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ABSTRACT
As the human civilisation is upgrading day by day the natural resources of en-

ergy face a crisis. To solve this problem we are searching for the elective vitality
sources in a situation inviting way. To provide an affordable solution of shrinkage of
fossil fuel we pay our attention to a very essential as well as wonder plant Jatropha
curcas. Jatropha curcas is such a significant plant the seeds of which plant contains
37% oil that can be utilized to obtain a superior nature of biodiesel. So the plant is
economically very important. This plant is also used for medicinal purpose.

In Mathematical Biology we also study the non-linear mathematical models which
are based on various realistic phenomenon. The results of these study is very sig-
nificant for understanding the actual dynamical behavior regarding effect of attack
pattern of herbivore to the plant, renewable resource management , effect of growth
pattern of the plant , pest control , permanent coexistence of all the species etc..
Mathematical ecology deals with the interaction between the living organisms with
each other and their natural environment.

In my research work our concern goes to Jatropha curcas plant .This plant is eas-
ily effected by the mosaic virus through the vector whitefly. This attack affects the
plant very badly. To protect the plant from the virus attack applying insecticide is
very helpful. Mathematically it is done by applying control theory.

Mathematically exponential growth of plants gives the unstability where as lo-
gistic growth gives stable steady state of the system. Theoretical results shows that
applying control theory for spraying insecticide the system can be stabilised.
Likewise the growth pattern the attack pattern of whitefly also plays an important
role for the disease dynamics. Different probability distribution like Binomial, Pois-
son and Negative-binomial distribution which biologically express the regular, ran-
dom and aggregated attack pattern of whitefly are also used in my research work
to determine the effect of different attack pattern. It gives us interesting results like
stable coexistence, periodic oscillation, Hopf bifurcation etc. depending upon the
different parameter values. Persistence and permanence are also performed to
ensure the permanent coexistence of all the species.

Besides the continuous-time model we also chosen discrete time model by intro-
ducing Mickens non-standard finite difference scheme (NSFD) as well as Euler’s
discrete time system. Comparing all of them we observed that discrete time system
gives better approximation of the solution as well as the disease dynamics than the
continuous counter part.

All the results so obtained are verified by numerical simulations.

Keywords : Jatropha Curcas, whitefly, Mosaic disease, Random attack pat-
tern, Regular attack pattern, Aggregated attack pattern, control theory, dis-
crete time system.
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1.9 Pontryagin Minimum Principle and optimality condition

A control Hamiltonian function H can be constructed as:

H(u(t), z(t), λ(t), t) = L(u(t), z(t), t)+λt(t) f (u(t), z(t), t)..............................(1)

where z(t) is the optimal control. u(t) is the corresponding optimal state.
λ(t) is the lagrange multiplier.

Then the Pontryagin Minimum Principle states that there exists a continu-
ous function λ, known as an adjoint function, which is the solution of the
adjoint equation:

λ̇ = −Hu(u(t), z(t), λ(t), t)....................................(2)

along with the initial conditions of λ. Now Pontryagin Minimum Principle
states that the optimal control z(t) and corresponding optimal state u(t) and
λ(t) must minimize the Hamiltonian so that,

H(u(t), z(t), λ(t), t) ≤ H(u(t), z∗(t), λ(t), t)...............................(3)
while the adjoint equation (2) is satisfied. So, for a feasible trajectory that
satisfies the minimum principle condition. Equation (3) implies that Hamil-
tonian is minimum at the optimal control z(t) such that
Hz(u(t), z(t), λ(t), t) = 0......................(4)

This is the necessary condition for optimality.

1.10 Euler’s discrete time system and Mickens NSFD scheme

In continuous time system variation of time is not found, but in discrete time
system (R.E.Mickens,1989, R.E.Mickens 2010) the variables vary with time
and these changes are predominantly discontinuous. The state of variables
varies only at a discrete set of points in time. As variation of time is consid-
ered for discrete time system , the results so obtained are more realistic than
the continuous counter part.

In standard Euler forward scheme the system can be discretized as:

xt+1 = xt + ft∆t

where xt = x(t), xt+1 = x(t + ∆t) and ft = f (xt, t)

It requires very small step-size to obtain the accurate results.

NSFD scheme is general set of methods in Numerical Analysis by which we
can obtain the numerical solutions as well as dynamical behavior of the
system of differential equations by constructing a discrete model. In my
research work I have performed both these Euler forward scheme and
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Mickens non-standard finite difference scheme to compare these systems
with their continuous counterpart.

1.11 Objective of the thesis

In the present study our concern goes to the wonder plant Jatropha Curcas.
We have discussed previously that despite of many importance of this plant,
the main drawback is that the plant is easily affected by the mosaic virus. So
our main goal is to reduce the effect of the mosaic disease. In this study it is
also our aim to find out some of the parameters that may affect the disease
dynamics. In different models we have taken different growth patterns of
the Jatropha curcas plant to find the effect of growth pattern of the plant
on the disease dynamics. Besides this we also tried to find out the effect of
attack pattern of the vector of the disease i.e. the whitefly. Without this we
have compared the continuous and discrete time systems to find which one
is more effective to better understand the disease dynamics.

1.12 Highlights of the Thesis

The thesis covers seven chapters. The content of each chapter is introduced
herein to give the reader an idea on the topic concerned.

Chapter 1: It is the introductory chapter where we have discussed differ-
ent topics that is relevant to this thesis. The objective of the thesis is also
included here.

Chapter 2: We here formulated two mathematical models based on Jatropha
Curcas plant and whitefly interaction. Here we assumed that whiteflies are
distributed over the plants according to Poisson distribution. The growth
of the plant is assumed to be logistic in some cases and exponential in other
cases. The attack function of whitefly is assumed as Holling type-I functional
response .

Chapter 3: Here we formulated two models like the chapter 2 but taken func-
tional response as Holling type- II function.

Chapter 4: In this chapter we have taken the whitefly attack function as
Holling type-II function and the plant is assumed to follow logistic growth
function. Most importantly we here introduced control theory to control the
mosaic disease of the plant. The persistence and permanence of the system
is also discussed.

Chapter 5: In this chapter we have compared different attack pattern of
whitefly. Here we studied the cases in which whiteflies are distributed over
the plants according to Binomial, Poisson, Negative binomial distribution,
biologically that interprets regular, random and aggregated attack pattern of
whitefly. We have shown a possible way of controlling the mosaic disease
here.
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Chapter 6: We here formulated a three dimensional model regarding Jat-
ropha curcas plant and whitefly interaction. Here we have taken two classes
of the plant i.e. the healthy plant and the infected plant. The effect of whitefly
attack on both the population is shown here. Pontryagin minimum principle
is applied to get the optimal solution of the control problem. Permanent coex-
istence is ensured by checking the persistence and permanence of the system.

Chapter 7: This chapter is based on the comparison between continuous time
system and discrete time system. In discrete time system we have taken Eu-
ler’s forward scheme and Micken’s non-standard finite difference scheme.
Then all the three are compared to each other. Here we have assumed that
distribution of whiteflies over the plants follow negative-binomial distribu-
tion which ecologically reflects the aggregated attack pattern. Persistence
and permanence of the system is discussed also in this chapter.

Lastly, we concluded our study as discussed in different chapters and also
proposed an outline for future scope.
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2 Effect of Growth Functions on
Jatropha Curcas Plant with
Random Attack Pattern of
Whitefly: A Mathematical Study

[Chapter based on the paper published in Global Journal of Pure and
Applied Mathematics, ISSN 0973-1768 Volume 16, Number 1(2020),
pp. 27-38]
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2.1 Introduction

In this chapter first we introduce the Jatropha curcas plant. Jatropha curcas
plant is one of the wonder plant with economic potentiality and ecological
applications in various aspects. The plant produces seeds with oil (biodiesel)
that can be combusted as fuel without being refined. Jatropha curcas is a
species of flowering plant in the spurge family, Euphorbiaceae and popularly
called as physic nut. This plant has been introduced to Africa and Asia and
is now cultivated world-wide (Pandey et al., 2012). .

Jatropha curcas is a semi-evergreen shrub or small tree with large green
to pale green leaves. Normally it grows between (3-5) meter in height but
attains a height upto (8-10) meter under favourable conditions. It is a drought
resistant plant which grows even in poor soil. The tree can be grown in dry
and infertile conditions and can be cultivated also in rough, sandy and salty
soils. It has low plantation cost and the first harvesting is made just after 18
months. It grows quickly and lives producing seeds for 50 years. The most
successful cultivation occurs in the drier regions of the tropics with annual
rainfall of (300-1000) mm. It occurs mainly at lower altitudes (0-500) meter in
areas with average annual temperature well above 20 ◦C but it can also grow
at higher altitudes, low nutrient and tolerates slight frost. Fruits are produced
in winter or it may produce several crops during the year if soil moisture is
good and temperature is sufficiently high. The seeds become mature when
the capsule changes from green to yellow, after two to four months. It’s life
span is around 45-50 years. Seed production ranges from about 0.4 tonnes to
12 tonnes per hectare per year. The seeds of this plant contain 37% oil that
can be used to obtain a better quality of biodiesel (Sahoo et al., 2009). .

Jatropha curcas is naturally infected by Begomovirus. The symptoms of
mosaic disease (Guin, 2016, Narayana, Shankarappa, Govindappa, Prameela,
Rao and Rangaswamy, 2006 and Sahoo, Kumar, Sharma and Naik, 2009) are
severe mosaic , mottling, blistering of leaves, yellowing of leaves, reduced
leaf size, stunting of diseased plants. It mainly attacks its fruits, considerably
reducing the production and quality of seeds. The mosaic virus is carried
through infected whiteflies (Gao et al., 2010 ; Holt et al., 1997)..

The population of whitefly is controlled by temperature and rainfall. Heavy
rainfall creates an obstruction for the growth of whiteflies. In this disease the
mosaic virus passes from an infected whitefly to a susceptible plant and vice-
versa. The spread of the virus is highly dependent on the plant density. A
single whitefly is adequate to infect the host plants but transmission of the
disease spread when numerous infected whiteflies feed on the host plants
through massive flux of saliva. As a result host plant (Jatropha curcas) faces
leaf damage and sap drainage due to such feeding. Whiteflies are
tremendously productive, if once they get conventional on any part of the
plants they will voluntarily roam and try to attack any other immediate
vegetation n (Narayana D.S.A. et al., 2006 ; Venturino et al., 2016). . Normally
they need 3 hours feeding time to procure the virus and a latent phase of 8
hours. It requires 10 minutes time to contaminate the young leaves. Symp-
toms seem to be appeared after a latent period of 3-5 weeks. Moreover the
infected whiteflies inject the virus to the plant with the infection being more
likely if more insects attack the same plant . After acquisition of the mosaic
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virus adult whiteflies can infect the host plants within 48 hours. In this
chapter we will show the dynamics due to different growth function of the
plant Jatropha Curcas and the effect of random attack pattern of whitefly on
the plant (Sarkar and Roy , 1989). .
It is observed that if the Jatropha curcas plant grows exponentially then it
shows fragile behaviour and it can be stabilize by considering logistic growth
of the plant. The result so obtained is verified by numerical simulation.

2.2 Statement of the model

In our model we have considered that v whiteflies are distributed over x
plants in such a way that some plants are whitefly free and others have
1,2,..........,i whiteflies per plant. Thus we have:

x

∑
i=1

i = v

We here assumed that the whiteflies are distributed over x plants according
to a probability distribution so that the proportion of plants with i whiteflies
is p(i). So the number of plants with i whiteflies is p(i)x. If the intrinsic plant
loss-rate per whitefly is f then the loss-rate of plants with i whiteflies will be
fip(i)x. Therefore the total loss-rate of plants is

f x
∞

∑
i=0

ip(i)

Here ∑ ip(i) is the mean number of whitefly per plant and v/x is the
expectation of i. So the loss rate due to whitefly consumption is fv. The loss
of whiteflies occur in the following ways.
e=natural mortality of whitefly.
b=natural mortality of the host plant.
f=by their killing the host plant.
This self induced mortality occurs at a rate f i2p(i)x. So for the whole plant
population it is

f x
∞

∑
i=0

i2p(i)

The term ∑ i2p(i) is the expectation of i2. We have chosen here the poisson
distribution which ecologically reflects random attack pattern. Here whitefly-
inflicted losses through the plant death are f xE(i2). For Poisson distribution
we have E(i2) = v

x + ( v
x )

2 (Sarkar and Roy , 1989).
We have chosen two different types of growth function of the plant (Jatropha
curcas) population. In the first model we have chosen the growth of plant
population in exponential form and in the second model the growth of of
plant population is assumed to be in logistic form. The attack pattern of
whitefly on the plant is taken as holling type-1 function in both cases . Here
r is growth rate of the whitefly, k is the carrying capacity.



Chapter 2. Effect of Growth Functions on Jatropha Curcas Plant with Random
Attack Pattern of Whitefly: A Mathematical Study

11

Based on the above assumptions the first model is formulated as:

2.3 Model 2.1

Assuming that the plant and whitefly follow the exponential growth the
model takes the figure:

dx
dt

= rx − axv − f v

dv
dt

= v[cx − (e + b + f )− f v
x
]

(2.1)

where x(0) = x0 > 0 and v(0) = v0 > 0.
For mathematical simplicity we consider the following transformation:

x = rX
c , v = r2V

c f , t = τ
r .

Based on the transformation the model becomes:

dX
dτ

= X − αXV − V

dV
dτ

= V[X − β − V
X
]

(2.2)

Where α = ar
c2 f , β = b+e+ f

r

2.3.1 Equilibria

The steady state of the system is obtained by setting dX
dτ = 0, dV

dτ = 0 and
solving the equations :

X − αXV − V = 0
X − β − V

X = 0

We have seen that the system has only one equilibrium point i.e. the
interior equilibrium point E(X∗, V∗). To solve E(X∗, V∗) we have a quadratic
equation which has atleast one positive real root. Therefore E(X∗, V∗) exists.

2.3.2 Dynamic behavior

At E(X∗, V∗) the characteristic equation is,
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λ2 + λ(V∗
X∗ − 1

(1+αX∗)) +
V∗
X∗ + X∗ − V∗

X∗(1+αX∗) = 0 which can be written as,

λ2 + Aλ + B = 0

Where A = V∗
X∗ − 1

(1+αX∗) = 0

B = V∗
X∗ + X∗ − V∗

X∗(1+αX∗) =
αV∗

1+αX∗ + X∗ > 0
Therefore the roots are purely imaginary and E(X∗, V∗) is a centre which
shows the fragile behavior of the system (2.2).

2.4 Model 2.2

Assuming that the plant follows logistic growth then the model becomes:

dx
dt

= rx(1 − x
k
)− axv − f v

dv
dt

= v[cx − (e + b + f )− f v
x
]

(2.3)

where x(0) = x0 > 0 and v(0) = v0 > 0.

Here x0 is the initial plant population density and v0 is the initial whitefly
density.
For mathematical simplicity we consider the following transformation.
x = kX, v = ck2V

f , t = τ
ck

The transformed equation is,

dX
dτ

= αX(1 − X)− βXV − V

dV
dτ

= V[X − γ − V
X
]

(2.4)

where α = r
ck , β = ak

f , γ = b+e+ f
ck

2.4.1 Solution Properties

Lemma 2.1 :

The solutions of (2.4) are positive.
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Proof:
Since x(0) = x0 > 0 and v(0) = v0 > 0, we have X(0) = X0 > 0 and
V(0) = V0 > 0. Suppose X(τ) is not positive for all τ ≥ 0 . Since X0 > 0 then
there exist τ0 with X(τ0) = 0 and X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ < τ0

˙X(τ)
X(τ)

= α(1 − X)− βV − V
X > −αX − βV − V

X

X(τ0) > X0exp[−
∫ τ0

0 V(η)/X(η)dη] > 0
This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly it
can be shown that V(τ) is also positive for all τ ≥ 0.

2.4.2 Equilibria

The equilibrium point is obtained by setting dX
dτ = 0 and dV

dτ = 0 and solving
the equations of (2.4):

αX(1 − X)− βXV − V = 0

X − γ − V
X = 0

We have seen that the system has two equilibrium points i.e. E1(X, 0) = (1, 0)
which is the whitefly free equilibrium and E2(X∗, V∗) which is the interior
equilibrium.

Here V∗ = αX∗(1−X∗)
βX∗+1

X∗ =
−(α+1−βγ)±

√
(α+1−βγ)2+4β(α+γ)

2β

For feasibility of X∗ we have chosen the positive sign.

2.4.3 Dynamic behavior

From the variational matrix we obtained the behavior of different
equilibrium points of the system. E1 is saddle as γ < 1. The characteristic
equation for E2(X∗, V∗) is given by,
λ2 + αX∗λ − V∗2

X∗2 + αV∗ + αX∗(1 − X∗) + αV∗(1−X∗)
X∗ = 0

which can be written as,
λ2 + Aλ + B = 0
where A = αX∗ > 0

B = α(1−X∗)[αX∗+αβX∗2+αX∗+β2X∗3+βX∗2+X∗+αβX∗]
βX∗+1 > 0.

Therefore E2(X∗, V∗) is locally asymptotically stable (Ali N., Chakravarty
S.,2015)equilibrium if γ < 1.
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2.4.4 Global Stability

Lemma 2.2 :

The XV subsystem is globally asymptotically stable.

Proof:
H(X, V) = 1

XV , then H > 0 if X > 0 and V > 0.
h1(X, V) = αX(1 − X)− βXV − V
h2(X, V) = V(X − γ − V

X )

Therefore, ∇(X, V) = ∂(h1H)
∂X + ∂(h2H)

∂V

=
∂[ α(1−X)

V −β− 1
X ]

∂X +
∂[1− γ

X− V
X2 ]

∂V = − α
V < 0

Hence by Bendixon-Dulac criteria E2(X∗, V∗) is globally asymptotically
stable in the positive XV plane (Konar et al., 1999 ; Cheng K,H Su S, Lin S,
1982) . This completes the proof of the lemma.

2.4.5 Persistence and permanence of the system

Theorem

The system (2.4) is permanent if γ < 1.

Proof:
The index theorem states that the system with dissipativeness assumption
has at least one saturated equilibrium. If all these saturated equilibria are
regular, then the sum of their indices is +1. From the lemma 2.1, the system is
dissipative and so there exists atleast one saturated equilibrium and the sum
of their indices is +1 if they are regular (Konar et al., 1999).. The permanence
of the system implies that none of the boundary fixed points are saturated.
Hence the interior fixed point exists and must be saturated. Therefore all the
eigenvalues are negative or have negative real parts, which we have shown
before.

We now construct the average Lyapunov function . In our model, we
consider the average Lyapunov function as σ(X) = Xr1 .Vr2

where ri > 0, i=1,2.
Let, ψ(X) = σ̇(X)

σ(X)

= r1
Ẋ
X + r2

V̇
V

= r1(α(1 − X)− βV − V
X ) + r2(X − γ − V

X )

If ψ(X) > 0 for the ω -limit sets of trajectories initiated in R3
+, then the

trajectories more away from the boundary and the system (2.4) is permanent.
It is evident that there is no periodic trajectory. Hence if there exist r1 > 0
such that Ψ(E1) > 0,then (2.4) is permanent.
Therefore for E1(1, 0), ψ(X) = r2(1 − γ) > 0 should be satisfied for atleast
one positive vector r = (r1, r2, r3) since γ < 1
Hence the system (2.4) is uniformly persistent(or permanent) if γ < 1.
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FIGURE 2.1: Variation of plant-herbivore densities with time in model
2.1 for α = 4.17 and β = 0.14.

This completes the proof of the theorem.

2.5 Numerical simulations of model 2.1 and model 2.2

We here used ode23 solver for numerical simulations using MATLAB 2017a.
Keeping in mind all the feasibility criteria the numerical values are
chosen for different parameter values. The equilibrium point corresponding
to the parameter values for model 2.1 is (0.475330834 , 0.159393085) and the
equilibrium point corresponding to the parameter values for the model 2.2 is
(0.390263193,0.103522461). The numerical results also supports the theoreti-
cal findings of the model 2.1 and model 2.2.

Here we observed large amplitude oscillations that indicates the unstable
condition for both the populations.
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FIGURE 2.2: Variation of plant-herbivore densities with time in model
2.1 for α = 4.17 and β = 0.14.

This shows the phase portrait in the XV-plane which shows the fragile behavior.
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FIGURE 2.3: Globally asymptotically stable steady-state in model 2.2
for α = 1.25, β = 4.8 and γ = 0.125.

This shows the stable behavior as time increases for both the populations.
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FIGURE 2.4: Globally asymptotically stable steady-state in model 2.2
for α = 1.25, β = 4.8 and γ = 0.125.

This shows the phase portrait for global asymptotic behavior in the XV-plane.

2.6 Conclusions

These two models represents the description of interaction between Jatropha
curcas plant and the whitefly. Here we made a comparative study between
two different growth functions of the Jatropha curcas plant population with
random attack pattern of whitefly using poisson distribution. From the study
it is revealed that if the plant grows logistically then the effect of whitefly
can not destabilize the system but if the plant growth is exponential, then it
shows a fragile behavior. Therefore growth function of the plant (Jatropha
curcas) plays an important role for the stability of plant-herbivore system.
Our numerical results also reflects the same phenomena.
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3 Comparison Between Different
Growth Functions of The Jatropha
Curcas Plant with Random Attack
Pattern of Whitefly

[Chapter based on the paper published in Global Journal of Engineering
Science and Researches, ISSN 2348-8034 7(9): September2020,pp.16-26]
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3.1 Introduction

With the continuation of the previous chapter we now formulate another
model to make a comparison between different growth functions of the plant
where we have taken the Holling type -II ( Pal Pallav et al. 2011) functional
response for the attack pattern of whitefly and parameters represents the
same meaning. We have chosen two different types of growth function of
the plant(Jatropha curcas) population (Pandey et al., 2012). In the first model
we have chosen the growth of the plant population in logistic form and in
the second model exponential growth is assumed. .

3.2 Model 3.1

dx
dt

= rx(1 − x
k
)− axv

k + x
dv
dt

= v[
cx

k + x
− (e + b + f )− f v

x
]

(3.1)

with the initial conditions,
x(0) = x0 > 0, v(0) = v0 > 0
Here x0 is the initial plant population density and v0 is the initial whitefly
density.
For mathematical simplicity we consider the following transformation,
x = kX, v = kcv

f , t = τ
c .

The transformed equation is,

dX
dτ

= αX(1 − X)− βXV
1 + X

dV
dτ

= V[
X

1 + X
− γ − V

X
]

(3.2)

where α = r
c , β = a

f ,γ = b+e+ f
c .

3.2.1 Solution properties

lemma :

The solution of (3.2) are positive.
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Proof:
since x(0) = x0 > 0 and v(0) = v0 > 0, we have X(0) = X0 > 0 and
V(0) = V0 > 0.Suppose X(τ) is not positive for all τ ≥ 0. Since X0 > 0 then
there exist τ0 with X(τ0) = 0 and X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ ≤ τ0

˙X(τ)
X(τ)

= α(1 − X)− βV
1+X > −αX − βV

1+X

X(τ0) > X0exp[−
∫ τ0

0 V(η)/X(η)dη] > 0
This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly it
can be shown that V(τ) is also positive for all τ ≥ 0.

3.2.2 Equilibria

The equilibrium points are obtained by setting dX
dτ = 0 and dV

dτ = 0 and solv-
ing the equations

α(1 − X)− βV
1+X = 0 and

X
1+X − γ − V

X = 0.

We have seen that there are two equilibrium points i.e. E1(X, 0) = (1, 0)
which is the whitefly free equilibrium and E2(X∗, V∗) is the interior
equilibrium. From the first equation we obtain V∗ as a function of X∗, which
is given by
V∗ = α(1−X∗)(1+X∗)

β

Clearly V∗ is feasible as X∗ ≤ 1. Substituting this in the second equation we
have a cubic equation as,
αX∗3 + (β − βγ + α)X∗2 − (α + βγ)X∗ − α = 0
Since there is atleast one change of sign therefore by Descartes’ rule of sign
there exist atleast one positive X∗. Therefore (X∗, V∗) exists.

3.2.3 Stability

The equilibrium E1 is stable if γ > 0.5 or saddle if γ < 0.5 as its eigen values
are -α and0.5 − γ.
The characteristic equation for E2(X∗, V∗) is a quadratic equation which is as
follows,
λ2 + λ(−α + 2αX∗ + βV∗

(1+X∗)2 +
V∗
X∗ )− αV∗

X∗ + 2αV∗ + βV∗2

X∗(1+X∗)2 +
αX∗(1−X∗)
(1+X∗)2 +

βV∗2

X∗(1+X∗) = 0
Which can be written as
λ2 + Aλ + B = 0
Where,
A = 2αX∗2

(1+X∗) +
V∗
X∗ > 0

and
B = α2(1−X∗2)

β + α2(1−X∗)2

βX∗ + αX∗(1−X∗)
(1+X∗)2 > 0

Since A > 0,B > 0, E2(X∗, V∗) is locally asymptotically stable.
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3.2.4 Global stability

Let us consider H(X, V) = 1
XV

then H > 0 as X > 0 and V > 0

Let h1(X, V) = αX(1 − X)− βXV
1+X

and h2(X, V) = V[ X
(1+X)

− γ − V
X ]

Therefore ∇(X, V) = ∂(h1H)
∂X + ∂(h2H)

∂V

=
∂

α(1−X)
V − β

(1+X)

∂X +
∂ 1
(1+X)

− γ
X− V

X2
∂V

= −2βX
(1+X)2(1−X)

− 1
X2 < 0

Hence by Bendixson-Dulac criteria E2 is globally asymptotically stable in the
positive XV-plane (Konar et al., 1999, Sarwardi Sahabuddin et al. ,2014)..

3.2.5 Persistence and Permanence of the system

Theorem 3.1

The system is permanent iff γ < 1
2 .

Proof:

The index theorem states that the system with dissipativeness assumption
has atleast one saturated equilibrium. If all these saturated equilibria are
regular, then the sum of their indices is +1. From the lemma 1 the system
is dissipative and so there exists atleast one saturated equilibrium and the
sum of their indices is +1 if they are regular. The permanence of the system
implies that none of the boundary fixed points are saturated. Hence the
interior fixed point exists and must be saturated (Konar et al., 1999).. Hence
all the eigen values are negative or have negative real part,which is possible
if γ < 1

2 .

We now construct the average Lyapunov function to prove the sufficient
condition. In our model, we consider the average Lyapunov function as
σ(X) = Xr1 .Vr2 where ri > 0 i=1,2.

Let,ψ(X) = σ̇(X)
σ(X)

= r1
Ẋ
X + r2

V̇
V

= r1[α(1 − X)− βV
(1+X)

] + r2[
X

(1+X)
− γ − V

X ]

If ψ(X) > 0 for the ω -limit sets of trajectories initiated in R3
+,then the tra-

jectories more away from the boundary and the system (3.1) is permanent. It
is evident that there is no periodic trajectory.Hence if there exist r1 > 0 such
that Ψ(E1) > 0,then (1) is permanent.
Therefore for E1(1, 0), ψ(X) = r2(

1
2 − γ) > 0

The inequality is evidently satisfied for atleast one positive r = (r1, r2) if
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γ < 1
2 . Hence the system is uniformly persistent(or permanent) if γ < 1

2 .
This completes the proof of the theorem.

3.3 Model 3.2

In this model keeping all the parameters same as 3.1 but we have taken the
exponential growth of the plant (Jatropha curcas). Now our model 3.2 is as
follows:

dx
dt

= rx − axv
k + x

dv
dt

= v[
cx

k + x
− (e + b + f )− f v

x
]

(3.3)

For convenience we have chosen the dimensionless form by taking,
x = kX,v = kc

a V,t = τ
c

The dimension less form becomes:

dX
dτ

= αX − XV
1 + X

dV
dτ

= V[
X

1 + X
− β − γV

X
]

(3.4)

where α = r
c , β = e+ f

c ,γ = f
a .

3.3.1 Equilibria

The equilibrium points can be obtained by setting dX
dτ = 0, and dV

dτ = 0
we here observed that there is only one equilibrium point E(X∗, V∗) i.e. the
interior equilibrium point.

From the first equation of (3.4) we get V∗ in terms of X∗ which is as follows:
V∗ = α(1 + X∗)
substituting this in the second equation X∗ is obtained as:

X∗ =
(β+2αγ)±

√
(β+2αγ)2+4(1−β−αγ)αγ

2(1−β−αγ)

So X∗ exists if β + αγ < 1
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3.3.2 Stability

The local behavior of the equilibrium point of the system is determined by
the real parts of the eigenvalues of the Jacobian matrix at that point.
The characteristic equation is given by:
λ2 + λ(− αX∗

1+X + γV
X )− αγV

1+X + αX
(1+X)2 +

γV2

X(1+X)
= 0

Which can be written as:
λ2 + Aλ + B = 0

Where A = X−β−βX−αX
1+X

and B = − αγV
1+X + αX

(1+X)2 +
γV2

X(1+X)
> 0

This leads to the following results for A > 0 or A = 0 or A < 0:

Theorem 3.2:

If β + αγ < 1 and X∗ − β − βX∗ − αX∗ > 0 then E(X∗, V∗) is globally
asymptotically stable.

Proof:

If possible let Γ be any periodic orbit around E(X∗, V∗) in the positive
XV- plane. Then ,

∆ =
∫

Γ div(Ẋ, V̇) dτ

=
∫

Γ(α − V
(1+X)2 +

X
(1+X)

− β − 2γV
X ) dτ

=
∫

Γ(
αX

(1+X)
− γV

X ) dτ

Under the given assumption E(X∗, V∗) is locally stable. Thus ∆ < 0. The
Poincare criteria now implies that the postulated periodic orbit Γ is stable ,
which leads to a contradiction. Therefore, there is no periodic orbit around
E(X∗, V∗) in the positive XV plane and thus E(X∗, V∗) is a global attractor.
This completes the proof of the theorem.

Theorem 3.3:

If β + αγ < 1 and X∗ − β − βX∗ − αX∗ = 0 then the system bifurcates into
small amplitude periodic solutions near E(X∗, V∗).

Proof:

To prove this theorem we can show that the conditions for a hopf
bifurcations are satisfied. If X∗ − β − βX∗ − αX∗ = 0 and the two roots of the
characteristic equation λ2 + Aλ + B = 0 are purely imaginary namely ±iη.
where η2 = −αVγ

(1+X)
+ αX

(1+X)2 +
γV2

X(1+X)
.

The necessary and sufficient condition for hopf bifurcation to occur is that
there exist a γ = γ∗ such that
i)X∗ − β − βX∗ − αX∗ = 0 and
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ii) d(Realλ)
dγ

∣∣∣
γ=γ∗

̸= 0

Hence all the conditions for a Hopf bifurcation are satisfied. This completes
the proof of the theorem.

Theorem 3.4:

If β + αγ < 1 and X∗ − β − βX∗ − αX∗ < 0 then there exists a stable limit
cycle around E(X∗, V∗) in the positive XV plane.

Proof:

Now if we decrease the value of X∗ − β − βX∗ − αX∗ such that X∗ − β −
βX∗ − αX∗ < 0 then E(X∗, V∗) is locally unstable.
Again ∆ =

∫
Γ div(Ẋ, V̇) dτ

=
∫

Γ(α − V
(1+X)2 +

X
(1+X)

− β − 2γV
X ) dτ

=
∫

Γ(
αX

(1+X)
− γV

X ) dτ

So, we can conclude that ∆ > 0 if X∗ − β − βX∗ − αX∗ < 0. Hence by
Poincare criteria any periodic orbit is stable. Therefore there exists atleast
one stable limit cycle around E(X∗, V∗) in the positive XV plane.

3.4 Numerical simulation and discussions

To verify the theoretical results numerical simulations have been carried out
using MATLAB-2016a. Here we have used MATLAB routine ODE23. In this
numerical simulation we have used different admissible values of the system
parameters to ensure our theoretical results. For the model 3.2, we have
chosen a set of parameter values such as α = 0.75, β = 2, γ = 0.2 that shows
the local as well as global stability (see fig.3.1 and 3.2) which also ensures the
theoretical results.The equilibrium point corresponding to this set of param-
eter values of model 3.2 is (0.7429,0.168037346). For the model 3.4, keeping
in mind the feasibility criteria we have chosen the values of γ by using the
following conditions,

i)X∗ − β − βX∗ − αX∗ > 0
ii)X∗ − β − βX∗ − αX∗ = 0
iii)X∗ − β − βX∗ − αX∗ < 0

For the set of parameter values α = 0.7, β = 0.1, γ = 0.35 satisfying the
condition X∗ − β − βX∗ − αX∗ > 0 the equilibrium point becomes
(1.209914074,1.546939852). The corresponding figure shows locally steady
state which leads to global stability around the equilibrium point. The cor-
responding phase portrait for the same set of parameter values also ensures
the same by figure 3.3 and 3.4.
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FIGURE 3.1: Variation of plant-herbivore densities with time in model
3.2 for α = 0.75, β = 2, γ = 0.2 . Here we observe local stability for

the population with increasing time.

For the set of parameter values α = 0.7, β = 0.1, γ = 0.111111111
satisfying the condition X∗ − β − βX∗ − αX∗ = 0 the equilibrium point be-
comes
(1.124650736,1.487255515) . The corresponding figure shows small amplitude
oscillation which leads to Hopf bifurcation around the equilibrium point.
The corresponding phase portrait of this Hopf bifurcation of the system (3.4)
has been represented in the figure 3.5 and 3.6 for the same set of parameter
values.

For the set of parameter values α = 0.7, β = 0.1, γ = 0.07 satisfying the
condition X∗ − β − βX∗ − αX∗ < 0 the equilibrium point is
(0.383003659,0.968102561) which locally shows the unstable behavior. It is
observed that there is a large amplitude oscillation with increasing time for
both the plant and whitefly which leads to limit-cycle. The corresponding
phase portrait of this stable limit- cycle of the system (3.4) has been shown in
the figure 3.7 and 3.8.
In the realistic situation we also observe the same phenomena.
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FIGURE 3.2: Variation of plant-herbivore densities in model 3.2
α = 0.75, β = 2, γ = 0.2 .This shows the phase portrait in the XV

plane which is globally asymptotically stable state of model 3.2.
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FIGURE 3.3: Locally asymptotically stable state for both the popula-
tion for the set of parameter values α = 0.7, β = 0.1, γ = 0.35 for

model 3.4.
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FIGURE 3.4: Phase portrait for the plant-herbivore system with the
same parameter values α = 0.7 β = 0.1, γ = 0.35 which shows global

asymptotic stability of model 3.4.
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FIGURE 3.5: Small amplitude oscillations of both the population for
the set of parameter values α = 0.7, β = 0.1, γ = 0.111111111 of

model 3.4.
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FIGURE 3.6: Hopf bifurcation for the parameter values α = 0.7,
β = 0.1, γ = 0.111111111 of model 3.4.
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FIGURE 3.7: Large amplitude oscillations of both the population
which indicates unstable condition as time increase for the set of pa-

rameter values α = 0.7, β = 0.1, γ = 0.07 of model model 3.4.
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FIGURE 3.8: Stable limit-cycle for the parameter values
α = 0.7, β = 0.1, γ = 0.07.

3.5 Conclusions

This study is based on the interaction between Jatropha curcas plant and the
vector whitefly. Here a comparison of two different growth function of the
Jatropha curcas plant is represented with random attack pattern of the white-
fly using poisson distribution. From our study it is explicit that if the plant
grows logistically then the effect of whitefly cannot destabilize the system
but if the plant growth is exponential then it shows three different types of
behavior depending upon the different parameter values. It shows global
stability for some parameter values, hopf bifurcation for some other param-
eter values and stable limit cycle for some another set of parameter values.
Our numerical results also supports the same behavior.
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4 An Effort for Controlling the
Mosaic Disease of
Jatropha Curcas Plant

[Chapter based on the paper published in Advances and Application in
Mathematical Sciences Volume 21, Issue 11,September 2022, pp. 6437-6454]
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4.1 Introduction

In the previous chapter we have already discussed about the Jatropha Curcas
plant and its mosaic disease (Pandey et al., 2012; Sahoo et al., 2009; Gao et al.,
2010 ; Holt et al., 1997 ) . Here we are interested to find out any solution
for controlling this disease (Narayana D.S.A. et al., 2006 ; Venturino et al.,
2016) . We here formulated a mathematical model regarding plant-herbivore
interaction and applied control theory to control the mosaic disease of the
Jatropha Curcs plant.

4.2 Statement of the model

In our model the mosaic virus (Begomovirus) which is responsible for the
disease is taken implicitly by considering its vector whiteflies. The vector
can be controlled by removing infected plant biomass, spraying insecticide
etc. Here growth of the plant is considered in logistic form and the attack
pattern is taken as Holling type-II function. Here ’x’ denotes the Jatropha
Curcas plant population and ’v’ denotes the whitefly population. ’k’ is the
carrying capacity, ’r’ is the growth rate of the plant.

The loss of whiteflies occur in the following ways.
d= natural mortality of whitefly.
e= natural mortality of the host plant.
f= by their killing the host plant.
Based on the above assumptions the model takes the form as given in 4.3,

4.3 Model

dx
dt

= rx(1 − x
k
)− cxv

a + x
dv
dt

= v[
cx

a + x
− (e + d + f )]

(4.1)

with the initial conditions,
x(0) = x0 > 0, v(0) = v0 > 0
Here x0 is the initial plant population density and v0 is the initial whitefly
density.
For mathematical simplicity we consider the following transformation,
x = aX, v = av, t = τ

r .
The transformed equations are,
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dX
dτ

= X(α − X)− βXV
1 + X

dV
dτ

= V[
βX

1 + X
− γ]

(4.2)

where α = k
a , β = ck

ra ,γ = (d+e+ f )k
ra .

4.3.1 Solution properties

lemma :

The solutions of (4.2) are positive.

Proof:
Since x(0) = x0 > 0 and v(0) = v0 > 0, we have X(0) = X0 > 0 and
V(0) = V0 > 0.Suppose X(τ) is not positive for all τ ≥ 0. Since X0 > 0 then
there exist τ0 with X(τ0) = 0 and X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ ≤ τ0

˙X(τ)
X(τ)

= α − X − βV
1+X > −X − βV

1+X

X(τ0) > X0exp[− τ2
0
2 −

∫ τ0
0 βV/(1 + X)dτ] > 0

This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly
it can be shown that V(τ) is also positive for all τ ≥ 0.

4.3.2 Equilibria

The equilibrium points are obtained by setting dX
dτ = 0 and dV

dτ = 0 and solv-
ing the equations
X(α − X)− βXV

1+X = 0 and
βXV
1+X − γV = 0.

We have seen that there are three equilibrium points i.e. E0(0, 0),E1(α, 0)
which is the whitefly free equilibrium, E2(X∗, V∗) which is the interior equi-
librium. From the two equations we obtain
X∗ = γ

β−γ

V∗ =αβ−αγ−γ
(β−γ)2

Clearly E2(X∗, V∗) is feasible if α > γ
β−γ > 0.

4.3.3 Stability

From the variational matrix we obtain the behavior of different equilibrium
points of the system. The equilibrium E0(0, 0) is saddle as its eigen values
are α and−γ.
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The eigen values of E1(α, 0) are −α, αβ
α+1 − γ

Therefore if αβ
1+α −γ > 0 then E1(α, 0) becomes saddle, in this case E2(X∗, V∗)

exists. But if αβ
1+α − γ < 0 then E1(α, 0) becomes stable and in this case

E2(X∗, V∗) does not exists. The characteristic equation for E2(X∗, V∗) is a
quadratic equation which is as follows,

λ2 + λ(−α + 2X∗ + βV∗

(1+X∗)2 ) +
β2X∗V∗

(1+X)3 = 0
Which can be written as
λ2 + Aλ + B = 0
Where,
A = X∗ − βX∗V∗

(1+X∗)2

and
B = β2X∗V∗

(1+X∗)3 > 0
A can be > 0 , equal to 0 or < 0.
Therefore if A > 0
then 1 − βV∗

(1+X∗)2 > 0

i.e. β+γ
β−γ > α

If A = 0, then β+γ
β−γ = α

and if A < 0, then β+γ
β−γ < α

Theorem 4.1

If β+γ
β−γ > α and α > γ

β−γ then the system (4.2) is globally asymptotically stable.

Proof :
If possible let Γ be any periodic orbit around E2(X∗, V∗) in the positive XV-
plane. Then ,

∆ =
∫

Γ div(Ẋ, V̇) dτ

=
∫

Γ[α − 2X − βV
(1+X)2 +

βX
(1+X)

− γ] dτ

=
∫

Γ[
βV

(1+X)
− X − βV

(1+X)2 ] dτ

=
∫

Γ[
γ(αβ−αγ−γ−β)

β(β−γ)
] dτ

Under the given assumption E2(X∗, V∗) is locally stable. Thus ∆ < 0.
Then by Poincare criteria any periodic orbit Γ in the positive XV plane is
stable , leads to a contradiction. Therefore, there is no periodic orbit around
E2(X∗, V∗) in the positive XV plane and thus E2(X∗, V∗) is a global attractor
(Konar et al., 1999) . This completes the proof of the theorem.

Theorem 4.2:

If β+γ
β−γ = α and α > γ

β−γ then the system (4.2) leads to small amplitude Hopf bifur-
cating periodic solutions near E2.
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Proof : To prove this theorem we have to satisfy all the conditions for hopf
bifurcation. If β+γ

β−γ = α then the two roots of the characteristic equation
λ2 + Aλ + B = 0 are purely imaginary namely ±iη.

where η2 = β2XV
4(1+X)3 .

The necessary and sufficient condition for hopf bifurcation to occur is that
there exist a α = α∗ such that

i) β+γ
β−γ = α and

ii) d(Realλ)
dα

∣∣∣
α=α∗

̸= 0

Now we have

d(−X+
βVX

(1+X)2
)

dα

∣∣∣
α=

β+γ
β−γ

= γ
β ̸= 0

Hence all the conditions for a Hopf bifurcation are satisfied.Then there exists
small amplitude hopf bifurcating periodic solutions near E2. This completes
the proof of the theorem.

Theorem 4.3:

If β+γ
β−γ < α and α > γ

β−γ then there exists atleast one stable limit cycle around
E2(X∗, V∗) in the positive XV plane.

Proof:
If possible let Γ be any periodic orbit around E2 in the positive XV plane.

Then
∆ =

∫
Γ div(Ẋ, V̇) dτ

=
∫

Γ(α − 2X − βV
(1+X)2 +

βX
(1+X)

− γ) dτ

=
∫

Γ(
γ(αβ−αγ−γ−β)

β(β−γ)
) dτ

So, we can conclude that ∆ > 0 if β+γ
β−γ < α . Hence by Poincare criteria

any periodic orbit is stable. Therefore there exists atleast one stable limit
cycle around E2(X∗, V∗) in the positive XV plane.

4.4 Persistence and Permanence of the system

The idea of persistence was first came to the light by Freedman and Waltman
in 1984. From the biological point of view persistence implies that all the
populations are present and none of them will become extinct (Konar et al.,
1999).

Persistence and permanence are very useful to decide the questions of
survival and extinction of n-species whose growth equations are governed
by the differential equations
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ẋi = xi fi(x1, x2, ..........., xn) (4.3)

4.4.1 Some definitions

1) The system is said to be weakly persistent if limsupxi(t) > 0 for all orbits
in intRn

+and strongly persistent if limin f xi(t) > 0.

2)The system is said to be permanent if there exists a compact set B ⊂ intRn
+

such that all orbits in intRn
+ end up in B.

3) The system is uniformly persistence if there exist δ > 0 such that for each
compact set xi , limin f xi(t) ≥ δ > 0 for all
(x1(t), x2(t), .........., xn(t)) = X(t) ∈ intRn

+.

4) An equilibrium fixed point x∗ is said to be saturated equilibrium if x∗i = 0
then fi(x∗1 , x∗2 , ..........., x∗n) ≤ 0.

With the concept of saturated equilibria and by the method of average
Lyapunov function we have the following theorem for permanent coexis-
tence of both the species of the system (4.2).

4.4.2 Theorem 4.4

The system is permanent iff α > γ
β−γ .

Proof:
The index theorem states that the system with dissipativeness assumption
has atleast one saturated equilibrium. If all these saturated equilibria are
regular, then the sum of their indices is +1. From the theorem 4.1 the system
is dissipative and so there exists atleast one saturated equilibrium and the
sum of their indices is +1 if they are regular. The permanence of the system
implies that none of the boundary fixed points are saturated. Hence the
interior fixed point exists and must be saturated. Hence all the eigen values
are negative or have negative real parts.

We now construct the average Lyapunov function to prove the sufficient
condition. In our model, we consider the average Lyapunov function as
σ(X) = Xr1 .Vr2 where ri > 0 i=1,2.

Let,ψ(X) = σ̇(X)
σ(X)

= r1
Ẋ
X + r2

V̇
V

= r1[α − X − βV
(1+X)

] + r2[
βX

(1+X)
− γ]

If ψ(X) > 0 for the ω -limit sets of trajectories initiated in R3
+, then the

trajectories more away from the boundary and the system (4.2) is permanent.
It is evident that there is no periodic trajectory. Hence if there exist r1 > 0
such that Ψ(E1) > 0,then (4.2) is permanent.



Chapter 4. An Effort for Controlling the Mosaic Disease of
Jatropha Curcas Plant

36

Therefore for E0(0, 0), ψ(X) = αr1 − γr2 > 0

E1(α, 0), ψ(X) = ( αβ
1+α − γ)r2 > 0

The inequalities are evidently satisfied for atleast one positive r = (r1, r2)
if α > γ

β−γ .

Hence the system is uniformly persistent(or permanent) if α > γ
β−γ .

This completes the proof of the theorem.

4.5 The optimal control problem

We now reformulate the model as an optimal control problem to minimize
the costs of insecticide spraying. The migration of infected whiteflies are not
considered. Assuming that all the infected vectors are under the control of
insecticide spraying (Chowdhury Jahangir, F.A.Basir et al.,2019; P.K.Roy, X.Z.
Li et al,2015; Venturino et al., 2016). We now introduce the control variable
u(t) such that 0 ≤ u(t) ≤ 1 defined on [t0, t f ] where t0 and t f are the starting
and finishing time of control respectively.
Now the model takes the form,

dX
dτ

= X(α − X)− (1 − u(t))
βXV
1 + X

dV
dτ

= V[(1 − u(t))
βX

1 + X
− γ]

(4.4)

If we consider u(t)=0 then there is no reduction in the contact rate between
the infected whiteflies and the plants.
If we consider u(t)=1 then there is no such contact rate between them. u(t)
plays the key role to express the reduction of contact rate between them by
the spraying of insecticide.

We define the objective functional to minimize the cost of insecticide spray-
ing as follows :-

J(u(t)) =
∫

t
t f
0 [Pu2 − QX2]dτ Where P ≥ 0 and Q ≥ 0

Here the first term represents the costs of spraying insecticide and labor
charge and the last term represents the extra revenues obtained by the larger
population of healthy Jatropha Curcas plants.
Now we are going to find the optimal control.
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4.5.1 Theorem 4.5:

The objective cost function J(u∗) is minimum for the optimal control u∗ correspond-
ing to the interior equilibrium E2(X∗, V∗) and also there are adjoint variables ξ1, ξ2
satisfying the system of equations,

dξ1

dt
= 2QX − ξ1[α − 2X − (1 − u(t))

βV
(1 + X)2]

− ξ2[(1 − u(t))
βV

(1 + X)2 ]

dξ2

dt
= ξ1(1 − u(t))

βX
1 + X

− ξ2[(1 − u(t))
βX

1 + X
− γ]

(4.5)

with the boundary condition ξi(t f ) = 0 (i=1,2). The optimal control can be given as,

u∗(t) = max{0, min{1,
βXV(ξ2 − ξ1)

2P(1 + X)
}}

(4.6)

Proof:
Applying the Pontryagin Minimum Principle the optimal control variable

u∗(t) satisfies

∂H
∂u∗(t) = 0

Which implies

2Pu∗ + ξ1
βXV
1+X − ξ2

βXV
1+X = 0

⇒ u∗ = (ξ2−ξ1)βXV
2P(1+X)

we first construct the Hamiltonian as follows:

H = Pu2 − QX2 + ξ1[X(α − X)− (1 − u(t)) βXV
1+X ] + ξ2[(1 − u(t)) βXV

1+X − γV]

For the boundedness of the optimal control we have

u∗(t) =



0 βXV(ξ2−ξ1)
2P(1+X)

≤ 0

βXV(ξ2−ξ1)
2P(1+X)

0 < βXV(ξ2−ξ1)
2P(1+X)

< 1

1 βXV(ξ2−ξ1)
2P(1+X)

≥ 1

According to Pontryagin Minimum Principle adjoint variables satisfy the
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FIGURE 4.1: Variation of plant-herbivore densities with time for
α = 2, β = 0.2, γ = 0.1 . Here we observe local stability for the

population with increasing time.
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FIGURE 4.2: Variation of plant-herbivore densities α = 2, β = 0.2,
γ = 0.1 .This shows the phase portrait in the XV plane which is glob-

ally asymptotically stable state of the model.
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FIGURE 4.3: Small amplitude oscillation for both the population for
the set of parameter values α = 3, β = 0.2, γ = 0.1.
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FIGURE 4.4: Variation of plant-herbivore densities in the model with
α = 3, β = 0.2, γ = 0.1 .This shows the phase portrait in the XV plane

which shows hopf bifurcation.
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FIGURE 4.5: large oscillations of both the population for the set of
parameter values α = 3.5, β = 0.2, γ = 0.1 of the model .
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FIGURE 4.6: Limit cycle for the parameter values α = 3.5, β = 0.2,
γ = 0.1 of the model .
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FIGURE 4.7: Effect of control on the stable state for the set of
parameter values α = 2, β = 0.2, γ = 0.1 of the model.
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FIGURE 4.8: Effect of control on the hopf bifurcating parameter
values α = 3, β = 0.2, γ = 0.1.
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FIGURE 4.9: Effect of control on the limit cycle regarding parameter
values α = 3.5, β = 0.2, γ = 0.1.

4.7 Conclusions

This paper deals with the interaction between the Jatropha curcas plant and
the whitefly. Here we observe that depending upon the parameter values of
α we get stable, unstable and bifurcating nature of the system. We also dis-
cussed about the persistence and permanence of the system. We have tried
to control the mosaic disease using the pesticide. So we introduced a control
parameter u(t) on our basic model and observed that with the help of control
the system becomes stabilized for all the pre-assumed parameter values. The
results of insecticide spraying is also discussed in the numerical section. We
have observed that spraying has a better effect on both the population.



44

5 Modelling Different Attack
Patterns of Whitefly on Jatropha
Curcas Plant and Control of the
Mosaic Disease

[Chapter based on the paper published in Journal of the Calcutta
Mathematical Society, Volume 18 (2), 2022, pp- 225-246]
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5.1 Introduction

In this chapter we are interested to find whether the attack pattern of whitefly
on plants affects the mosaic disease dynamics (Gao, Qu, Chua and Ye, 2010
and Guin, 2014). or not. So we have formulated a mathematical model re-
garding Jatropha curcas plant and whitefly interaction. Here we have taken
the mosaic virus implicitly. There may be different theoretical possible results
for mutual dependence of plant and the vector whitefly. This results mainly
depends on both the population density, timing and the attack pattern of the
vector.

Our objective is to show the effects on the plant populations due to
different types of herbivore attack pattern. We here taken different types of
herbivore attack function namely negative-binomial , poisson and binomial
distribution. Besides this we also want to find out the way of controlling the
mosaic disease (Guin, 2016, Narayana, Shankarappa, Govindappa, Prameela,
Rao and Rangaswamy, 2006 and Sahoo, Kumar, Sharma and Naik, 2009) of
the plant. This plant should be protected as it is one of the main solution of
the future crisis of fossil fuel.

We here observed locally asymptotically stable state or hopf bifurcation or
unstable condition depending upon the different parameter values regarding
negative - binomial, poisson as well as binomial distribution.

Lastly we have discussed control approach to decrease the effect of the
disease (Guin, 2015) by applying insecticide. This results stable condition
of all the species which proves the efficiency of such spraying. A computer
result using Matlab also supports the same.

For all the attack pattern we observe the different conditions of the system
depending upon different parameter values though using the control theory
the unstable state of the system can be stabilized. A computer results shows
the behavior of the solution for different parameter values.

5.2 Statement of the model

In this paper we have consider the healthy as well as infected Jatropha Curcas
plant and the infected whitefly while the mosaic virus is taken implicitly.

Let there are ’v’ whiteflies which are distributed over ’x’ number of healthy
and ’y’ number of infected Jatropha Curcas plant in such a way that some
plants are whitefly free and others have 1,2,.........,i whiteflies per plant.

So we have

x+y

∑
i=1

i = v

In this paper we have assumed that number of whiteflies over (x+y) plants,
follow a probability distribution, so that the proportion of plants with i
whitefly is p(i). Now the number of plants with i whiteflies is p(i)(x+y). If the
immanent plant loss-rate per whitefly is ’a’ then the loss rate of plants with i
whiteflies will be aip(i)(x + y) (Roy P.K., Li X Z et al. 2015).
So the total loss-rate of plants with every possible number of whiteflies is:
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a(x + y)
∞

∑
i=0

iP(i)

Here v
x+y is the expectation of i. So the total loss-rate due to whitefly attack

is axv, which is a Holling type-1 function.
Due to attack of whitefly a fraction of axv forms the infected plant class. On
the other hand as the whiteflies consume both healthy as well as infected
plant so there is a loss of infected plants due to such consumption. We here
assume that the natural death rate of infected plant is same as the attack rate
of whitefly i.e. ’a’ .
Consumption of healthy plant contributes positive growth to whiteflies whereas
consumption of infected plant contributes negative growth to whiteflies.
Here,
e = natural mortality of whitefly.
f = natural mortality of their host plant.
a = by their killing the host plant that they are on.
Self induced mortality occurs at a rate ai2p(i)(x + y).
Therefore for the whole plant population we have:

a(x + y)
∞

∑
i=0

i2P(i)

where ∑ i2P(i) is the expectation of i2 the value of which depends upon
different probability distribution. Ecologically binomial, poisson, negative
binomial distributions represents the regular, random and aggregated attack
pattern.

Firstly we have taken the binomial distribution. For this
E(i2) = v

x+y +
(L−1)

L
v2

(x+y)2

Where ’L’ is the binomial parameter.
Here x(0) = x0 > 0 is the initial healthy plant population density.
y(0) = y0 > 0 is the initial infected plant population density.
v(0) = v0 > 0 is the initial infected whitefly population density.
Based on the above assumption our model becomes:

5.3 Model -5.1: Regular attack pattern (Binomial distribution)

dx
dt

= rx − axv

dy
dt

= gxv − byv − ay

dv
dt

= v[(ax − by)− (e + f + a)− a(L − 1)v
L(x + y)

]

(5.1)
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For mathematical simplicity the following transformation is considered,
x = aX

b , y = aY
b , v = aV

b , t = τ
a .

Then system of equation (5.1) becomes,

dX
dτ

= αX − βXV

dY
dτ

= γXV − YV − Y

dV
dτ

= V[βX − Y − η − ρV
X + Y

]

(5.2)

Here X(0) = X0 > 0, Y(0) = Y0 > 0, V(0) = V0 > 0 and α = r
a , β = a

b ,

γ = g
b , η = e+ f+g

a , ρ = (L−1)
L .

5.3.1 Solution properties

lemma 5.1:

The solutions of (5.2) are positive.

Proof:
Since x(0) = x0 > 0, y(0) = y0 > 0 and v(0) = v0 > 0, we have
X(0) = X0 > 0, Y(0) = Y0 > 0 and V(0) = V0 > 0. Suppose X(τ) is not
positive for all τ ≥ 0. Since X0 > 0 then there exist τ0 with X(τ0) = 0 and
X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ ≤ τ0

˙X(τ)
X(τ)

= α(1 − X − Y)− βY − γV > −αX − αY − βY − γV

X(τ0) > X0exp[−α
τ2

0
2 − α

∫ τ0
0 Ydτ − β

∫ τ0
0 Ydτ − γ

∫ τ0
0 Vdτ] > 0

This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly
it can be shown that Y(τ), V(τ) are also positive for all τ ≥ 0.

5.3.2 Equilibria

The equilibrium points are obtained by setting dX
dτ = 0, dY

dτ = 0 and dV
dτ = 0

and solving the equations

αX − βXV = 0
γXV − YV − Y = 0
βXV − YV − ηV − ρV2

X+Y = 0

From these equations we obtained that the system has two equilibria namely
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E1(X̄, 0, V̄), E2(X∗, Y∗, V∗).

Here E1(X̄, 0, V̄) = E1(
βη±

√
β2η2+4β2αρ

2β2 , 0, α
β ) always exists and we have taken

the positive sign.
For E2(X∗, Y∗, V∗), we have,

V∗ = α
β

Y∗ = αγX∗

α+β

Putting these values in the third equation of (5.2) we obtain , a quadratic
equation of X∗ which is given as,

X∗2(α2β2γ+ α2β2 + 2αβ3 + αβ3γ+ β4 − α2γ2β− α2βγ− αβ2γ)−X∗(α2βγη +
αβ2γη + α2βη + 2αβ2η + β3η)− αρ(α + β)2 = 0

There is atleast one change of sign.Therefore by Descartes’ rule of sign atleast
one positive E2(X∗, Y∗, V∗) exists.

5.3.3 Dynamic behavior

The variational matrix is given by :

J(X, Y, V) =

 α − βV 0 −βX
γV −1 − V γX − Y

βV + ρV2

(X+Y)2 −V + ρV2

(X+Y)2 βX − Y − η − 2ρV
X+Y


For E1(X̄, 0, V̄) the characteristic equation is given by ,

λ3 + λ2(V̄ + 1+ ρV̄
X̄ ) + λ(ρ V̄2

X̄ + ρV̄
X̄ + αβX̄ + βρV̄2

X̄ + γX̄V̄ − ργV̄2

X̄ )− βγX̄V̄2 +

βργ V̄3

X̄ + αβX̄V̄ + αβX̄ + βρ V̄3

X̄ + βρ V̄2

X̄ = 0

It can be written as,

λ3 + Aλ2 + Bλ + C = 0

where
A = V̄ + 1 + ρV̄

X̄ > 0

B = ρ V̄2

X̄ + ρV̄
X̄ + αβX̄ + βρV̄2

X̄ + γX̄V̄ − ργV̄2

X̄

C = −βγX̄V̄2 + βργ V̄3

X̄ + αβX̄V̄ + αβX̄ + βρ V̄3

X̄ + βρ V̄2

X̄

= α2X̄(1 − γ
β ) +

ργα3

X̄β2 + αβX̄ + ρα3

X̄β2 +
ρα2

βX̄ > 0

as β > γ

Now AB − C
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= ρα3

β3X̄ + 2 ρα2

β2X̄ + ρ2α3

β3X̄2 +
ρα
βX̄ + ρ2α2

β2X̄2 + α2ρ + ρ2α3

β2X̄2 +
γX̄α2

β2 + γX̄α
β + γρα2

β2 − ργα3

β3X̄ −
ργα2

β2X̄ − ρ2γα3

β3X̄2 + γX̄α2

β − ργα3

β2X̄

The sign of which cannot be predictable. Hence AB − C can be positive,
negative, or equal to zero depending upon different parameter values which
results stable, unstable or hopf bifurcation respectively. Here ρ < 1 and ρ = 1
if ’L’ is very large.

For interior equilibrium E2(X∗, Y∗, V∗) the characteristic equation is given
by:

λ3 + λ2(V∗ + 1+ ρV∗

X∗+Y∗ ) + λ(ρ V∗2

X∗+Y∗ +
ρV∗

X∗+Y∗ + γX∗V∗ − ργV∗2X∗

(X∗+Y∗)2 −Y∗V∗ +

β2X∗V∗+ ρY∗V∗2

(X∗+Y∗)2 +
ρβX∗V∗2

(X∗+Y∗)2 )− βγX∗V∗2 + βργ X∗V∗3

(X∗+Y∗)2 + βρ V∗3X∗

(X∗+Y∗)2 + βρ V∗2X∗

(X∗+Y∗)2 +

β2X∗V∗2 + β2X∗V∗ = 0
It can be written as,

λ3 + A1λ2 + A2λ + A3 = 0
Where

A1 = V∗ + 1 + ρV∗

X∗+Y∗ > 0

A2 = ρ V∗2

X∗+Y∗ +
ρV∗

X∗+Y∗ + γX∗V∗ − ργV∗2X∗

(X∗+Y∗)2 − Y∗V∗ + β2X∗V∗ + ρY∗V∗2

(X∗+Y∗)2 +

ρβX∗V∗2

(X∗+Y∗)2

A3 = −βγX∗V∗2 + βργ X∗V∗3

(X∗+Y∗)2 + βρ V∗3X∗

(X∗+Y∗)2 + βρ V∗2X∗

(X∗+Y∗)2 + β2X∗V∗2 + β2X∗V∗ >

0
Now A1A2 − A3 =

ρ V∗2

X∗+Y∗ + ρ V∗3

X∗+Y∗ + ρ2 V∗3

(X∗+Y∗)2 + ρ V∗2

X∗+Y∗ + ρ V∗
X∗+Y∗ + ρ2 V∗2

(X∗+Y∗)2 −γρX∗ V∗3

(X∗+Y∗)2 −

γρX∗ V∗2

(X∗+Y∗)2 −γρ2X∗ V∗3

(X∗+Y∗)3 + ρY V∗3

(X∗+Y∗)2 + ρY∗ V∗2

(X∗+Y∗)2 + ρ2Y∗ V∗3

(X∗+Y∗)3 +

γX∗V∗2 +γX∗V∗+ ργ X∗V∗2

(X∗+Y∗) −Y∗V∗2 −Y∗V∗− ρY∗V∗2

X∗+Y∗ +
β2ρX∗V∗2

X∗+Y∗ + ρ2βX∗V∗3

(X∗+Y∗)3 +

βγX∗V∗2 − βγρX∗V∗3

(X∗+Y∗)2

5.4 Stability

The interior equilibrium point E2(X∗, Y∗, V∗) is stable if the following condi-
tions are satisfied (Sarkar A.K., and Roy, 1989 and Venturino, Roy, Al Basir,
et al., 2016) :
i)A1 > 0, A3 > 0
ii)A1A2 − A3 > 0

Proof:
Using the Routh-Hurwitz criteria and from the above discussions we have
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5.7 Model -5.2: Random attack pattern (Poisson distribution)

If we consider that the herbivore attack follows the Poisson distribution we
have
E(i2) = v

x+y +
v2

(x+y)2

Now our model is

dx
dt

= rx − axv

dy
dt

= gxv − byv − ay

dv
dt

= v[(ax − by)− (e + f + a)− av
(x + y)

]

(5.4)

The transformations considered to dimensionless the system are
x = aX

b , y = aY
b , v = aV

b , t = τ
a .

Then system of equation (5.4) becomes,

dX
dτ

= αX − βXV

dY
dτ

= γXV − YV − Y

dV
dτ

= V[βX − Y − η − ρV
X + Y

]

(5.5)

Here X(0) = X0 > 0, Y(0) = Y0 > 0, V(0) = V0 > 0 and α = r
a , β = a

b ,
γ = g

b , η = e+ f+g
a .

5.7.1 Equilibria

The equilibrium points of the system (5.5) are E1(X̄, 0, V̄) and E2(X∗, Y∗, V∗)

Where E1(X̄, 0, V̄) = E1(
βη±

√
β2η2+4β2α

2β2 , 0, α
β ) .

For E2(X∗, Y∗, V∗)
V∗ = α

β

Y∗ = αγX∗

α+β

Putting these values in the third equation of (5.5) we obtain , a quadratic
equation of X∗ which is given as,
X∗2(α2β2γ+ α2β2 + 2αβ3 + αβ3γ+ β4 − α2γ2β− α2βγ− αβ2γ)−X∗(α2βγη +
αβ2γη + α2βη + 2αβ2η + β3η)− α(α + β)2 = 0
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Clearly interior equilibrium exists.

5.8 Stability

The variational matrix is given by :

J(X, Y, V) =

 α − βV 0 −βX
γV −1 − V γX − Y

βV + V2

(X+Y)2 −V + V2

(X+Y)2 βX − Y − η − 2V
X+Y


The characteristic equation for the interior equilibrium is

λ3 + λ2(V∗ + 1 + V∗
X∗+Y∗ ) + λ( V∗2

X∗+Y∗ +
V∗

X∗+Y∗ + γX∗V∗ − γV∗2X∗

(X∗+Y∗)2 − Y∗V∗ +

β2X∗V∗+ Y∗V∗2

(X∗+Y∗)2 +
βX∗V∗2

(X∗+Y∗)2 )− βγX∗V∗2 + βγ X∗V∗3

(X∗+Y∗)2 + β V∗3X∗

(X∗+Y∗)2 + β V∗2X∗

(X∗+Y∗)2 +

β2X∗V∗2 + β2X∗V∗ = 0
This can be written as,
λ3 + B1λ2 + B2λ + B3 = 0
where
B1 = V∗ + 1 + V∗

X∗+Y∗ > 0

B2 = V∗2

X∗+Y∗ +
V∗

X∗+Y∗ + γX∗V∗ − γV∗2X∗

(X∗+Y∗)2 − Y∗V∗ + β2X∗V∗ + Y∗V∗2

(X∗+Y∗)2 +

βX∗V∗2

(X∗+Y∗)2

B3 = −βγX∗V∗2 + βγ X∗V∗3

(X∗+Y∗)2 + β V∗3X∗

(X∗+Y∗)2 + β V∗2X∗

(X∗+Y∗)2 + β2X∗V∗2 + β2X∗V∗

NowB1B2 − B3 =
V∗2

X∗+Y∗ +
V∗3

X∗+Y∗ +
V∗3

(X∗+Y∗)2 +
V∗2

X∗+Y∗ +
V∗

X∗+Y∗ +
V∗2

(X∗+Y∗)2 −γX∗ V∗3

(X∗+Y∗)2 −γX∗ V∗2

(X∗+Y∗)2 −

γX∗ V∗3

(X∗+Y∗)3 + Y V∗3

(X∗+Y∗)2 + Y∗ V∗2

(X∗+Y∗)2 + Y∗ V∗3

(X∗+Y∗)3 + γX∗V∗2 + γX∗V∗ +

γ X∗V∗2

(X∗+Y∗) −Y∗V∗2 −Y∗V∗− Y∗V∗2

X∗+Y∗ +
β2X∗V∗2

X∗+Y∗ + βX∗V∗3

(X∗+Y∗)3 + βγX∗V∗2 − βγX∗V∗3

(X∗+Y∗)2

We have shown numerically that the value of B1B2 − B3 is positive which
results stable state of the interior equilibrium .

5.9 Model-5.3: Aggregated attack pattern (Negative-Binomial
distribution)

For Negative-Binomial distribution
E(i2) = v

x+y +
(k+1)

k
v2

(x+y)2

where ’k’ is the negative-binomial parameter.
Thus our model transformed into the form as
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dx
dt

= rx − axv

dy
dt

= gxv − byv − ay

dv
dt

= v[(ax − by)− (e + f + a)− a(k + 1)v
k(x + y)

]

(5.6)

For mathematical simplicity the following transformation is considered,
x = aX

b , y = aY
b , v = aV

b , t = τ
a .

Then system of equation (5.6) becomes,

dX
dτ

= αX − βXV

dY
dτ

= γXV − YV − Y

dV
dτ

= V[βX − Y − η − ξV
X + Y

]

(5.7)

Here X(0) = X0 > 0, Y(0) = Y0 > 0, V(0) = V0 > 0 and α = r
a , β = a

b ,

γ = g
b , η = e+ f+g

a , ξ = (k+1)
k .

The dynamics of this model is same as that of Binomial distribution. But
here ξ > 1 and ξ = 1 if k is very large. This creates a difference between the
dynamics of two distribution. We here numerically shown that for negative
binomial distribution it always gives stable state. Here A1A2 − A3 > 0 for
the interior equilibrium if ξ ≥ 1.

5.10 The optimal control problem

To decrease the effect of the disease we use insecticide spraying.
Mathematically we here use the control theory (Chowdhury, Basir, Takeuchi,
Ghosh and Roy, 2019; Holt, Jeger, Thresh and Otim-Na, 1997 and Roy, Li, Al
Basir, Datta, Chowdhury, 2015). Assuming that all the infected whiteflies of
a particular region fall possibly under the control of insecticide spraying. We
choose the control parameter u(t) . Now our reformulated model becomes:
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dX
dτ

= αX − (1 − u(t))βXV

dY
dτ

= (1 − u(t))γXV − YV − Y

dV
dτ

= V[(1 − u(t))βX − η − Y − ρV
X + Y

]

(5.8)

If we consider u(t) = 0 then there is no effect of control and if u(t) = 1 then
there is no such contact rate between the whitefly and the plant. So the
control parameter u(t) lies between 0 and 1 that is 0 ≤ u(t) ≤ 1 defined on
[t0, t f ] where t0 and t f are the starting and ending time of control respectively.
The objective functional to minimize the cost of insecticide spraying is thus
given as :-

J(u(t)) =
∫

t
t f
0 [P1u2(t) + Q1Y2 − R1X2]dτ

Where
P1u2(t)=Cost regarding insecticide spraying and labor.
Q1Y2=Loss of crop due to infection.
R1X2=Extra revenue obtained by a larger population of healthy plant.

5.10.1 Theorem :

The objective functional J(γ∗(t)) is minimum for the optimal control variable u∗(t)
corresponding to the interior equilibrium E2(X∗, Y∗, V∗) and the adjoint variables
ξ1, ξ2, ξ3 satisfy the system of equations,

dξ1

dt
= 2R1X − ξ1[α − (1 − u(t))βV]− ξ2(1 − u(t))γV − ξ3[(1 − u(t))βV +

ρV2

(X + Y)2 ]

dξ2

dt
= −2Q1Y + ξ2(1 + V) + ξ3[V − ρV2

(X + Y)2 ]

dξ3

dt
= ξ1βX(1 − u(t))− ξ2[γX(1 − u(t) + Y]− ξ3[βX(1 − u(t))− η − Y − 2ρV

X + Y
]

(5.9)

with the boundary condition ξi(t f ) = 0 (i=1,2,3). The optimal control can be
given as,

u∗(t) = max{0, min{1,
(ξ3 − ξ1)βXV + ξ2XV

2P1
}}

(5.10)
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FIGURE 5.2: Variation of plant-herbivore densities for the system
with α = 8, β = 2, γ = 0.05, η = 3, ρ = 0.0439.This shows small

oscillating hopf bifurcation for binomial distribution.
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FIGURE 5.3: Variation of plant whitefly densities with α = 8, β = 2,
γ = 0.05, η = 3,ρ = 0.005 which shows the stable state for binomial

distribution.
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FIGURE 5.4: Variation of plant whitefly densities with poisson distri-
bution with α = 8, β = 2, γ = 0.05, η = 3.
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FIGURE 5.5: Time-series plotting for the system for α = 8, β = 2,
γ = 0.05, η = 3, ρ = 2 with negative-binomial distribution.
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FIGURE 5.6: Time series plotting for the system for α = 8, β = 2,
γ = 0.05, η = 3,ρ = 1 with binomial distribution by taking ρ = 1.
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FIGURE 5.7: Variation of plant-whitefly densities with control for
α = 8, β = 2, γ = 0.05, η = 3,ρ = 0.05,u = 0.5 of the model which

shows the stability of the system .
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5.12 Conclusions

This study highlights on the effect of different attack pattern of whitefly on
the Jatropha Curcas plant. Here the different distribution parameters are
playing a very important role for the dynamics. It is clear from the study
that the whiteflies which kill the plants will also kill themselves. It is also
observed that when k and L are very large such that 1

k = 0 = 1
L then the

dynamics for regular, random and aggregated attack patterns give similar
dynamic behavior. From the present study it is observed that the application
of control will help to minimize the application of spraying insecticide. It
also helps to minimize the cost for the marginal farmers in the real system.
Using time-delay these models can be renovated in near future.
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6 Role of Insecticide Spraying in
Reduction of Mosaic Disease of
Jatropha Curcas Plant

[Chapter based on the paper submitted in the Journal of the Calcutta Math-
ematical Society]
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6.1 Introduction

At first we here discuss again about the Jatropha curcas plant and the
vector of the mosaic disease, the whitefly. The demand of alternative fuel is
increasing proportionally with the increasing consumption of fossil fuel
world-wide. Biodiesel is a significant name as an alternative fuel for diesel
engine as it possesses environment friendly characteristics. The seeds of the
Jatrophsa curcas plant contains approximately 37% oil that can be used to
obtain a better quality of biodiesel fuel (Narayana D.S.A. et al., 2006 ; Ven-
turino et al., 2016) . Jatropha Curcas which is also known as physic nut, is
a species of flowering plant in the spurge family Euphorbiaceae. This plant
is originated at Africa and Asia but now its popularity spreads world-wide.
More than 40 species of insects affect Jatropha curcas plant, among them Mo-
saic virus is specifically mentionable. In this paper mosaic virus is taken
implicitly.
The vector of this virus is whitefly. The population of whitefly is controlled
by the temperature and rainfall. Heavy rainfall (Roy, Li, Al Basir, Datta,
Chowdhury, 2015) is an obstruction for the growth of whiteflies. The spread
of the whitefly is highly dependent on the plant density. Whiteflies are tremen-
dously productive (Gao et al., 2010 ; Holt et al., 1997). Normally whitefly
needs three hours feeding time to procure the virus and a latent phase of
eight hours. It requires ten minutes time to contaminate the young leaves.
Symptoms seem to be appeared after a latent period of three to five weeks.
The symptoms occurs for mosaic disease are severe mosaic, mottling,
blistering of leaves, yellowing of leaves , reduced leaf size, stunting of dis-
eased plants. Besides these the fruits production reduces and quality of seeds
becomes low.
We here tried to control the population of whiteflies by spraying the
insecticide. It breaks the gatherings from the laying more amounts of eggs. It
also prevents adult whiteflies to migrate to the neighbour plants (Narayana
D.S.A. et al., 2006 ; Venturino et al., 2016).
Based on these a mathematical model is formulated to analyze the disease
dynamics of Jatropha Curcas plant. Persistence and permanence is also
performed to ensure the permanent coexistence of all the species. The theo-
retical outcomes are supported numerically by Matlab.

6.2 Statement of the model

We here divide the plant population into two classes in presence of infection
that is susceptible plant ’x’ and infected plant ’y’ population. The disease is
spread by the whitefly to a susceptible plant. It is assumed that only
susceptible plant is capable of reproduction and the infected prey does not
recover and is removed by death. Although the infected plant ’y’ contributes
with the susceptible plant ’x’ to population growth towards the carrying ca-
pacity as both of them are still in the environment. Growth of plant popu-
lation is assumed as logistic. Consumption of susceptible plant contributes
positive growth while consumption of infected plants contribute negative
growth to the whitefly. Biologically all parameters are assumed to be posi-
tive. The description of parameters are as follows:
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r=Growth rate of susceptible plant.
k= Carrying capacity.
a= Force of infection.
b=Rate of attack of whitefly to the susceptible plant.
c=Rate of consumption of infected plant of whitefly.
m=Death rate of infected plant for all causes except the consumption of
whitefly.
n=Natural death rate of whitefly.
Based on the above assumptions our model is formed as:

6.3 Model

dx
dt

= rx(1 − x + y
k

)− axy − bxv

dy
dt

= axy − cyv − my

dv
dt

= bxv − cyv − nv

(6.1)

with the initial conditions,
x(0) = x0 > 0, y(0) = y0 > 0, v(0) = v0 > 0
Here x0 is the initial susceptible plant population density, y0 is the initial
infected plant population density and v0 is the initial whitefly density.
For mathematical simplicity we consider the following transformation,
x = kX, y = kY, v = kV, t = τ

n .
Based on the above mentioned transformation the model (6.1) becomes,

dX
dτ

= αX(1 − X − Y)− βXY − γXV

dY
dτ

= βXY − ηYV − ρY

dV
dτ

= γXV − ηYV − V

(6.2)

where α = r
n , β = ak

n , γ = bk
n , η = ck

n , ρ = m
n .

6.3.1 Solution properties

lemma :

The solutions of (6.2) are positive.
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Proof:
Since x(0) = x0 > 0, y(0) = y0 > 0 and v(0) = v0 > 0,
we have X(0) = X0 > 0, Y(0) = Y0 > 0 and V(0) = V0 > 0. Suppose X(τ)
is not positive for all τ ≥ 0. Since X0 > 0 then there exist τ0 with X(τ0) = 0
and X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ ≤ τ0

˙X(τ)
X(τ)

= α(1 − X − Y)− βY − γV > −αX − αY − βY − γV

X(τ0) > X0exp[−α
τ2

0
2 − α

∫ τ0
0 Ydτ − β

∫ τ0
0 Ydτ − γ

∫ τ0
0 Vdτ] > 0

This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly it
can be shown that Y(τ), V(τ) are also positive for all τ ≥ 0.

6.3.2 Equilibria

The equilibrium points are obtained by setting dX
dτ = 0, dY

dτ = 0 and dV
dτ = 0

and solving the equations
αX(1 − X − Y)− βXY − γXV = 0
βXY − ηYV − ρY = 0
γXV − ηYV − V = 0
We have observed that there are five equilibrium points i.e. E0(0, 0, 0), E1(1, 0, 0)
,E2(X, Y, 0), E3(X, 0, V), E∗(X∗, Y∗, V∗) which is the interior equilibrium. Where
(X, Y, 0) = ( ρ

β , α(β−ρ)
β(α+β)

, 0) exists if ρ < β

(X, 0, V) = ( 1
γ , 0, α(γ−1)

γ2 ) exists if γ > 1

(X∗, Y∗, V∗) = ( α+β+αη+γρ
αη+αγ+2βγ , γX∗−1

η , βX∗−ρ
η ) exists if ρ < β, γ > 1 and

max( ρ
β , 1

γ ) < X∗

6.3.3 Dynamic behavior

The variational matrix is given by :

J(X, Y, V) =

α − 2αX − αY − βY − γV −αX − βX −γX
βY βX − ηV − ρ −ηY
γV −ηV γX − ηY − 1


From the variational matrix we show that E0(0, 0, 0) is always unstable as
its eigen values are α,−ρ,−1
The equilibrium E1(1, 0, 0) is locally asymptotically stable if ρ > β, γ < 1 as
its eigen values are −α, β − ρ, γ − 1. But in this case E2(X, Y, 0), E3(X, 0, V)
does not exist.

E2(X, Y, 0) is locally asymptotically stable if β > ρ and γ < β
ρ + αη(β−ρ)

ρ(α+β)

E3(X, 0, V) is locally asymptotically stable if ργ2 + γ(ηα − β)− ηα > 0 and
γ > 1

J(X∗, Y∗, V∗) =

−αX∗ −αX∗ − βX∗ −γX∗

βY∗ 0 −ηY∗

γV∗ −ηV∗ 0
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The characteristic equation is given by:

−αX∗ − λ −αX∗ − βX∗ −γX∗

βY∗ −λ −ηY∗

γV∗ −ηV∗ −λ

 = 0

The characteristic equation for E∗(X∗, Y∗, V∗) is a cubic equation which is
as follows,

λ3 +λ2αX∗+λ(γ2X∗V∗+ β2X∗Y∗+ αβX∗Y∗− η2V∗Y∗)− αη2X∗Y∗V∗− αηγX∗Y∗V∗−
2βγηX∗Y∗V∗ = 0

Which can be written as

λ3 + Aλ2 + Bλ + C = 0
Where,
A = αX∗ > 0,B = γ2X∗V∗+ β2X∗Y∗+ αβX∗Y∗− η2V∗Y∗, C = −αη2X∗Y∗V∗−
αηγX∗Y∗V∗ − 2βγηX∗Y∗V∗ < 0 and AB − C > 0
But since C < 0 so E∗(X∗, Y∗, V∗) is always unstable.

6.4 Persistence and permanence

Freedman and Waltman first implemented the idea of persistence and
permanence. It decides the questions of survival and extinction of n-species
whose growth equations are represented as (Konar et al., 1999) ,

ẋi = xi fi(x1, x2, ..........., xn) (6.3)

6.4.1 Theorem 6.1

The system is permanent iff β > ρ, γ > 1, γ > β
ρ + αη(β−ρ)

ρ(α+β)
. and

ργ2 + γ(ηα − β)− ηα < 0

Proof:
The permanence of the system implies that none of the boundary fixed points
are saturated. Hence the interior fixed point exists and must be saturated.
Hence all the eigen values are negative or have negative real parts.

Firstly,we construct the average Lyapunov function to prove the sufficient
condition. In our model, we consider the average Lyapunov function as
σ(X) = Xr1 .Yr2 .Vr3 where ri > 0 i=1,2,3.
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Let,ψ(X) = σ̇(X)
σ(X)

= r1
Ẋ
X + r2

Ẏ
Y + r3

V̇
V

= r1(α(1 − X − Y)− βY − γV) + r2(βX − ηV − ρ)
+ r3(γX − ηY − 1)
If ψ(X) > 0 then the trajectories more away from the boundary and the
system (6.2) becomes permanent. It is evident that there is no periodic
trajectory. Hence if there exist ri > 0 such that Ψ(E1) > 0, then (6.2) is
permanent.

Therefore for E0(0, 0, 0), ψ(X) = αr1 − ρr2 − r3 > 0

For E1(1, 0, 0), ψ(X) = r2(β − ρ) + r3(γ − 1) > 0

E1(
ρ
β , α(β−ρ)

β(α+β)
, 0), ψ(X) = r3(

γρ
β − αη(β−ρ)

β(α+β)
− 1) > 0

E3(
1
γ , 0, α(γ−1)

γ2 ), ψ(X) = r2
(−ργ2−γ(ηα−β)+ηα)

γ2 > 0

The inequalities are evidently satisfied for atleast one positive r = (r1, r2, r3)

iff β > ρ, γ > 1, γ > β
ρ + αη(β−ρ)

ρ(α+β)
and ργ2 + γ(ηα − β)− ηα < 0

Ḣence the system is uniformly persistent(or permanent).This completes the
proof of the theorem.

6.5 The optimal control problem

We now introduce control theory (Sahoo et al., 2009 ;Pandey et al., 2012 ;
Chowdhury, Basir, Takeuchi, Ghosh and Roy, 2019 ). to the model (6.2) to
minimize the cost of insecticide spraying. Assuming that all the infected
whiteflies of a particular region fall possibly under the control of insecticide
spraying. We introduce the control parameter γ(t) such that 0 ≤ γ(t) ≤ 1 .
Now our reformulated model becomes:

dX
dτ

= αX(1 − X − Y)− (1 − γ(t))(βXY + γXV)

dY
dτ

= (1 − γ(t))βXY − ηYV − ρY

dV
dτ

= (1 − γ(t))γXV − ηYV − V

(6.4)

If we consider γ(t) = 0 then there is no effect of control between the infected
whiteflies and the plants.
If γ(t) = 1 then it disproves the interaction between them. Here γ(t) is the
control parameter defined on [t0, t f ] where t0 and t f are the starting and
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ending time of control respectively. The objective functional for minimizing
the cost of insecticide spraying is thus formed as :-

J(u(t)) =
∫

t
t f
0 [Pγ2(t) + QY2 − RX2]dτ Where P ≥ 0 and Q ≥ 0

Here the first term represents the costs of spraying insecticide and labor
charge, second term represents the loss of crop due to infection which should
be minimized and the last term implies the extra revenues obtained by the
larger population of healthy Jatropha Curcas plants.
Now we are going to find the optimal control.

6.5.1 Theorem 6.2:

The objective functional J(γ∗(t)) is minimum for the optimal control γ∗

corresponding to the interior equilibrium E∗(X∗, V∗

1, ξ2, ξ3 satisfying the system of equations,

dξ1

dt
= 2RX − ξ1[α − 2αX − αY − (1 − γ(t))(βY + γV)]− ξ2[(1 − γ(t))βY − ξ3(1 − γ(t))γV]

dξ2

dt
= −2QY − ξ1[−αXY − (1 − γ(t))βX]− ξ2[(1 − γ(t))βX − ηV − ρ] + ξ3ηV

dξ3

dt
= −ξ1[(1 − γ(t))γX] + ξ2ηY − ξ3[γX(1 − γ(t))− ηY − 1]

(6.5)

with the boundary condition ξi(t f ) = 0 (i=1,2,3). The optimal control can be
given as,

γ∗(t) = max{0, min{1,
γXV(ξ3 − ξ1) + βXY(ξ2 − ξ1)

2P
}}

(6.6)

Proof:
we first construct the Hamiltonian as follows:

H = Pγ2(t) + QY2 − RX2 + ξ1[αX(1 − X − Y)− (1 − γ(t))(βXY + γXV] +
ξ2[(1 − γ(t))βXY − ηYV − ρY] + ξ3[(1 − γ(t))γXV − ηYV − V]

Applying the Pontryagin Minimum Principle the optimal control variable
γ∗(t) satisfies

∂H
∂γ∗(t) = 0

Which implies

2Pγ(t) + ξ1(βXY + γXV)− ξ2βXY − ξ3γXV = 0
γ(t) = γXV(ξ3−ξ1)+βXY(ξ2−ξ1)

2P

) and also there are adjoint vari-
ables ξ
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For the boundedness of the optimal control we have

γ∗(t) =



0 γXV(ξ3−ξ1)+βXY(ξ2−ξ1)
2P ≤ 0

γXV(ξ3−ξ1)+βXY(ξ2−ξ1)
2P 0 < γXV(ξ3−ξ1)+βXY(ξ2−ξ1)

2P < 1

1 γXV(ξ3−ξ1)+βXY(ξ2−ξ1)
2P ≥ 1

According to Pontryagin Minimum Principle adjoint variables satisfy the
following equations:

dξi

dt
= − ∂H

∂Xi
(6.7)

where i = 1, 2, 3 , Xi = X, Y, V.
i.e. X1 = X, X2 = Y,X3 = V and the equations (6.5) can be determined by
using (6.7). This completes the proof of the theorem.

6.6 Numerical simulation and discussions

In this section, numerical simulations are performed to validate the
theoretical results. Keeping in mind all the feasibility criteria the parameter
values and the initial values of the healthy, infected plants and the whiteflies
are chosen. Firstly we have assumed different values for the parameters of
the system (6.1). Then the corresponding transformed parameter values are
calculated for the system (6.2).
To plot the system (6.2) we have used Matlab ODE 23. Assuming that the
initial values I1 = [0.030, 0.010, 0.015] we here observed that if α = 0.01,
β = 15, γ = 20, η = 0.7, ρ = 0.7 then all the populations become unstable.
Also we have illustrated the analytical method using control theory for the
qualitative analysis of the dynamical system to control the whitefly
population. Numerically We have observed that β plays an important role
for the dynamics of the system (6.2). As depending upon the values of β the
system changes from unstable to stable condition.
The figure (6.2) represents the control effect on the dynamics of the system.
Here we observe that due to effect of control the healthy plant population
slowly increases from its initial value and then become stable. The infected
plants as well as the infected whiteflies go to extinction very shortly. Hence
spraying of insecticide plays a key role to make the system stable and
maintaining the stability in the remaining portion of time span.
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FIGURE 6.1: Variation of plant-herbivore densities for α = 0.01,
β = 15, γ = 20, η = 0.7, ρ = 0.7 . Here we observe unstable con-

dition for all the populations with increasing time.
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FIGURE 6.2: Variation of plant-herbivore densities for the system
with α = 0.01, β = 5, γ = 2, η = 0.7, ρ = 0.7, u = 0.00001 .This

shows the stable condition in the presence of control.
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6.7 Conclusions

Here we have proposed a mathematical model to study the dynamics of
mosaic disease of Jatropha Curcas plant which is spread by the vector
whitefly. We here taken healthy as well as infected Jatropha curcas plant and
the
infected whitefly into consideration. We observed that the system possesses
unstable condition for some parameter values. By spraying the insecticide
the unstable nature of the system can be stabilized that biologically reflects
the stable state of the healthy Jatropha plants. The numerical results shows
the stability of healthy Jatropha curcas plants and extinction of both the
infected Jatropha curcas plant as well as the infected vector in the presence
of control. Hence we can apply insecticide on the host plant which would be
liberally developed ourselves for advanced socio-economical insight in the
upcoming days.
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In this model we have chosen the negative binomial distribution which
ecologically reflects aggregated attack pattern of whitefly. Here whitefly-
inflicted losses through the plant death are axE(i2) where E(i2) = v

x +
(k+1)

k
v2

x2

for negative binomial distribution.
We have chosen here logistic growth for the plant population and the attack
pattern of whitefly on the plant is taken as holling type-I function. ‘r’is the
growth rate of the plant, ‘k1’is the carrying capacity. ‘k’is the negative
binomial parameter. Based on the above assumptions the continuous-time
system takes the form,

7.3 Model

dx
dt

= rx(1 − x
k1
)− axv

dv
dt

= v[ax − (e + b + a)− a
(k + 1)

k
v
x
)]

(7.1)

with the initial conditions,
x(0) = x0 > 0, v(0) = v0 > 0
Here x0 is the initial plant population density and v0 is the initial whitefly
density.
For mathematical simplicity we consider the following transformation,
x = k1X, v = k1v, t = τ

r .
Based on the above mentioned transformation the model becomes,

dX
dτ

= X(1 − X)− αXV

dV
dτ

= V[αX − β − γ
V
X
]

(7.2)

where α = ak1
r , β = a+b+e

r ,γ = a
r
(k+1)

k .

7.3.1 Solution properties

lemma 7.1 :

The solutions of (7.2) are positive.

Proof:
Since x(0) = x0 > 0 and v(0) = v0 > 0, we have X(0) = X0 > 0 and
V(0) = V0 > 0. Suppose X(τ) is not positive for all τ ≥ 0. Since X0 > 0 then
there exist τ0 with X(τ0) = 0 and X(τ) > 0 for 0 ≤ τ ≤ τ0. For 0 ≤ τ ≤ τ0
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˙X(τ)
X(τ)

= 1 − X − αV > −X − αV

X(τ0) > X0exp[− τ2
0
2 − α

∫ τ0
0 Vdτ] > 0

This is a contradiction and hence X(τ) is positive for all τ ≥ 0. Similarly it
can be shown that V(τ) is also positive for all τ ≥ 0.

7.3.2 Equilibria

The equilibrium points are obtained by setting dX
dτ = 0 and dV

dτ = 0 and
solving the equations

X(1 − X)− αXV = 0 and
V(αX − β − γ V

X ) = 0.
We have observed that the continuous time system has two equilibrium points
i.e. E1(1, 0) which is the whitefly free equilibrium, E2(X∗, V∗) which is the
interior equilibrium. From the two equations we obtain

X∗ =
(αβ−γ)±

√
(αβ−γ)2+4α2γ

2α2

V∗ =1−X∗
α

Therefore E2(X∗, V∗) always exists.

7.3.3 Dynamic behavior

From the variational matrix we have found the dynamics of the equilibrium
points of the system. The equilibrium E1(1, 0) is saddle as its eigen values
are −1 and α − β and α > β.
The characteristic equation for E2(X∗, V∗) is a quadratic equation which is as
follows,
λ2 + λ(X∗ + γ V∗

X∗ ) + γV∗ + α2X∗V∗ + αγ V∗2

X∗ = 0
Which can be written as
λ2 + Aλ + B = 0
Where,
A = X∗ + γ V∗

X∗ > 0
and
B = γV∗ + α2X∗V∗ + αγ V∗2

X∗ > 0
Therefore E2(X∗, V∗) is locally asymptotically stable.

7.4 Global Stability

lemma 7.2 :

The XV subsystem is globally asymptotically stable.

Proof: H1(X, V) = 1
XV then H1 > 0 if X > 0, V > 0.

h1(X, V) = X(1 − X)− αXV
h2(X, V) = V[αX − β − γ V

X ]

Therefore ∇(X, V) = ∂(h1H1)
∂X + ∂(h2H1)

∂V
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=∂( 1−X
V −α)
∂X +

∂(α− β
X− γV

X2 )

∂V
=− 1

V − γ
X2

Hence by Bendixon-Dulac criteria E2(X∗, V∗) is globally asymptotically
stable in the positive XV plane. This completes the proof of the lemma.

7.5 Euler’s discrete time system

Using Euler’s forward scheme the continuous time system can be discretized
as (M.Biswas N.Bairagi, 2017),

Xn+1 = Xn + h[Xn(1 − Xn)− αXnVn]

Vn+1 = Vn + h[αXnVn − βVn − γ
Vn

2

Xn
]

(7.3)

Where h > 0 is the step-size. Since there is many negative signs in the R.H.S.
of (7.3) then the solutions for all step-size h may not be positive although the
initial values are assumed to be positive. So there is a possibility of numerical
instability.

7.5.1 Equilibria

The equilibrium points are obtained by setting
Xn+1 = Xn = X, Vn+1 = Vn = V in (7.3)
Then (7.3) becomes

X = X + h[X(1 − X)− αXV]

V = V + h[αXV − βV − γ
V2

X
]

(7.4)

We have observed that the model (7.3) has the same equilibrium points with
that of the continuous time system i.e. E1(1, 0) which is the whitefly free
equilibrium and E2(X∗, V∗) which is the interior equilibrium. From the two
equations we obtain

X∗ =
(αβ−γ)±

√
(αβ−γ)2+4α2γ

2α2

V∗ =1−X∗
α

Therefore E2(X∗, V∗) always exists.



Chapter 7. Discretization of a mathematical model regarding Jatropha Curcas
plant and whitefly interaction with aggregated attack pattern of whitefly

77

7.5.2 Dynamic behavior

The variational matrix is given by

J(X, V) =

(
1 + h[1 − 2X − αV] −hαX

hαV + hγ V2

X2 1 + h[αX − β − 2γ V
X ]

)
J(1, 0) =

(
1 − h −hα

0 1 + hα − hβ]

)
E1(1, 0) is unstable if h < 1 otherwise saddle, since α > β

J(X∗, V∗) =

(
1 − hX −hαX

hαV + hγ V2

X2 1 − hγ V
X ]

)
Now the characteristic equation can be written as:
P(λ) = λ2 + Aλ + B = 0
Where,
A = −2 + hX∗ + hγ V∗

X∗

and
B = 1 − hX∗ − hγ V∗

X∗ + h2γV∗ + h2α2X∗V∗ + h2αγ V∗2

X∗

After some algebraic manipulation we have,

P(1) = 1 + A + B = h2γV∗ + h2α2X∗V∗ + h2αγ V∗2

X∗ > 0

It is observed that P(1) is always positive. Therefore (7.3) is always stable
around E2(X∗, V∗) for all parameter values So it possesses dynamical
consistency with its continuous counter-part (R E. Mickens,1989) .

7.6 Global Stability

lemma 7.3 :

The system (7.3) is globally asymptotically stable irrespective of step-size h.

Proof: H2(X, V) = 1
XnVn

then H2 > 0 if X > 0, V > 0.

h1(X, V) = Xn + h[Xn(1 − Xn)− αXnVn]

h2(X, V) = Vn + h[VnαXn − Vnβ − γ V2
n

Xn
]

Therefore ∇(X, V) = ∂(h1H2)
∂X + ∂(h2H2)

∂V
=− h

Vn
− hγ

X2
n

Hence by Bendixon-Dulac criteria E2(X∗, V∗) is globally asymptotically
stable in the positive XV plane. This completes the proof of the lemma.



Chapter 7. Discretization of a mathematical model regarding Jatropha Curcas
plant and whitefly interaction with aggregated attack pattern of whitefly

78

7.7 Non-standard finite difference (NSFD) scheme

Here we have used NSFD scheme (M.Biswas N. Bairagi ,2017) to discretize
the continuous time model.
For convenience we first write the continuous time model.

dX
dτ

= X − X2 − αXV

dV
dτ

= αXV − βV − γ
V2

X
]

(7.5)

We now apply the following non-local approximations term-wise.

dX
dτ → Xn+1−Xn

ϕ1(h)
, dV

dτ → Vn+1−Vn
ϕ2(h)

,
X → Xn, XV → XnVn,
X2 → XnXn+1, V → Vn+1,
XV → Xn+1Vn, V2

X → VnVn+1
Xn

where h(>)0 is the step-size. We have chosen here ϕ1(h) = h, ϕ2(h) = 1−e−βh

β

where ϕ1(h), ϕ2(h) > 0 for all h > 0
Based on the above transformation (7.5) becomes:

Xn+1 − Xn

ϕ1(h)
= Xn − XnXn+1 − αXn+1Vn

Vn+1 − Vn

ϕ2(h)
= αXnVn − βVn+1 − γ

VnVn+1

Xn

(7.6)

From (7.6)

Xn+1 =
Xn(1 + ϕ1(h))

1 + ϕ1(h)Xn + αϕ1(h)Vn

Vn+1 =
Vn(1 + αϕ2(h)Xn)

1 + βϕ2(h) + γ
Vnϕ2(h)

Xn

(7.7)

The R.H.S. of (7.7) is always positive for all step-size h.
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FIGURE 7.2: Variation of plant-herbivore densities for continuous
time system α = 2, β = 0.2, γ = 0.1 .This shows the phase

portrait in the XV plane which is globally asymptotically stable state
of the model.
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FIGURE 7.3: Variation of plant whitefly densities with Euler’s discrete
time model with α = 2, β = 0.2, γ = 0.1, h = 1.
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FIGURE 7.4: Variation of plant whitefly densities with Euler’s discrete
time model with α = 2, β = 0.2, γ = 0.1, h = 0.01.
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FIGURE 7.5: Phase portrait of Euler’s discrete time system for
α = 2, β = 0.2, γ = 0.1, h = 1 .
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FIGURE 7.6: Variation of plant-whitefly densities with NSFD scheme
for α = 2, β = 0.2, γ = 0.1, h = 0.0001 of the model .
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FIGURE 7.7: Plant-Whitefly densities for NSFD scheme for
α = 2, β = 0.2, γ = 0.1, h = 0.01.
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FIGURE 7.8: Plant-Whitefly densities for NSFD scheme for
α = 2, β = 0.2, γ = 0.1, h = 1.
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FIGURE 7.9: Phase portrait of Plant-Whitefly densities for NSFD
scheme for α = 2, β = 0.2, γ = 0.1, h = 0.0001.
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FIGURE 7.10: Phase portrait of Plant-Whitefly densities for NSFD
scheme for α = 0.75, β = 2, γ = 0.2, h = 0.01 .

7.10 Conclusions

This paper is divided into three sections such as continuous time system, 
Euler discrete time system and Non-standard finite difference scheme to show
the effect of discretization on the continuous time system and to make  a
comparison among them. We have seen that although the equilibrium points
are same for all the cases , the dynamics are not same for all the cases. The dy-
namics is mainly depends on the step size h. For continuous time model the
system is locally as well as globally stable. For Euler’s system we have seen
the same phenomena. But NSFD scheme results unstable condition.Persistence
and permanence is also performed to verify the permanent coexistence of all
the species.
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Conclusion and future work

We will discuss here about the results obtained from different chapters of this
thesis. In this thesis we have seven chapters including the Introduction.

1) In the first chapter we discussed about some topics which we have
used in the next chapters. Also the outline of the thesis and scope are also
discussed here.

2) In the second chapter two different growth functions namely logis-
tic and exponential are compared taking the attack function of whitefly as
Holling type-I function with random attack pattern of whitefly. Persistence
and permanence of the system is also discussed here. Comparing these two
we can conclude that growth function plays an important role to the mosaic
disease dynamics.

3) We have taken in the third chapter all the same as second chapter ex-
cept the attack function of whitefly as Holling type-II function and made a
comparison study between them. Persistence and permanence of the system
is also verified.

4) In the fourth chapter we have taken the logistic growth of the Jatropha
Curcas plant with attack function of whitefly as Holling type-II function. We
here observed that the system is uniformly persistent or permanent. We here
also introduced control theory and observed that by spraying the insecticide
the effect of mosaic disease can be reduced.

5) In the fifth chapter we have used different probability distribution func-
tion namely Poisson, Negative-binomial and Binomial distribution to ex-
press the random, aggregated and regular attack pattern of whitefly. It is
revealed that different attack pattern gives different disease dynamics. From
the present study it is observed that the application of control will help to
minimize the application of spraying insecticide as well as the cost for the
marginal farmers in the real system.

6) In the sixth chapter we have considered healthy as well as infected Jat-
ropha Curcas plant and infected whitefly population which results unstable
condition of the system but with the effect of control the system can be sta-
bilised.

7) In the seventh chapter we have compared the continuous and discrete
time system. We have introduced here Euler’s discrete time system and
Mickens Non-standard finite difference scheme. We can conclude that dis-
crete time system gives more accurate results than the continuous counter
part and the system is uniformly persistent or permanent.

All the results of chapter 2-7 are numerically verified and the supporting
pictures using Matlab are provided.

In future we will try to extend these research works using time delay and
also suitable modifications.
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