be a sufficiently differentiable function in a

neighborhood D of α, that is a solution of the system f(x) = 0, whose Jacobian

matrix is continuous and nonsingular in D. Consider the iterative method zk =

ϕ(xk, yk), wk = zk − f ′(yk)−1f(zk), where yk = xk − f ′(xk)−1f(xk) and zk =
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ϕ(xk, yk) is the iteration function of a method of order p. Then for an initial

approximation sufficiently close to α, this method has order of convergence p+2.

Lemma 6.2.3. [88] Consider the function f : Rn → Rn and the iterative method

yk = xk − f ′(xk)−1f(xk), zk = xk − 2(f ′(yk) + f ′(xk))−1f(xk), wk = zk −

f ′(yk)−1f(zk) has 5th order convergence.

6.3 Main Results

In this chapter we consider the followings:

R = {x ∈ Rn : x > 0, Ax+ q > 0}

R̄ = {x ∈ Rn : x ≥ 0, Ax+ q ≥ 0}

R1 = R× Rn
++ × Rn

++

R̄1 = R̄ × Rn
+ × Rn

+.

∂R1 denotes the boundary of R̄1.

In this section, we consider the two-person zero-sum discounted stochstic ARAT

game and introduce an iterative method to find the solution of the discounted

zero-sum ARAT game. We state that a pair of strategies (k∗, l∗) is optimal

for Player I and Player II in the discounted game if for all s ∈ S ϕs(k, l
∗) ≤

ϕs(k
∗, l∗) = v∗s ≤ ϕs(k

∗, l) for any strategies k and l of Player I and Player II.

The number v∗s is called the value of the game starting in state s and v∗ =

(v∗1, v
∗
2, · · · v∗N) is called the value vector. To find the optimal strategy of player I

and player II of the two-person zero-sum discounted ARAT stochastic game we

propose a new function based on the concept of iterative process.

In this section, we consider linear complementarity problem LCP(q, A) with

the matrix A from various matrix classes and also consider the two-person zero-

sum discounted stochstic ARAT game. Now we introduce a function to find the
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solution of LCP(q, A) and the discounted zero-sum ARAT game.

H(u, t) =


(1− t)[(A+ AT )x+ q − y1 − ATy2] + t(x− x(0))

Y1x− tY
(0)
1 x(0) + (1− t)X(Ax+ q)

Y2(Ax+ q)− tY
(0)
2 (Ax(0) + q)

 = 0 (6.3.1)

where Y1 = diag(y1), X = diag(x), Y2 = diag(y2), Y
(0)
1 = diag(y

(0)
1 ), Y

(0)
2 =

diag(y
(0)
2 ), u = (x, y1, y2) ∈ Rn

+ × Rn
+ × Rn

+, u
(0) = (x(0), y1

(0), y2
(0)) ∈ R1, and

λ ∈ (0, 1].

Now we establish the conditions under which the solution exists for the pro-

posed function (6.3.1). We prove the following result to show that the smooth

curve Γ
(0)
u exists for the proposed function (6.3.1).

Theorem 6.3.1. Let initial point u(0) ∈ R1. Then 0 is a regular value of the

function H : R3n × (0, 1] → R3n and the zero point set H−1(0) = {(u, t) ∈ R1 :

H(u, t) = 0} contains a smooth curve Γ
(0)
u starting from (u(0), 1).

Proof. The Jacobian matrix of the above function H(u, u(0), t) is DH(u, u(0), t) =[
∂H(u,t)
∂u

∂H(u,t)

∂u(0)
∂H(u,t)
∂t

]
. For all u(0) ∈ R1 and t ∈ (0, 1],

∂H(u,t)

∂u(0)
=


−λI 0 0

−tY (0)
1 −tX(0) 0

−tY (0)
2 A 0 −tY (0)

 ,
where Y (0) = diag(Ax(0) + q), X(0) = diag(x(0)), y(0) = Ax(0) + q.

Now det( ∂H
∂u(0)

) = (−1)3nt3n
∏n

i=1 x
(0)
i y

(0)
i ̸= 0 for t ∈ (0, 1]. Therefore, 0 is a

regular value of H(u, u(0), t) by the Lemma 1.3.2. By Lemma 1.3.3 and Lemma

1.3.4, for almost all u(0) ∈ R1, 0 is a regular value of H(u, t) and H−1(0) consists

of some smooth curves and H(u(0), 1) = 0. Hence there must be a smooth curve

Γ
(0)
u starting from (u(0), 1).

Hence by Implicit Function Theorem for every t sufficiently close to 1, the
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function (6.3.1) has a unique solution (u(0), 1), which is smooth in the parameter

t in a neighbourhood of (u(0), 1). We prove the following result to show that the

smooth curve Γ
(0)
u for the proposed function (6.3.1) is bounded and convergent.

Theorem 6.3.2. Let R be a nonempty set and A ∈ Rn×n a matrix and assume

that there exists a sequence of points {uk} ⊂ Γ
(0)
u ⊂ R1 × (0, 1], where uk =

(xk, yk1 , y
k
2 , t

k) such that ∥xk∥ < ∞ as k → ∞ and ∥yk2∥ < ∞ as k → ∞ and

for a given u(0) ∈ R1, 0 is a regular value of H(u, u(0), t), then Γ
(0)
u is a bounded

curve in R1 × (0, 1].

Proof. Note that 0 is a regular value of H(u, u(0), t) by Theorem 6.3.1. By con-

tradiction we assume that Γ
(0)
u ⊂ R1 × (0, 1] is an unbounded curve. Then there

exists a sequence of points {vk} where vk = (uk, tk) ⊂ Γ
(0)
u such that ∥(uk, tk)∥ →

∞. As (0, 1] is a bounded set and x component and y2 component of Γ
(0)
u are

bounded, there exists a subsequence of points {vk} = {(uk, tk)} = {xk, yk1 , yk2 , tk}

such that xk → x̄, yk2 → ȳ2, t
k → t̄ ∈ [0, 1] and ∥yk∥ → ∞ as k → ∞, where yk = yk1

yk2

 . Since Γ
(0)
u ⊂ H−1(0), we have

(1− tk)[(A+ AT )xk + q − yk1 − ATyk2 ] + tk(xk − x(0)) = 0 (6.3.2)

Y k
1 x

k − tkY
(0)
1 x(0) + (1− tk)Xk(Axk + q) = 0 (6.3.3)

Y k
2 (Ax

k + q)− tkY
(0)
2 (Ax(0) + q) = 0 (6.3.4)

where Y k
1 = diag(yk1), X

k = diag(xk) and Y k
2 = diag(yk2).

Let t̄ ∈ [0, 1], ∥yk1∥ = ∞ and ∥yk2∥ < ∞ as k → ∞. Then ∃ i ∈ {1, 2, · · · , n}

such that yk1i → ∞ as k → ∞. Let I1y = {i ∈ {1, 2, · · ·n} : lim
k→∞

yk1i = ∞}. When

t̄ ∈ [0, 1), for i ∈ I1y we write from Equation (6.3.2),
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(1− tk)[((A+ AT )xk)i + qi − yk1i − (ATyk2)i] + tk(xki − x
(0)
i ) = 0

=⇒ (1− tk)yk1i = (1− tk)[((A+ AT )xk)i + qi − (ATyk2)i] + tk(xki − x
(0)
i )

=⇒ yk1i = [((A+ AT )xk)i + qi − (ATyk2)i] +
tk

(1−tk)(x
k
i − x

(0)
i ).

As k → ∞, right hand side is bounded, but left hand side is unbounded. It

contradicts that ∥yk1∥ = ∞.

When t̄ = 1, from Equation (6.3.3), we obtain, xki =
tky

(0)
1i x

(0)
i

yk1i
for i ∈ I1y. As

k → ∞, xki → 0.

Again from Equation (6.3.2), we obtain x
(0)
i = (1−tk)

tk
[((A + AT )xk)i + qi − yk1i −

(ATyk2)i] + xki for i ∈ I1y. As k → ∞, we have x
(0)
i = − lim

k→∞
(1−tk)
tk

yk1i ≤ 0. It

contradicts that ∥yk1∥ = ∞.

So Γ
(0)
u is a bounded curve in R1 × (0, 1].

Therefore the boundedness of the sequences {xk} and {yk2} gurantee the

boundedness of the sequence {yk1}, i.e. the boundedness of the sequence {vk}.

Theorem 6.3.3. Suppose the solution set Γ
(0)
u of the function H(u, u(0), t) = 0

is unbounded for t ∈ [0, 1). If there exists (ξ, η, ζ) ∈ R3n
+ such that eT ξ = 1, then

ξTAξ ≤ 0.

Proof. Assume that the solution set Γ
(0)
u is unbounded for t ∈ [0, 1).

Then there exists a sequence of points {vk} ⊂ Γ
(0)
u ⊂ R1 × [0, 1) where

vk = (uk, tk) = (xk, yk1 , y
k
2 , t

k) such that limk→∞ tk = t̄ ∈ [0, 1). Now we consider

following two cases.

Case 1: ∥yk2∥ < ∞ as k → ∞. Since the solution set Γ
(0)
u is unbounded we

consider the following two subcases.

Subcase (i) limk→∞ eTxk = ∞ :

Let limk→∞
xk

eT xk
= ξ ≥ 0 and limk→∞

yk1
eT xk

= η ≥ 0. So it is clear that eT ξ = 1.

Then dividing by eTxk and taking k → ∞ from Equations (6.3.2), and dividing

by (eTxk)2 and taking k → ∞ from Equations (6.3.3) and (6.3.4), we obtain
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(1− t̄)[(A+ AT )ξ − η] + t̄ξ = 0 (6.3.5)

ξiηi + ξi(Aξ)i = 0 ∀ i (6.3.6)

From Equations (6.3.5) and (6.3.6) we write η = (A+AT )ξ+ t̄
(1−t̄)ξ and −ξTAξ =

ξTη. These two imply that ξT [(A+AT )ξ+ t̄
(1−t̄)ξ] = ξTη = −ξTAξ for t̄ ∈ [0, 1).

This implies that 2ξTAξ + ξTAT ξ = − t̄
(1−t̄)ξ

T ξ ≤ 0 i.e. ξTAξ ≤ 0 for t̄ ∈ [0, 1).

Specifically for t̄ = 0, ξTAξ = 0 and for t̄ ∈ (0, 1), ξTAξ < 0.

Subcase (ii) limk→∞(1− tk)eTxk = ∞ :

Let limk→∞
(1−tk)xk

(1−tk)eT xk = ξ′ ≥ 0. Then eT ξ′ = 1. Let limk→∞
yk1

(1−tk)eT xk = η′ ≥ 0.

Then multiplying the Equation (6.3.2) with (1− tk) and dividing by (1− tk)eTxk,

multiplying the Equation (6.3.3) with (1 − tk) and dividing by ((1 − tk)eTxk)2

and multiplying the Equation (6.3.4) with (1−tk) and dividing by ((1−tk)eTxk)2

and taking k → ∞, we obtain

(1− t̄)[(A+ AT )ξ′ − (1− t̄)η′] + t̄ξ′ = 0 (6.3.7)

ξ′iη
′
i + ξ′i(Aξ

′)i = 0 ∀ i (6.3.8)

Multiplying (ξ′)T in both sides of Equation (6.3.7), we have (ξ′)T (A + AT )ξ′ −

(1 − t̄)(ξ′)Tη′ = − t̄
(1−t̄)(ξ

′)T ξ′. Now using Equation (6.3.8), we write (ξ′)T (A +

AT )ξ′ + (1 − t̄)(ξ′)TAξ′ = − t̄
(1−t̄)(ξ

′)T ξ′ =⇒ (ξ′)TAT ξ′ + (2 − t̄)(ξ′)TAξ′ =

− t̄
(1−t̄)(ξ

′)T ξ′ for t̄ ∈ [0, 1). Hence (3− t̄)(ξ′)TAξ′ = − t̄
(1−t̄)(ξ

′)T ξ′ =⇒ (ξ′)TAξ′ =

− t̄
(1−t̄)(3−t̄)(ξ

′)T ξ′ ≤ 0. So we have (ξ′)TAξ′ ≤ 0 for t̄ ∈ [0, 1). Specifically for t̄ = 0,

(ξ′)TAξ′ = 0 and for t̄ ∈ (0, 1), (ξ′)TAξ′ < 0.

Case 2: limk→∞ eTyk2 = ∞. Since the solution set of Γ
(0)
u is unbounded we

consider following two subcases.

Subcase (i) limk→∞ eTxk = ∞:
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Let limk→∞
xk

eT xk
= ξ ≥ 0, limk→∞

yk1
eT xk

= η ≥ 0 and limk→∞
yk2
eT xk

= ζ ≥ 0. It

is clear that eT ξ = 1. Then dividing by eTxk and taking k → ∞ from Equation

(6.3.2), dividing by (eTxk)2 and taking k → ∞ from Equations (6.3.3), (6.3.4),

we obtain

(1− t̄)[(A+ AT )ξ − η − AT ζ] + t̄ξ = 0 (6.3.9)

ξiηi + ξi(Aξ)i = 0 ∀ i (6.3.10)

ζi(Aξ)i = 0 ∀ i (6.3.11)

From Equation (6.3.9), we have η + AT ζ = (A+ AT )ξ + t̄
1−t̄ξ for t̄ ∈ [0, 1). Now

multiplying ξT in both sides we obtain ξT (A + AT )ξ + t̄
1−t̄ξ

T ξ = ξTη + ξTAT ζ.

From Equations (6.3.10) and (6.3.11), we write ξT (A+AT )ξ+ t̄
1−t̄ξ

T ξ = −ξTAξ.

Hence ξTAξ + ξT (A + AT )ξ = − t̄
1−t̄ξ

T ξ ≤ 0 for t̄ ∈ [0, 1). Therefore ξTAξ ≤ 0

for t̄ ∈ [0, 1). Specifically for t̄ = 0, ξTAξ = 0 and for t̄ ∈ (0, 1), ξTAξ < 0.

Subcase(ii) limk→∞(1− tk)eTxk = ∞ :

Let limk→∞
(1−tk)xk

(1−tk)eT xk = ξ′ ≥ 0. Then eT ξ′ = 1. Let limk→∞
yk1

(1−tk)eT xk = η′ ≥ 0

and limk→∞
yk2

(1−tk)eT xk = ζ ′ ≥ 0 Then multiplying the Equation (6.3.2) with

(1 − tk) and dividing by (1 − tk)eTxk, multiplying the Equation (6.3.3) with

(1 − tk) and dividing by ((1 − tk)eTxk)2 and multiplying the Equation (6.3.4)

with (1− tk) and dividing by ((1− tk)eTxk)2 and taking k → ∞, we obtain

(1− t̄)(A+ AT )ξ′ − (1− t̄)2η′ − (1− t̄)2AT ζ ′ + t̄ξ′ = 0 (6.3.12)

ξ′iη
′
i + ξ′i(Aξ

′)i = 0 ∀ i (6.3.13)

ζ ′i(Aξ
′)i = 0 ∀ i (6.3.14)

Multiplying (ξ′)T in both side of Equation (6.3.12), we have (ξ′)T (A + AT )ξ′ −

(1− t̄)(ξ′)Tη′−(1− t̄)(ξ′)TAT ζ ′ = − t̄
(1−t̄)(ξ

′)T ξ′. Now from Equations (6.3.13) and

(6.3.14), we write (ξ′)T (A+AT )ξ′+(1− t̄)(ξ′)TAξ′ = (ξ′)TAT ξ′+(2− t̄)(ξ′)TAξ′ =
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(3 − t̄)(ξ′)TAξ′ = − t̄
(1−t̄)(ξ

′)T ξ′ =⇒ (ξ′)TAξ′ = − t̄
(1−t̄)(3−t̄)(ξ

′)T ξ′ ≤ 0 for

t̄ ∈ [0, 1). Specifically for t̄ = 0, (ξ′)TAξ′ = 0 and for t̄ ∈ (0, 1), (ξ′)TAξ′ < 0.

Hence considering all the cases, it is proved that the unboundedness of the so-

lution set Γ
(0)
u of the homotopy function H(u, u(0), t) = 0 and the existence of

(ξ, η, ζ) ∈ R3n
+ such that eT ξ = 1, imply that ξTAξ ≤ 0 for t̄ ∈ [0, 1).

Corollary 6.3.1. For t̄ = 1, the curve is bounded.

Proof. Consider that the curve is unbounded in the neighbourhood of t̄ = 1.

Then there exists a sequence of points {vk} ⊂ Γ
(0)
u ⊂ R1 × [0, 1), where vk =

(uk, tk) = (xk, yk1 , y
k
2 , t

k) such that limk→∞ tk = t̄ = 1. Now we consider following

two cases.

Case 1. Let limk→∞ eTxk = ∞ and limk→∞
xk

eT xk
= ξ ≥ 0. Hence eT ξ = 1. If

∥yk2∥ < ∞ as k → ∞, then from Equation (6.3.5), we obtain ξ = 0 for t̄ = 1. If

limk→∞ eTyk2 = ∞, then from Equation (6.3.9), we obtain ξ = 0 for t̄ = 1. This

contradicts that eT ξ = 1.

Case 2. Let limk→∞(1 − tk)eTxk = ∞ and limk→∞
(1−tk)xk

(1−tk)eT xk = ξ′ ≥ 0. Hence

eT ξ′ = 1. If ∥yk2∥ < ∞ as k → ∞, then from Equation (6.3.7), we obtain ξ′ = 0

for t̄ = 1. If limk→∞ eTyk2 = ∞, then from Equation (6.3.12), we obtain ξ′ = 0

for t̄ = 1. This contradicts that eT ξ′ = 1.

Therefore the curve is bounded for t̄ = 1.

Theorem 6.3.4. Let A ∈ Rn×n be a matrix. If the set R1 be nonempty and 0 is

a regular value of H(u, u(0), t), then the path Γ
(0)
u ⊂ R1 × (0, 1] is bounded.

Proof. Suppose A ∈ Rn×n is a matrix and there exists a sequence of points

{vk} ⊂ Γ
(0)
u ⊂ R1 × (0, 1], where vk = (xk, yk1 , y

k
2 , t

k). Hence by the definition of

R1 x
k, yk1 , y

k
2 , Ax

k + q > 0. From Corollary 6.3.1 the curve is bounded for t̄ = 1.

Assume that the curve Γ
(0)
u ⊂ R1×(0, 1) is unbounded. Then from Theorem 6.3.3

(ξ)TAξ < 0 for t̄ ∈ (0, 1). For limk→∞ eTxk = ∞, ξ = limk→∞
xk

eT xk
≥ 0. Again for
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limk→∞ (1− tk)eTxk = ∞, ξ = limk→∞
(1−tk)xk

(1−tk)eT xk ≥ 0. Axk + q > 0 implies that

Aξ ≥ 0. Hence ξ, Aξ ≥ 0 imply that ξTAξ ≥ 0 for t̄ ∈ (0, 1), which contradicts

that the path is unbounded for t̄ ∈ (0, 1). Hence the curve Γ
(0)
u ⊂ R1 × (0, 1] is

bounded.

Therefore the curve Γ
(0)
u is bounded for the parameter t starting from 1 to 0

if the set R1 be nonempty and 0 is a regular value of the function (6.3.1). For

an initial point u(0) ∈ R1 we obtain a smooth bounded path which leads to the

solution of function (6.3.1) as the parameter t→ 0.

Theorem 6.3.5. For u(0) = (x(0), y
(0)
1 , y

(0)
2 ) ∈ R1, the equation finds a bounded

smooth curve Γ
(0)
u ⊂ R1 × (0, 1] which starts from (u(0), 1) and approaches the

hyperplane at t = 0. As t → 0, the limit set L × {0} ⊂ R̄1 × {0} of Γ
(0)
u is

nonempty and every point in L is a solution of the following system:

(A+ AT )x+ q − y1 − ATy2 = 0

Y1x+X(Ax+ q) = 0

Y2(Ax+ q) = 0.

(6.3.15)

Proof. Note that Γ
(0)
u is diffeomorphic to a unit circle or a unit interval (0, 1] in

view of Lemma 1.3.5. As ∂H(u,u(0),1)

∂u(0)
is nonsingular, Γ

(0)
u is diffeomorphic to a unit

interval (0, 1]. Again Γ
(0)
u is a bounded smooth curve by the Theorem 6.3.2. Let

(ū, t̄) be a limit point of Γ
(0)
u . Now consider the followings:

(i)(ū, t̄) ∈ R1×{1} : As the equationH(u, 1) = 0 has only one solution u(0) ∈ R1,

this case is impossible.

(ii)(ū, t̄) ∈ ∂R1 × {1} : there exists a subsequence of (uk, tk) ∈ Γ
(0)
u such that

xki → 0 or (Axk + q)i → 0 for i ⊆ {1, 2, · · ·n}. From the last two equations

of the function (6.3.1), we have yk1 → ∞ or yk2 → ∞. Hence it contradicts the

boundedness of the path by the Theorem 6.3.2.
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(iii)(ū, t̄) ∈ ∂R1 × (0, 1) : Also impossible followed by the case (ii).

(iv)(ū, t̄) ∈ R̄1 × {0} : The only possible case.

Hence ū = (x̄, ȳ1, ȳ2) is a solution of the system (6.3.15)

(A+ AT )x+ q − y1 − ATy2 = 0

Y1x+X(Ax+ q) = 0

Y2(Ax+ q) = 0.

6.3.1 Computing Solution of ARAT Stochastic Game

based on Iterative Process

We state that a pair of strategies (k⋆, l⋆) is optimal for Player I and Player II

in the discounted game if for all s ∈ S ϕs(k, l
⋆) ≤ ϕs(k

⋆, l⋆) = v⋆s ≤ ϕs(k
⋆, l) for

any strategies k and l of Player I and Player II. The number v⋆s is called the

value of the game starting in state s and v⋆ = (v⋆1, v
⋆
2, · · · , v⋆N) is called the value

vector. To find the optimal strategy of player I and player II of the two-person

zero-sum discounted ARAT stochastic game we propose a new function based

on the concept of iterative method.

Now we show that the solution of the proposed function will give the solution

of discounted ARAT stochastic game.

Theorem 6.3.6. Suppose Γ
(0)
u = {(u, t) ∈ R3n × (0, 1] : H(u, u(0), t) = 0} ⊂

R1 × (0, 1]}, and A =

 −βP1 E − βP1

−E + βP2 βP2

 and q =

 −R1
i (s)

R2
j (s)

 , where
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the matrix P1 = P1(s), P2 = P2(s) and E =


e1 0 0 · · · 0

0 e2 0 · · · 0
...

...
... · · · ...

0 0 0 · · · ed

 is a vertical

block identity matrix where ej, 1 ≤ j ≤ d, is a column vector of all 1′s. Then the

function (6.3.1) solves discounted zero-sum stochastic ARAT game.

Proof. Suppose for a zero-sum discounted ARAT game the optimal pure strategy

in state s is i0 for Player I and j0 for Player II.

Then the inequality (6.1.1) and the inequality (6.1.2) reduces to

R1
i (s)+R2

j0
(s)+β

∑
s′

p1i (s, s
′)vβ(s

′)+β
∑
s′

p2j0(s, s
′)vβ(s

′) ≤ vβ(s) ∀ i. (6.3.16)

R1
i0
(s)+R2

j (s)+ β
∑
s′

p1i0(s, s
′)vβ(s

′)+ β
∑
s′

p2j(s, s
′)vβ(s

′) ≥ vβ(s) ∀ j. (6.3.17)

Thus the inequalities are

R1
i (s) + β

∑
s′

p1i (s, s
′)ξβ(s

′)− ξβ(s) + β
∑
s′

p1i (s, s
′)ηβ(s

′) ≤ 0 ∀i ∈ As, s ∈ S

(6.3.18)

and similarly the inequalities for Player II are

R2
j (s) + β

∑
s′

p2j(s, s
′)ηβ(s

′)− ηβ(s) + β
∑
s′

p2j(s, s
′)ξβ(s

′) ≥ 0 ∀j ∈ Bs, s ∈ S.

(6.3.19)

Also for each s, in (6.3.18) there is an i(s) such that equality holds. Similarly,

for each s in (6.3.19) there is a j(s) such that equality holds. Let for i ∈ As,

w1
i (s) = −R1

i (s)−β
∑
s′

p1i (s, s
′)ηβ(s

′)+ξβ(s)−β
∑
s′

p1i (s, s
′)ξβ(s

′) ≥ 0, (6.3.20)
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and for j ∈ Bs,

w2
j (s) = R2

j (s)− ηβ(s) + β
∑
s′

p2j(s, s
′)ηβ(s

′) + β
∑
s′

p2j(s, s
′)ξβ(s

′) ≥ 0. (6.3.21)

We may assume without loss of generality that ηβ(s), ξβ(s) are strictly positive.

Since there is atleast one inequality in (6.3.20) for each s ∈ S that holds as an

equality and one inequality in (6.3.21) for each s ∈ S that holds as an equality,

the following complementarity conditions will hold.

ηβ(s)
∏
i∈As

w1
i (s) = 0 for 1 ≤ s ≤ d (6.3.22)

and

ξβ(s)
∏
j∈Bs

w2
j (s) = 0 for 1 ≤ s ≤ d. (6.3.23)

The inequality (6.3.20) and inequality (6.3.21) along with the complementarity

conditions (6.3.22) and (6.3.23) lead to the VLCP(q,A) where the matrix A is

of the form

A =

 −βP1 E − βP1

−E + βP2 βP2

 and q =

 −R1
i (s)

R2
j (s)

 ,
where the matrix P1 = P1(s), P2 = P2(s) and

E =


e1 0 0 · · · 0

0 e2 0 · · · 0
...

...
... · · · ...

0 0 0 · · · ed

 is a vertical block identity matrix where

ej, 1 ≤ j ≤ d, is a column vector of all 1′s. Now an equivalent square

matrix A can be constructed from the vertical block matrix A of type

(m1, ...,mc) by copying A.j, mj times for j = 1, 2, · · · , c. Therefore A.p = A.j
∀p ∈ Jj and the LCP(q, A) is the equivalent LCP of VLCP(q,A). We consider

the proposed function (6.3.1)
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H(u, t) =


(1− t)[(A+ AT )x+ q − y1 − ATy2] + t(x− x(0))

Y1x− tY
(0)
1 x(0) + (1− t)X(Ax+ q)

Y2(Ax+ q)− tY
(0)
2 (Ax(0) + q)

 = 0 (6.3.24)

where Y1 = diag(y1), X = diag(x), Y2 = diag(y2), Y
(0)
1 = diag(y

(0)
1 ), Y

(0)
2 =

diag(y
(0)
2 ), u = (x, y1, y2) ∈ Rn

+×Rn
+×Rn

+, u
(0) = (x(0), y1

(0), y2
(0)) ∈ R1, and λ ∈

(0, 1]. We denote Γ
(0)
u = {(u, t) ∈ R3n × (0, 1] : H(u, u(0), t) = 0} ⊂ R1 × (0, 1]}.

For the proposed function t varies from 1 to 0. Starting from t = 1 to t→ 0 if we

have a smooth bounded curve, then we obtain a finite solution of the equation

(6.3.1) at t→ 0. As t→ 1, the equation (6.3.1) gives the solution (u(0), 1), and as

t→ 0, the equation (6.3.1) gives the solution of the system of following equations:

(A+ AT )x+ q − y1 − ATy2 = 0

Y1x+X(Ax+ q) = 0

Y2(Ax+ q) = 0

where Y1 = diag(y1) and Y2 = diag(y2). Hence the solution of the function (6.3.1)

gives the solution of discounted zero-sum ARAT game.

Therefore if the function (6.3.1) converges to its solution as the parameter

t→ 0, we obtain the solution of discounted ARAT stochastic game.

Note that Theorem 6.3.5 establishes the solution of the proposed function which

validates the Theorem 6.3.6. This in turn leads to the solution of discounted

ARAT stochastic game.

In this approach the initial point u(0) = (x(0), y
(0)
1 , y

(0)
2 ) ∈ R1 has to be a

feasible point. Hence choose the initial point such that x(0) > 0, Ax(0) + q > 0.

Here (ū, 0) is the solution of the function (6.3.1). Therefore ū ∈ R̄1 is the solution

of the system of equations (6.3.15). Hence Ȳ1x̄ = 0 and X̄(Ax̄ + q) = 0, where
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Ȳ1 =diag(ȳ1) and X̄ =diag(x̄). It is clear that the component x̄ of ū = (x̄, ȳ1, ȳ2)

provides the solution of discounted ARAT stochastic game.

6.3.2 Tracing Path by iterative process

We trace the path Γ
(0)
u ⊂ R1 × (0, 1] from the initial point (u(0), 1). To find the

solution of the discounted ARAT stochastic game we consider path alongwith

other assumptions. Let s denote the arc length of Γ
(0)
u . We parameterize the

path Γ
(0)
u with respect to s in the following form

H(u, t) = 0, u(0) = u(0), t(0) = 1. (6.3.25)

The solution of the Equation (6.3.25) satisfies the following problem

u̇ = − ∂

∂u
H(u, t)−1 ∂

∂t
H(u, t), u(0) = u(0), t(0) = 1 (6.3.26)

From equation (6.3.1) the choice of H is H(u, t) = (1− t)f(u)+ tg(u) = 0, where

f(u) =


(A+ AT )x+ q − y1 − ATy2

Y1x+X(Ax+ q)

Y2(Ax+ q)

 and g(u) =


x− x(0)

Y1x− Y
(0)
1 x(0)

Y2(Ax+ q)− Y
(0)
2 (Ax(0) + q)

 . Hence the system (6.3.26) becomes

u̇ = p(u, t), u(0) = u(0) where p(u, t) = −J̃−1f̃

This problem will be solved by iterative process

u(i+1) = P (ui, ti, hi), where hi = ti+1 − ti.
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Here ui is an approximation of u. P (ui, ti, hi) is given by

P (u, t, h) = Im(u, t, h), where I0(u, t, h) = u

and Kj =
∂
∂u
H(Ij, t+ h)+H(Ij, t+ h)

Lj = Ij −Kj

KKj = ( ∂
∂u
H(Lj, t+ h) + ∂

∂u
H(Ij, t+ h))+H(Ij, t+ h)

LLj = Ij − 2 ∗KKj

The next iteration

Ij+1 = LLj − ∂
∂u
H(Lj, t+ h)+H(Lj, t+ h), for j = 0, 1, 2, · · · ,m− 1.
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Algorithm:

Step 0: Initialize (u(0), t0). Set l0 ∈ (0, 1). Choose ϵ3 >> ϵ1 > 0 which are small
positive quantity.

Step 1: τ (0) = ξ(0) = ( 1
n0
)

[
s(0)

−1

]
for i = 0, where n0 = ∥

[
s(0)

−1

]
∥ and

s(0) = (∂H
∂u

(u(0), t0))
−1(∂H

∂t
(u(0), t0)).

For i > 0, s(i) = (∂H
∂u

(u(i), ti))
−1(∂H

∂t
(u(i), ti)), ni = ∥

[
s(i)

−1

]
∥, ξ(i) = ( 1

ni
)

[
s(i)

−1

]
.

If det(∂H
∂u

(u(i), ti)) > 0, τ (i) = ξ(i) else τ (i) = −ξ(i), i ≥ 1.
Set l = 0.

Step 2: (Predictor and corrector point calculation) (ũ(i), t̃i) = (u(i), ti) +
aτ (i), where a = l0

l. Compute (û(i), t̂i) = H ′
u(0)

(ũ(i), t̃i)
+H(ũ(i), t̃i) and

(ū(i), t̄i) = (ũ(i), t̃i) − (û(i), t̂i). Now compute (ûu(i), t̂ti) = (H ′
u(0)

(ũ(i), t̃i) +

H ′
u(0)

(ū(i), t̄i))
+H(ũ(i), t̃i) and (ūu(i), t̄ti) = (ũ(i), t̃i)− 2(ûu(i), t̂ti).

Compute (u(i+1), ti+1) = (ūu(i), t̄ti)−H ′
u(0)

(ū(i), t̄i)
+H(ūu(i), t̄ti).

If 0 < ∥ti+1 − ti∥ < 1, go to step 3. Otherwise if m′ = min(a, ∥(u(i+1), ti+1) −
(u(i), ti)∥) > a0, update l by l + 1, and recompute (ũi, t̃i) else go to step 3.

Step 3: Determine the norm r = ∥H(u(i+1), ti+1)∥. If r ≤ 1 and u(i+1) > 0 go to
step 5, otherwise if a > ϵ3, update l by l + 1 and go to step 2 else go to step 4.

Step 4: If |ti+1| ≤ ϵ1, then stop with solution (u(i+1), ti+1), else i = i+ 1 and go
to step 1.

Note that in step 2, H ′
u(0)

(u, t)+ = H ′
u(0)

(u, t)T (H ′
u(0)

(u, t)H ′
u(0)

(u, t)T )−1 is the

Moore-Penrose inverse of H ′
u(0)

(u, t).

We prove the following theorem to obtain the positive direction of the pro-

posed algorithm.

Theorem 6.3.7. If the curve Γ
(0)
u is smooth, then the positive predictor direction

τ (0) at the initial point u(0) satisfies det(

 ∂H
∂u∂t

(u(0), 1)

τ (0)
T

) < 0.

Proof. From the Equation (6.3.1), we consider the following function
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H(u, t) =


(1− t)[(A+ AT )x+ q − y1 − ATy2] + t(x− x(0))

Y1x− tY
(0)
1 x(0) + (1− t)X(Ax+ q)

Y2(Ax+ q)− tY
(0)
2 (Ax(0) + q)

 = 0.

Now ∂H
∂u∂t

(u, t) =
(1− t)(A+ AT ) + tI −(1− t)I −(1− t)AT Q

Y1 + (1− t)(Y +XA) X 0 −Y (0)
1 x(0) −X(Ax+ q)

Y2A 0 Y −Y (0)
2 (Ax(0) + q)

 ,
where Q = (x− x(0))− [(A+ AT )x+ q − y1 − ATy2] and Y = diag(Ax+ q).

At the initial point (u(0), 1)

∂H
∂u∂t

(u(0), 1) =


I 0 0 −[(A+ AT )x(0) + q − y

(0)
1 − ATy

(0)
2 ]

Y
(0)
1 X(0) 0 −Y (0)

1 x(0) −X(0)(Ax(0) + q)

Y
(0)
2 A 0 Y (0) −Y (0)

2 (Ax(0) + q)

 .
Let positive predictor direction be τ (0) =

 κ

−1

 =

 (Q
(0)
1 )(−1)Q

(0)
2

−1

 ,
where

Q
(0)
1 =


I 0 0

Y
(0)
1 X(0) 0

Y
(0)
2 A 0 Y (0)

 ,

Q
(0)
2 =


−[(A+ AT )x(0) + q − y

(0)
1 − ATy

(0)
2 ]

−Y (0)
1 x(0) −X(0)(Ax(0) + q)

−Y (0)
2 (Ax(0) + q)

 and κ is an n×1 column vector.

Hence, det(

 ∂H
∂u∂λ

(u(0), 1)

τ (0)
T

)
= det(

 Q
(0)
1 Q

(0)
2

(Q
(0)
2 )T (Q

(0)
1 )(−T ) −1

)
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= det(

 Q
(0)
1 Q

(0)
2

0 −1− (Q
(0)
2 )T (Q

(0)
1 )(−T )(Q

(0)
1 )(−1)Q

(0)
2

)
= det(Q

(0)
1 ) det(−1− (Q

(0)
2 )T (Q

(0)
1 )(−T )(Q

(0)
1 )(−1)Q

(0)
2 )

= − det(Q
(0)
1 ) det(1 + (Q

(0)
2 )T (Q

(0)
1 )(−T )(Q

(0)
1 )(−1)Q

(0)
2 )

= −
∏n

i=1 x
(0)
i y

(0)
i det(1 + (Q

(0)
2 )T (Q

(0)
1 )(−T )(Q

(0)
1 )(−1)Q

(0)
2 ) < 0.

So the positive predictor direction τ (0) at the initial point u(0) satisfies

det(

 ∂H
∂u∂λ

(u(0), 1)

τ (0)
T

) < 0.

Remark 6.3.1. We conclude from the Theorem 6.3.7 that the positive tangent

direction τ of the path Γ
(0)
u at any point (u, t) be negative and it depends on

det(Q1), where Q1 =


(1− t)(A+ AT ) + tI −(1− t)I −(1− t)AT

Y1 + (1− t)(Y +XA) X 0

Y2A 0 Y

 .
Based on the earlier work to solve the initial value problem (6.3.26) was

formulated with the iterative process as

Ij+1 = Ij − ∂
∂u
H(Ij, t+ h)+H(Ij, t+ h), for j = 0, 1, 2, · · · ,m− 1.

For details see [109]. However the proposed iterative method solves the function

by solving the problem (6.3.26) with the following iterative process

Kj =
∂
∂u
H(Ij, t+ h)+H(Ij, t+ h)

Lj = Ij −Kj
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KKj = ( ∂
∂u
H(Lj, t+ h) + ∂

∂u
H(Ij, t+ h))+H(Ij, t+ h)

LLj = Ij − 2 ∗KKj

Ij+1 = LLj − ∂
∂u
H(Lj, t+ h)+H(Lj, t+ h), for j = 0, 1, 2, · · · ,m− 1.

By this iterative process the proposed function achieves the order of convergence

as 5m − 1.

Theorem 6.3.8. Suppose that the function has derivative which is Lipschitz con-

tinuous in a convex neighbourhood N of c, where c is the solution of the function

H(u, t) = 0, whose Jacobian matrix is continuous and nonsingular and bounded

on N . Then the iterative method has order 5m − 1.

Proof. By the Implicit Function Theorem ensures the existence of a unique con-

tinuous solution z(h) ∈ N of ż(h) = −J̃−1f̃ , z(0) = u and h ∈ (−δ, δ), for some

δ > 0. Define βj = ∥z(h) − Ij(u, h)∥. From Lemma 6.2.3 βj = O(h5
j
). Then

βj+1 = ∥z(h)−Ij+1∥ ≤ Kβj
5. Hence βj+1 = O(h5

j+1
). By induction the proposed

iterative method has convergency of order 5m − 1

6.3.3 Solving Discounted Zero-Sum Stochastic Game

with ARAT Structure

Example 6.3.1. Consider a two player zero-sum discounted ARAT game with

s = 2 states. In each state each player has 2 actions. The transition probabilities

are given by

p11(1, 1) =
1
2
, p11(1, 2) = 0,

p12(1, 1) =
1
2
, p12(1, 2) = 0,

p11(2, 1) = 0, p11(2, 2) =
1
2
,

p12(2, 1) = 0, p12(2, 2) =
1
2
,

p21(1, 1) =
1
2
, p21(1, 2) = 0,

p22(1, 1) = 0, p22(1, 2) =
1
2
,
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p21(2, 1) = 0, p21(2, 2) =
1
2
,

p22(2, 1) =
1
2
, p22(2, 2) = 0.

Note that pij(s, s
′) = p1i (s, s

′) + p2j(s, s
′).

P1 = P1(s) = ((p1i (s, s
′), s, s′ ∈ S, i ∈ As)) and

P2 = P2(s) = ((p2j(s, s
′), s, s′ ∈ S, j ∈ Bs)).

Let the discount factor β = 1
2
.

The reward structure:

R1
1(1) = 4, R1

1(2) = 5,

R1
2(1) = 3, R1

2(2) = 4,

R2
1(1) = 3, R2

1(2) = 6,

R2
2(1) = 6, R2

2(2) = 2.

Note that r(s, i, j) = R1
i (s) +R2

j (s).

Now we solve discounted ARAT game using the proposed function. The initial

point is u(0) = (4, 5, 3, 4, 8, 8, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T . Here

l0 = 1
2
, ϵ1 = 10−9, ϵ3 = 10−5. After 47 iterations we obtain the solution u =

(0, 7, 0, 6, 9, 0, 0, 7.33, 1, 0, 1, 0, 0, 2.33, 3.33, 0, 0, 7, 0, 6, 9, 0, 0, 7.33, 0) as t → 0 .

Hence the solution of discounted ARAT is x =



1

0

1

0

0

2.33

3.33

0



.

Example 6.3.2. Consider another two player zero-sum discounted ARAT game

with s = 2 states. In each state each player has 2 actions. The transition proba-

bilities are given by

p11(1, 1) =
1
4
, p11(1, 2) = 0,
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p12(1, 1) =
1
4
, p12(1, 2) = 0,

p11(2, 1) = 0, p11(2, 2) =
1
2
,

p12(2, 1) = 0, p12(2, 2) =
1
2
,

p21(1, 1) =
3
4
, p21(1, 2) = 0,

p22(1, 1) = 0, p22(1, 2) =
3
4
,

p21(2, 1) = 0, p21(2, 2) =
1
2
,

p22(2, 1) =
1
2
, p22(2, 2) = 0.

Note that pij(s, s
′) = p1i (s, s

′) + p2j(s, s
′).

P1 = P1(s) = ((p1i (s, s
′), s, s′ ∈ S, i ∈ As)) and

P2 = P2(s) = ((p2j(s, s
′), s, s′ ∈ S, j ∈ Bs)).

Let the discount factor β = 1
2
.

The reward structure:

R1
1(1) = 4, R1

1(2) = 5,

R1
2(1) = 3, R1

2(2) = 4,

R2
1(1) = 3, R2

1(2) = 6,

R2
2(1) = 6, R2

2(2) = 2.

Note that r(s, i, j) = R1
i (s) +R2

j (s).

Now we solve discounted ARAT game using the proposed function. The ini-

tial point is u(0) = (1, 1, 1, 1, 20, 20, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)T .

Here l0 = 1
2
, ϵ1 = 10−9, ϵ3 = 10−5. After 31 iterations we obtain the solution

u = (0, 9, 0, 6, 7, 0, 0, 7.33, 1, 0, 1, 0, 0, 2, 3.33, 0, 0, 9, 0, 6, 7, 0, 0, 7.33, 0) as t → 0.
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Hence the solution of discounted ARAT is x =



1

0

1

0

2

3.33

0

0



.

In this chapter, we introduce a iterative process to find the solution of dis-

counted ARAT stochastic game. Mathematically, we obtain the positive tangent

direction of the homotopy path. We prove that the smooth curve of the proposed

homotopy function is bounded and convergent.



Chapter 7

Tracing Homotopy Path For The

Solution Of Nonlinear

Complementarity Problem

7.1 Introduction

In this chapter, we consider nonlinear complementarity problem. The concept

of complementarity is synonymous with the notion of system equilibrium. The

nonlinear complementarity problem is identified as an important mathematical

programming problem. The idea of nonlinear complementarity problem is based

on the concept of linear complementarity problem. In the literature so many

techniques are developed to solve nonlinear complementarity problems. For de-

tails see chapter 1. In this chapter we solve nonlinear complementarity problem

by using homotopy approach ensuring the boundedness property of the trajec-

tory obtained from the proposed homotopy function. The basic idea of homotopy

method is to construct a homotopy continuation path from the auxiliary mapping

*Work of this chapter has been communicated.
�Results of this chapter have been arxived [137].
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to the object mapping.

The chapter is organized as follows. Section 7.2 is about continuation method

with homotopy function. In section 7.3, we propose a new homotopy function to

find the solution of nonlinear complementarity problem. We construct a smooth

and bounded homotopy path to find the solution of the nonlinear complemen-

tarity problem as the homotopy parameter µ ∈ R starts from 1 and tends to

0. To find the solution of homotopy function we modify homotopy continuation

method to increase the order of convergency of the algorithm. We also find the

sign of the positive tangent direction of the homotopy path. Finally, in section

7.4 we numerically solve some examples of nonlinear complementarity problem

using the introduced homotopy function to demonstrate the effectiveness of our

proposed approach.

7.2 Continuation Method with Homotopy

Function

The fundamental idea of the homotopy continuation method is to solve a prob-

lem by tracing a certain continuous path that leads to a solution to the problem.

Thus, defining a homotopy mapping that yields a finite continuation path plays

an essential role in a homotopy continuation method. The homotopy method

[183] is itself an important class of globally convergent methods. Many homo-

topy methods are proposed for constructive proof of the existence of solutions to

systems of nonlinear equations, nonlinear optimization problems, Brouwer fixed

point problems, nonlinear programming problems, game problems and comple-

mentarity problems [184]. Eaves and Saigal [182] attempted to use similar ap-

proaches for solving system of non-linear equations. Such methods have been

used to constructively prove the existence of solutions to many economic and
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engineering problems.

Let P1, P2 be two topological spaces and Map(P1, P2) be the set of all continu-

ous maps from P1 to P2. Homotopy is an equivalence relation on Map(P1, P2). Let

h1, h2 : P1 → P2 be continuous maps. A homotopy from h1 to h2 is a continuous

functionH : P1×[0, 1]→ P2 satisfyingH(y, 0) = h1(y), H(y, 1) = h2(y) ∀ y ∈ P1.

If such a homotopy exists, then h1 is homotopic to h2 and it is denoted by h1 ≃ h2.

The basic idea of homotopy method is to construct a homotopy continuation

path from the auxiliary mapping g to the object mapping f . Suppose the given

problem is to find a root of the nonlinear equation f(x) = 0 and g(x) = 0 is an

auxiliary equation with g(x0) = 0. Then the homotopy function H : Rn+1 → Rn

can be defined as H(x, µ) = (1 − µ)f(x) + µg(x), 0 ≤ µ ≤ 1. Based on this

concept, we consider the homotopy function H(x, µ) = 0, where (x0, 1) is a

known solution of the homotopy function. Our aim is to find the solution of the

equation f(x) = 0 from the known solution of g(x) = 0 by solving the homotopy

function H(x, µ) = 0 varying the values of µ from 1 to 0.

7.3 Continuation Method for Nonlinear Com-

plementarity Problem

Some homotopy methods are developed to solve nonlinear complementarity prob-

lem under some assumptions such as the nonlinear function f(z) associated with

the nonlinear complementarity problem is a P function. Ding et al.[85] proposed

a homotopy method. However this method can not ensure the existence of the

bounded solution in many cases. For details see [146], [87], [85], [89].

Now we solve nonlinear complementarity problem by a new approach of con-

tinuation method. We consider two positive numbers m, l such that m is large

positive number and l is positive number with l << m. First we define
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R(m) = {(z, y, w1, w2, v1, v2) ∈ Rn
++ × Rn

++ × Rn
++ × Rn

++ × R++ × R++ :

m− (
n∑
i=1

(z + w1)i + v2) > l,m− (
n∑
i=1

(y + w2)i + v1) > l},

R̄(m) = {(z, y, w1, w2, v1, v2) ∈ Rn
+ × Rn

+ × Rn
+ × Rn

+ × R+ × R+ : m − (
n∑
i=1

(z +

w1)i + v2) ≥ l,m− (
n∑
i=1

(y + w2)i + v1) ≥ l}.

We choose the initial point

x(0) = (z(0), y(0), w1
(0), w2

(0), v1
(0), v2

(0)) ∈ R(m) such that

A(0) = B(0) ̸= 0, v2
(0) = v1

(0), A(0) ̸= 2v1
(0),

l(B(0)v2
(0) − A(0)v1

(0)) + lB(0)(l − A(0)) + A(0)v1
(0)(A(0) − v2

(0)) ̸= 0,

l(A(0)v1
(0) −B(0)v2

(0)) + lA(0)(l −B(0)) +B(0)v2
(0)(B(0) − v1

(0)) ̸= 0,

l(B(0) − l) ̸= (A(0) − v2
(0))v1

(0), l(A(0) − l) ̸= (B(0) − v1
(0))v2

(0),

where A(0) = (m − (
n∑
i=1

(z(0) + w
(0)
1 )i)), B

(0) = m − (
n∑
i=1

(y(0) + w
(0)
2 )i). These are

the criteria to be an initial point.

Now we define the feasible region

F(m) = {(z, y, w1, w2, v1, v2) ∈ R(m) : v1 ̸= µ(A(0)−v2(0))v1(0)
l

; v2 ̸=
µ(B(0)−v1(0))v2(0)

l
∀ µ ∈ (0, 1)},

F̄(m) = {(z, y, w1, w2, v1, v2) ∈ R̄(m) : v1 ̸= µ(A(0)−v2(0))v1(0)
l

; v2 ̸=
µ(B(0)−v1(0))v2(0)

l
∀ µ ∈ (0, 1)}.

∂F(m) = {(z, y, w1, w2, v1, v2) ∈ ∂R(m) : v1 ̸= µ(A(0)−v2(0))v1(0)
l

; v2 ̸=
µ(B(0)−v1(0))v2(0)

l
∀ µ ∈ (0, 1)}, where ∂R(m) is the boundary of R̄(m).
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We construct a suitable homotopy function

H(x, x(0), µ) =



(1− µ)(y − w1 + v1e+ JTf (z − w2 + v2e)) + µ(z − z(0))

W1z − µW
(0)
1 z(0)

W2y − µW
(0)
2 y(0)

y − (1− µ)f(z)− µ(y(0))

(m−
n∑
i=1

(z + w1)i − v2)v1 − µ((m−
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )v

(0)
1 )

(m−
n∑
i=1

(y + w2)i − v1)v2 − µ((m−
n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )v

(0)
2 )


= 0

(7.3.1)

where e = [1, 1, · · · , 1]T , Z = diag(z); W1 = diag(w1); W2 = diag(w2); W
(0)
1 =

diag(w
(0)
1 ); W

(0)
2 = diag(w

(0)
2 ); x = (z, y, w1, w2, v1, v2) ∈ F̄(m);

x(0) = (z(0), y(0), w1
(0), w2

(0), v1
(0), v2

(0)) ∈ F(m); µ ∈ (0, 1] and Jf is the Jacobian

of the nonlinear function f(z).

7.3.1 Properties of the Trajectory for Single Parameter

First we prove the smoothness property of the trajectory obtained by the pro-

posed homotopy function (7.3.1).

Theorem 7.3.1. For almost all initial points x(0) ∈ R(m) satisfying the cri-

teria to be an initial point, 0 is a regular value of the homotopy function

H : R4n+2 × (0, 1] → R4n+2 and the zero point set H−1
x(0)

(0) = {(x, µ) ∈

F(m)×(0, 1] : Hx(0)(x, µ) = 0} contains a smooth curve Γ
(0)
x starting from (x(0), 1).

Proof. The Jacobian matrix of the above homotopy function H(x, x(0), µ)

is denoted by DH(x, x(0), µ)) and we have DH(x, x(0), µ)) =[
∂H(x,x(0),µ)

∂x
∂H(x,x(0),µ)

∂x(0)
∂H(x,x(0),µ)

∂µ

]
. For all x(0) ∈ F(m) and µ ∈ (0, 1],

we have ∂H(x,x(0),µ)

∂x(0)
=

K1 K2

K3 K4

 ,
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where K1 =


−µI 0 0 0

−µW (0)
1 0 −µZ(0) 0

0 −µW (0)
2 0 −µY (0)

0 −µI 0 0

 , K2 =


0 0

0 0

0 0

0 0

 ,

K3 =

µv(0)1 eT 0 µv
(0)
1 eT 0

0 µv
(0)
2 eT 0 µv

(0)
2 eT

 ,
K4 =

−µ(m−
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 ) µv

(0)
1

µv
(0)
2 −µ(m−

n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )

 ,
Y (0) = diag(y(0)), Z(0) = diag(z(0)), W

(0)
1 = diag(w

(0)
1 ), W

(0)
2 = diag(w

(0)
2 ).

Now det( ∂H
∂x(0)

) = det(K4) det(K1−K2K4
−1K3) = det(K4) det(K1) = µ4n+2((m−

n∑
i=1

(z(0) +w
(0)
1 )i− v

(0)
2 )(m−

n∑
i=1

(y(0) +w
(0)
2 )i− v

(0)
1 )− v

(0)
1 v

(0)
2 )

∏n
i=1 z

(0)
i y

(0)
i ̸= 0 for

µ ∈ (0, 1]. Thus DH(x, x(0), µ)) is of full row rank. Therefore, 0 is a regular value

of H(x, x(0), µ)). By Lemma 1.3.3 and Lemma 1.3.4, for almost all x(0) ∈ F(m),

0 is a regular value of Hx(0)(x, µ) and H−1
x(0)

(0) consists of some smooth curves

and Hx(0)(x
(0), 1) = 0. Hence there must be a smooth curve Γ

(0)
x starting from

(x(0), 1).

Now we show that a smooth and bounded curve exists by the homotopy function

(7.3.1).

Theorem 7.3.2. Let F(m) be a nonempty set. For a given x(0) ∈ R(m) satisfying

the criteria to be an initial point, if 0 is a regular value of H(x, x(0), µ), then Γ
(0)
x

is a bounded curve in F̄(m) × (0, 1].

Proof. We have that 0 is a regular value of H(x, x(0), µ) by Theorem 7.3.1 and

F(m) is a nonempty set. It is clear that the sets F(m) and (0, 1] are bounded.

Hence there exists a sequence of points {zk, yk, wk1 , wk2 , vk1 , vk2 , µk} ⊂ Γ
(0)
x × (0, 1],

such that lim
k→∞

zk = z̄, lim
k→∞

yk = ȳ, lim
k→∞

wk1 = w̄1, lim
k→∞

wk2 = w̄2, lim
k→∞

vk1 =
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v̄1, lim
k→∞

vk2 = v̄2, lim
k→∞

µk = µ̄. Hence Γ
(0)
x is a bounded curve in F̄(m) × (0, 1].

We show the convergence of the homotopy function (7.3.1).

Theorem 7.3.3. For x(0) = (z(0), y(0), w
(0)
1 , w

(0)
2 , v

(0)
1 , v

(0)
2 ) ∈ R(m) such that

A(0) = B(0) ̸= 0, v2
(0) = v1

(0), A(0) ̸= 2v1
(0),

l(B(0)v2
(0) − A(0)v1

(0)) + lB(0)(l − A(0)) + A(0)v1
(0)(A(0) − v2

(0)) ̸= 0,

l(A(0)v1
(0) −B(0)v2

(0)) + lA(0)(l −B(0)) +B(0)v2
(0)(B(0) − v1

(0)) ̸= 0,

l(B(0) − l) ̸= (A(0) − v2
(0))v1

(0),

l(A(0) − l) ̸= (B(0) − v1
(0))v2

(0),

the homotopy function finds a bounded smooth curve Γ
(0)
x ⊂ F(m) × (0, 1] which

starts from (x(0), 1) and approaches the hyperplane at µ→ 0. As µ→ 0, the limit

set L× µ̄ ⊂ F̄(m) ×{0} of Γ
(0)
x is nonempty and every point in L is a solution of

the following system of equations:

(y − w1 + v1e+ JTf (z − w2 + v2e)) = 0

W1z = 0

W2y = 0

y − f(z) = 0

(m−
n∑
i=1

(z + w1)i − v2)v1 = 0

(m−
n∑
i=1

(y + w2)i − v1)v2 = 0

(7.3.2)

Proof. Note that Γ
(0)
x is diffeomorphic to a unit circle or a unit interval (0, 1] in

view of Lemma 1.3.5. As ∂H(x,x(0),1)

∂x(0)
is nonsingular, Γ

(0)
x is diffeomorphic to a unit

interval (0, 1]. Again Γ
(0)
x is a bounded smooth curve by the Theorem 7.3.2. Let

(x̄, µ̄) be a limit point of Γ
(0)
x . We consider four cases:
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(i) (x̄, µ̄) ∈ F(m) × {1}.

(ii) (x̄, µ̄) ∈ ∂F(m) × {1}.

(iii) (x̄, µ̄) ∈ ∂F(m) × (0, 1).

(iv) (x̄, µ̄) ∈ F̄(m) × {0}.

Suppose for case (i) the homotopy function (7.3.1) has solution (x̄, 1), other than

the initial solution x(0). As µ → 1, z̄ = z(0), ȳ = y(0), w̄1 = z
(0)
1 , w̄2 = z

(0)
2 , v̄1 ̸=

0, v̄2 ̸= 0. Hence for µ→ 1, (A−v2) → (A(0)− v̄2), (B−v1) → (B(0)− v̄1). Hence

from homotopy function (7.3.1)

(A(0) − v̄2)v̄1 = (A0 − v2
(0))v1

(0) (7.3.3)

(B(0) − v̄1)v̄2 = (B0 − v1
(0))v2

(0) (7.3.4)

From (7.3.4) and (7.3.4), we obtain

A(0)(v̄1 − v1
(0)) = (v̄1v̄2 − v1

(0)v2
(0))

B(0)(v̄2 − v2
(0)) = (v̄1v̄2 − v1

(0)v2
(0))

This implies A(0)(v̄1 − v1
(0)) = B(0)(v̄2 − v2

(0)). As A(0) = B(0) and v1
(0) = v2

(0),

this implies v̄1 = v1
(0), v̄2 = v2

(0). Hence the equation Hx(0)(x, 1) = 0 has only

one solution x(0) ∈ R(m). Hence the case (i) is impossible.

In case (ii) the homotopy function (7.3.1) implies that z̄ = z(0), ȳ = y(0), w̄1 =

w0
1, w̄2 = w0

2, v̄1 ̸= 0, v̄2 ̸= 0. Hence (A − v2) → (A(0) − v̄2) and (B − v1) →

(B(0) − v̄1) as µ → 1. From last two components of homotopy function (7.3.1),

we have

(A(0) − v̄2)v̄1 = (A(0) − v2
(0))v1

(0), (B(0) − v̄1)v̄2 = (B(0) − v1
(0))v2

(0). (7.3.5)

Three cases may arise.

Case 1: Let A(0) − v̄2 = l. From Equation (7.3.5) and last two components of
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the homotopy function (7.3.1), we obtain

v̄1 =
(A(0)−v2(0))v1(0)

l
, (B(0) − (A(0)−v2(0))v1(0)

l
)v̄2 = (B(0) − v1

(0))v2
(0)

=⇒ v̄2 =
l(B(0)−v1(0))v2(0)

lB(0)−A(0)v1(0)+v1(0)v2(0)
= A(0) − l

=⇒ l(B(0)v2
(0)−A(0)v1

(0))+lB(0)(l−A(0))+A(0)v1
(0)(A(0)−v2(0)) = 0, contradicts

the choosing of initial point.

Case 2: Let B(0) − v̄1 = l. From Equation (7.3.5) and last two components of

the homotopy function (7.3.1), we obtain

v̄2 =
(B(0)−v1(0))v2(0)

l
, (A(0) − (B(0)−v1(0))v2(0)

l
)v̄1 = (A(0) − v2

(0))v1
(0)

=⇒ v̄1 =
l(A(0)−v2(0))v1(0)

lA(0)−B(0)v2(0)+v1(0)v2(0)
= B(0) − l

=⇒ l(A(0)v1
(0)−B(0)v2

(0))+lA(0)(l−B(0))+B(0)v2
(0)(B(0)−v1(0)) = 0, contradicts

the choosing of initial point.

Case 3: Let B(0) − v̄1 = l, A(0) − v̄2 = l. From Equation (7.3.5) and last two

components of the homotopy function (7.3.1), we obtain

lv̄1 = (A(0) − v2
(0))v1

(0), lv̄2 = (B(0) − v1
(0))v2

(0).

=⇒ l(B(0) − l) = (A(0) − v2
(0))v1

(0), l(A(0) − l) = (B(0) − v1
(0))v2

(0), contradicts

the choosing of initial point.

In case (iii) from homotopy function (7.3.1), we have z̄ > 0, ȳ > 0, w̄1 >

0, w̄2 > 0. Three cases may arise.

Case1: Let A−v2 → Ā−v̄2 = l, where Ā = (m−
n∑
i=1

(z̄+w̄1)i. Then from Equation

(7.3.5) we have v̄1 =
µ̄(A(0)−v2(0))v1(0)

l
, which contradicts that v̄1 ∈ ∂F(m).

Case2: Let B − v1 → B̄ − v̄1 = l, where B̄ = (m −
n∑
i=1

(ȳ + w̄2)i. Then from

Equation (7.3.5) we have v̄2 =
µ̄(B(0)−v1(0))v2(0)

l
, which contradicts that v̄2 ∈ ∂F(m).

Case3: Let A − v2 → Ā − v̄2 = l, B − v1 → B̄ − v̄1 = l. Then from Equation

(7.3.5) we have v̄1 = µ̄(A(0)−v2(0))v1(0)
l

and v̄2 = µ̄(B(0)−v1(0))v2(0)
l

, which contradicts

that v̄1, v̄2 ∈ ∂F(m).

Therefore (iv) is the only possible case and x̄ = (z̄, ȳ, w̄1, w̄2, v̄1, v̄2) is a solution

of the system of equations (7.3.2). Hence the homotopy function (7.3.1) leads to
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its solution x̄ as µ→ 0.

Remark 7.3.1. From the homotopy function (7.3.1) as µ→ 0 we obtain ȳ−w̄1+

J̄Tf (z̄− w̄2) = 0, ȳ = f(z̄), w̄1iz̄i = 0, w̄2iȳi = 0, v̄1 = 0, v̄2 = 0 ∀ i ∈ {1, 2, · · ·n},

where J̄f is the Jacobian of f(z) at the point z̄. Now w̄1 and w̄2 can be decomposed

as w̄1 = ȳ −∆ȳ ≥ 0 and w̄2 = z̄ −∆z̄ ≥ 0. Now it is clear that ȳiz̄i = ∆ȳiz̄i =

∆z̄iȳi ∀ i and J̄Tf ∆z̄ + ∆ȳ = 0. This implies that (Z̄J̄Tf + Ȳ )∆z̄ = 0, where

Ȳ =diag(ȳ) and Z̄ =diag(z̄).

Here we find the condition under which the homotopy solution gives the

solution of the complementarity problem (1.4.1).

Theorem 7.3.4. The component z̄ of (z̄, ȳ, w̄1, w̄2, µ̄) ∈ L × {0} is the solution

of the complementarity problem (1.4.1) if and only if ∆z̄i∆ȳi = 0 or w̄1i+ w̄2i >

0 ∀ i.

Proof. Suppose z̄ ≥ 0 and ȳ = f(z̄) ≥ 0 give the solution of the complementarity

problem (1.4.1). Then z̄iȳi = 0 ∀ i. This implies that z̄i = 0 or ȳi = 0 ∀ i. Now

we consider the following cases.

Case 1: For atleast one i ∈ {1, 2, · · ·n}, let z̄i > 0, ȳi = 0. In view of Remark

7.3.1, this implies that ∆ȳi = 0 =⇒ ∆z̄i∆ȳi = 0.

Case 2: For atleast one i ∈ {1, 2, · · ·n}, let ȳi > 0, z̄i = 0. In view of Remark

7.3.1, this implies that ∆z̄i = 0 =⇒ ∆z̄i∆ȳi = 0.

Case 3: For atleast one i ∈ {1, 2, · · ·n}, let ȳi = 0, z̄i = 0. This implies that

either ∆ȳi∆z̄i = 0 or w̄1i + w̄2i > 0.

Conversely, we consider ∆z̄i∆ȳi = 0 or w̄1i+ w̄2i > 0 ∀ i. Let ∀ i, ∆z̄i∆ȳi = 0

implies either ∆z̄i = 0 or ∆ȳi = 0. This implies that ȳiz̄i = 0 ∀ i. Therefore ȳ and

z̄ give the solution of given complementarity problem (1.4.1). Let w̄1 + w̄2 > 0.

Then three cases will arise.

Case 1: Let w̄1i > 0, w̄2i = 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

z̄i = 0 and ȳi ≥ 0.
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Case 2: Let w̄1i = 0, w̄2i > 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

z̄i ≥ 0 and ȳi = 0.

Case 3: Let w̄1i > 0, w̄2i > 0 for atleast one i ∈ {1, 2, · · ·n}. This implies that

z̄i = 0 and ȳi = 0.

Considering the above three cases z̄ and ȳ solves the compplementarity problem

(1.4.1).

Theorem 7.3.5. If the nonlinear function f(z) is a P0 function, then the com-

ponent z̄ of (z̄, ȳ, w̄1, w̄2, v̄1, v̄2, µ̄) ∈ L × {0} gives the solution of the nonlinear

complementarity problem (1.4.1).

Proof. Let f(z) be a P0 function. Then the Jacobian matrix of the nonlinear

function at a point z, J̄f is a P0 matrix. Assume that the component z̄ of

(z̄, ȳ, w̄1, w̄2, v̄1, v̄2, µ̄) ∈ L× {0} does not give the solution of the nonlinear com-

plementarity problem (1.4.1). Hence ∆z̄i∆ȳi ̸= 0 and w̄1i + w̄2i = 0 for atleast

one i. Then ∆z̄i ̸= 0,∆ȳi ̸= 0, w̄1i = 0, w̄2i = 0. Now w̄1i = ȳi − ∆ȳi = 0 and

∆z̄i∆ȳi ̸= 0 =⇒ ȳi = ∆ȳi > 0. In similar way w̄2i = z̄i−∆z̄i = 0 and ∆z̄i∆ȳi ̸=

0 =⇒ z̄i = ∆z̄i > 0. Since (z̄, ȳ, w̄1, w̄2, v̄1, v̄2, µ̄) ∈ F̄(m) × {0}, we obtain that

v̄1 = 0, v̄2 = 0. From Equation (7.3.2) and Remark 7.3.1, ∆ȳi + (J̄Tf ∆z̄)i = 0.

This implies that (J̄Tf ∆z̄)i < 0 and (∆z̄)i(J̄
T
f ∆z̄)i < 0. This contradicts that J̄f

is a P0-matrix. Therefore the component z̄ of (z̄, ȳ, w̄1, w̄2, v̄1, v̄2, µ̄) ∈ L× {0} is

the solution of the nonlinear complementarity problem (1.4.1).

Theorem 7.3.6. Suppose the matrix (Z̄J̄Tf +Ȳ ) is nonsingular, where Ȳ =diag(ȳ)

and Z̄ =diag(z̄). Then z̄ solves the complementarity problem (1.4.1).

Proof. Let (Z̄J̄Tf + Ȳ ) be nonsingular matrix. Now from Remark 7.3.1 it is clear

that ∆z = 0. This implies that z̄ solves the complementarity problem (1.4.1).

Remark 7.3.2. We trace the homotopy path Γ
(0)
x ⊂ F(m) × (0, 1] from the initial

point (x(0), 1) until µ → 0 and find the solution of the given complementarity
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problem (1.4.1). Let s denote the arc length of Γ
(0)
x . We can parameterize the

homotopy path Γ
(0)
x with respect to s in the following form

Hx(0)(x(s), µ(s)) = 0, x(0) = x(0), µ(0) = 1. (7.3.6)

Differentiating (7.3.6) with respect to s we obtain the following system of ordinary

differential equations with initial values.

H ′
x(0)(x(s), µ(s))

 dx
ds

dµ
ds

 = 0, ∥(dx
ds
,
dµ

ds
)∥ = 1, x(0) = x(0), µ(0) = 1,

dµ

ds
(0) < 0.

(7.3.7)

and the x-component of (x(s), µ(s)) provides the solution of the complementarity

problem for µ(s) = 0.

The Equation (7.3.7) implies that [∂H
∂x

∂H
∂µ

]ν = 0, νTν = 1, dζ
ds

= ν, ζ = x

µ

 , ζ(0) =
 x(0)

1

. Now it is obtained that

dζ

ds
=

 −(∂H
∂x

)−1 ∂H
∂µ

1

 ν2, ζ(0) =
 x(0)

1

 , where ν =

 ν1

ν2

 . (7.3.8)

We use the homotopy continuation method with some modifications in choos-

ing step length and updating iterations to trace the homotopy path Γ
(0)
x numer-

ically.

7.3.2 Algorithm: Continuation Method with Single Pa-

rameter

Step 0: Parameter i counts the number of iterations and parameter is counts

the number of shifting of the initial point. Set i = is = 0. Give an initial point

(x(0), µ0) satisfying the criteria to be an initial point with µ0 = 1. η1 and η2 are

small positive numbers where η1 denotes the lower boundary of the norm of the
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direction vector and η2 denotes the lower boundary of the step length. κ1 ∈ (1, 2]

and κ2 is a positive number such that κk1 ≤ κ2, where κ
k
1 is the step length. ϵ1 is

a small positive numbers, which is used as a threshold for the parameter µ.

Step 1: Set

 x

t

 =

 x

µ

 =

 x(0)

1

 , where µ = µ0 = 1. Calculate

d(0) = det(∂H
∂x

(x(0), µ0)) and go to Step 2.

Step 2: Set c1 = c2 = 0. Calculate d = det(∂H
∂x

(x, µ)). Then go to Step 3.

Step 3: Determine the unit predictor direction τ (n) by the following method: If

sign(d) = −sign(d0), then td = 1− µ, else td = −µ.

Calculate xd = −td(∂H∂x (x, µ))
−1(∂H

∂µ
(x, µ)), τ (n) =

 xn

tn

 = 1
∥vd∥

vd, where

vd =

 xd

td

 , τ =
|td|
∥vd∥

, where ∥vd∥ =
√
x2d + t2d, x

2
d =

∑
i x

2
di, xdi is the

ith component of xd. If τ ≤ η1, then set c1 = c1 + 1 else c1 = 0. If td ≤ ϵ1, then

stop with a solution else go to Step 4.

Step 4: Choosing step length: Set i = i+1, k = 0, γ = [∇λ(x)]Txn, λ : Rn → R

and λ(x) = [H0(x)]
T [H0(x)], where

H0(x) =



(y − w1 + v1e+ JTf (z − w2 + v2e))

W1z

W2y

y − f(z)

(m−
n∑
i=1

(z + w1)i − v2)v1

(m−
n∑
i=1

(y + w2)i − v1)v2


.

If γ ≥ 0, x + κk+1
1 xn ∈ F(m), 0 < t + κk+1

1 tn < 1, then set k = k + 1 and go

to Step 5, else if γ < 0, µ(x + κk+1
1 xn) < µ(x + κk1xn), x + κk+1

1 xn ∈ F(m), 0 <

t+ κk+1
1 tn < 1, then set k = k + 1, and go to Step 5, else c2 = 0, and go to Step

6.

Step 5: If κk1 > κ2, then set k = k − 1, c2 = c2 + 1 and go to Step 6, else go to
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Step 4.

Step 6: If tn ≤ ϵ1, then stop with solution else go to Step 7.

Step 7: Compute

 xp

tp

 =

 x

t

+ κk1

 xn

tn

 ,
 x̄p

t̄p

 =

 xp

tp

− [JH(xp, tp)
+H(xp, tp)],

 x̃p

t̃p

 =

 xp

tp

− 2[(JH(xp, tp) + JH(x̄p, t̄p))
+H(xp, tp)],

 xcc

tcc

 =

 x̃p

t̃p

− [JH(x̄p, t̄p)]
+H(x̃p, t̃p),

 xb

tb

 =

 xcc

tcc

− JH(x̃p, t̃p)
+H(xcc, tcc).

Then the next iteration is

 xc

tc

 =

 xb

tb

 . Let r = ∥H(xc, tc)∥. If

r ≤ 1, 0 < tc < 1, and xc ∈ F(m), then go to Step 10 else set k = k− 1 and go to

Step 8.

Step 8: Calculate a = min(κk1, ∥x− xc∥). If a ≤ η2, then go to Step 9 else go to

Step 5.

Step 9: If tc ≤ ϵ1, then stop with a solution else i = i− 1, is = is + 1 and after

changing the initial point as x(0) = xc go to Step 1,

Step 10: Set

 x

µ

 =

 xc

tc

 . If tc ≤ ϵ1, then stop with homotopy solution

else set i = i+ 1 and go to Step 2.

Note that JH(x, t)
+ is the Moore-Penrose inverse of the Jacobian matrix
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JH(x, t), which is defined by JH(x, t)
+ = JH(x, t)

T (JH(x, t)JH(x, t)
T )−1.

We show that the positive tangent direction at the initial point is negative.

Theorem 7.3.7. If the homotopy curve Γ
(0)
x is smooth, then the positive tangent

direction τ (0) at the initial point x(0) satisfies sign(det(

 D(x,µ)H(x(0), 1)

τ (0)
T

)) < 0,

where D(x,µ)H(x(0), 1) =
[
∂H
∂x

(x(0), 1) ∂H
∂µ

(x(0), 1)
]
.

Proof. From Equation (7.3.1) we have H(x, x(0), µ) =

(1− µ)(y − w1 + v1e+ JTf (z − w2 + v2e)) + µ(z − z(0))

W1z − µW
(0)
1 z(0)

W2y − µW
(0)
2 y(0)

y − (1− µ)f(z)− µ(y(0))

(m−
n∑
i=1

(z + w1)i − v2)v1 − µ((m−
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )v

(0)
1 )

(m−
n∑
i=1

(y + w2)i − v1)v2 − µ((m−
n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )v

(0)
2 )


= 0.

Now at the point (x = x(0), µ = 1), the value of the partial derivative is

D(x,µ)H(x, µ) =
[
∂H
∂x

(x(0), 1) ∂H
∂µ

(x(0), 1)
]
=

[
K5 K6

]
, where

K5 =
[
M ′ N ′

]
, M ′ =

M ′
1

M ′
2

, M ′
1 =


I 0 0 0

W
(0)
1 0 Z(0) 0

0 W
(0)
2 0 Y (0)

0 I 0 0


4n×4n

,

M ′
2 =

−v(0)1 eT 0 −v(0)1 eT 0

0 −v(0)2 eT 0 −v(0)2 eT


2×4n

,

N ′ =

N ′
1

N ′
2

 , N ′
1 =


0 0

0 0

0 0

0 0


4n×2

,
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N ′
2 =

(m−
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 ) −v(0)1

−v(0)2 (m−
n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )


2×2

,

K6 =



A

B

C

D

E

F


,

where Y (0) = diag(y(0)), Z(0) = diag(z(0)),

W
(0)
1 = diag(w

(0)
1 ), W

(0)
2 = diag(w

(0)
2 ),

A = −[y(0) − w
(0)
1 + v

(0)
1 e+ JT

(f (0))
(z(0) − w

(0)
2 + v

(0)
2 e)], B = −W (0)

1 z(0),

C = −W (0)
2 y(0), D = f(z(0))− y(0), E = −(m−

n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )v

(0)
1 ,

F = −(m−
n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )v

(0)
2 .

Let positive tangent direction be τ (0) =

 t

−1

 =

 (R
(0)
1 )(−1)R

(0)
2

−1

 ,

R
(0)
1 = K5 =

 M ′
1 N ′

1

M ′
2 N ′

2

 and R
(0)
2 = K6 =



A

B

C

D

E

F


.

Here det(R
(0)
1 ) = det(N ′

2) det(M
′
1 − N ′

1(N
′
2)

−1M ′
2) = det(N ′

2) det(M
′
1) = ((m −

n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )(m−

n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )− v

(0)
1 v

(0)
2 )

∏n
i=1 z

(0)
i y

(0)
i ̸= 0.

Therefore det(

 D(x,µ)H(x(0), 1)

τ (0)
T

) = det(

 R
(0)
1 R

(0)
2

(R
(0)
2 )T (R

(0)
1 )(−T ) −1

)
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= det(

 R
(0)
1 R

(0)
2

0 −1− (R
(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2

)
= det(R

(0)
1 ) det(−1− (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 )

= − det(R
(0)
1 ) det(1 + (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 )

= −((m −
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )(m −

n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 ) −

v
(0)
1 v

(0)
2 )

∏n
i=1 z

(0)
i y

(0)
i det(1 + (R

(0)
2 )T (R

(0)
1 )(−T )(R

(0)
1 )(−1)R

(0)
2 ) < 0.

7.3.3 Order of Convergence

We trace the homotopy path Γ
(0)
x ⊂ F(m) × (0, 1] from the initial point (x(0), 1)

as µ → 0. Let s denote the arc length of Γ
(0)
x . We parameterize the homotopy

path Γ
(0)
x with respect to s in the following form

Hx(0)(x(s), µ(s)) = 0, x(0) = x(0), µ(0) = 1. (7.3.9)

From Equation (7.3.1) the choice of H is H(x, µ) = (1−µ)g1(x)+µg2(x) = 0,

where

g1(x) =



(y − w1 + v1e+ JTf (z − w2 + v2e))

W1z

W2y

y − f(z)

(m−
n∑
i=1

(z + w1)i − v2)v1

(m−
n∑
i=1

(y + w2)i − v1)v2


and
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g2(x) =



z − z(0)

W1z −W
(0)
1 z(0)

W2y −W
(0)
2 y(0)

y − y(0)

(m−
n∑
i=1

(z + w1)i − v2)v1 − ((m−
n∑
i=1

(z(0) + w
(0)
1 )i − v

(0)
2 )v

(0)
1 )

(m−
n∑
i=1

(y + w2)i − v1)v2 − ((m−
n∑
i=1

(y(0) + w
(0)
2 )i − v

(0)
1 )v

(0)
2 )


.

Hence the system (7.3.8) reduces to the following problem

dζ
ds

=

 −((1− µ)Jg1 + µJg2)
−1(g2(x)− g1(x))

1

 ν2 =
 −J̃−1g̃

1

 ν2,
ζ(0) = ζ(0) =

 x(0)

1

 .
where Jg1 , Jg2 are Jacobian matrices of the functions g1 and g2 and

J̃ = (1− µ)Jg1 + µJg2 and g̃ = g2(x)− g1(x).

This problem reduces to

ζ̇ = q(x, µ), ζ(0) = ζ(0) where q(x, µ) = −J̃−1g̃

This problem will be solved by iterative process

ζ(i+1) = Q(xi, µi, hi), for i = 0, 1 · · · ,

Here ζi is an approximation of ζ(s) and hi = µ(si+1) − µ(si). Q(xi, µi, hi) is

given by

Q(x, µ, h) = Im(x, µ, h), where I0(x, µ, h) = ζ

and Kj =
∂
∂x
H(Ij, µ+ h)+H(Ij, µ+ h)
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Lj = Ij −Kj,

KKj = ( ∂
∂x
H(Lj, µ+ h) + ∂

∂x
H(Ij, µ+ h))+H(Ij, µ+ h),

LLj = Ij − 2 ∗KKj,

Sj =
∂
∂x
H(Lj, µ+ h)+H(LLj, µ+ h),

SSj = LLj − Sj,

Tj =
∂
∂x
H(LLj, µ+ h)+H(SSj, µ+ h),

TTj = SSj − Tj,

The next iteration is given by

Ij+1 = TTj for j = 0, 1, 2, · · · ,m0 − 1.

By this iterative process the proposed homotopy function achieves the order

of convergence 7m0 − 1.

Lemma 7.3.1. [88] Consider the function f : Rn → Rn and the iterative method

yk = xk − f ′(xk)−1f(xk), zk = xk − 2(f ′(yk) + f ′(xk))−1f(xk), wk = zk −

f ′(yk)−1f(zk) has fifth order convergence.

Lemma 7.3.2. [88] Let f : Rn → Rn be a sufficiently differentiable function

in a neighborhood D of α, that is a solution of the system F (x) = 0, whose

Jacobian matrix is continuous and nonsingular in D. Then, for an initial

approximation sufficiently close to α, the method defined by zk = ϕ(xk, yk),

wk = zk − f ′(yk)−1f(zk) has order of convergence p+ 2, where zk = ϕ(xk, yk) is

the iteration function of a method of order p and yk = xk − f ′(xk)−1f(xk).

Now we show that the modified method which is defined in the following

Lemma has seventh order of convergence.

Lemma 7.3.3. Let f : Rn → Rn be a sufficiently differentiable function in a

neighborhood N of c∗, which is a solution of the system f(x) = 0, whose Jacobian

matrix is continuous and nonsingular in N . Then, for an initial approximation
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sufficiently close to c∗, the method defined by yk = xk − f ′(xk)−1f(xk), zk =

xk−2(f ′(yk)+f ′(xk))−1f(xk), wk = zk−f ′(yk)−1f(zk), vk = wk−f ′(zk)−1f(wk)

has seventh order of convergence.

Proof. By Lemma 7.3.1 and Lemma 7.3.2 it is clear that the following iterative

method

yk = xk − f ′(xk)−1f(xk),

zk = xk − 2(f ′(yk) + f ′(xk))−1f(xk),

wk = zk − f ′(yk)−1f(zk),

vk = wk − f ′(zk)−1f(wk)

has seventh order of convergence.

Theorem 7.3.8. Suppose the homotopy function has derivative, which is lips-

chitz continuous in a convex neighbourhood N of c, where c is the solution of the

homotopy function H(x, µ) = 0, whose Jacobian matrix is continuous and non-

singular and bounded on N . Then the homotopy continuation method has order

7m0 − 1.

Proof. Implicit Function Theorem ensures the existence of a unique continuous

solution ζ(h) ∈ N of ζ̇ = −J̃−1g̃, ζ(0) = ζ(0) and h ∈ (−δ, δ), for some δ >

0. Define αj = ∥ζ(h) − Ij(ζ, h)∥. Hence α0 = ∥ζ(h) − ζ)∥ = O(h). From the

Lemma 7.3.3, αj = O(h7
j
). Then αj+1 = ∥ζ(h) − Ij+1∥ ≤ Kαj

7, where K is a

constant. Hence αj+1 = O(h7
j+1

). By induction method the modified homotopy

continuation method has convergency of order 7m0 − 1.

7.4 Numerical Example

We consider some examples of nonlinear complementarity problems and de-

termine the solutions with homotopy method. To illustrate the effectiveness

of the Algorithm 7.3.2 we consider the initial point x(0) such that z(0) = e,
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y(0) = e, w1
(0) = e, w2

(0) = e, v1
(0) = 0.001, v2

(0) = 0.001 and µ0 = 1. Set

η1 = 10−12, η2 = 10−18, κ1 =
√
2, κ2 = 9000, ϵ1 = 10−11.

Example 7.4.1. f(z) =



x1 +
x2x3x4x5

50

x2 +
x1x3x4x5

50
− 3

x3 +
x1x2x4x5

50
− 1

x4 +
x1x2x3x5

50
+ 1

2

x5 +
x1x2x3x4

50


After 15 iterations the parameter µ converges to 0 and we

obtain the solution of the homotopy function (7.3.1) (x̄, µ̄) =

(0, 3, 1, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0.5, 0, 0, 3, 1, 0, 0, 0, 0, 0). The z̄ components

(0, 3, 1, 0, 0) of (x̄, µ̄) is the solution of the nonlinear complementarity problem.

Example 7.4.2. f(z) =


3x1

2 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x1
2 + x1 + x2

2 + 10x3 + 2x4 − 2

3x1
2 + x1x2 + 2x2

2 + 2x3 + 3x4 − 9

x1
2 + 3x2

2 + 2x3 + 3x4 − 3


After 20 iterations the parameter µ converges to 0 and we

obtain the solution of the homotopy function (7.3.1) (x̄, µ̄) =

(1, 0, 3, 0, 0, 31, 0, 4, 0, 31, 0, 4, 1, 0, 3, 0, 0, 0, 0). The z̄ components (1, 0, 3, 0)

of (x̄, µ̄) is the solution of the nonlinear complementarity problem.

Example 7.4.3. f(z) =


−x2 + x3 + x4

x1 − 4.5x3+2.7x4
1+x2

5− x1 − 0.5x3+0.3x4
1+x3

3− x1


After 26 iterations and changing the initial point 3 times the parameter µ

converges to 0 and we obtain the solution of the homotopy function (7.3.1)

(x̄, µ̄) = (1.10, 0, 0, 0, 0, 1.10, 3.89, 1.89, 0, 1.21, 3.78, 1.78, 1.21, 0, 0, 0, 0, 0, 0). The

z̄ components (1.10, 0, 0, 0) of (x̄, µ̄) is the solution of the nonlinear complemen-

tarity problem.
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Example 7.4.4. f(z) =


x1

2 − sin(x1)

x2
3 + x1x3

x3
2 + x1x2 − 200


After 28 iterations the parameter µ converges to 0 and we

obtain the solution of the homotopy function (7.3.1) (x̄, µ̄) =

(0.88, 0, 14.14, 0, 12.39, 0, 0, 12.39, 0, 0.88, 0, 14.14, 0, 0, 0). The z̄ components

(0.88, 0, 14.14) of (x̄, µ̄) is the solution of the nonlinear complementarity

problem.

In this study, we consider homotopy path to solve nonlinear complementarity

problem based on newly introduced homotopy function by modified homotopy

continuation method. The homotopy function is developed based on KKT condi-

tions and ensuring the boundedness property of the homotopy trajectory. We find

the positive tangent direction of the homotopy path. We prove that the smooth

curve for the proposed homotopy function is bounded and convergent under some

conditions related to initial points. Some examples of nonlinear complementarity

problem are numerically solved by the proposed modified homotopy continuation

method to demonstrate the effectiveness of the method.



Chapter 8

Oligopolistic Market Equilibrium

Problem In The Context Of

Nonlinear Complementarity

Problem

8.1 Introduction

Oligopoly is a fundamental economic market structure found in industrialized

nations. The oligopoly problem consists of a finite number of firms involved in the

production of homogenous commodities in a noncooperative manner. Cournot

[161] studied the oligopoly problem which is one of the classical problems in

economics. Cournot studied noncompetitive behaviour of competition between

two producers, known as duopoly problem. The decisions taken by the producers

are said to be in equilibrium if no one can increase his income by unilateral action

assuming that the other producer does not alter his decision.

*Results of this chapter have been communicated.
�Work of this chapter has been arxived [58] and [57].
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The oligopoly problem is one of the classical problems in economics, dat-

ing to Cournot [161], who first studied this problem. The oligopoly problem

consists of a finite number of firms involved in the production of homogenous

commodities in a noncooperative manner. In particular, Cournot investigated

competition between two producers, which is known as duopoly problem and is

credited with being the first to study noncompetitive behaviour. In his trea-

tise, the decisions made by the producers are said to be in equilibrium if no

one can increase his income by unilateral action, given that the other producer

does not alter his decision. Subsequently to fundamental Cournot contributions,

the problem has been studied extensively. Nash [163], [162] in turn generalized

Cournot’s concept of equilibrium for a behavioural model consisting of n play-

ers, each acting in its own self-interest, which is called a noncooperative game.

Specially, consider m players, each player i having at his disposal a strategy

vector xi = {xi1, xi2, ..., xin} selected from a closed, convex set Xi ⊂ Rn, with

a utility function vi : X → R, where X = X1 × X2 × · · · × Xm ⊂ Rmn. The

rationality postulate is that each player i selects a strategy vector xi ∈ Xi that

maximizes his utility level vi(x1, · · · , xi−1, xi, xi+1, · · · , xm) given the decisions

(xj)j ̸=i of the other players. we consider the oligopoly problems operating under

the Nash equilibrium concept of noncooperative behaviour, as a problem of the

game theory. In particular, we consider the firms as players and their commodity

production output as their strategies. Oligopolies are a fundamental economic

market structure found in industrialized nations. Recently, there have been a

number of studies dealing with the numerical computation of various oligopoiis-

tic market equilibrium problems. For details see Gabay and Moulin [165], Salant

[166], Murphy et. al. [59], Harker [193], [194]. Murphy et al. [59] attempted to

formulate oligopolistic market equilibrium problem. Later Harker [193] applied

relaxation algorithm to find its solution.
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8.2 Formulation of Oligopolistic Market Equi-

librium

In this chapter we consider an oligopolistic market structure in which n firms

supply a homogeneous product in a noncooperative fashion which is followed

by Murphy et. al. [59]. Let P (Q̃), price at which consumers will purchase

a quantity Q̃ ≥ 0, denotes the inverse demand function. With generally

accepted economic behaviour, this is assumed that P (Q̃) is strictly decreasing

and the industry revenue curve Q̃P (Q̃) is a concave function of Q̃ for Q̃ ≥ 0.

It is further assumed that P (Q̃) is continuously differentiable. Note that

Q̃ =
∑n

i=1Qi, where Qi ≥ 0 denotes the ith firm’s supply. Let ci(Qi) be

the total cost of supplying Qi units. Now the Nash equilibrium solution is

a set of nonnegative production levels Q1
∗, Q2

∗, · · · , Qn
∗ for the n firms at

which the market will be in a state of equilibrium, i.e. Qi
∗ is a Nash equilibrium if

(Qi
∗P (Qi

∗ + Q̃∗
i )− ci(Qi

∗)) ≥ (QiP (Qi + Q̃∗
i )− ci(Qi)) for all Qi ∈ Si

where Si is the set of all possible strategies for ith firm and Q̃∗
i =

∑
j ̸=iQj

∗.

Then Qi
∗ maximizes the profit of the ith firm given that the other firms produce

quantities Qj
∗ for j ̸= i. We restate the problem as Qi

∗ is an optimal solution to

the following problem for i ∈ {1, 2 · · · , n}

max
Qi≥0

QiP (Qi + Q̃∗
i )− ci(Qi) where Q̃∗

i =
∑
j ̸=i

Qj
∗ (8.2.1)

Murphy et al.[59] showed that if ci(Qi) is convex and continuously differ-

entiable ∀ i and the inverse demand function P (Q̃) is strictly decreasing and

continuously differentiable and the industry revenue curve Q̃P (Q̃) is concave,
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then (Q1
∗, Q2

∗, · · · , Qn
∗) is a Nash equilibrium solution if and only if

[P (Q̃∗) +Qi
∗P ′(Q̃∗)− ci

′(Qi
∗)]Qi

∗ = 0 (8.2.2)

ci
′(Qi

∗)− P (Q̃∗)−Qi
∗P ′(Q̃∗) ≥ 0 (8.2.3)

Qi
∗ ≥ 0 ∀ i (8.2.4)

where Q̃∗ =
∑n

i=1Qi
∗, which is a nonlinear complementarity problem with

fi(z) = ci
′(Qi

∗)− P (Q̃∗)−Qi
∗P ′(Q̃∗), and zi = Qi

∗.

Note that here the functions ci(Qi) and −Q̃P (Q̃) are convex. Hence the first

order derivative of these two functions are increasing function. Hence the

function fi(z) = ci
′(Qi

∗)− P (Q̃∗)−Qi
∗P ′(Q̃∗) is an increasing function.

Murphy et al. [59] attempted to formulate oligopolistic market equilibrium

problem. Later Harker [193] applied relaxation algorithm to find its solution.

In this study we propose some new methods to find the Nash equilibrium of

oligopolistic market through nonlinear complementarity problem. In this context

we introduce an approach to transform nonlinear complementarity problem to

a system of nonlinear equations and consider a continuation method to find the

oligopolistic market equilibrium. Mangasarian [186] gave an idea to connect non-

linear complementarity problem as a system of nonlinear equations. In addition

we consider Newton method to obtain the solution of system of linear equations

for finding Nash equilibrium and study Jacobian of the system of nonlinear equa-

tions to deal with its singularity. The chapter is organised as follows. In section

8.3 we discuss about system of nonlinear equations and establish the equivalence

between nonlinear complementarity problem and system of nonlinear equations.

In section 8.4 we introduce a continuation method with multiple parameters to

solve system of nonlinear equations. We show that the trajectory obtained from

that method is bounded under some conditions. In section 8.5 we propose mod-
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ified Newton method to solve nonlinear system of equations. We show that this

method has seventh order of convergence. Finally, we consider an example of

oligopolistic market equilibrium problem [59] to demonstrate the effectiveness of

our proposed algorithms.

8.3 Formulation of Nonlinear Complementarity

Problem as System of Nonlinear Equations

The nonlinear complementarity problem is identified as an important mathemat-

ical programming problem which is defined in the first chapter (1.4.1). A wide

class of problems, which arise in complementarity theory, can be studied via the

system of nonlinear equations. Finding solution of system of nonlinear equations

has an important role to deal with problems in various fields such as chemical

production processes, engineering design, economic equilibrium, transportation

and applied physics. A number of methods are proposed to solve system of

equations. Newton and quasi-Newton methods are well known iterative methods

to solve system of nonlinear equations. In recent years, researchers are inter-

ested to solve system of nonlinear equations both analytically and numerically.

Several iterative methods have been developed using different techniques such

as Taylor’s series expansion, quadrature formulas, homotopy method, interpo-

lation, decomposition and its various modification. For details, see [171], [172],

[174] and [175].

Now we show the equivalence between nonlinear complementarity problem

and system of nonlinear equations.

Theorem 8.3.1. Let ϕ : R → R be a strictly increasing function such that
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ϕ(0) = 0. Then z solves the complementarity problem (1.4.1) if and only if

ϕ((fi(z)− zi)
2)− ϕ(fi(z)|fi(z)|)− ϕ(zi|zi|) = 0 ∀ i (8.3.1)

Proof. Necessary. Suppose z is the solution of the nonlinear complementarity

problem (1.4.1). Now we show that z satisfies the system of nonlinear equations

(8.3.1).

For each i = 1, 2, . . . , n either zi = 0, fi(z) ≥ 0 or fi(z) = 0, zi ≥ 0.

If zi = 0, fi(z) ≥ 0 then

ϕ((fi(z)− zi)
2)− ϕ(fi(z)|fi(z)|)− ϕ(zi|zi|)

= ϕ((fi(z))
2)− ϕ(fi(z)|fi(z)|) = ϕ((fi(z))

2)− ϕ((fi(z))
2) = 0.

If fi(z) = 0, zi ≥ 0 then

ϕ((fi(z)− zi)
2)− ϕ(fi(z)|fi(z)|)− ϕ(zi|zi|)

= ϕ((zi)
2)− ϕ(zi|zi|) = ϕ((zi)

2)− ϕ((zi)
2) = 0.

Hence the solution of (1.4.1) satisfies the system of equations (8.3.1).

Sufficient. Suppose z satisfies the system of nonlinear equations (8.3.1). We

show that (a)f(z) ≥ 0, (b)z ≥ 0 and (c)zTf(z) = 0.

(a) To show f(z) ≥ 0 assume that fi(z) < 0 for atleast one i ∈ {1, 2, . . . , n}.

Since ϕ is a strictly increasing function with ϕ(0) = 0, we obtain

0 ≤ ϕ((fi(z)− zi)
2) = ϕ(fi(z)|fi(z)|) + ϕ(zi|zi|) = ϕ(−fi(z)2) + ϕ(zi|zi|)

< ϕ(zi|zi|)

This implies that ϕ(zi|zi|) > 0 =⇒ zi|zi| > 0 =⇒ zi > 0 and

ϕ((fi(z)− zi)
2) < ϕ(zi|zi|) =⇒ (fi(z)− zi)

2 < zi|zi| =⇒ (fi(z)− zi)
2 < z2i .

Now zi > 0 and fi(z) < 0 imply that (fi(z)− zi) < 0 and |fi(z)− zi| > zi. Hence

(fi(z)− zi)
2 > z2i . This contradicts that (fi(z)− zi)

2 < z2i . Hence fi(z) ≥ 0 ∀ i.

(b) To show that z ≥ 0 assume that zi < 0 for atleast one i ∈ {1, 2, . . . , n}. Since

ϕ is a strictly increasing function with ϕ(0) = 0, we obtain
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0 ≤ ϕ((fi(z)− zi)
2) = ϕ(fi(z)|fi(z)|) + ϕ(zi|zi|) = ϕ(fi(z)|fi(z)|) + ϕ(−z2i )

< ϕ(fi(z)|fi(z)|)

This implies that ϕ(fi(z)|fi(z)|) > 0 =⇒ fi(z)|fi(z)| > 0 =⇒ fi(z) > 0 and

ϕ((fi(z) − zi)
2) < ϕ(fi(z)|fi(z)|) =⇒ (fi(z) − zi)

2 < fi(z)|fi(z)| =⇒

(fi(z)− zi)
2 < (fi(z))

2.

Now fi(z) > 0 and zi < 0 imply that (fi(z) − zi) > 0 and (fi(z) − zi) > fi(z).

Hence (fi(z) − zi)
2 > (fi(z))

2. This contradicts that (fi(z) − zi)
2 < (fi(z))

2.

Hence zi ≥ 0 ∀ i.

(c)From (a) and (b) we have z ≥ 0 and f(z) ≥ 0. To show zTf(z) = 0

assume that zi > 0 and fi(z) > 0 for atleast one i ∈ {1, 2, . . . , n}. Then

ϕ((fi(z)− zi)
2) < ϕ((fi(z))

2)+ϕ((zi)
2) = ϕ(fi(z)|fi(z)|)+ϕ(zi|zi|). This contra-

dicts that ϕ((fi(z)− zi)
2) = ϕ(fi(z)|fi(z)|) + ϕ(zi|zi|). Hence zTf(z) = 0.

Therefore the solution of system of nonlinear equations (8.3.1) provides the so-

lution of nonlinear complementarity problem (1.4.1).

Remark 8.3.1. Hence it is shown that the complementarity problem of finding a

z ∈ Rn satisfying zTf(z) = 0, f(z) ≥ 0, z ≥ 0 where f : Rn → Rn is a nonlinear

function, is equivalent to the following problem of solving system of n nonlinear

equations in n variables

ψi(z) = ϕ((fi(z)−zi)2)−ϕ(fi(z)|fi(z)|)−ϕ(zi|zi|) = 0, i ∈ {1, 2, · · ·n} (8.3.2)

where ϕ is a strictly increasing function and ϕ(0) = 0. In this paper the function

ϕ : R → R is defined by ϕ(x) = x5

Now we show that the Jacobian of the system of nonlinear equations (8.3.2)

is nonsingular at the solution of nonlinear complementarity problem under some

conditions. To show this we consider the followings.

∂ψi

∂zj
= ϕ

′
((fi(z)− zi)

2)2(fi(z)− zi)(
∂fi
∂zj

− δij) −ϕ
′
(fi(z)|fi(z)|)2fi(z)sgn(fi(z)) ∂fi∂zj
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−ϕ′
(zi|zi|)2zisgn(zi)δij, where the function sgn : R → R is defined in the first

chapter.

We show that the Jacobian of the system of nonlinear equations (8.3.2) is non-

singular at the solution of nonlinear complementarity problem under some con-

ditions.

Theorem 8.3.2. Let z be a nondegenerate solution to the nonlinear complemen-

tarity problem (1.4.1) satisfying z + f(z) > 0. Let J (f(z)), the Jacobian of

the function f at z has nonsingular principal minors and let ϕ : R → R be a

differentiable strictly increasing function such that ϕ′(y) > 0 for all y > 0 and

ϕ(0) = 0. Then z solves (8.3.2) and the Jacobian of the function ψ at z, J (ψ(z))

is nonsingular.

Proof. Let z be a nondegenerate solution of the nonlinear complementarity prob-

lem (1.4.1). The Jacobian matrix of the function ψ is defined by

J (ψ) =


∂ψ1

∂z1

∂ψ1

∂z2
· · · ∂ψ1

∂zn

∂ψ2

∂z1

∂ψ2

∂z2
· · · ∂ψ2

∂zn
...

...
...

...

∂ψn

∂z1

∂ψn

∂z2
· · · ∂ψn

∂zn

 , where
∂ψi

∂zi
= ϕ

′
((fi(z)−zi)2)2(fi(z)−zi)(∂fi∂zi

−

1)−ϕ′
(fi(z)|fi(z)|)2fi(z)sgn(fi(z))∂fi∂zi

−ϕ′
(zi|zi|)2zisgn(zi) and ∂ψi

∂zj
= ϕ

′
((fi(z)−

zi)
2)2(fi(z)− zi)(

∂fi
∂zj

)− ϕ
′
(fi(z)|fi(z)|)2fi(z)sgn(fi(z)) ∂fi∂zj

for i ̸= j.

Assume that fi(z) = 0 for i = 1, 2, · · ·n1, n1 ≤ n and fi(z) > 0 for i =

n1+1, n1+2, · · ·n. Hence by nondegeneracy of z, zi > 0 for i = 1, 2, · · ·n1, n1 ≤ n,

zi = 0 for i = n1 + 1, n1 + 2, · · ·n.

Now the Jacobian of the function ψ at z is given by,

J (ψ(z)) = P ′ J (f(z))+Q′, where P ′
ij =


−ϕ′

((zi)
2)2zi if i = j, 1 ≤ i ≤ n1

0 if i = j, n1 < i ≤ n

0 if i ̸= j

,
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Q′
ij =


0 if i = j, 1 ≤ i ≤ n1

−ϕ′
((fi(z))

2)2fi(z) if i = j, n1 < i ≤ n

0 if i ̸= j

Since J (f(z)) has nonsingular principal minors and ϕ′(y) > 0 for y > 0,

then the Jacobian of the function ψ at z, J (ψ(z)) is nonsingular.

8.4 Continuation Method with Multiple Pa-

rameters

The basic idea of continuation method with vector parameter λ̃ ∈ Rn is to

construct a multi dimentional path to find the solution of the object fuction

p̃(z̃) = 0 varying each component of λ̃ from 1 to 0. We consider the function

H(z̃, z̃(0), λ̃) = p̃(z̃) − λ̃p̃(z̃(0)), where each component of p̃(z̃(0)), pi(z̃
(0)) ̸=

0 ∀ i and the product term λ̃p̃(z̃(0)) is a componentwise product i.e. λ̃p̃(z̃(0)) =
λ1p1(z̃

(0))

λ2p2(z̃
(0))

...

λnpn(z̃
(0))

 , where λ̃ =


λ1

λ2
...

λn

 and p̃(z̃(0)) =


p1(z̃

(0))

p2(z̃
(0))
...

pn(z̃
(0))

 .
In this method our main aim is to vary each component λi =

pi(z̃)

pi(z̃(0))
of λ̃ from 1

to 0.

We solve the system of nonlinear equations (8.3.2) using the function

H(z̃, z̃(0), λ̃) with multiple parameters in vector form λ̃ = [λ1, λ2, · · · , λn]T ∈

Rn. Consider the system of nonlinear equations ψi(z) = ϕ((fi(z) − zi)
2) −

ϕ(fi(z)|fi(z)|) − ϕ(zi|zi|) = 0 ∀ i, where ϕ : R → R is identified by ϕ(x) = x5.

Consider the set FH = {z̃ : z̃ ∈ Rn} and F̃H = {(z̃, λ̃) : (z̃, λ̃) ∈ Rn × (0, 1]n}.
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The function can be given as,

H(z̃, z̃(0), λ̃) = ψ(z̃)− λ̃ψ(z̃(0)) =


ψ1(z̃)− λ1ψ1(z̃

(0))

ψ2(z̃)− λ2ψ2(z̃
(0))

...

ψn(z̃)− λnψn(z̃
(0))

 (8.4.1)

where, z̃(0) is the initial value such that ψi(z̃
(0)) > 0 ∀ i, the Jacobian matrix

∂ψ(z̃(0))

∂z̃(0)
at initial point z̃(0) is nonsingular and λ̃ ∈ Rn.

8.4.1 Properties of the Trajectory for Multiple Parame-

ters

First we show that the continuation path with multiple parameters is smooth.

Theorem 8.4.1. If the Jacobian matrix ∂ψ(z̃(0))

∂z̃(0)
at initial point z̃(0) is nonsingular,

then for almost all initial points z̃(0) ∈ FH, 0 is a regular value of the function H :

Rn×(0, 1]n → Rn and the zero point set H−1
z̃(0)

(0) = {(z̃, λ̃) ∈ F̃H : Hz̃(0)(z̃, λ̃) = 0}

contains a smooth curve Γz̃(0) starting from (z̃(0), e).

Proof. Jacobian matrix of the above function (8.4.1) H(z̃, z̃(0), λ̃)

is denoted by DH(z̃, z̃(0), λ̃)) and we have DH(z̃, z̃(0), λ̃)) =[
∂H(z̃,z̃(0),λ̃)

∂z̃
∂H(z̃,z̃(0),λ̃)

∂z̃(0)
∂H(z̃,z̃(0),λ̃)

∂λ̃

]
. For all z̃(0) ∈ FH such that ψ(z̃(0)) ̸= 0,

the Jacobian matrix ∂ψ(z̃(0))

∂z̃(0)
at initial point z̃(0) is nonsingular and λ̃ ∈ (0, 1]n,

we have

∂H(z̃,z̃(0),λ̃)

∂z̃(0)
=



−λ1 ∂ψ1(z̃(0))

∂z̃
(0)
1

− λ1
∂ψ1(z̃(0))

∂z̃
(0)
2

· · · − λ1
∂ψ1(z̃(0))

∂z̃
(0)
n

−λ2 ∂ψ2(z̃(0))

∂z̃
(0)
1

− λ2
∂ψ2(z̃(0))

∂z̃
(0)
2

· · · − λ2
∂ψ2(z̃(0))

∂z̃
(0)
n

...
...
...
...

−λn ∂ψn(z̃(0))

∂z̃
(0)
1

− λn
∂ψn(z̃(0))

∂z̃
(0)
2

· · · − λn
∂ψn(z̃(0))

∂z̃
(0)
n


.

Now det(∂H(z̃,z̃(0),λ̃)

∂z̃(0)
) = (−1)n det(JH(z̃

(0)))
∏i=n

i=1 λi ̸= 0 for λ̃ ∈ (0, 1]n, where
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JH(z̃
(0)) = ∂ψ(z̃(0))

∂z̃(0)
. Thus DH(z̃, z̃(0), λ̃) is of full row rank. Therefore, 0 is a

regular value of H(z̃, z̃(0), λ̃) and H−1
z̃(0)

(0) consists of some smooth curves such

that Hz̃(0)(z̃
(0), e) = 0. Hence there must be a smooth curve Γz̃(0) starting from

(z̃(0), e).

Now we show the boundedness of the curve.

Theorem 8.4.2. Let the function f(z̃) be an increasing function and ψi(z̃
(0)) >

0 ∀ i. Then the smooth curve Γz̃(0) is bounded for λi ∈ (0, 1] ∀ i.

Proof. From the function (8.4.1) we obtain ψi(z̃) = λiψi(z̃
(0)) for i ∈

{1, 2, · · · , n},where ψi(z̃) = ϕ((fi(z̃) − z̃i)
2) − ϕ(fi(z̃)|fi(z̃)|) − ϕ(z̃i|z̃i|). It is

clear that ψi(z̃) is finite as λi ∈ [0, 1]. Hence ∥ψ(z̃)∥ <∞.

That is ψi(z̃) = ϕ((fi(z̃)− z̃i)
2)− ϕ(fi(z̃)|fi(z̃)|)− ϕ(z̃i|z̃i|) = λiψi(z̃

(0)) ∀ i. Let

λiψi(z̃
(0)) = ki. For λi ∈ (0, 1], ki > 0.

Hence ϕ((fi(z̃)− z̃i)
2) = ϕ(fi(z̃)|fi(z̃)|) + ϕ(z̃i|z̃i|) + ki.

Again ∀ i we have ψi(z̃) = ((fi(z̃) − z̃i)
10) − (fi(z̃)|fi(z̃)|)5 − (z̃i|z̃i|)5 =

(fi(z̃))
10 − 10(fi(z̃))

9z̃i + 45(fi(z̃))
8(z̃i)

2 − 120(fi(z̃))
7(z̃i)

3 + 210(fi(z̃))
6(z̃i)

4 −

252(fi(z̃))
5(z̃i)

5 + 210(fi(z̃))
4(z̃i)

6 − 120(fi(z̃))
3(z̃i)

7 + 45(fi(z̃))
2(z̃i)

8 −

10(fi(z̃))(z̃i)
9 + (z̃i)

10 − (fi(z̃))
9|fi(z̃)| − (z̃i)

9|(z̃i)|. Consider the path Γz̃(0)

is unbounded. Then there exists a sequence of points (z̃(k), λ̃(k)) ⊂ Γz̃(0) such

that ∥z̃(k)∥ → ∞. Then there are two possibilities.

Case 1: Let ∥z̃(k)∥ → ∞. Then ∃ i ∈ {1, 2, · · · , n} such that z̃
(k)
i → −∞ as

k → ∞. Let set I1z̃ = {i ∈ {1, 2, · · · , n} : lim
k→∞

z̃
(k)
i → −∞}.

Now consider ∥f(z̃(k))∥ < ∞. Then ∀ i ∈ I1z̃,
ψi(z̃

(k))

(z̃
(k)
i )10

→ 2 as k → ∞, which

contradicts that ψ(z̃) is bounded.

Again consider that the nonlinear function f(z̃) is unbounded. It is noted

that f(z̃) is an increasing function. Therefore there exists a nonempty set
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L1f(z̃) such that L1f(z̃) = {l ∈ {1, 2, · · · , n} : lim
k→∞

fl(z̃
(k)) → −∞} and

consider lim
k→∞

fi(z̃
(k))

(z̃
(k)
i )

= p ∀ i ∈ I1z̃ ∩ L1f(z̃). Hence ∀ i ∈ I1z̃ ∩ L1f(z̃),

ψi(z̃
(k))

(z̃
(k)
i )10

→ 2p10−10p9+45p8−120p7+210p6−252p5+210p4−120p3+45p2−10p+2

as k → ∞. From the boundedness of ψ(z̃(k)), it is clear that

2p10−10p9+45p8−120p7+210p6−252p5+210p4−120p3+45p2−10p+2 = 0, which

has no real solution, which contradicts that f(z̃) is unbounded. Again for all

l ∈ L1f(z̃), l /∈ I1z̃, lim
k→∞

ψl(z̃
(k))

fl(z̃(k))10
→ 2, contradicts the boundedness of the function

ψ(z̃). Therefore there exists no i ∈ {1, 2, · · · , n} such that z̃
(k)
i → −∞ as k → ∞.

Case 2: Let ∥z̃(k)∥ → ∞. Then ∃ j ∈ {1, 2, · · · , n} such that z̃
(k)
j → ∞ as

k → ∞. Let set I2z̃ = {j ∈ {1, 2, · · · , n} : lim
k→∞

z̃
(k)
j → ∞}.

Assume that there exists atleast one j ∈ {1, 2, · · · , n} such that z̃j > 0 and

fj(z̃) ≥ 0. For λj ∈ (0, 1], ϕ((fj(z̃) − z̃j)
2) = ϕ(fj(z̃)|fj(z̃)|) + ϕ(z̃j|z̃j|) + kj =

ϕ((fj(z̃)
2)+ϕ((z̃j)

2)+kj, where kj > 0. Now 0 ≤ ϕ((fj(z̃)− z̃j)
2) ≤ ϕ((fj(z̃)

2)+

ϕ((z̃j)
2). This contradicts that ϕ((fj(z̃)− z̃j)2) = ϕ((fj(z̃)

2)+ϕ((z̃j)
2)+kj, where

kj > 0. Hence λj > 0, z̃j > 0 imply fj(z̃) < 0. Again f is an increasing function.

Hence f(z̃) is bounded. Now considering that ∥f(z̃(k))∥ <∞. Then ∀j ∈ I2z̃, as

k → ∞,
ψj(z̃

(k))

(z̃
(k)
j )9

→ −10(fj(z̃
(k))) ↛ 0, which contradicts that ψ(z̃) is bounded.

Therefore there exists no j ∈ {1, 2, · · · , n} such that z̃
(k)
j → ∞ as k → ∞.

Therefore considering both the cases we conclude that the path Γz̃(0) is bounded

for λi ∈ (0, 1] ∀ i.

Remark 8.4.2. Now we trace the path Γz̃(0) ⊂ H−1
z̃(0)

(0) ⊂ F̃H from the initial

point (z̃(0), e) until λ̃ → 0 and find the solution of the system of nonlinear equa-

tions (8.3.2). If the path is bounded and λ̃ goes to 0 starting from e, then z̃ is the

solution of (8.3.2). Note that here we use the vector λ̃, such that λi = exp(−ti),

where exp is the exponential function. Hence for λi ∈ (0, 1], ti ∈ [0,∞).
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Lemma 8.4.1. The path Γz̃(0) is determined by the following problem

H′
z̃(0)(z̃(s), λ̃(s))

 dz̃
ds

dλ̃
ds

 = 0, ∥(dz̃
ds
,
dλ̃

ds
)∥2 = 1, z̃(0) = z̃(0), λ̃(0) = e. (8.4.2)

.

Proof. Let s denote the arc length of the path Γz̃(0) . Now differentiating the

function

Hz̃(0)(z̃(s), λ̃(s)) = 0, z̃(0) = z̃(0), λ̃(0) = e (8.4.3)

we obtain ∂H
∂z̃

dz̃
ds
+ ∂H

∂λ̃
dλ̃
ds

= 0. Let ν =

 z̃

λ̃

 . As s is the arc length of Γz̃(0) , then

∥ν ′∥ = ∥(dz̃
ds
, dλ̃
ds
)∥2 = 1. Then we obtain the following system of equation.

[
∂H
∂z̃

∂H
∂λ̃

]
µ = 0, µTµ = 1,

dν

ds
= µ, ν(0) =

 z̃(0)

e

 (8.4.4)

Hence from the system (8.4.4) the first two equations are solvable on µ. Solving

the following cauchy problem, the curve Γz̃(0) can be derived.

dν

ds
= µ, ν(0) =

 z̃(0)

e

 . (8.4.5)

8.4.2 Algorithm: Continuation Method with Multiple

Parameters

Step 0: Let i be the count of iteration and ic be the count of shifting of the

initial point. Set i = 0, ic = 0. Give an initial point (z̃(0), λ̃0) ∈ F̃H × {1}n. η1 is

a small positive number and c0 is a counter. ϵ1 is a small positive number.



Oligopolistic Market Equilibrium Problem 153

Consider κ1 ∈ (1, 2], κ2 such that the step length is determined by κk1, k ∈ Z

and κk1 ≤ κ2. Consider two counters c1 and c2.

Set ũ1 = e, λ̃(t) = exp (−t), where (exp(−t))i = exp (−ti), t =


t1

t2
...

tn

 ,

p̃1 = λ̃−1(e), e =vector of all 1′s=


1

1
...

1

.

Step 1: Set

 z̃

t

 =

 z̃(0)

p̃1

 . Calculate d(0) = det(∂H
∂z̃
(z̃(0), λ̃(p̃1))) and s

(0) =

dλ̃
dt
(t = p̃1). Then go to Step 2.

Step 2: Set c1 = c2 = 0. Calculate d = det(∂H
∂z̃
(z̃, λ̃(t))), N = dλ̃(t)

dt
, and s = Ne.

Then go to Step 3.

Step 3: If sgn(d) = −sgn(d0), then t̃d = N−1(e − λ̃(t)), else t̃d = −N−1λ̃(t).

Calculate z̃d = −(∂H
∂z̃
(z̃, λ̃(t))−1(∂H

∂λ̃
(z̃, λ̃(t))t̃d, τ

(n) =

 z̃n

t̃n

 = 1
∥ũd∥

 z̃d

t̃d

 ,
τ̃ =

∥t̃d∥
∥ũd∥

, where ũd =

 z̃d

t̃d

 , ∥ũd∥ =
√
z̃2d + t̃2d, z̃

2
d =

∑
i z̃

2
di, z̃di is the ith

component of z̃d. If τ̃ ≤ η1, then c1 = c1 + 1 else c1 = 0. Set ũ1 = λ̃−1(t̃n). If

t̃n ≤ ϵ1 then stop with a solution else go to Step 4.

Step 4: Set i = i+ 1, k = 0, γ = [∇µ(z̃)]T z̃n, where the function µ : Rn → R is

defined as µ(z̃) = [H0(z̃)]
T [H0(z̃)] and H0(z̃) =


ψ1(z̃)

ψ2(z̃)
...

ψn(z̃)

 .
If γ ≥ 0, z̃+κk+1

1 z̃n ∈ FH, 0 < λ̃(t+κk+1
1 ũ1) < e, then k = k+1 and go to Step 5.
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else if γ < 0, µ(z̃+κk+1
1 z̃n) < µ(z̃+κk1 z̃n), z̃+κ

k+1
1 z̃n ∈ FH, 0 < λ̃(t+κk+1

1 ũ1) < e,

then k = k + 1 and go to Step 5. else reset c2 = 0, and go to Step 6.

Step 5: If κk1 > κ2, then set k = k − 1, c2 = c2 + 1 and go to Step 6, else go to

Step 4.

Step 6: Compute

 z̃p

t̃p

 =

 z̃

t

+ κk1

 z̃n

ũ1

 , z̃c

t̃c

 =

 z̃p

t̃p

 − [JH(z̃p, λ̃(t̃p))
+H(z̃p, λ̃(t̃p))], where [JH(z̃p, λ̃(t̃p))

+] is the

Moore-Penrose inverse. Set ũs = λ̃(t̃c). If (z̃c, ũs) ∈ F̃H, go to Step 9, else

k = k − 1 and go to Step 7.

Step 7: Calculate a = min(κk1, ∥z̃ − z̃c∥). If a ≤ η2, then go to Step 8 else go

back to Step 5.

Step 8: If ∥ũs∥ ≤ ϵ1, then stop with a solution else i = i−1, ic = ic+1, z̃(0) = z̃c

and go to Step 1.

Step 9: Set

 z̃

t

 =

 z̃c

t̃c

 . If ∥ũs∥√
n

≤ ϵ1, then stop with solution else i = i+1

and go to Step 2.

We show that the positive predictor direction depends on the sign of determinant

of JH(z̃
(0)).

Theorem 8.4.3. If the path Γ
(0)
z̃ is smooth, then the positive predictor di-

rection τ̃ (0) at the initial point z̃(0) satisfies sgn(det(

 DH(z̃,λ̃)(z̃
(0), 1)

eτ̃ (0)
T

)) =

(−1)nsgn(det(JH(z̃
(0)))), where JH(z̃

(0)) = ∂ψ(z̃(0))

∂z̃(0)
.

Proof. From Equation (8.4.1) we have H(z̃, z̃(0), λ̃) =
ψ1(z̃)− λ1ψ1(z̃

(0))

ψ2(z̃)− λ2ψ2(z̃
(0))

...

ψn(z̃)− λnψn(z̃
(0))

 = 0.
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Now DH(z̃,λ̃)(z̃ = z̃(0), λ̃ = e) =
[
JHz̃

(0) Ψ(z̃(0))
]
,

where JH(z̃
(0)) = ∂ψ(z̃(0))

∂z̃(0)
and

Ψ(z̃(0)) =


−ψ1(z̃

(0)) 0 0 · · · 0

0 −ψ2(z̃
(0)) 0 · · · 0

...
...

...
...

...

0 0 0 · · · −ψn(z̃(0))

 . Let positive predictor di-

rection be τ (0) =

 t̃

−e

 =

 (R̃
(0)
1 )(−1)R̃

(0)
2 e

−e

 , where R̃(0)
1 = JH(z̃

(0)) and

R̃
(0)
2 = Ψ(z̃(0)). Here det(R̃

(0)
1 ) ̸= 0. Therefore

det(

 DH(z̃,λ̃)(z̃
(0), e)

eτ̃ (0)
T

) = det(

 R̃
(0)
1 R̃

(0)
2

eeT (R̃
(0)
2 )T (R̃

(0)
1 )(−T ) −eeT

)
= det(

 R̃
(0)
1 R̃

(0)
2

0 −eeT − eeT (R̃
(0)
2 )T (R̃

(0)
1 )(−T )(R̃

(0)
1 )(−1)R̃

(0)
2

)
= det(R̃

(0)
1 ) det(−eeT − eeT (R̃

(0)
2 )T (R̃

(0)
1 )(−T )(R̃

(0)
1 )(−1)R̃

(0)
2 )

= (−1)n det(R̃
(0)
1 ) det(eeT (I +ATA)), where A = (R̃

(0)
1 )(−1)R̃

(0)
2 .

Hence sgn(det(

 DH(z̃,λ̃)(z̃
(0), e)

eτ̃ (0)
T

)) = (−1)nsgn(det(JH(z̃
(0)))).

8.5 Modified Newton Method

Now we introduce the modified Newton method to solve the system of nonlinear

equations. Suppose f : R → R. Then the equation f(x) = 0 can be solved by

Newton method with the iterative process xk+1 = xk − f ′(xk)−1f(xk). Suppose

g : Rn → Rn . Then the system of nonlinear equations g(x) = 0 can be solved by

Newton method with the iterative process xk+1 = xk−Jg(xk)−1g(xk), where Jg is

the Jacobian of the function g. For details see [176], [177], [178]. The algorithm

of the modified Newton method is given below.



Oligopolistic Market Equilibrium Problem 156

8.5.1 Algorithm: Modified Newton Method

Step 0: Give the initial approximation z0 and a very small positive number e.

Compute J = ψ′(z), the Jacobian of ψ(z) with respect to z. Set k = 0.

Step 1: For k-th iteration compute the followings:

yk = zk − 1

2
[ψ′(zk) + diag(tiψi(z

k))]−1ψ(zk);

xk = zk − 1

2
[{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1

[ψ′(zk) + ψ′(yk)]ψ(zk);

wk = xk − [{ψ′(xk)}2 + {ψ′(yk)}2 + diag(µi{ψi(xk)}2)]−1

[ψ′(xk) + ψ′(yk)]ψ(xk);

zk+1 = wk − [ψ′(wk) + diag(ηi{ψi(wk)}2)]−1ψ(wk),

(8.5.1)

where sgn(tiψi(z
k)) =sgn(∂ψi

∂zi
(zk)),

sgn(λi) =sgn(∂ψi

∂zi
(zk)),

sgn(µi) =sgn(∂ψi

∂xi
(xk)),

sgn(ηi) =sgn( ∂ψi

∂wi
(wk)).

Step 2: Compute n1 = ∥ψ(z)∥ =
√∑n

i=1{ψi(z)}2.

Step 3: If n1 < e, then zk+1 is the required solution of ψ(z) = 0, otherwise set

k = k + 1 and go to step 1.

8.5.2 Order of Convergence

Theorem 8.5.1. Let ψ : Rn → Rn has a root z∗ ∈ D ⊆ Rn, where

D is an open convex set. Assume that ψ(z) is three times Fre’chet dif-

ferentiable in some neighborhood N of the root (z∗). If for all z ∈ N ,

diag(tiψi(z
k), diag(λi{ψi(zk)}2, diag(µi{ψi(xk)}2 and diag(ηi{ψi(wk)}2 are non-

singular, then the method defined by 8.5.1 is of seventh-order convergence.
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Proof. Let ek = zk − z∗. Now using Taylor series expansion we have,

ψ(z∗) = ψ(zk) + ψ′(zk)(z∗ − zk) + 1
2
ψ′′(zk)(z∗ − zk)2 + o(∥ek∥3)

=⇒ ψ(zk) = ψ′(zk)ek − 1
2
ψ′′(zk)(ek)2 + o(∥ek∥3).

Let dk = yk − zk = −1
2
[ψ′(zk) + diag(tiψi(z

k))]−1ψ(zk).

Now using Taylor series expansion we have,

ψ(yk) = ψ(zk) + ψ′(zk)dk + 1
2
ψ′′(zk)(dk)2 + o(∥dk∥3).

Now dk = yk − zk = −1
2
[ψ′(zk) + diag(tiψi(z

k))]−1ψ(zk)

= −1
2
[ψ′(zk) + diag(tiψi(z

k))]−1ψ′(zk)ek + o(∥ek∥2)

= −1
2
[ψ′(zk) + diag(tiψi(z

k))]−1[ψ′(zk) + diag(tiψi(z
k))]ek +

1
2
[ψ′(zk) + diag(tiψi(z

k))]−1[diag(tiψi(z
k))]ek + o(∥ek∥2)

= −1
2
ek + o(∥ek∥2), as diag(tiψi(zk))]ek = o(∥ek∥2).

Hence ψ(yk) = ψ(zk)− 1
2
ψ′(zk)ek+ o(∥ek∥2) = ψ′(zk)ek− 1

2
ψ′(zk)ek+ o(∥ek∥2) =

1
2
ψ′(zk)ek + o(∥ek∥2) and ψ′(yk) = 1

2
ψ′(zk) + o(∥ek∥).

Let ak = xk − z∗. Hence xk = zk − 1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 +

diag(λi{ψi(zk)}2)]−1[ψ′(zk) + ψ′(yk)]ψ(zk) implies that

ak = ek − 1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1[ψ′(zk) + ψ′(yk)]ψ(zk)

=⇒ ak = [{ψ′(zk)}2+{ψ′(yk)}2+diag(λi{ψi(zk)}2)]−1{[{ψ′(zk)}2+{ψ′(yk)}2+

diag(λi{ψi(zk)}2)]ek − 1
2
[ψ′(zk) + ψ′(yk)]ψ(zk)}

= [{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1{[diag(λi{ψi(zk)}2)]ek +

{ψ′(zk)}2ek + {ψ′(yk)}2ek − 1
2
[ψ′(zk) + ψ′(yk)]ψ(zk)} = o(∥ek∥3), as

diag(λi{ψi(zk)}2)ek = o(∥ek∥3).

Again using Taylor series expansion we have,

ψ(xk) = ψ(zk) + ψ′(zk)ck + 1
2
ψ′′(zk)(ck)2 + o(∥ck∥3),where

ck = xk − zk = −1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1[ψ′(zk) +

ψ′(yk)]ψ(zk) = −1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1[ψ′(zk) +

ψ′(yk)][ψ′(zk)ek] + o(∥ek∥2) = −1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 +

diag(λi{ψi(zk)}2)]−1[{ψ′(zk)}2ek + ψ′(yk)ψ′(zk)ek] + o(∥ek∥2) =

−1
2
[{ψ′(zk)}2 + {ψ′(yk)}2 + diag(λi{ψi(zk)}2)]−1[{ψ′(zk)}2 + {ψ′(yk)}2+
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diag(λi{ψi(zk)}2)]ek+ 1
2
[{ψ′(zk)}2+{ψ′(yk)}2+ diag(λi{ψi(zk)}2)]−1[{ψ′(yk)}2+

diag(λi{ψi(zk)}2)− ψ′(yk)ψ′(zk)]ek + o(∥ek∥2) = −1
2
ek + o(∥ek∥2).

Hence ψ(xk) = ψ(zk)− 1
2
ψ′(zk)ek+ o(∥ek∥2) = ψ′(zk)ek− 1

2
ψ′(zk)ek+ o(∥ek∥2) =

1
2
ψ′(zk)ek + o(∥ek∥2) and ψ′(xk) = 1

2
ψ′(zk) + o(∥ek∥).

Let bk = wk − z∗ = xk − z∗ − 1
2
[{ψ′(xk)}2 + {ψ′(yk)}2 +

diag(µi{ψi(xk)}2)]−1[ψ′(xk) + ψ′(yk)]ψ(xk) = ak − 1
2
[{ψ′(xk)}2 + {ψ′(yk)}2 +

diag(µi{ψi(xk)}2)]−1[ψ′(xk) + ψ′(yk)]ψ(xk)

=⇒ bk = [{ψ′(xk)}2 + {ψ′(yk)}2 + diag(µi{ψi(xk)}2)]−1{[{ψ′(xk)}2 +

{ψ′(yk)}2 + diag(µi{ψi(xk)}2)]ak − 1
2
[ψ′(xk) + ψ′(yk)]ψ(xk)} = o(∥ek∥5), as

diag(µi{ψi(xk)}2)ak = o(∥ek∥5). Now using Taylor series expansion we have,

ψ(wk) = ψ(zk) + ψ′(zk)mk + 1
2
ψ′′(zk)(mk)2 + o(∥mk∥3), where mk = wk − zk.

Let nk = wk − xk = −1
2
[{ψ′(xk)}2 + {ψ′(yk)}2 + diag(µi{ψi(xk)}2)]−1[ψ′(xk) +

ψ′(yk)]ψ(xk) = −1
2
[{ψ′(xk)}2 + {ψ′(yk)}2 + diag(µi{ψi(xk)}2)]−1[1

2
ψ′(zk) +

1
2
ψ′(zk)][1

2
ψ′(zk)ek] + o(∥ek∥2) = −1

4
[1
4
{ψ′(zk)}2 + 1

4
{ψ′(zk)}2 +

diag(µi{ψi(xk)}2)]−1[{ψ′(zk)}2ek] + o(∥ek∥2) = −1
8
[{ψ′(zk)}2 +

diag(µi{ψi(xk)}2)]−1[{ψ′(zk)}2ek] + o(∥ek∥2) = −1
8
[{ψ′(zk)}2 +

diag(µi{ψi(xk)}2)]−1[{ψ′(zk)}2 + diag(µi{ψi(xk)}2)]ek + 1
8
[{ψ′(zk)}2 +

diag(µi{ψi(xk)}2)]−1[diag(µi{ψi(xk)}2)ek] + o(∥ek∥2) = −1
8
ek + o(∥ek∥2).

Hence mk = wk− zk = wk−xk+xk− zk = nk+ ck = −5
8
ek+ o(∥ek∥2). Therefore

ψ(wk) = ψ(zk)− 5
8
ψ′(zk)ek + o(∥ek∥2).

Now zk+1 − z∗ = wk − z∗ − [ψ′(wk) + diag(ηi{ψi(wk)}2]−1ψ(wk)

=⇒ ek+1 = bk − [ψ′(wk) + diag(ηi{ψi(wk)}2]−1ψ(wk) = [ψ′(wk) +

diag(ηi{ψi(wk)}2]−1{[ψ′(wk) + diag(ηi{ψi(wk)}2]bk − ψ(wk)} = [ψ′(wk) +

diag(ηi{ψi(wk)}2]−1{ψ′(wk)bk + diag(ηi{ψi(wk)}2bk − ψ(wk)} = o(∥ek∥7), as

diag(ηi{ψi(wk)}2bk = o(∥ek∥7). Therefore the introduced modified Newton

method has seventh order of convergency.



Oligopolistic Market Equilibrium Problem 159

Remark 8.5.3. The proposed modified Newton method converges to the solution

for suitable initial point . Following this method we can obtain the solution

of oligopolistic market equilibrium problem by solving the system of nonlinear

equations (8.3.2).

8.6 Numerical Illustration

Consider an oligopoly with five firms, each with a total cost function of the form

[59]:

ci(Qi) = niQi +
βi

βi + 1
Li

− 1
βiQi

βi+1

βi (8.6.1)

The demand function is given by:

Q̃ = 5000P−1.1, P (Q̃) = 50001/1.1Q̃−1/1.1. (8.6.2)

The parameters of the Equation (8.6.1) for the five firms are given below:

firm i ni Li βi

1 10 5 1.2
2 8 5 1.1
3 6 5 1
4 4 5 0.8
5 2 5 0.6

Table 8.1: Value of parameters for five firms

To solve this problem using the continuation method with multiple parameter
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8.4.2, we first take the initial point z̃(0) =



1

1

1

1

1


, λ̃(0) =



1

1

1

1

1


and set i = 0, ic =

0, η1 = 10−12, κ1 =
√
2, κ2 = 9000, ϵ1 = 10−18. After 51 iterations we obtain the

result z̃ =



36.9325

41.8181

43.7066

42.6592

39.1789


, λ̃ =



0

0

0

0

0


. Here the stopping criteria depends on

∥λ̃∥ < ϵ1. For ϵ1 = 10−15, the values of system of nonlinear equations ψ(z̃) are

zero upto 8th decimal place , for ϵ1 = 10−17, the values of system of nonlinear

equations ψ(z̃) are zero upto 9th decimal place but for ϵ1 = 10−18, the values of

system of nonlinear equations ψ(z̃) are zero upto 10th decimal place.

Now to solve this oligopoly problem by modified Newton’s method 8.5.1, first

take the initial point z0 =



50

50

50

50

50


. Set e = 10−10. After 21 iterations we obtain

the solution z =



36.9325

41.8181

43.7066

42.6592

39.1789


.

In this study, we establish two broad approaches to find the Nash equilibrium of

oligopolistic market namely, continuation method and modified Newton method.
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In this context we also establish a continuation method based on vector parameter

to find the Nash equilibrium point. In addition we develop a modified Newton

method to find the solution of system of nonlinear equations which provides

the solution of oligopoly market. For this method, we prove that the order of

convergence is seven.
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