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PREFACE

The present research work has been accomplished in the application oriented area
of continuum mechanics regarding the thermoelastic and magnetothermoelastic prop-
erties of solids. The dissertation contains four chapters discussing six problems and
their solutions in the context of generalized thermoelasticity and electromagneto ther-
moelasticy.

In the first chapter some fundamental concepts of thermoelasticity have been dis-
cussed in brief.

The second chapter is about the generalised thermoelasticity in context of multi-
phase-lag model containing two different problems viz., Problem-1 and Problem-2.

Problem-1 is about a refined multi-phase lag model of generalized thermoelasticity
in an anisotropic half-space medium. The normal mode analysis technique has been
used to obtain vector matrix differential equation, which is then solved by the eigenvalue
approach. Some earlier results, such as CTE, Lord Shulman (LS), Green–Nagdhi (GN)-
II, and SPL, are deduced from the present investigation. Numerical computations
for thermal strain and stress component, displacement components, and temperature
distribution are calculated in a tabulated form and graphically to show the accuracy
of the present model when mechanical and thermal loads are applied on the boundary.

Problem-2 deals with a two-dimensional multi-phase lag model in the context of
generalized thermoelasticity for an isotropic half-space medium. A vector-matrix differ-
ential equation is obtained from the governing equations using normal mode analysis.
The eigenvalue approach is applied to obtain the solutions. The temperature-dependent
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displacements, stresses, strains are calculated numerically and represented graphically
to show the accuracy of the solution under mechanical and thermal loads.

The third chapter deals with non-local heat propagation for thermoelastic medium
consisting of two different problems viz., Problem-3 and Problem-4.

Problem-3 concerns a generalized magnetothermoelastic problem for a homoge-
neous, isotropic and semiconducting medium under the non-local heat equation with
dual-phase-lag(DPL) model. The boundary surface of the medium is subject to a pre-
scribed time-dependent exponential order compression along with a prescribed temper-
ature and carrier intensity gradient. Two integral transformations, Laplace transform
for time variable and Fourier transform for space variable, are employed to equations
of motion and heat conduction equation for formulation of a vector-matrix differential
equation which is then solved by using eigenvalue approach. Inversion processes for
the two integral transform are carried out numerically. Finally, the effects of physical
field variables and stress components are analyzed and illustrated graphically under
the variation of different physical parameters.

Problem-4 is about the new concept of non-local heat conduction equation to gen-
eralized magneto-thermoelastic problem of two dimensional isotropic and homogeneous
half-space in presence of heat-flux at the boundary surface. By using the harmonic
plane waves, the governing equations are transformed to the vector matrix differential
equation which is then solved by eigenvalue method. The analytical closed form so-
lutions for displacement component, temperature distribution and stress components
have been made and comparisons are also illustrated graphically with the theory of
non-local dual-phase-lag(NLDPL) and non-local Lord-Shulman(NLLS) theory for dif-
ferent values of physical parameters. The significant effects of non-local variables as
well as phase lagging parameters on displacements, temperature distribution and stress
components are studied graphically and concluding remarks are drawn.

In fourth chapter Thermoelastic behaviour in curvilinear co-ordinate system has
been studied by solving two different problems viz., Problem-5 and Problem-6.

Problem-5 is a discussion about a refined multi-phase lag model for a homogeneous
unbounded thermoelastic spherical cavity in a curvilinear coordinate system. The
associated solutions are obtained by forming non-dimensional vector matrix equations
and applying Eigen value approach in the transform domain. The results have been
verified using the valid boundary conditions associated with physical and field variables.
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Mathematica and MATLAB platform are used for numerical analysis and graphical
representation.

Problem-6 concerns the longitudinal vibration of a circular cylinder in the context
of generalized thermoelasticity where the fundamental equations for a homogeneous
isotropic solid has been considered following Lord and Shulman, which has been reduced
in cylindrical co-ordinate system. The equations have been expressed in the form of a
vector matrix differential equation and solved using the eigenvalue method. At the end,
the effects on physical field variables and stress components are analyzed graphically
under the variation of different physical parameters.
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1
PRELIMINARIES

1.1 Basic idea:

1.1.1 Definitions, Relations and Theories :

Elastic Solid:

Most of the solids undergo deformation accompanying changes of shape and
size under the action of a mechanical load. Such a deformation is measured by strain
functions defined by changes in dimension per unit volume. The solid, if it is an ideal
elastic solid, gets back to its original shape and volume under the influence of a system
of reactionary forces which develop within the body due to application of loads. The
intensity of these internal forces are termed as stress which is measured as force per
unit area.

Thermoelasticity:

Thermoelascity is the study of an elastic body/material under the influence of
non-uniform changes in it’s temperature field. It is a generalisation of the theory of
elasticity by accounting for thermal reactions as well as mechanical reactions. The
theories of thermo-elasticity have been developed by a useful coupling of Fourier Law
of heat conduction with the standard formulations developed in the theory of elasticity.
During the second half of 20th century, the theory of thermo-elasticity and magneto-
thermo-elasticity (interactions among strain, temperature and electromagnetic fields)
has drawn the attention of many researchers because of it’s extensive uses in diverse
field, such as
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Chapter 1. Preliminaries

a) Geophysics for understanding the effect of the Earth’s magnetic field on seismic
waves.
b) Damping of acoustic waves in a magnetic field.
c) Designing machine elements like heat exchangers, boiler’s tubes where temperature
induced elastic deformation occurs.
d) Biomedical engineering (problems involving thermal stress).
e) Emissions of electromagnetic radiations from nuclear devices.
f) Development of a highly sensitive super conducting magnetometer, electrical power
engineering etc.

Strain-displacement relation:

If the displacement at a point within the body defined by cartesian coordinates
xi (i = 1, 2, 3) is ui, then the kinematic relation between the strain and displacement
is given by

eij = 1
2(ui,j + uj,i), (1.1)

where eij = eji.
The stress component σij is defined as the force along the xj direction on unit area

in the plane xi =constant. So, there are nine such stress components. It can be shown
that σij = σji. Then there are only six independent stress components needed to define
the stress system in the body.

Constitutive relations:

The most general form of Hooke’s law is represented by

σij = Cijklekl (i, j, k, l = 1, 2, 3), (1.2)

where Cijkl is the stiffness tensor which has 81 elements. Considering symmetry prop-
erties of both stress and strain components, these may be reduced to the form

σm = Cmnen, (m, n = 1, ...., 6). (1.3)

2



Chapter 1. Preliminaries

In equation (1.3),

σ11 = σ1, σ22 = σ2, σ33 = σ3,

σ32 = σ4, σ13 = σ5, σ12 = σ6, (1.4)

e11 = e1, e22 = e2, e33 = e3,

e32 = e4, e13 = e5, e12 = e6, (1.5)

and Cmn is a matrix of order 6 with Cmn = Cnm.
The coefficients Cmn in the generalized Hooke’s law are symmetric due to the exis-

tence of strain energy density function. The number of independent elastic constants
in the generalized Hooke’s law (1.3) will include 6 different constants located along the
diagonal and 36−6

2 = 15 among the remaining constants making altogether 15 + 6 = 21
constants. So, the existence of strain energy density function reduces the number of
coefficients from 36 to 21 in generalized Hooke’s law. For isotropic material, the ma-
trix is defined by only two independent parameters λ and µ called Lamè’s constants.
On the other hand, an orthotropic solid has 9, transversely isotropic has 5 and cubic
crystalline has 3 independent elastic constants.

Thermal stresses:

It is known that if a body is heated, its change in dimension leads to deformation. So,
even in absence of any external mechanical loads, the deformation and consequently
stresses may develop in a body, called thermoelastic solid, when it is placed in an
elevated temperature field. This temperature θ, excess over the ambient one, may
develop due to external heating or due to internal heating arising out of straining.

Irrespective of the sources of heating, the thermal stresses are determined from the
following constitutive relations

σm = Cmnen − βmθ (m, n = 1, 2, 3, ..., 6), (1.6)

where

β11 = β1, β22 = β2, β33 = β3, β32 = β4, β13 = β5, β12 = β6. (1.7)

Equations (1.6) are called the Duhamel-Neumann relations.

For a transversely isotropic body, if the principal elastic axes coincide with the
coordinate axes, the equations (1.6) may be written as

3



Chapter 1. Preliminaries



σ11

σ22

σ33

σ32

σ31

σ12


=



c11 c12 c13 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44





e11

e22

e33

e32

e31

e12


− θ



β11

β11

β33

0
0
0


, (1.8)

where

β11 = (c11 + c12)α1 + c13α3, β33 = 2c13α1 + c33α3, (1.9)

and α1, α3 are coefficients of linear thermal expansion.
For isotropic bodies,

c12 = λ, c11 = µ, c44 = µ, β11 = (3λ + 2µ)α. (1.10)

So, the constitutive relations may be written as

σij = λekkδij + 2µeij − βθ, (1.11)

where δij is the Kronecker delta.
Strain-displacement relations in cylindrical co-ordinate system are given by

err = ∂ur

∂r
, eθθ = 1

r

∂uθ

∂θ
+ ur

r
, ezz = ∂uz

∂z
,

erθ = 1
2

(
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)
,

erz = 1
2

(
∂uz

∂r
+ ∂ur

∂z

)
,

eθz = 1
2

(
∂uθ

∂z
+ 1

r

∂uz

∂θ

)
. (1.12)

Equations of motion:

The equations of motion of an elastic body subjected to a system of stresses-mechanical,
thermal or both are derived on the basis of conservation of linear momentum. For an
arbitrary volume V of a body bounded by surface S, equating the inertial force with
the total volume force along with the surface force

ρ
∂

∂t

∫
V

vidv =
∫

V
Xidv +

∫
S

pids (i = 1, 2, 3), (1.13)
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Chapter 1. Preliminaries

where ρ is the mass density, vi, Xi and pi are respectively the components of velocity,
body force per unit volume and surface traction acting on the surface S. Now, we also
have

pi = σijnj, (1.14)

where ni is the unit vector normal to the surface S. From equations (1.13) and (1.14)
and using the Gauss divergence theorem∫

S
σijnjds =

∫
V

σij,jdv, (1.15)

we can obtain,

σij,j + Xi = ρ
∂2ui

∂t2 (1.16)

This together with appropriate constitutive relations help one to derive equations
of motion in terms of displacement components as

µui,jj + (λ + µ)uj,ji + Xi = βT,i + ρüi (1.17)

In vector form, the above equations can be written as

µ∇2u + (λ + µ)∇(∇ · u) + X = β∇T + ρü. (1.18)

Equations of motion in cylindrical co-ordinate system can be written in the
following forms:

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ ∂σrz

∂z
+ σrr − σθθ

r
+ Xr = ρ

∂2ur

∂t2 ,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ ∂σθz

∂z
+ 2

r
σrθ + Xθ = ρ

∂2uθ

∂t2 ,

∂σrz

∂r
+ 1

r

∂σθz

∂θ
+ ∂σzz

∂z
+ 1

r
σrz + Xz = ρ

∂2uz

∂t2 . (1.19)

Thermo-mechanical coupling:

During mechanical loading of an elastic body, some work is done due to straining.
This energy dissipates as heat induces a temperature field within the material. So,
in Fourier heat conduction equation this internal heat source should be appropriately
included for accurately computing the temperature field. The coupling between the
temperature and the strain fields also help in determining the temperature field due to
time-varying forces and also accounts for the influence of temperature on the velocity
of propagation of elastic waves. Only in stationary temperature fields, this coupling
term may be neglected.
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Chapter 1. Preliminaries

1.1.2 Various Theories OF Thermoelasticity :

Classical Coupled Thermoelasticity (CCTE):

Stress, strain and temperature relations in an isotropic and homogeneous thermoelastic
solid body (Duhamel-Neumann relations) are given by

σij = 2µeij + (λui,i − βθ)δij (i, j = 1, 2, 3), (1.20)

where λ, µ are Lamè’s constants, β = (3λ + 2µ)αt, where αt is the coefficient of linear
thermal expansion of the material, σij are the stress components, θ is the increase in
temperature above the reference temperature T0, e = ui,i is the dilatation, eij’s are
given by equation (1.20). Later on these equations are modified by classical Fourier’s
law which connects heat flux vector q with temperature gradient ∇θ as in the equation

q = −k∇θ or qi = −kθ,i (i = 1, 2, 3) (1.21)

where heat flux vector is the instantaneous result of a temperature gradient and k is
the thermal conductivity.

While the coupling of strain and temperature field is being considered, the principal
of conservation of local energy provides

−qi,i + ρQ = ρcvθ̇ + βT0ė

i.e. − ∇q + ρQ = ρcvθ̇ + βT0ė, (1.22)

where ρ is the mass density, cv is the specific heat of the solid at constant volume, Q is
the heat sources and t is the time. Thus, after eliminating qi, coupled heat conduction
equation is given by

k∇2θ + ρQ = ρcvθ̇ + θ0βu̇k,k (1.23)

The term T0 should be taken into account to establish a coupling between strain
and temperature. Again, the principle of conservation of linear momentum yields the
stress equations of motion in the following linearized form

σij,j + ρFi = ρüi (i, j = 1, 2, 3), (1.24)

where Fi, i = 1, 2, 3 are the components of external body force vector per unit mass.
Equations (1.1), (1.22) and (1.24) lead us to the displacement equations of motion

µ∇2ui + (λ + µ)uk,k + ρFi − βθ,i = ρüi

or, µ∇2u + (λ + µ)∇(∇.u) + ρFi − β∇θ = ρü. (1.25)

6
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The nature of equation (1.23) is a parabolic whereas equation (1.25) is of hyperbolic
type. The equation (1.23), which was deduced by Biot [30], concerns the interaction
of the thermal field and elastic deformation as these two are coupled. According to
classical Fourier’s law, equation (1.23) implies that if the material is subjected to a
thermal disturbance, the effect on both temperature and displacement fields will take
place at infinite distance from the heat source. Consequently the thermal waves prop-
agate with infinite speed. This phenomenon is absurd and physically inappropriate,
which diminishes the credibility of most of the classical thermodynamical theories.

Lord-Shulman Model [L-S Model] of linear thermoelasticity
or Extended Thermoelasticity [ETE]:

To overcome the shortcomings of Biot’s theory, Kaliski et. al. [68] generalised the
classical Fourier’s law (1.21) by introducing the following heat conduction law(

1 + τ
∂

∂t

)
q = −k∇θ, (1.26)

where τ is a non-negative constant called the relaxation time parameter. This law is a
generalization of the classical Fourier’s law (1.21). If we put τ = 0 in equation(1.26),
we get equation(1.21).

According to this generalized theory the energy equation for a homogenous and
isotropic thermoelastic solid is given by

−∇ · q + ρQ = ρcEṪ + γT0ė. (1.27)

From equations (1.26) and (1.27), one can obtain the following generalized form of
the heat conduction equation

k∇2θ =
(

1 + τ
∂

∂t

) [
ρceθ̇ + θ0βu̇k,k − ρQ

]
(1.28)

As equation (1.26) is of hyperbolic nature, it is free from the paradox of infinite heat
propagation speed and the thermal disturbances propagate with constant phase speed√

k
τ

< ∞. The theory in which equation (1.28) is considered as the heat conduction
equation is referred as Extended thermoelasticity (ETE) by Chandrasekharaiah [33].

The equation of motion of this model is given by

ρ
∂2ui

∂t2 = ρFi + (λ + µ)uj,ij + µui,jj − γT,i. (1.29)

7
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The stress components are given by

σij = λekkδij + 2µeij − γ (T − T0) . (1.30)

The generalized thermoelasticity theory introduced by Kaliski[80] was also estab-
lished independently by Lord and Shulman [80] which is often refereed to as the L-S
model.

Green-Lindsay Model [G-L Model] OF Linear Thermoelastic-
ity or Temperature Rate Dependent Thermoelasticity (TRDTE):

Green and Lindsay [58] have established a theory of generalized thermoelasticity with
certain special features that contrast with the L-S model having only one relaxation
time parameter. In G-L model, Fourier’s law of heat conduction is unchanged whereas
the classical energy equation and the stress-strain temperature relations are modified.
Two constitutive constants α and α0 having the dimensions of time appear in the
governing equations in place of one relaxation time τ in L-S model.

The field equations of generalized thermoelasticity model proposed by Green and
Lindsay [58] are

−qi,i + ρQ = ρcv(θ̇ + α0θ̈) + βT0ė, (1.31)

which are modified energy equations. The stress-strain-temperature relations in this
case are

σij = λui,iδij + 2µeij − β(θ + αθ̇)δij ; i, j = 1, 2, 3 (1.32)

which are modified constitutive equations with temperature rate term.
Elimination of qi from equations (1.21) and (1.31) give the following heat conduction

equation

k∇2θ + ρQ = ρce(θ̇ + α0θ̈) + βθ0u̇k,k. (1.33)

The equation of motion in this case can be obtained as

µ∇2ui + (λ + µ)uj,ij − β(θ + αθ̇),i + ρFi = ρüi, (1.34)

where α and α0 are two material constants satisfying the inequalities α ≥ α0 ≥ 0 and
are called the relaxation time parameters of this model.

8



Chapter 1. Preliminaries

Clearly, equation (1.33) is also hyperbolic type predicting finite speed for the prop-
agation of thermal signals.

If we set α = α0 = 0 in the equations (1.32), (1.33) and (1.34), then we recover
equations (1.20), (1.23) and (1.25). Thus classical coupled thermoelasticity (CCTE)
is a special case of the Temperature rate dependent thermoelasticity (TRDTE) with
α = α0 = 0.

Green-Naghdi Model:

I. Green-Naghdi model-III(1992) or Thermoelasticity With Energy Dissipation (TEWED)
The modified energy equation and the heat conduction law proposed by Green and

Naghdi [60] are given by

−∇q + ρQ = ρcvθ̇ + βT0ė, (1.35)

and

q = −(k∇θ + k∗∇ν). (1.36)

Now,

q̇ = −(k∇θ̇ + k∗∇ν̇) (1.37)

Using ν̇ = θ, we get

q̇ = −(k∇θ̇ + k∗∇θ) (1.38)

which gives

−∇q̇ = k∇2θ̇ + k∗∇2θ (1.39)

Eliminating q from equations (1.35) and (1.39), we get

k∇2θ̇ + k∗∇2θ + ρQ̇ = ρcvθ̈ + βT0ë (1.40)

Equation (1.40) admits propagation of damped thermoelastic waves, damping due
to the term θ̇ in the equation. If the heat source Q = 0, then equation (1.40) reduces
to

k∇2θ̇ + k∗∇2θ = ρcvθ̈ + βT0ë. (1.41)

9
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The equation of motion of this model is

µ∇2ui + (λ + µ)uj,ij − γθ,i + ρFi = ρüi. (1.42)

The constitutive relations are

σij = λekkδij + 2µeij − γθ. (1.43)

II. Green-Naghdi Model II(1993) OR Thermoelasticity Without Energy Dissipation
(TEWOED)

The governing equations of the generalized thermoelasticity proposed by Green and
Naghdi [61] are

−∇q + ρQ = ρcvθ̇ + βT0ė (1.44)

which modified the energy equation

−q = −k∗∇ν (1.45)

which is also modified heat conduction law, where ∇v is the thermal displacement
gradient such that ν̇ = θ.

Now,

−q̇ = −k∗∇ν̇ = −k∗∇θ (1.46)

which gives on taking divergence on both sides

−∇q̇ = k∗∇2θ. (1.47)

Eliminating q from equations (1.44) and (1.47), we get

k∗∇2θ + ρQ̇ = ρcvθ̈ + βT0ë, (1.48)

where k∗ > 0 is a material constant. The finite thermal wave speed is equal to
√

k∗

ρcv
.

The equation of motion of this case is

µ∇2ui + (λ + µ)uj,ij − γθ,i + ρFi = ρüi. (1.49)

The constitutive equations are

σij = λekkδij + 2µeij − γθ. (1.50)

Equations (1.48), (1.49) and (1.50) are complete form of the Grenn-Nagdhi model
without energy dissipation for an isotropic and homogeneous elastic solid medium.

10



Chapter 1. Preliminaries

Theory of Two-Temperature Linear Thermoelasticity :

A theory of heat conduction in deformable bodies which depends upon two distinct
temperatures, the conductive temperature and the thermodynamic temperature has
been established by Chen and Gurtin [37] and Chen et al. [36][38]. Youssef [123] has
proposed a theory in the context of the generalized theory of thermoelasticity with two-
temperature. By following this model, the constitutive relations and basic governing
equations for thermoelastic interactions in a homogeneous isotropic elastic solid for
CCTE, L-S and G-L theories may be written in a unified way as:

Equation of motion is

µ∇2ui + (λ + µ)uj,ij − γ

(
θ + ν

∂θ

∂t

)
,i

+ ρFi = ρüi. (1.51)

The heat conduction equation with two-temperature is given by

k∇2ϕ = ρcE

(
∂

∂t
+ τ0

∂2

∂t2

)
θ + γT0

(
∂

∂t
+ n0τ0

∂2

∂t2

)
ui,i

−
(

1 + n0τ0
∂

∂t

)
Q, (1.52)

where n0 is a constant.
The relation between the thermodynamic and conductive temperatures is given by

ϕ − θ = a∇2ϕ, (1.53)

where a > 0 is the temperature discrepancy.
The constitutive relations are given in the form

σij = λekkδij + 2µeij − γ

(
θ + ν

∂θ

∂t

)
. (1.54)

Equations (1.51)-(1.54) constitute a complete system of two-temperature gener-
alized thermoelasticity. This model can be applied to both classical generalizations,
L-S model (n0 = 0, τ0 > 0, ν = 0, a = 0) and G-L model (n0 = 0, τ0 > 0, ν > 0, a = 0),
as well as to CCTE model (τ0 = ν = a = 0). The main difference for this theorem from
the other theorems is that this theorem differentiates between the wave propagation
of the temperature that comes from the thermal process (heat conduction) and that
which comes from the mechanical process (thermodynamics temperature).

11
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Dual-Phase-Lag Model of Linear Thermoelasticity:

I. Parabolic thermoelasticity theory with two-phase-lag

The Tzou theory [114] is such a modified of CCTE in which the Fourier law q(P, t) =
−k∇T (P, t) is replaced by an approximation of the equation

q(P + τq, t) = −[k∇T (P, t + τT )], (1.55)

in the following form (
1 + τq

∂

∂t

)
q = −k

(
1 + τT

∂

∂t

)
∇T, (1.56)

where the temperature gradient ∇T at a point P of the thermoelastic solid at time
t + τq corresponds to the heat flux vector q at the same point at time t + τq. The
delay time τT is the phase-lag of temperature gradient that is interpreted as the delay
time caused by the micro-structural interactions (a small scale effects of heat transport
in space, such as phonon–electron interaction or phonon scattering) whereas the other
delay time τq is interpreted as the relaxation time due to the fast transient effects
of thermal inertia and is called the phase-lag of the heat flux. The model transmits
thermoelastic disturbance in a wave-like manner if the approximation is linear with
respect to τq and τT , and 0 ≤ τT < τq or quadratic in τq and linear in τT , with τq > 0
and τT > 0. Eliminating q between Eqs. (1.55) and (1.56), the parabolic type heat
conduction equation with two-phase-lag proposed by Tzou takes the form

k

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
ρcEṪ + γT0ė − ρQ

)
. (1.57)

II. Hyperbolic thermoelasticity theory with two-phase-lag

Chandrasekharaiah [33] proposed a parabolic as well as a hyperbolic thermoelastic
model with dual-phase-lag by expanding equation (1.57) in a Taylor series up to the
first-order terms in τT and second order terms in τq in the following form(

q + τq
∂q
∂t

+
τ 2

q

2
∂2q
∂t2

)
= −k

(
1 + τT

∂

∂t

)
∇T, (1.58)

Eliminating q between Eqs. (1.56) and (1.58), the heat conduction equation in this
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case takes of the following form

k

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t
+

τ 2
q

2
∂2

∂t2

)(
ρcEṪ + γT0ė

)
−
(

1 + τq
∂

∂t
+

τ 2
q

2
∂2

∂t2

)
ρQ. (1.59)

Equations (1.59) is the hyperbolic type heat conduction equation with two-phase-lag.

Three-Phase-Lag Model Thermoelasticity:

Further generalization of coupled thermoelasticity theory was made by Roy Choudhury
[102], where he discussed the concept of Three Phase Lag Model [3PHL] introducing
three time parameters τq, τT , τν where τq= heat flux time lag,τT = temperature gradient
time lag and τv= thermal displacement gradient time lag satisfying the inequality
0 ≤ τν ≤ τT ≺ τq. To discuss the lagging behaviour, using ∇⃗v, q⃗and ∇⃗T as thermal
displacement gradient, heat flux vector and temperature gradient respectively, the
constitutive equation of generalised heat conduction can be written as q⃗(P, t + τq) =
−[κ∗ ∇⃗v(P, t + τv) + κ ∇⃗T (P, t + τT )], whereP (r⃗) is the point where material volume
located at time (t + τv) and (t + τT ) together with heat flux flow at different instant of
τq for a finite time t>0.

Taking Taylor’s series expansion from the above mentioned equation, we have q⃗ +
τq

∂q⃗
∂t

= −[κ∗ ∇⃗v + κ τT
∂
∂t

∇⃗θ + τv
∗ ∇⃗θ]

Whereτv
∗ = κ + κ∗τv and v̇ = θ

Now depending upon different values of τq, τT , τv and κ∗, different theory can be
classified as below

1. Classical Fourier’s Law: κ∗=0, τq = τT

2. Lord-Shulman (L-S) Theory: κ∗=0,τq = τ and τT = 0,τ is the relaxation time.

3. Green-Naghdi-III (G-N-III) theory:τq = 0, τT = 0 and τv = 0

Neglecting the terms above the 2nd order of τq in Taylor’s expansion and then
eliminating div q⃗ , the generalized heat conduction equation reduced to
κ∗∇2 θ̇+k τT ∇2 θ̈+τv

∗∇2 θ̇ =
(
1 + τq

∂
∂t

+ ∂2

∂t2
1
2τq

2
)

F (x1, x2, x3, t) where F (x1, x2, x3, t) =(
ρ CE θ̇ + γ T0 ė

)
and ρ, CE, γ, T0 and e denote density, specific heat conduction, ma-

terial constant, reference temperature and dilation respectively.

13



Chapter 1. Preliminaries

Theory of fractional order generalized thermoelasticity

Recently, fractional calculus has been introduced in the field of generalized thermoe-
lasticity. Povstenko [98] constructed a quasi-static uncoupled thermoelasticity model
based on the heat conduction equation with a fractional order time derivative. He used
the Caputo fractional derivative (Caputo [31]) and obtained the stress components cor-
responding to the fundamental solution of a Cauchy problem for the fractional order
heat conduction equation in both the one-dimensional and two-dimensional cases. In
2010, Sherief et al. [106] was constructed a model in generalized thermoelasticity theory
by using fractional time-derivatives.

The Duhamel–Neumann constitutive equations are

σij = 2µeij + λeδij − γ(T − T0)δij, (1.60)

Equation of motion is

σij,j + Fi = ρüi, (1.61)

The heat conduction equation with fractional derivative heat transfer proposed by
Sherief et al. [107] is

k∇2T =
(

∂

∂t
+ τ

∂1+α

∂t1+α

)
(ρcET + γT0e − Q) , 0 < α ≤ 1,

(1.62)

where

∂α

∂tα
f(x, t) =


f(x, t) − f(x, 0), α → 0,

I1−α ∂f(x,t)
∂t

, 0 < α < 1 (Weak conductivity),
∂f(x,t)

∂t
, α = 1 (Normal conductivity).

In the above definition, the Riemann–Liouville fractional integral operator Iα is
defined as-

Iαf(t) = 1
Γ(α)

∫ t

0
(t − s)α−1f(s)ds,

where Γ(α) is the well-known Gamma function.
Equations (1.60)-(1.62) constitute a complete system of fractional order gener-

alized thermoelasticity. This model can be applied to the classical generalization
L-S model by setting α = 1.
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Basic relations and equations in magneto-elasticity:

Due to application of load, internal motion sets in a solid. In presence of an exter-
nal strong magnetic field H, the secondary electromagnetic fields due to their internal
motion appear which interact again, in their turn, with the primary field. Having
taken such interaction into account Maxwell’s electrodynamic equations for an elec-
tromagnetically isotropic body, are given by Kaliski[80]. Maxwell’s equations are as
follows

∇ × h = J + ε0Ḋ,

∇ × E = −µ0ḣ,

∇ · h = 0, ∇ · E = 0,

B = µ0(H + h), D = ε0E (1.63)

Constitutive relations are

J = η0[E + µ(u̇ + H)] − λ′∇θ + ρeu̇,

D = ε[E + εµc2 − 1
c2 (u̇ × H)],

B = µH, (1.64)

where E and h denote perturbations of the electric and magnetic fields respectively, D
is the electric induction, H is the total magnetic field i.e., H = H0 +h, J is the electric
current, u is the displacement vector, ε & µ are electric and magnetic permeability of
the medium respectively, η0 is the electric conductivity, ρe is the change in density and
λ′ is the Thompson parameter.

The Lorentz force is given by

F = ρeE + µ(J × H). (1.65)

1.2 Different form of vector-matrix differential equations
with solutions:

Through our entire research work, we have solved some problems of generalized and
magneto thermoelasticity. Using the Laplace transform, the governing equations of
various generalized, magneto and fractional order thermoelasticity models are written
in the form of a vector-matrix differential equation and then solved by eigenvalue
approach. Some vector-matrix differential equations are given below:
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• (i) dv
dt

= A v

• (ii) dv
dx

= A v + f

• (iii) Lv = Av, L ≡ d2

dr2 + 1
r

d
dr

− 1
r2 .

• (iv) Lx̃ = t2Ãx̃

Type-i:
Consider the vector-matrix differential equation of the form

dv

dt
= Av (1.66)

with the initial condition

v(0) = c, (1.67)

where A is an n × n constant matrix and v is a column vector with n components
which are functions of the variable t and c is a given constant n-vector.

Let us now assume that v(t) = X exp(λ∗t) where X is a non-zero n-vector indepen-
dent of t and λ∗ is a scalar. Then

dv

dt
− Av = λ∗X exp(λ∗t) − AX exp(λ∗t) (1.68)

= −(AX − λ∗X ) exp(λ∗t). (1.69)

This shows that if λ∗ is an eigenvalue of the matrix A and X is the corresponding
eigenvector.

Hence v(t) = X exp(λ∗t) is a solution of the differential Eq. (1.66). Let λ∗
1, λ∗

2, ....., λ∗
n

be distinct eigenvalues of the matrix A and X1, X2, ..., Xn be the corresponding eigen-
vectors. Then clearly X1, X2, ..., Xn form a basis of the space En, where En denotes the
complex n-dimensional Euclidean space. So the vector c can be expressed in the form

c = c1X1 + c2X2 + ... + cnXn, (1.70)

where c1, c2, ...., cn are scalars.
Let

v(t) = c1X1 exp(λ∗
1t) + c2X2 exp(λ∗

2t) + ... + cnXn exp(λ∗
nt). (1.71)

Then v(t) is a solution of (1.66) and

v(0) = c1X1 + c2X2 + ... + cnXn = c. (1.72)
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Hence v(t) is the unique solution of (1.66) satisfying (1.67).

Type-ii:
Consider the vector-matrix differential equation

Dv = Av + f(x) (1.73)

with the initial condition

v(x0) = c, (1.74)

where D ≡ d
dx

, A is a n×n constants real matrix, c is a real constant n-vector and f(x)
is real n-vector function. Let f = (f1, f2, ...., fn)T , f1, f2, ..., fn are scalar functions of
x, v = (v1, v2, ...., vn)T and A = (aij), i, j = 1, 2, ..., n.

Substituting A = VΛV−1 in equation(1.78) and pre-multiplying the resulting equa-
tion by V−1, we obtain
V−1Dv = Λ(V−1v) + V−1f

⇒ D(V−1v) = Λ(V−1v) + V−1f ,
where Λ is a diagonal matrix of order n whose elements are λ1, λ2, ....., λn, the dis-
tinct eigenvalues of A. Let V1, V2, ...., Vn be the eigenvectors of A corresponding to
λ1, λ2, ....., λn respectively and
V = (V1, V2, ......, Vn) = (xij), say, i, j = 1, 2, ..., n.

Substituting y = V−1v, we require to solve the system of equations,

Dy = Λy + V−1f. (1.75)

Clearly, the above equation represents a set of n-decoupled ordinary differential
equations. A typical r-th equation of this set may be taken as

Dyr = λryr + Qr, Qr = V −1
r f (1.76)

Let V−1 = wij, i, j = 1, 2, ...., n. Then we can obtain

Qr =
n∑

j=1
wjrfj, r = 1, 2, ...., n. (1.77)

The solution of the Eq. (1.76) may be written as-

yr = eλrx
[
yre

−λrx
]

x0
+ eλrx

∫ x

x0
Qre

−λrxdx. (1.78)
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Thus the complete solution of the Eq. (1.73) can now be written now as

v =
n∑

r=1
Vryr (1.79)

Alternative process:
Considering a system of simultaneous differential equations in the form

dv⃗

dx
= A⃗v⃗ + f⃗ (1.80)

where
[

v1 v2 · · · vn

]T
, A⃗ = [aij]n×n and

[
f1 f2 · · · fn

]T
. Let us consider the

coefficient matrix A⃗ can be written as

A = V ΛV −1 (1.81)

where Λ =



λ1 0 · · · 0
0 λ2 · · · 0
... ... · · · ...
0 0 · · · λn

 and V =
(

V1 V2 · · · Vn

)

Here λ1, λ2, · · · , λn are the eigen values of the coefficient matrix A. V1, V2, · · · , Vn are
the eigen vectors corresponding to the eigen values λ1, λ2, · · · , λn respectively.
Now multiplying the equation (1.80) by V −1 we get V

−1 dv⃗
dx

= V −1(V ΛV −1)v⃗ + V −1f⃗

d(V −1
v⃗)

dx
= Λ(V −1v⃗) + V −1f⃗

dy⃗

dx
= Λy⃗ + V −1f⃗ (1.82)

where y⃗ = V −1v⃗ ⇒ v⃗ = V y⃗

The r-th equation of (1.82) is
dyr

dx
= λryr + Qr (1.83)

where Qr = V −1
r f⃗ , V −1

r = (ωij)

Qr =
n∑

i=1
ωrifi

The solution of (1.83) is

yr = cre
λrx + eλrx

∫
Qre

−λrxdx (1.84)
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So, v⃗ = ∑n
r=1 Vryr

Another process: Consider the Vector-matrix differential equation

dv

dx
= A v + f(x) (1.85)

with the condition

v(x0) = C (1.86)

where A is an n × n constants real matrix, C is given constant real n vector and f is
real n vector function.
Let

v = X exp(λx) (1.87)

be the solution of the homogeneous equation.

dv

dx
= A v (1.88)

where λ is a scalar and X is an n vector independent of x. Substituting (1.87) in
equation(1.88), we get,

(A X − λ X)eλx = 0 ⇒ A X = λX (1.89)

This may be interpreted that λ is an eigenvalue of the matrix A and X the corresponding
right eigenvector. Let λ1, λ2, λ3, ......, λn be n distinct eigenvalues of the matrix A and
X1, X2, X3, ....., Xn be the corresponding right eigenvector of the matrix A. Then the
vectors X1, X2, X3, ....., Xn are linearly independent and so they form a basis of the
space Γn ,where Γ denotes the field of complex numbers. We can find the scalers
b1, b2, b3, ......, bn such that
C = b1X1 + b2X2 + b3X3 + ...... + bnXn

Choose ci = bie
λix0 , (i = 1, 2, 3, ...., n)

Let

u(x) =
n∑

i=1
ciXi eλix (1.90)

Thus u(x) is the solution of the equation(1.88) and

u(x0) =
n∑

i=1
ciXi eλix0 =

n∑
i

biXi = C (1.91)
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Now,let

w(x) =
n∑

i=1
ai(x)Xi eλix (1.92)

be the solution of equation(1.85), a1(x), a2(x), a3(x), ....., an(x) are scalar function of x
such that ai(x0) = 0, Differentiating equation(1.92) with respect to x, we get

w′(x) =
n∑

i=1
a′

i(x)Xi eλix +
n∑

i=1
ai(x)λiXi eλix (1.93)

Substituting equations(1.92) and (1.93) in equation(1.85), we have
n∑

i=1
a′

i(x)Xi eλix +
n∑

i=1
ai(x)λiXi eλix

=
n∑

i=1
ai(x)AXi eλix + f(x) (1.94)

or,
n∑

i=1
a′

i(x)Xi eλix =
n∑

i=1
ai(x)[AXi − λiXi] eλix

+f(x) = f(x) (1.95)

Multiplying equation(1.95) by Yj e−λjx ( where Y1, Y2, Y3, ....., Yn are left eigenvector
corresponding to the eigenvalues λ1, λ2, λ3, ......, λn ), we get

n∑
i=1

a′
i(x)Yj e(λi−λj)x = Yj f(x) e−λjx (1.96)

or,

a′
j(x)YjXj = Yj f(x) e−λjx , [YjXj = 0 for i ̸= j]

a′
j(x) = 1

YjXj

Yj f(x) e−λjx

aj(x) =
∫ x

x0
(YjXj)−1Yj f(x) e−λjsds (1.97)

[aj(x0) = 0, for j = 1, 2, 3, ...., n]
Now take

v(x) = u(x) + w(x) (1.98)

Differentiating we get,
v′(x) = u′(x) + w′(x) = Au(x) + Aw(x) + f(x) = A[u(x) + v(x)] + f(x) = Av(x) + f(x)
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v′(x0) = u′(x0) + w′(x0) = C

Hence, v(x) = u(x) + w(x) is the unique solution of the differential equation(1.85),
satisfying the condition (1.86).

Type-iii:
Consider the following vector-matrix differential equation

Lv = Av, (1.99)

where the operator L is defined by

L ≡ d2

dx2 + 1
x

d

dx
− 1

x2 . (1.100)

This operator L is of frequent occurrence in problems on cylinders.
Let

A = V ΛV −1 (1.101)

where Λ =



λ1 0 · · · 0
0 λ2 · · · 0
... ... · · · ...
0 0 · · · λn

 is a diagonal matrix whose elements λ1,λ2, . . . . . .

λn are the distinct eigenvalues of A. Let V1
∼

, V2
∼

, ...., Vn
∼

be the eigenvectors of A
corresponding to λ1, λ2, . . . , λn respectively, and

V =
[
V1
∼

, V2
∼

, ....., Vn
∼

]
= (xij) (say); i, j = 1, 2, . . . , n.

Substituting (1.101) in (1.99) and pre-multiplying by V−1, we get

Ly
∼

= Λy
∼

, where y
∼

= V −1v
∼

(1.102)

as a system of decoupled equations.
A typical rth equation of (1.102) is
Lyr = λr yr

Or,
d2yr

dx2 + 1
x

dyr

dx
−
(

λr + n2

x2

)
yr = 0 (1.103)

Case (i)
Whenλr = α2

r , the solution of equation (1.103) can be written as,
yr = ArKn (αrx) + BrIn (αrx),
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n is an integer and Ar, Br are constants. Kn , In are modified Bessel functions of
the second kind of order n.

Case (ii)
When λr = − α2

r , the solution can be written as
yr = Ar Jn (αrx) + Br yn(αrx), n is integral
Jn, yn are Bessel functions of the first kind of order n.
Hence the complete solution in this case can be written as v

∼
= ∑n

r=1 Vr yr

Type-iv:
Let the Vector-matrix differential equation be of the form

Lx̃ = t2Ãx̃ (1.104)

where L is the linear second order differential operator and

L = t2 d2

dt2 + tp(t) d

dt
+ q(t) (1.105)

Ã is an n × n constant matrix and p(t),q(t) are two real valued continuous on [0,1].
The initial conditions are assumed as

x̃(1) = ã and x̃′(1) = b̃ (1.106)

where x̃,ãand b̃ are n-vectors.
Assume that x̃(t) = X̃(λ)ω(t, λ) be a solution of the equation (1.104), where λ is
scalar, X̃is an n-vector independent of t and ω(t, λ) is a non-trivial solution of scalar
differential equation

t2 d2y

dt2 + tp(t)dy

dt
+ q(t) = t2λy

i.e. Ly = λt2y (1.107)

Applying the operator L on x, we get

Lx̃ = L(X̃, ω) = X̃Lω

= X̃(t2λω) = λt2X̃ω (1.108)

Thus the equation (1.104) becomes

λt2X̃ω = t2Ã(X̃ω) = t2(ÃX̃)ω

or t2(λX̃ − ÃX̃)ω = 0 (1.109)
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Since ω(t, λ) is non-trivial and (λX̃ − ÃX̃) is independent of t, it follows that

λX̃ = ÃX̃ (1.110)

This gives rise to the algebraic eigenvalue problem where λ is the eigenvalue of the
matrix Ã and X̃ is the corresponding eigenvector.
Let λ1, λ2, ......, λn be the distinct eigenvalues of the matrix Ã and let X1︸︷︷︸, X2︸︷︷︸, ....., Xn︸︷︷︸
be the corresponding eigenvectors. Then X1︸︷︷︸, X2︸︷︷︸, ....., Xn︸︷︷︸ are linearly independent
and so they form a basis of the space Γn ,where Γ is the field of the complex numbers.
We can find the scalars a1, a2, ....., an and b1, b2, ....., bn such that
a︸︷︷︸ = a1X1 + a2X2 + ....... + anXn and b︸︷︷︸ = b1X1 + b2X2 + ....... + bnXn

Let u(t, λi) and v(t, λi) denote two linearly independent solutions of the differential
equations

Ly = λit
2y

With the initial conditions u(1, λi) = 1, u
′(1, λi) = 0 and v(1, λi) = 1, v

′(1, λi) = 1
Now let

x(t)︸︷︷︸ =
n∑
1

Xi︸︷︷︸[aiu(t, λi) + biv(t, λi)] (1.111)

Clearly x(t)︸︷︷︸ is the solution of the differential equation (23) and

x(1)︸ ︷︷ ︸ =
n∑
1

Xi︸︷︷︸[aiu(1, λi) + biv(1, λi)]

=
n∑
1

aiXi = a︸︷︷︸ (1.112)

x
′(1)︸ ︷︷ ︸ =

n∑
1

Xi︸︷︷︸[aiu
′(1, λi) + biv

′(1, λi)]

=
n∑
1

biXi = b︸︷︷︸ (1.113)

Therefore x(t)︸︷︷︸ is given by (1.111), is the unique solution of the system(1.104) and
(1.106).

1.3 Numerical Inversion of Laplace Transform:

The inversion of laplace transform in numerical computation usually performed by
two methods-
a. Bellman method [29] and
b. Zakian Method [127]
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a. Bellman method:

Through our research work, the numerical inversion of Laplace transform is carried out
by Bellman Method.

Laplace transform F (p) (say) of a function u(t) is defined as

F (p) =
∫ ∞

0
u(t) exp(−pt)dt (1.114)

We assume that u(t) is sufficiently smooth to permit the approximate method so
that we employ to put x = e−t in equation(1.114) which gives

F (p) =
∫ ∞

0
xp−1g(x)dx (1.115)

where u(−logx) = g(x).
Applying the Gaussian quadrature formula in Eq. (1.115), we get

n∑
i=1

Wix
p−1
i g(xi) = F (p) (1.116)

where xi are the roots of the shifted Legendre polynomial PN(x) = 0 and Wi are the
corresponding coefficients. Thus xi and Wi are known.

The equation (1.115) can be written as

W1x
p−1
1 g(x1) + W2x

p−1
2 g(x2) + ........ + WNxp−1

N g(xN) = F (p) (1.117)

We now put p = 1, 2, 3, ......, N in (1.116), then the resulting equations become

W1g(x1) + W2g(x2) + .. + WNg(xN) = F (1)

W1x1g(x1) + W2x2g(x2) + .. + WNxNg(xN) = F (2)

......................................................................................

W1x
N−1
1 g(x1) + W2x

N−1
2 g(x2) + .. + WNxN−1

N g(xN) = F (N)

Thus, we can write the above system of equations in the matrix form as


g(x1)
g(x2)

....

g(xN)

 =


W1 W2 .... WN

W1x1 W2x2 .... WNxN

.... .... .... ....

W1x
N−1
1 W2x

N−1
2 .... WNxN−1

N



−1

∗


F (1)
F (2)
....

F (N)


Hence g(x1), g(x2), ............, g(xN) can be evaluated by solving the above system.
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Now, u(−logx1) = g(x1), u(−logx2) = g(x2), ....., u(−logxN) = g(xN).
For N=9,

Roots of the Legendre Polynomial x
′
i u(−logxi) = g(xi)

x
′
1 = −0.968160239 4.140186636

x
′
2 = −0.836031107 2.501225729

x
′
3 = −0.613371432 1.643438002

x
′
4 = −0.324253423 1.085084341

x
′
5 = 0.000000000 0.693147180

x
′
6 = 0.324253423 0.412298334

x
′
7 = 0.613371432 0.214821133

x
′
8 = 0.836031107 0.085540945

x
′
9 = 0.968160239 0.016047962

b. Zakian method:

Let F (p) be the Laplace transform of f(t) be given by

F (p) =
∫ ∞

0
f(t)exp(−pt)dt ; Re(p) > σ (1.118)

Thus it assumed that f(t) is integrable and of exponential order σ.
Let δ(λ

t
− 1) denote the scaled delta function defined by

∫ T

0
δ(λ

t
− 1)dλ = t ; 0 < t < T (1.119)

δ(λ

t
− 1) = 0 ; t ̸= λ (1.120)

I = 1
t

∫ T

0
f(λ)δ(λ

t
− 1)dλ ; 0 < t < T (1.121)

Making use of the property of the delta function given in equation (1.120), whenever
t is a point of continuity of f , we can replace the integrand of equation (1.121) by
f(t)δ(λ

t
− 1) and therefore

I = f(t)
t

∫ T

0
δ(λ

t
− 1)dλ ; 0 < t < T (1.122)
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Hence, using equations (1.119) and (1.121), we obtain the shifting integral associated
with δ(λ

t
− 1);

f(t) = 1
t

∫ T

0
f(λ)δ(λ

t
− 1)dλ ; 0 < t < T (1.123)

At those points t where the function f jumps discontinuously from f(t−) to f(t+), then
left hand side of equation (1.123) should be replaced by 1

2{k1f(t−) + k2f(t+)}, where
k1 and k2 are real non negative constants such that k1 + k2 = 2. In particular, k1 = k2

if δ(λ
t

− 1) is defined as the ’limit’ of a sequence of functions which are symmetrical
about the vertical line λ = t.
It can be proved that the scaled delta function δ(λ

t
−1) can be expanded into the series

δ(λ

t
− 1) =

∞∑
i=1

kiexp(−αi
λ

t
) (1.124)

More precisely, it can be shown that a sequence of functions {δN(λ
t
−1)} exists, so that

at every continuity point t of f ,

f(t) = lim
N→∞

fN(t) ; 0 < t < T (1.125)

where

fN(t) = 1
t

∫ T

0
f(λ)δN(λ

t
− 1)dλ (1.126)

δN(λ

t
− 1) =

N∑
i=1

ki exp(−αi
λ

t
) (1.127)

(a) the constants αi and ki are either real or occur in complex conjugate pairs, e.g.,
αi = α∗

2, and hence k1 = k∗
2.

(b) αi and ki depend on N.
(c) as N → ∞, so also Re(αi) → ∞ and | ki |→ ∞
(d) Re(αi) > 0.
(e) the αi are distinct, i.e., αi = αj if and only if i = j.

From equations (1.126) and (1.127), we get

fN(t) = 1
t

∫ T

0
f(λ)

N∑
i=1

kiexp(−αi
λ

t
)dλ (1.128)
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Hence

fN(t) = 1
t

N∑
i=1

ki

∫ T

0
f(λ)exp(−αi

λ

t
)dλ (1.129)

Allowing T → ∞ and using equation (1.118), we obtain

fN(t) = 1
t

N∑
i=1

kiF (αi

t
) ; 0 < t < tc (1.130)

where

tc = min
i=1,2,...,N

{Re(αi

σ
)} ; σ > 0 (1.131)

As N → ∞, Re(αi) → ∞, and hence tc → ∞.
Therefore, using equation (1.149), we obtain the explicit inversion formula

f(t) = lim
N→∞

1
t

N∑
i=1

kiF (αi

t
) ; 0 < t < ∞ (1.132)

A number of methods for obtaining optimal sets of constants αi and ki are being in-
vestigated and we get the following results when Ai = ki

αi
.

For N=10
i αi Ai

1 5.2038 − 15.7212i −10.15471 − 4.260437i

2 5.2038 + 15.7212i −10.15471 + 4.260437i

3 8.7980 − 11.9391i 189.2250 + 250.7353i

4 8.7980 + 11.9391i 189.2250 − 250.7353i

5 10.9343 − 8.4096i −866.2283 − 2313.588i

6 10.9343 + 8.4096i −866.2283 + 2313.588i

7 12.2261 − 5.0127i 1560.540 + 8422.502i

8 12.2261 + 5.0127i 1560.540 − 8422.502i

9 12.8376 − 1.666i −872.8822 − 15431.37i

10 12.8376 + 1.666i −872.8822 + 15431.37i
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Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

2.1 On a multi-phase lag model of three-dimensional coupled
thermoelasticity in an anisotropic halfspace

2.1.1 Introduction

For last several decades, it has been seen that non-isothermal problems in the the-
ory of elasticity has become popular due to its effective application in different diverse
filed such as aircraft engineering, nuclear reactors etc. Generally, the thermoelasticity
theory deals with the direct and inverse impact of heat on the elastic medium due to
deformation. When the structural characteristics in a medium is compared with either
the time rate of variation of thermal boundary conditions or the time rate of variation
of a heat source, the thermal stress is generated. Using this concept, the solutions to
the problems associated with physical variables like- stress components, temperature
with respect to space variables are obtained using coupled thermoelasticity equations.

The uncoupled theory of thermoelasticity, known as classical thermoelasticity the-
ory predicts two non-compatible phenomena about heat conduction equation. They
are a) heat conduction not containing any elastic term and b) heat equation predicting
infinite speed of heat wave propagation (parabolic type). To overcome the paradox of
infinite propagation of heat wave in classical thermoelasticity, Biot [30] proposed the
theory of coupled thermoelasticity (CTE) using Fourier’s Law. However, the resulting
coupled equation is a mixed parabolic-hyperbolic type as equation of motions are of
hyperbolic type and the thermal equation is of diffusion (parabolic) type. Wang and
Melnick [120] proposed a general procedure to reform coupled problems of dynamical
thermoelasticity to differential- algebraic systems.To overcome the ambiguity in CTE,
various researcher proposed a modified dynamical thermoelasticity, known as general-
ized thermoelasticity.

Both of coupled and uncoupled thermoelasticity problems had been solved using
potential functions. But this method is not always applicable as studied by Sherief
and Anwar [106] and Dhaliwal and Sheriff [44]. The reason behind it is the initial
and boundary conditions to a problem are associated to physical quantities but not
the potential function. In this regard, the alternative methods are (a) Eigen value ap-
proach: it is the method where a vector-matrix differential equation is obtained from
the governing equations and the solution of the corresponding field variables are de-
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rived applying eigen value approach and (b) State- space approach: in this process, the
coefficient matrix of field variables expanded in a series and the solutions are obtained
using Caley-Hamilton method.

Different engineering model proposed to determine the stress, strain, displacement
and temperature are three dimensional. Also, the three-dimensional anisotropic wave
propagation of heat leads to study of three-dimensional anisotropic elasticity to analyze
the mechanical behavior of the materials like microcline, rhodonite, Vosges sandstone,
turquoise etc.

The first generalized thermoelasticity theory was proposed by Lord and Shulman [80]
known as L-S model. In L-S model, the Fourier law of heat conduction was replaced by
Maxwell- Cattanew Law by involving one relaxation time parameter. Green-Lindsay
[58] proposed the second generalized thermoelasticity introducing two relaxation time
parameters to modify both motion equations and thermal equation. It has been seen
that Fourier law and Green-Lindsay theory can be obtained as a particular case of
the other though they are structurally different. Later on, Hetnarski- Ignaczak [63]
proposed third generalization which is known as theory of low-temperature thermoe-
lasticity. By considering thermal displacement gradient in the constitutive equations,
Green- Naghdi introduced a new theory of thermoelasticity as fourth generalized ther-
moelasticity. The proposed models are known as G-N model of type-I, type-II and
type-III. Type-I model [59] can be considered as identical as classical heat equation
based on Fourier’s Law. Type II [60] and type-III [61] theories are comprising of
finite heat wave propagation. Type-II theory does not accommodate energy dissipa-
tion whereas type-III theory is compatible with energy dissipation of thermal energy.
Several studies have been followed to investigate energy dissipation in G-N theory by
Sharma and Chouhan [105], Chandrashekhariah and Srinath [35], Mukhopadhay and
Kumar [92] etc. In fifth generalization, Dual Phase Lag (DPL) theory was introduced
by Tzou[113][117] and Chandrashekhariah[33].

In DPL, Tzou considered both of the heat flux vector and the temperature gra-
dient in the delayed response in time to inspect the micro-structural effects due to
photo-electron interaction in the macroscopic level. According to the DPL model, the
constitutive equation in classical Fourier law,q = −K∇T is replaced by q(P, t + τq) =
−K∇T (P, t + τT ) where K is the thermal conductivity with temperature gradient ∇T
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, at a point P in the medium at a time t + τT for the heat flux q at the same point
at the time t + τq where τq is the phase lag variable for the heat flux which is the
relaxation time due to the transient effects of thermal inertia. Recently Roychowd-
hury [102] introduced the theory of three phase lag modifying the Fourier Law as
q(P, t + τq) = −K∇T (P, t + τT ) + K∗∇V (P, t + τv) , where τv is the another phase
lag variable here which is associated to thermal displacement gradient. Using DPL,
3PHL models several studies have been done by Ghosh et al.[49], Kar and Kano-
ria [71]. Also, Abbas [3], Ghosh et al. [52] discussed the 3 PHL model considering
fiber-reinforced medium in their respective studies. Abd-Alla et. al[5] investigated
the surface wave propagation in fiber-reinforce anisotropic half space in context of
fractional order thermoelasticity Abouelregal and Abo-Dahab [9] proposed a model
of Rayleigh waves on granular medium under influence of initial stress in presence of
gravitational field. Ghazanfarian and Somali [48] and Ghosh and Lahiri[50] studied
transient temperature in a two-dimensional DPL model of heat conduction . Nayfeh
and Nasser [94] studied the plane wave propagation in a solid considering the general-
ized magneto-thermoelastic field. Sarkar et. al[104] used generalized thermoelasticity
to solve a boundary value problem for a isotropic medium to obtain the solution for
displacement, stress, strain, temperature using Laplace transformation. A general the-
oretical analysis of thermoelastic (TE) mechanism due to photothermal generation and
electronic deformation (ED) effects in a semiconductor medium during photothermal
process is studied by Das et. al.[41]

Recently, Riha[101]investigated the heat conduction in microtemperatures for a
thermoelastic medium. The theory of microtemperatures deals with the Nano materials
which has a great impact in engineering field as the microelements of a thermoelastic
solid have different temperatures. Aouadi [23] and Iesan and Quintanilla [64] studied
some theories of microstretch thermoelastic linear solids with microtemperatures and
inner structure. Zenkour [128] investigated a refined multiphase lag (RPL) theory in
thermoelasticity and proposed a model to reduce the previous cases of phase lag models
to special cases.

There are various vital approaches for determining the solutions of the governing
equations. Akbar M.A et. al.[18] studied the mechanics of closed-form wave solutions
using Kudryashov method . Again The nonlinear interaction between Langmuir waves
and electrons produce non-linear parabolic law which is known as cubic-quintic non-
linearity. To solve this type of problem Akinyemi L. et. al.[19] have taken help of
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generalized auxiliary equation . Ahmad H. et. al.[15] approached for fractional itera-
tion algorithm to solve non-linear fractional order differential equations. Also Ahmad
H. et. al.[17] solved three different types of Burgers’ equations with the help of varia-
tional iteration algorithm-II which is a modification of variational iteration algorithm-I
whereas Mohammed and Abbo [84] studied variational iteration algorithm-I to solve
Learning Fuzzy Neural Networks problem using Conjugate Gradient Method. As in
Bazighifan, Ahmad and Yao [28], since previous decade, Riccati transformation is be-
ing used to study the oscillation theory consisting of higher order advanced differential
equations. Using meshless method with radial basis functions, Wang et. al.[119] pro-
posed a direct meshless scheme on Gaussian radial basis function to solve both linear
and non-linear convection-diffusion problem. Also Ahmad, Alam and Omri [16] studied
the modified (G’/G)-expansion method to obtain the numerical solutions for a non-
linear biological model.

In our recent studies we have investigated a thermoelastic anisotropic medium in
the context of RPL theory. Here we tried to make generalization of phase lag variables
and also we have shown special cases drawn from the RPL .

2.1.2 Formulation of The Problem

In the orthogonal co-ordinate system xi(i = 1, 2, 3), we consider three dimensional
anisotropic half space defined in the region Ω = {0 ≤ x1 < ∞, −∞ < x2 < ∞, −∞ <

x3 < ∞} subject to fraction free boundary x1 = 0, x1-axis is vertically downwards and
x2x3 along the free surface of the anisotropic half space.

We may assume, without any loss of generality, that the propagation of waves
along x1 direction , and as such field variables are functions of x1, x2, x3 and t only
i.e. u = [u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)] and temperature field θ =
θ(x1, x2, x3, t)]. Assuming that a body having mass density ρ is in unstressed and
undeformed state at the constant reference temperature θ0. The body undergoes de-
formation ui, i = 1, 2, 3 and respective temperature increment acquired (θ − θ0), the
absolute temperature θ is chosen such that | θ−θ0

θ0
| ≪ 1, under the influence of thermal

and mechanical stresses act on the free surface.
In the absence of body force and heat source, the equations of motion and the heat
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Figure 1: Schematic diagram

conduction equation in multiphase lag model are as follows:
∂τ11

∂x1
+ ∂τ12

∂x2
+ ∂τ13

∂x3
= ρ

∂2u1

∂t2

∂τ21

∂x1
+ ∂τ22

∂x2
+ ∂τ23

∂x3
= ρ

∂2u2

∂t2

∂τ31

∂x1
+ ∂τ32

∂x2
+ ∂τ33

∂x3
= ρ

∂2u3

∂t2

(2.1)

1 +
N∑

n=1

τn
θ

n!
∂n

∂tn

K∗

∂2θ

∂x2
1

+ ∂2θ

∂x2
2

+ ∂2θ

∂x2
3


=
R + τ0

∂

∂t
+

N∑
n=1

τn
q + 1

(n + 1)!
∂n+1

∂t(n + 1)

ρcE
∂2θ

∂t2 + γθ0
∂2

∂t2 (∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
)
 (2.2)

The stress-strain-temperature relations are given by

τij = cijklekl − βij(θ − θ0 + τ1θ̇) (2.3)

where βij = cijklαkl

Using Hooke’s law, stress-strain-temperature relations are given as

τ11 = c11e11 + c12e22 + c13e33 + 2(c14e23 + c15e13 + c16e12)

τ22 = c21e11 + c22e22 + c23e33 + 2(c24e23 + c25e13 + c26e12)

τ33 = c31e11 + c32e22 + c33e33 + 2(c34e23 + c35e13 + c36e12)

τ12 = c41e11 + c42e22 + c43e33 + 2(c44e23 + c45e13 + c46e12)

τ13 = c51e11 + c52e22 + c53e33 + 2(c54e23 + c55e13 + c56e12)

τ23 = c61e11 + c62e22 + c63e33 + 2(c64e23 + c65e13 + c66e12)

(2.4)
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Using (2.4) in (2.1), we obtainc11
∂2u1

∂x2
1

+ c66
∂2u1

∂x2
2

+ c55
∂2u1

∂x2
3

+ 2
c16

∂2u1

∂x1∂x2
+ c15

∂2u1

∂x1∂x3
+ c56

∂2u1

∂x2∂x3


+
c16

∂2u2

∂x2
1

+c26
∂2u2

∂x2
2

+c45
∂2u2

∂x2
3

+(c12+c16)
∂2u2

∂x1∂x2
+(c14+c56)

∂2u2

∂x1∂x3
+(c46+c25)

∂2u2

∂x2∂x3


+
c15

∂2u3

∂x2
1

+c46
∂2u3

∂x2
2

+c35
∂2u3

∂x2
3

+(c14+c56)
∂2u3

∂x1∂x2
+(c13+c55)

∂2u3

∂x1∂x3
+(c36+c45)

∂2u3

∂x2∂x3


− β11

∂θ

∂x1
= ρ

∂2u1

∂t2 (2.5)

c16
∂2u1

∂x2
1

+c26
∂2u1

∂x2
2

+c45
∂2u1

∂x2
3

+(c12+c66)
∂2u1

∂x1∂x2
+(c14+c56)

∂2u1

∂x1∂x3
+(c46+c25)

∂2u1

∂x2∂x3


+
c66

∂2u2

∂x2
1

+ c22
∂2u2

∂x2
2

+ c44
∂2u2

∂x2
3

+ 2
c26

∂2u2

∂x1∂x2
+ c46

∂2u2

∂x1∂x3
+ c24

∂2u2

∂x2∂x3


+
c56

∂2u3

∂x2
1

+c24
∂2u3

∂x2
2

+c34
∂2u3

∂x2
3

+(c46+c25)
∂2u3

∂x1∂x2
+(c36+c45)

∂2u3

∂x1∂x3
+(c23+c44)

∂2u3

∂x2∂x3


− β22

∂θ

∂x2
= ρ

∂2u2

∂t2 (2.6)

c15
∂2u1

∂x2
1

+c46
∂2u1

∂x2
2

+c35
∂2u1

∂x2
3

+(c56+c14)
∂2u1

∂x1∂x2
+(c55+c13)

∂2u1

∂x1∂x3
+(c45+c36)

∂2u1

∂x2∂x3


+
c56

∂2u2

∂x2
1

+c24
∂2u2

∂x2
2

+c34
∂2u2

∂x2
3

+(c25+c46)
∂2u2

∂x1∂x2
+(c45+c36)

∂2u2

∂x1∂x3
+(c44+c23)

∂2u2

∂x2∂x3


+
c55

∂2u3

∂x2
1

+ c44
∂2u3

∂x2
2

+ c33
∂2u3

∂x2
3

+ 2
c45

∂2u3

∂x1∂x2
+ c35

∂2u3

∂x1∂x3
+ c34

∂2u3

∂x2∂x3


− β33

∂θ

∂x3
= ρ

∂2u3

∂t2 (2.7)

and heat conduction equation in multiple phase lag model is given by1 +
N∑

n=1

τn
θ

n!
∂n

∂tn

K∗

∂2θ

∂x2
1

+ ∂2θ

∂x2
2

+ ∂2θ

∂x2
3


=
R + τ0

∂

∂t
+

N∑
n=1

τn
q + 1

(n + 1)!
∂n+1

∂t(n + 1)

ρcE
∂2θ

∂t2 + γθ0
∂2

∂t2

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3


(2.8)
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To transform the equations (2.5)-(2.8) in the non-dimensional form, we use the
following non-dimensional variables:

(x′
i, u′

i) = 1
l
(xi,

ρc2
1

βθ0
ui), i = 1, 2, 3; t′ = c1t

l
θ; τ ′

ij = τij

βθ0

e′
ij = βθ0eij; τ ′

q = c1

l
τq; τ ′

θ = c1

l
τθ; τ ′

0 = c1

l
τ0

l = K∗

ρcEc1
; c2

1 = c11

ρ

(2.9)

Using the non-dimensional variables (2.9) and omitting the primes for convenience,
equations (2.5)-(2.8) becomes
∂2u1

∂x2
1

+ c66

c11

∂2u1

∂x2
2

+ c55

c11

∂2u1

∂x2
3

+ 2
c16

c11

∂2u1

∂x1∂x2
+ c15

c11

∂2u1

∂x1∂x3
+ c56

c11

∂2u1

∂x_2∂x3


+
c16

c11

∂2u2

∂x2
1

+ c26

c11

∂2u2

∂x2
2

+ c45

c11

∂2u2

∂x2
3

+ (c12 + c16)
c11

∂2u2

∂x1∂x2
+ (c14 + c56)

c11

∂2u2

∂x1∂x3

+ (c46 + c25)
c11

∂2u2

∂x2∂x3


+
c15

c11

∂2u3

∂x2
1

+ c46

c11

∂2u3

∂x2
2

+ c35

c11

∂2u3

∂x2
3

+ (c14 + c56)
c11

∂2u3

∂x1∂x2
+ (c13 + c55)

c11

∂2u3

∂x1∂x3

+ (c36 + c45)
c11

∂2u3

∂x2∂x3

− ∂θ

∂x1
= ∂2u1

∂t2 (2.10)

c16

c11

∂2u1

∂x2
1

+ c26

c11

∂2u1

∂x2
2

+ c45

c11

∂2u1

∂x2
3

+ (c12 + c66)
c11

∂2u1

∂x1∂x2
+ (c14 + c56)

c11

∂2u1

∂x1∂x3

+ (c46 + c25)
c11

∂2u1

∂x2∂x3


+
c66

c11

∂2u2

∂x2
1

+ c22

c11

∂2u2

∂x2
2

+ c44

c11

∂2u2

∂x2
3

+ 2
c26

c11

∂2u2

∂x1∂x2
+ c46

c11

∂2u2

∂x1∂x3
+ c24

c11

∂2u2

∂x2∂x3


+
c56

c11

∂2u3

∂x2
1

+ c24

c11

∂2u3

∂x2
2

+ c34

c11

∂2u3

∂x2
3

+ (c46 + c25)
c11

∂2u3

∂x1∂x2
+ (c36 + c45)

c11

∂2u3

∂x1∂x3

+ (c23 + c44)
c11

∂2u3

∂x2∂x3

− β2
∂θ

∂x2
= ∂2u2

∂t2 (2.11)
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c11

∂2u1

∂x2
1

+ c46

c11

∂2u1

∂x2
2

+ c35

c11

∂2u1

∂x2
3

+ (c56 + c14)
c11

∂2u1

∂x1∂x2
+ (c55 + c13)

c11

∂2u1

∂x1∂x3

+ (c45 + c36)
c11

∂2u1

∂x2∂x3


+
c56

c11

∂2u2

∂x2
1

+ c24

c11

∂2u2

∂x2
2

+ c34

c11

∂2u2

∂x2
3

+ (c25 + c46)
c11

∂2u2

∂x1∂x2
+ (c45 + c36)

c11

∂2u2

∂x1∂x3

+ (c44 + c23)
c11

∂2u2

∂x2∂x3


+
c55

c11

∂2u3

∂x2
1

+ c44

c11

∂2u3

∂x2
2

+ c33

c11

∂2u3

∂x2
3

+ 2
c45

∂2u3

∂x1∂x2
+ c35

c11

∂2u3

∂x1∂x3
+ c34

c11

∂2u3

∂x2∂x3


− β3

∂θ

∂x3
= ∂2u3

∂t2 (2.12)

1 +
N∑

n=1

τn
θ

n!
∂n

∂tn

K∗
11

∂2θ

∂x2
1

+ K∗
22

∂2θ

∂x2
2

+ K∗
33

∂2θ

∂x2
3


=
R+τ0

∂

∂t
+

N∑
n=1

τn
q + 1

(n + 1)!
∂n+1

∂t(n + 1)

cEc11
∂2θ

∂t2 +T0β
2
11

∂2

∂t2

∂u1

∂x1
+β2

∂u2

∂x2
+β3

∂u3

∂x3


(2.13)

where β2 = β22
β11

; β3 = β33
β11

Non-dimensional stress components are given by

τ11 = 1
c11

[c11e11 + c12e22 + c13e33 + 2(c14e23 + c15e13 + c16e12)] − θ

τ22 = 1
c11

[c21e11 + c22e22 + c23e33 + 2(c24e23 + c25e13 + c26e12)] − β2θ

τ33 = 1
c11

[c31e11 + c32e22 + c33e33 + 2(c34e23 + c35e13 + c36e12)] − β3θ

τ12 = 1
c11

[c41e11 + c42e22 + c43e33 + 2(c44e23 + c45e13 + c46e12)]

τ13 = 1
c11

[c51e11 + c52e22 + c53e33 + 2(c54e23 + c55e13 + c56e12)]

τ23 = 1
c11

[c61e11 + c62e22 + c63e33 + 2(c64e23 + c65e13 + c66e12)]

(2.14)
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2.1.3 Method of Solution: Formulation of a Vector-Matrix
Differential Equation

For the solution of the equations (2.10)-(2.13), the physical quantities can be decom-
posed in terms of normal modes in the following form

[u1, u2, u3, τij, θ](x1, x2, x3, t) = [u∗
1, u∗

2, u∗
3, τ ∗

ij, θ](x1, x2, x3, t)eωt+i(ax2+bx3) (2.15)

where i =
√

−1, ω is the angular frequency and a,b are the wave numbers along x2

and x3 direction respectively.
After imposing (2.15), equations (2.10)-(2.13) are as follows (omitting the asterisks

for convenience):

d2u1

dx2
1

+a11
du1

dx1
+a12u1+a13

d2u2

dx2
1

+a21
du2

dx1
+a22u2+a23

d2u3

dx2
1

+a31
du3

dx1
+a32u3−a33

dθ

dx1
= 0

(2.16)

b11
d2u1

dx2
1

+ b12
du1

dx1
+ b13u1 + d2u2

dx2
1

+ b21
du2

dx1
+ b22u2 + b23

d2u3

dx2
1

+ b31
du3

dx1
+ b32u3 − b33θ = 0

(2.17)

m11
d2u1

dx2
1

+m12
du1

dx1
+m13u1+m21

d2u2

dx2
1

+m22
du2

dx1
+m23u2+d2u3

dx2
1

+m31
du3

dx1
+m32u3−m33θ

= 0 (2.18)

and
θ′′ = d41

du1

dx1
+ d44u2 + d46u3 + d48θ (2.19)

and stress components are

τ11 = h11
du1

dx1
+ h12

du2

dx1
+ h13

du3

dx1
+ h14u1 + h15u2 + h16u3 − θ

τ22 = h21
du1

dx1
+ h22

du2

dx1
+ h23

du3

dx1
+ h24u1 + h25u2 + h26u3 − β2θ

τ33 = h31
du1

dx1
+ h32

du2

dx1
+ h33

du3

dx1
+ h34u1 + h35u2 + h36u3 − β3θ

τ23 = h41
du1

dx1
+ h42

du2

dx1
+ h43

du3

dx1
+ h44u1 + h45u2 + h46u3

τ13 = h51
du1

dx1
+ h52

du2

dx1
+ h53

du3

dx1
+ h54u1 + h55u2 + h56u3

τ12 = h61
du1

dx1
+ h62

du2

dx1
+ h63

du3

dx1
+ h64u1 + h65u2 + h66u3

(2.20)

where aij, mij and hij (i, j = 1, 2, 3) are given in the appendix A.
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Equations (2.16)-(2.19) can be written as vector-matrix differential equation as

dv
∼

dx1
= Av

∼
(2.21)

where ṽ =
[

u1 u2 u3 θ u′
1 u′

2 u′
3 θ′

]T
and A =

 L11 L12

L21 L21


where L11 and L12 are respectively the null matrix and the identity matrix of order
4 × 4 and L21 and L22 are given in the Appendix I.

2.1.4 Solution of the Vector-Matrix Differential Equation

The characteristic equation of the matrix A is given by

|A − λI| = 0 (2.22)

The roots (eigenvalues) of the characteristic equation (22) and λ = λi (i = 1, 2, 3, 4)
and are of the form

λ = ±λ1, λ = ±λ2, λ = ±λ3, λ = ±λ4.

The eigen vector X
∼

corresponding to the eigen value λ calculated as

X
∼

=
[

δ1 δ2 δ3 δ4 λδ1 λδ2 λδ3 λδ4

]T
(2.23)

where

δ1 =(f24f13 − f14f23)(f22f33 − f32f23) − (f34f23 − f24f33)(f12f23 − f22f13)

δ2 =(f34f23 − f24f33)(f11f23 − f21f13) − (f24f13 − f14f23)(f21f33 − f31f23)

δ3 =(f12f21 − f11f22)(f21f34 − f31f24) − (f22f31 − f21f32)(f11f24 − f14f21)

δ4 =(f11f23 − f21f13)(f22f33 − f32f23) − (f12f23 − f22f13)(f21f33 − f31f23)

(2.24)

where fij (i, j = 1, 2, 3) are given in Appendix-I.
The solution of the equation (2.21) is given by

v⃗ =
4∑

i=1
Xi yi (2.25)

Where Xi is the eigen vector corresponding to the eigen value λi .
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Thus we obtain the displacement components and temperature as follows:

u1 =
4∑

j=1
Aj x1j eλjx1 , u2 =

4∑
j=1

Aj x2j eλjx1 , u3 =
4∑

j=1
Aj x3j eλjx1 and θ =

4∑
j=1

Aj x4j eλjx1

(2.26)
Using equation(2.26) in the equations given at (2.20), we obtain the stress compo-

nents as below
τ11 = ∑4

j=1 Ai R1i(x1) , τ22 = ∑4
j=1 Ai R2i(x1) , τ33 = ∑4

j=1 Ai R3i(x1)

τ12 = ∑4
j=1 Ai R4i(x1) , τ13 = ∑4

j=1 Ai R5i(x1) , τ23 = ∑4
j=1 Ai R6i(x1)

θ = ∑4
j=1 Ai R7i(x1)

(2.27)

Where Rji(j=1,2,..,7 and i=1,2,..4) are given in the Appendix-II. Ar are constants,
which are to be determined by using boundary conditions.

2.1.5 BOUNDARY CONDITIONS

As we consider the problem of a half-space in the region
R = {(x1, x2, x3) : 0 ≤ x1 ≤ ∞, −∞ ≤ x2 ≤ ∞, −∞ ≤ x3 ≤ ∞}.
To determine arbitrary constants ( Ai, i = 1, 2, 3, 4 ) we consider the following two
boundary conditions are prescribed as the follows

CASE 1:

Mechanical Boundary Condition:
We consider the traction free boundary surface of the half-space x1=0 by means of

τ11(0, x2, x3, t) = τ12(0, x2, x3, t) = τ13(0, x2, x3, t) = 0 (2.28)

Thermal Boundary Condition:

qn + νθ = r∗(0, x2, x3, t) at x1 = 0; (2.29)

CASE 2:
We consider the traction free boundary surface of the half-space x1=0 by means of

τ11(0, x2, x3, t) = σ0, τ12(0, x2, x3, t) = τ13(0, x2, x3, t) = 0 (2.30)

Thermal Boundary Condition:
θ = θ0; (2.31)
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2.1.6 Numerical analysis

Numerical computations were performed by considering two different sets of bound-
ary conditions. To study the nature of characteristic curves,we consider the following
physical constants in triclinic half space as in Chattopadhaya and Rogerson .

C11 = 16.248; C22 = 11.88; C33 = 12.216; C44 = 5.64;
C55 = 5.88; C66 = 9.91; C12 = 1.48 = C21;
C13 = 2.4 = C31; C14 = −1.152 = C41; C15 = 0.0 = C51;
C16 = −0.561 = C61; C23 = 1.032 = C32;
C24 = 0.912 = C42; C25 = 1.608 = C52;
C26 = 1.248 = C62; C33 = 12.216; C34 = −0.672 = C43;
C35 = 0.216 = C53; C36 = −0.216 = C63;
C45 = 2.16 = C54; C46 = 0 = C64; C56 = 0.0 = C65;
ρ = 2.40; g = 9.8; ν = 2.0; a = 1.2; b = 1.3; z = 200.0;

(2.32)

2.1.7 Geometrical Representation and analysis

Depending upon the boundary conditions and using above mentioned numerical val-
ues, the geometrical representation of different physical variables are provided in two
separate cases as follows
CASE 1:
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Case1: Figure 2.
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Case1: Figure 7.
Figure 2-7 represents the characteristic curves of different stress components, tem-
perature and displacement components with respect to x1 for different models. The
characteristic curves are obtained for fixed values of R = 0, x2 = 0.4 and x3 = 0.5.
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Case1: Figure 12.

Figure 8-12 represents the characteristic curves of different components of stress, tem-
perature na displacement components for different values of t(0.1, 0.3, 0.5, 0.7) and for
fixed values of τq = 0.01, τθ = 0.0001, τ0 = 0.01 and R=1.
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Case1: Figure 17.

Figure 13-17 are showing the three dimensional characteristics behaviour of tempera-
ture and different components of stresses and displacements with respect to x2 and x2

for fixed values of x3 = 0.5 , τq = 0.02, τθ = 0.04, τ0 = 0.1 , t=0.5 and R=0.
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Case1: Figure 18.
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Case1: Figure 19.

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

-0.005

0

-0.02

-0.015

-0.01

1

t x
1

τ
13

Case1: Figure 20.

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

0

-0.005

-0.01

-0.015

1

x
1

t

τ
23

Case1: Figure 21.

47



Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

-0.1

-0.05

0

1

x
1

t

u
2

Case1: Figure 22.

Figure 18-22 represents the three-dimensional behaviours of different components of
stresses, displacements and temperature with respect to x1 and t with respect to
x2 = 0.5 and x3 = 0.5 for fixed values of τq = 0.02, τθ = 0.04, τ0 = 0.1 and R=0.
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Case2: Figure 23.
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Figure 23-27 represents the characteristic curves different physical variables with re-
spect to x1 with x2 = 0.4 and x3 = 0.5 for different values of t for fixed values of
τq = 0.01, τθ = 0.0001, τ0 = 0.01 and R=1 satisfying boundary conditions.

.
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Case1: Figure. 28:

Case2: Figure. 29

The above two tables depicts the variations of values of the different components of
shearing and normal stress,temperature and the displacement components for different
models and for different values of N to clarify the effects of multi phase lag variables
depending upon the boundary conditions provided in case 1 and case 2 respectively.

2.1.8 Conclusion

The thermomechanical analysis of the anisotropic half space has been investigated ap-
plying two-temperature parameter with modified coupled stress . As the extension of
the study by Tzou, the concept of multi-phase lag thermoelasticity has been established
and verified here successfully. The characteristic behaviours of different components of
stress, displacement and temperature with respect to several thermoelasticity model(
CTE, L-S, G-N, RPL etc)has been represented analytically and graphically. The va-
lidity and accuracy of this study has been assured through the boundary conditions
provided in two different cases.
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2.1.9 Appendix:

APPENDIX-I

a11 = 2ia
c16

c11
+ 2ib

c15

c11
, a12 = −a2 c66

c11
− b2 c55

c11
− 2ab

c55

c11
− ω2, a21 = c16

c11
,

a22 = ia
c12 + c66

c11
+ ib

c14 + c56

c11
,

a23 = −a2 c26

c11
− b2 c45

c11
− ab

c46 + c25

c11
, a31 = c15

c11
,

a32 = ia
c14 + c56

c11
+ ib

c13 + c55

c11
, a34 = −(1 + T1ω) dθ

dx1
,

a33 = −a2 c46

c11
− b2 c35

c11
− ab

c36 + c45

c11
, b11 = c16

c66
, b12 = ia

c12 + c66

c66
+ ib

c14 + c56

c66
,

b13 = −a2 c26

c66
− b2 c45

c66
− ab

c46 + c25

c66
, b21 = 2ia

c26

c66
+ 2ib

c46

c66
,

b22 = −a2 c22

c66
− b2 c44

c66
− 2ab

c24

c66
− c11

c66
ω2,

b31 = c56

c66
, b32 = ia

c46 + c25

c66
+ ib

c36 + c45

c66
,

b33 = −a2 c24

c66
− b2 c34

c66
− ab

c23 + c44

c66
, b34 = iaβ2c11(1 + T1ω)

c66
,

m11 = c15

c55
, m12 = ia

c56 + c14

c55
+ ib

c55 + c13

c55
,

m13 = −a2 c46

c55
− b2 c35

c55
− ab

c45 + c36

c55
, m21 = c56

c55
,

m22 = ia
c25 + c46

c55
+ ib

c45 + c36

c55
,

m23 = −a2 c24

c55
− b2 c34

c55
− ab

c44 + c23

c55
, m31 = 2ia

c45

c55
+ 2ib

c35

c55
,

m32 = −a2 c44

c55
− b2 c33

c55
− 2ab

c34

c55
− c11

c55
ω2, m33 = ibβ3c11

c55
,

h12 = c16

c11
, h13 = c15

c11
, h14 = i(bc15 + ac16)

c11
, h15 = i(bc14 + ac12)

c11
,

h16 = i(bc13 + ac14)
c11

, h21 = c21

c11
,

h22 = c26

c11
, h23 = c25

c11
, h24 = i(bc25 + ac26)

c11
, h25 = i(bc24 + ac22)

c11
,

h26 = i(bc23 + ac24)
c11

, h31 = c31

c11
,
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h32 = c36

c11
, h33 = c35

c11
, h34 = i(bc35 + ac26)

c11
, h35 = i(bc34 + ac32)

c11
,

h36 = i(bc33 + ac34)
c11

, h41 = c41

c11
,

h42 = c46

c11
, h43 = c45

c11
, h44 = i(bc45 + ac46)

c11
, h45 = i(bc44 + ac42)

c11
,

h46 = i(bc43 + ac44)
c11

, h51 = c51

c11
,

h52 = c56

c11
, h53 = c55

c11
, h54 = i(bc55 + ac56)

c11
, h55 = i(bc54 + ac52)

c11
,

h56 = i(bc53 + ac54)
c11

, h61 = c61

c11
,

h62 = c66

c11
, h63 = c65

c11
, h64 = i(bc65 + ac66)

c11
,

h65 = i(bc64 + ac62)
c11

, h66 = i(bc63 + ac64)
c11

,

d11 = 1 + a21(b31m11 − b11)
1 − b31m21

+ a31(m21b11 − m11)
1 − b31m21

,

d12 = a11 + a21(b31m12 − b12)
1 − b31m21

+ a31(m21b12 − m12)
1 − b31m21

,

d13 = a12 + a21(b31m13 − b13)
1 − b31m21

+ a31(m21b13 − m13)
1 − b31m21

,

d14 = a22 + a21(b31m22 − b21)
1 − b31m21

+ a31(m21b21 − m22)
1 − b31m21

,

d15 = a23 + a21(b31m23 − b22)
1 − b31m21

+ a31(m21b22 − m23)
1 − b31m21

,

d16 = a32 + a21(b31m31 − b32)
1 − b31m21

+ a31(m21b32 − m31)
1 − b31m21

,

d17 = a33 + a21(b31m32 − b33)
1 − b31m21

+ a31(m21b33 − m31)
1 − b31m21

,

d18 = −a21(b31m33 + b34)
1 − b31m21

+ a31(m33 − m21b34)
1 − b31m21

,

d21 = (−b12 − b31(m21b12 − m12)
1 − b31m21

) − d12

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

d22 = (−b13 − b31(m21b13 − m13)
1 − b31m21

) − d13

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

d23 = (−b21 − b31(m21b21 − m22)
1 − b31m21

) − d14

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

53



Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

d24 = (−b22 − b31(m21b22 − m23)
1 − b31m21

) − d15

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

d25 = (−b32 − b31(m21b32 − m31)
1 − b31m21

) − d16

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

d26 = (−b33 − b31(m21b33 − m32)
1 − b31m21

) − d17

d11
(−b11 − b31(m21b11 − m11)

1 − b31m21
),

d27 = 1
d11

(−b11 − b31(m21b11 − m11)
1 − b31m21

), d31 = m11d12

d11
− m12 − m21d21,

d32 = m11d13

d11
− m13 − m21d22,

d33 = m11d14

d11
− m22 − m21d23, d34 = m11d15

d11
− m23 − m21d24,

d35 = m11d16

d11
− m31 − m21d25,

d36 = m11d17

d11
− m32 − m21d26, d37 = −(m11β1

d11
+ m21d27),

d38 = m11d18

d11
+ m33 − m21d28,

d41 = ε1ω
2

C2
T

, d42 = 0, d43 = 0, d44 = iaε2

C2
T

, d45 = 0, d46 = ibεβ3

C2
T

,

d47 = 0, d48 = C2
T (a2 + b2) + ω2

C2
T

,

g51 = −d13

d11
, g52 = −d15

d11
, g53 = −d17

d11
, g54 = −d18

d11
,

g55 = −d12

d11
, g56 = −d14

d11
, g57 = −d16

d11
, g58 = 1

d11
,

g61 = d22, g62 = d24, g63 = d26, g64 = d28,

g65 = d21, g66 = d23, g67 = d25, g68 = d27,

g71 = d32, g72 = d34, g73 = d36, g74 = d38,

g75 = d31, g76 = d33, g77 = d35, g78 = d37,

g81 = 0, g82 = d44, g83 = d46, g84 = d48,

g85 = d41, g86 = g87 = g88 = 0,

f11 = g51 + λg55 − λ2, f12 = g52 + λg56,

f13 = g53 + λg57, f14 = g54 + λg58,
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f21 = g61 + λg65, f22 = g62 + λg66 − λ2, f23 = g63 + λg67,

f24 = g64 + λg68, f31 = g71 + λg65,

f32 = g72 + λg76, f33 = g73 + λg77 − λ2, f34 = g74 + λg78,

f41 = λg85, f42 = g82, f43 = g83, f44 = g84,

L21 =


g51 g52 g53 g54

g61 g62 g63 g64

g71 g72 g73 g74

g81 g82 g83 g84

L22 =


g55 g56 g57 g58

g65 g66 g67 g68

g75 g76 g77 g78

g85 g86 g87 g88


APPENDIX II:

R11(x1) = [(h14 − λ1){(δ1)λ=−λ1 + (h15 − λ1h12){(δ2)λ=−λ1} + (h16 − λ1h13){(δ3)λ=−λ1}
−{(δ4)λ=−λ1}]e−λ1x1

R12(x1) = [(h14 − λ2){(δ1)λ=−λ2 + (h15 − λ2h12){(δ2)λ=−λ2} + (h16 − λ2h13){(δ3)λ=−λ2}
−{(δ4)λ=−λ2}]e−λ2x1

R13(x1) = [(h14 − λ3){(δ1)λ=−λ3 + (h15 − λ3h12){(δ2)λ=−λ3} + (h16 − λ3h13){(δ3)λ=−λ3}
−{(δ4)λ=−λ3}]e−λ3x1

R14(x1) = [(h14 − λ4){(δ1)λ=−λ4 + (h15 − λ4h12){(δ2)λ=−λ4} + (h16 − λ4h13){(δ3)λ=−λ4}
−{(δ4)λ=−λ4}]e−λ4x1

R21(x1) = [(h24 − λ1h21){(δ1)λ=−λ1 + (h25 − λ1h22){(δ2)λ=−λ1} + (h26 − λ1h23){(δ3)λ=−λ1}
−β2{(δ4)λ=−λ1}]e−λ1x1

R22(x1) = [(h24 − λ2h21){(δ1)λ=−λ2 + (h25 − λ2h22){(δ2)λ=−λ2} + (h26 − λ2h23){(δ3)λ=−λ2}
−β2{(δ4)λ=−λ2}]e−λ2x1

R23(x1) = [(h24 − λ3h21){(δ1)λ=−λ3 + (h25 − λ3h22){(δ2)λ=−λ3} + (h26 − λ3h23){(δ3)λ=−λ3}
−β2{(δ4)λ=−λ3}]e−λ3x1

R24(x1) = [(h24 − λ4h21){(δ1)λ=−λ4 + (h25 − λ4h22){(δ2)λ=−λ4} + (h26 − λ4h23){(δ3)λ=−λ4}
−β2{(δ4)λ=−λ4}]e−λ4x1

R31(x1) = [(h34 − λ1h31){(δ1)λ=−λ1 + (h35 − λ1h32){(δ2)λ=−λ1} + (h36 − λ1h33){(δ3)λ=−λ1}
−β3{(δ4)λ=−λ1}]e−λ1x1

R32(x1) = [(h34 − λ2h31){(δ1)λ=−λ2 + (h35 − λ2h32){(δ2)λ=−λ2} + (h36 − λ2h33){(δ3)λ=−λ2}
−β3{(δ4)λ=−λ2}]e−λ2x1

R33(x1) = [(h34 − λ3h31){(δ1)λ=−λ3 + (h35 − λ3h32){(δ2)λ=−λ3} + (h36 − λ3h33){(δ3)λ=−λ3}
−β3{(δ4)λ=−λ3}]e−λ3x1

R34(x1) = [(h34 − λ4h31){(δ1)λ=−λ4 + (h35 − λ4h32){(δ2)λ=−λ4} + (h36 − λ4h33){(δ3)λ=−λ4}
−β3{(δ4)λ=−λ4}]e−λ4x1
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R41(x1) =
[(h44 − λ1h41){(δ1)λ=−λ1} + (h45 − λ1h42){(δ2)λ=−λ1} + (h46 − λ1h43){(δ3)λ=−λ1}]e−λ1x1

R42(x1) =
[(h44 − λ2h41){(δ1)λ=−λ2} + (h45 − λ2h42){(δ2)λ=−λ2} + (h46 − λ2h43){(δ3)λ=−λ2}]e−λ2x1

R43(x1) =
[(h44 − λ3h41){(δ1)λ=−λ3} + (h45 − λ3h42){(δ2)λ=−λ3} + (h46 − λ3h43){(δ3)λ=−λ3}]e−λ3x1

R44(x1) =
[(h44 − λ4h41){(δ1)λ=−λ4} + (h45 − λ4h42){(δ2)λ=−λ4} + (h46 − λ4h43){(δ3)λ=−λ4}]e−λ4x1

R51(x1) =
[(h54 − λ1h51){(δ1)λ=−λ1} + (h55 − λ1h52){(δ2)λ=−λ1} + (h56 − λ1h53){(δ3)λ=−λ1}]e−λ1x1

R52(x1) =
[(h54 − λ2h51){(δ1)λ=−λ2 + (h55 − λ2h52){(δ2)λ=−λ2} + (h56 − λ2h53){(δ3)λ=−λ2}]e−λ2x1

R53(x1) =
[(h54 − λ3h51){(δ1)λ=−λ3} + (h55 − λ3h52){(δ2)λ=−λ3} + (h56 − λ3h53){(δ3)λ=−λ3}]e−λ3x1

R54(x1) =
[(h54 − λ4h51){(δ1)λ=−λ4} + (h55 − λ4h52){(δ2)λ=−λ4} + (h56 − λ4h53){(δ3)λ=−λ4}]e−λ4x1

R61(x1) =
[(h64 − λ1h61){(δ1)λ=−λ1} + (h65 − λ1h62){(δ2)λ=−λ1} + (h66 − λ1h63){(δ3)λ=−λ1}]e−λ1x1

R62(x1) =
[(h64 − λ2h61){(δ1)λ=−λ2} + (h65 − λ2h62){(δ2)λ=−λ2} + (h66 − λ2h63){(δ3)λ=−λ2}]e−λ2x1

R63(x1) =
[(h64 − λ3h61){(δ1)λ=−λ3} + (h65 − λ3h62){(δ2)λ=−λ3} + (h66 − λ3h63){(δ3)λ=−λ3}]e−λ3x1

R64(x1) =
[(h64 − λ4h61){(δ1)λ=−λ4} + (h65 − λ4h62){(δ2)λ=−λ4} + (h66 − λ4h63){(δ3)λ=−λ4}]e−λ4x1
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R71(0) = (ν − λ1){(δ4)λ=−λ1}]e−λ1

R72(0) = (ν − λ2){(δ4)λ=−λ2}]e−λ2

R73(0) = (ν − λ3){(δ4)λ=−λ3}]e−λ3

R74(0) = (ν − λ4){(δ4)λ=−λ4}]e−λ4

-

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 R12(0) R13 (0) R14 (0)
0 R22 (0) R23 (0) R24 (0)
0 R32 (0) R33 (0) R34 (0)
r∗ R72 (0) R73 (0) R74 (0)

∣∣∣∣∣∣∣∣∣∣∣∣
D2=

∣∣∣∣∣∣∣∣∣∣∣∣

R11 (0) 0 R13(0) R14(0)
R21 (0) 0 R23(0) R24(0)
R31(0) 0 R33(0) R34(0)
R71(0) r∗ R73(0) R74(0)

∣∣∣∣∣∣∣∣∣∣∣∣

D3=

∣∣∣∣∣∣∣∣∣∣∣∣

R11 (0) R12(0) 0 R14(0)
R21 (0) R22 (0) 0 R24(0)
R31(0) R32 (0) 0 R34(0)
R71(0) R72 (0) r∗ R74(0)

∣∣∣∣∣∣∣∣∣∣∣∣
D4=

∣∣∣∣∣∣∣∣∣∣∣∣

R11 (0) R12(0) R13(0) 0
R21 (0) R22 (0) R23(0) 0
R31(0) R32 (0) R33(0) 0
R71(0) R72 (0) R73(0) r∗

∣∣∣∣∣∣∣∣∣∣∣∣

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

R11 (0) R12(0) R13(0) R14(0)
R21 (0) R22 (0) R23(0) R24(0)
R31(0) R32 (0) R33(0) R34(0)
R71(0) R72 (0) R73(0) R74(0)

∣∣∣∣∣∣∣∣∣∣∣∣
N1i = 1

λi

8∑
i=1

(h14x1i + h15x2i + h16x3i − x4i)

N2i = 1
λi

8∑
i=1

(h24x1i + h25x2i + h26x3i − β2x4i)

N3i = 1
λi

8∑
i=1

(h34x1i + h35x2i + h36x3i − β3x4i)
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2.2 Modeling of a homogeneous isotropic half space in the
context of multi-phase lag coupled thermoelasticity

2.2.1 Introduction

The modified coupled stress-strain theory has become popular in Nano-systems
to study strain, displacement, vibration, buckling, bending etc. in the engineering
structures like beams, plates and shells. The modified theory of coupled stress was in-
troduced by Yang et al.[122]. The theory of generalised thermoelasticity was introduced
to remove the finiteness of heat equation in the conventional classical thermoelasticity
(CTE) theory. The generalised thermoelasticity theory has become acceptable to the
different engineering fields as well as to the researchers as it is capable of avoiding the
finiteness of heat propagation.
In the history of generalised thermoelasticity, Lord-Shulman [80] introduced one-relaxation
time parameter in the conventional heat conduction equation to modify classical Fourier
law (CFL) which is also known as first generalisation theory of thermoelasticity. In
the second generalisation theory, Green-Lindsay [58] proposed temperature rate depen-
dent theory (TRDTE) by introducing two relaxation time parameters in the coupled
theory of thermoelasticity. In third generalisation, Hetnarski and Ignaczak [63] pro-
posed the non-linear model introducing the concept of coupled thermoelasticity with
low temperature. Green and Nagdhi ([59], [60], and [61]) proposed three thermoelastic
models known as Green-Naghdi type-I, type-II and type-III respectively. Type-I is
considered as similar as classical theory of thermoelasticity. Type-II model provides
the idea of non-dissipation of energy associated with zero production rate of entropy.
Type-III Green-Naghdi model is associated with type-I and type-II together with the
study of energy dissipation and damped thermoelastic waves. Later on Tzou [113],
[117] and Chandrasekhariah [33] discussed the Dual Phase Lag (DPL) model to in-
spect the lagging behaviour in thermoelastic medium. Again, Roy Choudhury [102]
discussed the concept of Three Phase Lag Model [TPL] introducing three time param-
eters in conventional heat conduction equation. Ghosh et al. [49] [52], Quintanilla and
Racke [99] found the solutions of the heat equation in the theory of TPL heat conduc-
tion in their research work. Also Zenkour [128] proposed a refined two-temperature
multi-phase-lag (RPL) model for a generalized thermoelastic medium consisting of both
the heat flux vector and the temperature gradient. In their work, Sardar et al.[103],
studied a three-dimensional coupled thermoelasticity for an anisotropic half-space us-
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ing multi-phase lag gradients. Zenkour [129] also studied thermomechanical effects of
mocrobeams using refined multiphase-lag theory. In association, Alharabi et al. [20]
studied a multi-phase-lag model to investigate the influence of variable thermal con-
ductivity with initial stress on a fibre-reinforced thermoelastic material in magnetic
field.
In this study we have investigated the effect of multi-phase lag variables on a two di-
mensional thermoelastic isotropic medium.

2.2.2 Formulation of the problem

In the orthogonal co-ordinate system XOY, we consider a two dimensional isotropic half
space defined in the region W = {0 ≤ x < ∞, −∞ < y < ∞} (as in Fig. 2.1) subject
to traction free boundary x = 0. Also y-axis is considered as vertically downwards and
the xy-plane is along the free surface of the half space.

Figure 2.1: Schematic diagram of the problem.

2.2.3 Basic Equations

Equation of motion:
For a homogeneous isotropic half space, as in Ghosh et al.[53], Zenkour [128] and Erin-
gen [47] respectively, we consider the following governing equations .
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(λ + µ) ∂e

∂x
+ µ∇2u − P

2
∂2u

∂y2 + P

2
∂2v

∂x∂y
− γ

∂T

∂x
= ρ

∂2u

∂t2 − Ω2u

 (2.33)

(λ + µ)∂e

∂y
+ µ∇2v + P

2
∂2u

∂x∂y
− P

2
∂2v

∂x2 + γ
∂T

∂y
= ρ

∂2v

∂t2 − Ω2v

 (2.34)

The stress-displacement relation:

τxx = (λ + 2µ + P )∂u

∂x
+ (λ + P )∂v

∂y
− γT (2.35)

τyy = (λ + 2µ + P )∂v

∂y
+ (λ + P )∂u

∂x
− γT (2.36)

τxy =
µ − P

2

∂v

∂x
+
µ + P

2

∂u

∂y
(2.37)

Heat conduction equation(In the context of multi-phase Lag):

1 +
N∑

n=1

τn
θ

n!
∂n

∂tn

K11
∂2T

∂x2 + K22
∂2T

∂y2


=
R + τ0

∂

∂t
+

N∑
n=1

τn+1
q

(n + 1)!
∂n+1

∂tn+1

ρCE
∂2T

∂t2 + (3λ + 2µ)α0T0
∂2

∂t2

∂u

∂x
+ ∂v

∂y


(2.38)

where γ = (3λ + 2µ)αt, λ + 2µ = ρc1
2 and e = ∂u

∂x
+ ∂v

∂y

2.2.4 Nomenclature

Column 1 Column 2
u, v: Displacement Components e: Dilatation
T: Absolute thermodynamic temperature. t: -Time variable
CE: -Specific heat at constant strain λ, µ: Lame’s Constant
T0: Reference temperature τ : Relaxation Time
τq , τθ: Dual-phase-lag, τ0:thermal relaxation time ρ : - Density of the material
K11, K22 : Thermal conductivity Ω : angular velocity in the domain W
αt : Coefficient of linear thermal expansion P: Initial stress
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2.2.5 Method of Solution: Formulation of a Vector-Matrix
Differential Equation

For the solution of the equations(2.38)-(2.43), the physical quantities can be decom-
posed in the following form

t′ = C2
1

K1
t, ( x′, y′) = C1

K1
(x, y), (u′, v′) = c3

1ρ

K1(3λ+2µ)αtT0
(u, v),

τ ′
0 = C2

1
K1

τ0, T ′ = T
T0

(τ ′
xx, τ ′

yy, τ ′
xx) = 1

(3λ+2µ)αtT0
(τxx, τyy, τxy) Ω′ = K1

C2
1
Ω, K1 = K11

ρCE
,

ρ = ρ′

αT0
, c2

1 = λ+2µ
ρ

(τ ′
q, τ ′

θ) = C2
1

K1
(τq, τθ)

(2.39)

Introducing non-dimensional variables we obtain from equations (2.38), (2.39) and
(2.43) (omitting primes for convenience),

∂2u

∂x2 + C11
∂2v

∂x∂y
+ C12

∂2u

∂y2 − ∂T

∂x
= ∂2u

∂t2 − Ω2u (2.40)

∂2v

∂y2 + C21
∂2v

∂x2 + C22
∂2u

∂x∂y
+ ∂T

∂y
= ∂2v

∂t2 − Ω2v (2.41)

K11

ρCEc2
1

1 +
N∑

n=1

τn
θ

n!
∂n

∂tn

∂2T

∂x2 + K22

K11

∂2T

∂y2


=
R + τ0

∂

∂t
+

N∑
n=1

τn+1
q

(n + 1)!
∂n+1

∂tn+1

∂2T

∂t2 + γ2T0

ρ2c2
1cE

∂2

∂t2

∂u

∂x
+ ∂v

∂y

 (2.42)

After introducing non-dimensional variables, the stress-displacement relations (equa-
tions (2.40)-(2.42)) reduce to (omitting primes for convenience),

τxx = C41
∂u

∂x
+ C42

∂v

∂y
− T (2.43)

τyy = C41
∂v

∂y
+ C42

∂u

∂x
− T (2.44)

τyy = C51
∂v

∂x
+ C52

∂u

∂y
(2.45)

2.2.6 Normal Mode Analysis:

To decompose the physical variables in terms of normal modes, as in Ghosh et al.[54]
we consider the following normal mode analysis

(u, v, τxx, τyy, τxy, T )(x, y, t) = (u∗, v∗, τ ∗
xx, τ ∗

yy, τ ∗
xy, T ∗)(x)eωt+iay (2.46)
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where ω is the angular frequency , a is the wave number along x-axis and i =
√

−1.

Introducing normal mode analysis to equation (2.45), (2.46) and (2.47), we obtain
(omitting asterisks for convenience):

d2u

dx2 = M11u + M12v + M13T + M14
du

dx
+ M15

dv

dx
+ M16

dT

dx
(2.47)

d2v

dx2 = M21u + M22v + M23T + M24
du

dx
+ M25

dv

dx
+ M26

dT

dx
(2.48)

d2T

dx2 = M31u + M32v + M33T + M34
du

dx
+ M35

dv

dx
+ M36

dT

dx
(2.49)

Introducing normal mode analysis to equations (2.48)-(2.50), we obtain the stress
components as (omitting asterisks for convenience)

τxx = C41
du

dx
+ C42 iav − T (2.50)

τyy = C41 iav + C42
du

dx
− T (2.51)

τxy = C51
dv

dx
+ C52 iau (2.52)

where Mij(i = 1, 2, 3 and j = 1, 2, .., 6) and Cij(i = 1, 2, 3, 4, 5 and j = 1, 2) are
mentioned in the appendix.

2.2.7 Solution of the Vector-Matrix Differential Equation

The equations (2.52)-(2.54) reduce to the compact form of vector-matrix differential
equation as follows

d

dx
(v⃗) = Av⃗ (2.53)

where v⃗ =
(

u v T du
dx

dv
dx

dT
dx

)
and A is given in the appendix.

For the solution of the vector-matrix differential equation (2.58), we apply the method
of eigenvalue approach as in Ghosh et al. [54]. The characteristic equation of matrix
A is given by ∣∣∣A − λI

∣∣∣ = 0 (2.54)

The roots of the characteristic equation (2.58) are λ= λi(i=1(1)6) and the correspond-
ing eigen vector X is given below-
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X = [δ1 δ2 δ3 λδ1 λδ2 λδ3 ]T (2.55)

where
δ1 = f11f23 − f13f22,

δ2 = f13f21 − f11f23,

δ3 = f11f22 − f12f21

(2.56)

and fij (i, j = 1,2,3) are given in the appendix.

The solution of the vector-matrix equation is given by

u = ∑3
i=1 Ai(δ1)λ=−λi

e−λix

v = ∑3
i=1 Ai(δ2)λ=−λi

e−λix

T = ∑3
i=1 Ai(δ3)λ=−λi

e−λix

(2.57)

Thus the stress components are as follows-

τxx = ∑3
j=1 AjR1j(x),

τyy = ∑3
j=1 AjR2j(x),

τxy = ∑3
j=1 AjR3j(x),

(2.58)

where Rij i, j = 1, 2, 3 are given in the appendix and Aj, j = 1, 2, 3 are to be obtained
using the boundary conditions..

2.2.8 Boundary Conditions

Due to the regularity condition of the solution at infinity, there are three terms con-
taining exponentials of growing in nature in the space variables x has been discarded
and the remaining arbitrary constants Ai, (i=1,2,...4) are to be determined from the
following boundary conditions.

2.2.9 Mechanical Boundary:

The boundary of the half-space x=0 has no traction elsewhere i.e.,

τxx(x, y, t) = σ0e
iωt at x = 0 and t = 0; (2.59)
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2.2.10 The Thermal Boundary Condition:

T (x, y, t) = T0e
iωt at x = 0 and t = 0; (2.60)

∂T

∂x
+ hT (x, y, t) = 0 at x = 0 and t = 0; (2.61)

Applying above boundary conditions in equation (2.62) and (2.63) we get the following
simultaneous equations:-

A1S11 + A2S12 + A3S13 = z1

A1S41 + A2S42 + A3S43 = z2

A1S51 + A2S52 + A3S53 = 0
(2.62)

The arbitrary constants can be obtained by solving above simultaneous equations
where, Ai = Di

D
, i = 1, 2, 3,D, Di : i = 1, 2, 3 , Sij : i, j = 1, 2, 3 and zi : i = 1, 2

which are given in the Appendix.

2.2.11 Numerical analysis

Numerical analysis and computation have been done using the mechanical and ther-
mal conditions as mentioned in equations (2.64)-(2.66) to study the characteristic be-
haviours of the physical constants with respect to space variables in triclinic half space.
The numerical values (in SI unit) of constants are taken as in Eringen [47] , Zenkour
[128]:

λ = 9.4 × 1010 N/m2, µ = 4.0 × 1010kg/ms2, ρ = 1.7 × 103kg/m3,

a = 2.0, b = 0.5, T0 = 293, K, αT = 7.4033 × 10−7 K−1, t = 0.3s, σ0 = 200.0,

K11 = 113 × 10−4 N/m2, K22 = 117 × 10−4 N/m2, CE = 1.4 × 103J/(kgk),
γ = 210 × 104, Ω = 0.5, k = 348, Ω = 0.5, ET = 0.0016, ω = 2.0

2.2.12 Geometrical Representation and analysis

The expressions for displacements, stress, and temperature are very complex and we
prefer to develop an efficient computer programme for the numerical computations.

64



Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

We now depict some graphs to illustrate the problem.
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Fig. 2.2: Distribution of τxx vs. x for different t at y =0.7
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Fig. 2.3: Distribution of τxy vs. x for different t at y =0.7
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Fig. 2.4: Distribution of τyy vs. x for different t at y =0.7
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Fig. 2.5: Distribution of temperature (T) vs. x for different t at y =0.7

66



Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

0 0.5 1 1.5 2 2.5 3

0

100

200

300

400

500

600

700

800

900

t=0.1

t=0.4

t=0.7

x 

u 

Fig. 2.6: Distribution of displacement component (u) vs. x for different t at y =0.7
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Fig. 2.7: Distribution of displacement component (v) vs. x for different t at y =0.7
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Fig. 2.8: Three dimensional representation of τxx vs. x and y for fixed t=0.3
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Fig. 2.9: Three dimensional representation of τxy vs. x and y for fixed t=0.3
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Fig. 2.10: Three dimensional representation of τyy vs. x and y for fixed t=0.3
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Fig. 2.11: Three dimensional representation of T vs. x and y for fixed t=0.3

69



Chapter 2. ANALYSIS OF THERMOELASTIC MEDIUM IN THE CONTEXT OF MULTI
PHASE LAG MODEL

1

0.8

0.6

0.4

0.2

0
0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

150

300

250

200

100

50

0

x 

  y 

u 

Fig. 2.12: Three dimensional representation of u vs. x and y for fixed t=0.3
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Fig. 2.13: Three dimensional representation of v vs. x and y for fixed t=0.3
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2.2.13 Concluding Remarks:

Fig. 2.2, 2.3 and 2.4 depict the characteristic behaviour of the different stress com-
ponents τxx, τxy, and τyy respectively along x−axis respect to space variable( x) in
different time (t=0.1, t=0.4, t=0.7). Also Fig. 2.5, 2.6 and 2.7 represent the space
variation of non-dimensional displacement components (u and v ) and temperature (T )
along x-direction for different time mentioned in legend.

Fig. 2.8, 2.9, 2.10 and 2.11 are pointing out the three dimentional variations of different
stress components τxx, τxy, τyy and temperature (T ) respectively with respect to space
variable( x and y) in a particular time span( t=0.3).

Also Fig. 2.12, 2.13 are about the three dimentional depiction of the two elementary
displacement components (u and v) w.r.to x and y for fixed time (t=0.3).

2.2.14 Significance and applications:

The Dual Phase Lag (DPL) model by Tzou, Chandrasekhariah and Three Phase Lag
(TPL) by Roy Choudhury has been extended here using the refined techniques known
as multiphase lag model. In our work, the multiphase lag concept is studied and verified
successfully using the prominent mechanical and thermal boundary conditions associ-
ated to governing equations. The two and three dimensional variations of the different
stress components, strain components and temperature curves have been represented
graphically.

Fig. 2.14: Data table

The tabular data in Fig. 2.14 represents the compact variations of the numerical
value of different stress components, temperature and displacement components in the
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context of different thermoelastic models compared to multiphase lag model. From
the data table it is possible to differentiate the effect of different phase lag models and
multi phase lags on different physical variables.

2.2.15 Appendix:

M11 = aC12 + ω2 − Ω2, M12 = M13 = M14 = 0, M15 = −iaC11, M16 = 1,

M21 = M25 = M26 = 0, M22 = a2 + ω2 + Ω2

C21
, M23 = − ia

C21
, M24 = −iaC22

C21
,

M31 = M35 = M36 = 0, M32 = ia
γ2T0

ρ2C2
1CE

,

M33 = a2 K22

K11
+

ω2

R + τ0ω +∑N
n=1

τn+1
q

(n+1)!ω
n+1


K11

ρCEC2
1

1 +∑N
n=1

τn
θ

n! ω
n

 ,

M34 = γ2T0

ρ2C2
1CE

ω2

R + τ0ω +∑N
n=1

τn+1
q

(n+1)!ω
n+1


K11

ρCEC2
1

1 +∑N
n=1

τn
θ

n! ω
n


C11 = C22 = λ+µ+ P

2
λ+2µ

, C12 = C21 = µ− P
2

λ+2µ

C41 = λ + 2µ + ρ

ρc2
1

, C42 = λ + P

ρc2
1

, C51 =
µ − P

2
ρc2

1
, c52 =

µ + P
2

ρc2
1

A =
 L11 L12

L21 L22

 L11 =


0 0 0
0 0 0
0 0 0

 L12 =


1 0 0
0 1 0
0 0 1



L21 =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 L22 =


M14 M15 M16

M24 M25 M26

M34 M35 M36


f11 = M11 + λM14 − λ2 f21 = M21 + λM24 f31 = M31 + λM34

f12 = M12 + λM15 f22 = M22 + λM25 − λ2 f32 = M32 + λM35

f13 = M13 + λM16 f23 = M23 + λM26 f33 = M33 + λM36 − λ2
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R1i(x) = [−C41λi(delta1)λ=λi
+ iaC42(δ2)λ=−λi

− (δ3)λ=λi
]e−λix, i = 1, 2, 3

R2i(x) = [iaC41(δ2)λ=−λi
− C42λ1(δ1)λ=−λi

− (δ3)λ=−λi
]e−λix, i = 1, 2, 3

R3i(x) = [−C51λi(δ2)λ=−λi
+ iaC52(δ1)λ=−λi

]e−λix, i = 1, 2, 3

z1 =σ0e
iωt

z2 =T0e
iωt

Sij =Rij(0), i = 1, 4, j = 1, 2, 3

S5k =R5k(x), k = 1, 2, 3

D1 =

∣∣∣∣∣∣∣∣∣
z1 S12 S13

z2 S42 S43

0 S52 S53

∣∣∣∣∣∣∣∣∣ D2 =

∣∣∣∣∣∣∣∣∣
S11 z1 S13

S41 z2 S43

S51 0 S53

∣∣∣∣∣∣∣∣∣
D3 =

∣∣∣∣∣∣∣∣∣
S11 S12 z1

S41 S42 z2

S51 S52 0

∣∣∣∣∣∣∣∣∣ D =

∣∣∣∣∣∣∣∣∣
S11 S12 S13

S41 S42 S43

S51 S52 S53

∣∣∣∣∣∣∣∣∣
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3.1 Photothermal Effects of Semiconducting Medium with
Non-local Theory

3.1.1 Introduction

Biot [30] introduced the classical coupled theory of thermoelasticity which con-
tains conduction theory with conventional Fourier’s law. In this theory, it obviously
proves that the energy equation is of parabolic type and does not include any elastic
term. This implies that the parabolic equation predicts infinite speed of deformative
wave propagation. Actually, this theory contradicts the fact of thermoelastic wave
propagation which gives the finite speed and elastic changes.

Eventually, this theory regarding infinite speed of wave propagation was swiped
out due to introduction of generalized theory of thermoelasticity developed by Lord-
Shulman [80] which is also known as extended thermo-elasticity(ETE). Lord-Shulman
[80] modified the classical coupled theory without violating the conventional Fourier’s
law of heat conduction theory. One thermal relaxation time parameter was introduced
to the energy equation which automatically transformed to the hyperbolic type of equa-
tion. First type of paradox of the infinite speed of propagation was eliminated due to
introduction of generalized thermoelasticity. The heat conduction equation does not
contain any elastic term so it does not cause any elastic changes which is known as
second paradox. This type of paradox was removed by the introduction of Green-
Lindsay (G-L) [58] theory just remodeling the energy equation and employing another
relaxation time parameter to the equation of motion. This G-L [58] theory admits two
relaxation time parameters: one in equation of motion and another in energy equation
and overcomes the two well known paradoxes. This theory is also known as tempera-
ture rate dependent thermoelasticity(TRDTE). Green and Naghdi [59]-[61] developed
three theories-I,II,III relating to the theory of generalized thermoelasticity with and/or
without energy dissipation for isotropic and homogeneous thermoelastic medium. The
theory concerned with energy dissipation is known as thermoelasticity with energy
dissipation theory(TEWEDT) and similarly the theory as regards without energy dis-
sipation is called thermoelasticity without energy dissipation theory (TEWOEDT).

Increasing attention has been devoted to the field of thermoelasticity in presence
of electromagnetic field because of its widely spread application of material structure.
Electro-magneto-thermoelasticity deals with the material structure related to the in-
teraction between continuum deformations along with heat propagation. A significant
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thermoelastic fact is characterized due to the combination of the "electronic deforma-
tion" in the semiconducting medium which is based on the photogeneration theory in
the crystal lattice and the "thermoelastic mechanism" due to integral photothermal
process. Recently, Das et al. [41] focussed on the analysis of the electromagnetother-
moelastic theory for a semiconductor.

According to Eringen [46], the hypothesis of the continuum physics is the mea-
surement of strain components which are combination of inner products of non-local
deformations and their gradients compared to the inner products of the non-local and
local member of the continuum. The non-local thermoelastic theory proposed the
long-gap in between the classical continuum hypothesis and the construction theory of
lattice. The constitutive relations regarding the atomic structure of lattices as well as
the dispersion of phonon can be treated according to the classical continuum hypoth-
esis. Later, Tzou [113], [115] introduced the dual-phase-lag heat conduction theory
by introductions of two phase-lags associated with the heat flux and the temperature
gradient. Dual-phase-lag(DPL) thermoelastic theory admits two-phase lagging param-
eters - (i) τq illustrates the fast-transient effects of thermal inertia and (ii) τθ depicts
the micro-structural interactions. Recently, Gupta and Mukhopadhyay [62] discussed
generalized thermoelastic theory by using non-local theory of heat conduction.

Later, Roychoudhuri [102] extended this idea of DPL on G-N model-III by introduc-
ing the third-phase-lag and modified another generalized thermoelastic theory which
is known as three phase-lag(TPL) theory. Tzou and Guo [118] developed a new theory
on energy equation which is known as non-local behavior with thermal lagging. It also
captures the lagging response along with the time variable. Phase-lagging behavior
is responsible to capture the ultrafast response in fem-to-second domain whereas the
non-local theory enlightens the physical mechanism at nano scale.

Generally, thermoelastic or magnetothermoelastic (coupled or generalized) prob-
lems are solved in four different processes viz., (i) Potential function method where the
analytical solutions are represented in terms of potential function which is not always
convergent where the initial and boundary conditions of the given problems are related
to the physical considerations not to the potential function approach. Das and Lahiri
[42] solved a generalized problem with functionally graded spherical cavity by using
potential function methodology. (ii) State-space method where the physical problems
are transformed in terms of coefficient matrix which is expanded by Cayley-Hamilton
theorem. (iii) Eigen value method where the considered problem is transformed to
the vector-matrix differential equation which is then solved by eigenvalue methodol-
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ogy. Lahiri, Das and Sarkar [74] solved a problem for an unbounded body with a
spherical cavity by using eigenvalue approach methodology. (iv) Finite element and
difference method where the basic equations of considered problem are discretised in
terms of algebraic equations considering the stability and/or convergence condition of
the system. Recently, Patra et al. [97] analyzed a magnetothermoelastic problem for
a rotating cylinder by using finite difference method.

Generalized magneto-thermoelastic problem with internal heat source was stud-
ied by Othman et al. [96], Mahdy et al. [81] described the electromagnetic effect for
photo-excited semiconducting medium in presence of fractional order heat equation.
Abo-Dahab and Lotfy [8] predicted the interactions of fibre-reinforced thermoelasticity
for a rotating medium. Magnetic photo-thermal diffusion process for nano-composite
semiconducting medium was studied by Lotfy [79], [76]. Lotfy et al. [77]-[78] and
Khamis et al. [72] also analyzed the photothermal and thermochemical responses of
semiconductor under different conditions. Refined multi-phase-lag model for an infi-
nite medium has been introduced by Kutubi and Zenkour [73]. Zenkour [130]-[132]
modeled a generalized magneto-shock problem for isotropic and anisotropic medium
respectively. Sobhy and Zenkour [110] illustrated the modified phase-lagging models
for axisymmetric annular disc. Zenkour [134], [136]-[138] described the refined multi-
phase-lag photo-thermoelastic theory for different types of medium. Coupled ther-
moelastic model with phase-lag theory is also analyzed by Zenkour and El-Mekawy
[139]. Zenkour [135] studied the diffusion problem under refined dual-phase lagging
with Green-Naghdi’s generalized thermoelasticity. Recently, Abouelregal et al.[10]-[14]
solved different problems of thermoelastic and visco-elastic by using Moore-Gibson-
Thompson and two-phase lag theory.

In this problem, we have studied a model which interacts with the generalized
thermoelasticity and plasma transportation under the non-local heat conduction theory
in presence of electromagnetic field components. Two integral transformations, Laplace
transform for time variable and Fourier transform for space variable, are employed
to the equations of motion and the heat conduction equation for formulation of a
vector-matrix differential equation which is then solved by using eigenvalue approach.
Variations of the physical field variables are presented by the several graphs with fixed
values of physical parameters.
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3.1.2 Basic equations for theoretical model

As in Todorvic [112] and Das et. al. [41], the plasma equation is of the form

∂N

∂t
= DE∇2N − N

τ
+ k1θ (3.1)

As in Gupta and Mukhopadhyay[62], the modified heat transportation law for non-local
theory is as

K(1 + τθ
∂

∂t
)θ,ii + Eg

τ
N = (1 + (λq)k

∂

∂xk

+ τq
∂

∂t
)(ρceθ̇ + αθ0ė) (3.2)

Due to the presence of electro-magnetic field, it is necessary to incorporate the Lorentz
force components Fi’s, where, Fi = µ0(J × H)i, into the transportation equation of
motion which is as of the following form

ρüi + Fi = (λ + 2µ)∇2u − αθ,i − δnN,i (3.3)

The constitutive stress components are

σij = 2µeij + (λe − αθ − δnN)δij (3.4)

According to Baltz [27], when a semiconducting medium experiences an electro-magnetic
field, then it follows Maxwell’s equations, which are described as

curl h = J + ε0
∂E
∂t

, curl E = −µ0
∂h
∂t

div h = 0, E = −µ0(u̇ × H)

B = µ0(H + h), D = ε0E (3.5)

Three theories such as the non-local classical dynamical coupled (NLCDC) theory, the
first generalized thermoelastic theory i.e., Lord and Shulman’s (L-S) [80] theory and
the dual-phase-lag(DPL) theory proposed by Tzou [116], [114] are derived from the
modified heat transportation equation (3.2) by assigning the values of τθ = τq = 0;
τθ = 0, τq = τ0 > 0 and τq ≥ τθ > 0 respectively.
where, k1 = ∂N0

∂T
T
τ
, N0 and Eg are equilibrium carrier concentration at temperature

T and the energy gap of semiconductor respectively, N is the phase of the carrier in-
tensity and τ is the photogenerated carrier lifetime, µ0 and ϵ0 are the magnetic and
electric permeability, respectively, θ0 is uniform reference temperature, θ is the increase
in temperature from θ0 such that

∣∣∣ θ−θ0
θ0

∣∣∣ << 1, u displacement vector, ce is specific
heat at constant strain, ρ is constant mass density, λ, µ are Lamé elastic constants,
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δn = (3λ + 2µ)dn, K is the thermal conductivity, α is thermoelasticity constant with
α = (3λ + 2µ)α0, α0 is the coefficient of linear thermal expansion of the material, τθ

is the phase-lag of the temperature gradient, c0 =
√

(λ+2µ)
ρ

is the speed of propagation
of isothermal elastic waves, η0 = ρce

K
, τq is the phase-lag of the heat flux, e=Cubical

dialatation= ∂u
∂x

+ ∂v
∂y

and (λq)k is component of non-local length vector.
The subscripts i, j and k take the values 1, 2, 3 and the subscripted comma notation is
used to represent the partial derivative with respect to the respective space variable.

Proper Validation of the Proposed Formulation
(a) If we consider the following numerical values of the parameter for copper λ = 7.76×
1010 kgm−1s−2, µ = 3.86 × 1010 kgm−1s−2, κ = 386 Wm−1K−1, αt = 1.78 × 10−5 K−1,
ρ = 8954Kgm−3, CE = 383.1 JKg−1K−1, dn = 0.0, DE = 0.0, Eg = 0.0, τ = 5×10−5 s,
θ0 = 293 K, H0 = 0.0, N = 0.0, λq1 = λq2 = 0.0, all the numerical results and discus-
sions are similar in nature with Gupta and Mukhopadhyay [62] .
(b) In equation (2), if we consider (λq)k = 0, the basic equations are identical with
the equation (3.2) (Cylindrical form) of Das et al.[7].
In absence of the carrier intensity parameter, energy gap(Eg) and electromagnetic field
components as well as considering only one non-local parameter λq, equations (3.2)
and (3.3) coincide with the equations (13) and (14) of Gupta and Mukhopadhyay [62].

3.1.3 Formulation and solution of the Problem

Now, we consider a two dimensional homogeneous, isotropic and thermoelastic half-
space with cartesian co-ordinates (x, y, z) under the electromagnetic fields. The mag-
netic field is given by H = H0 + h, H0 = (0, 0, H0) is the initial magnetic field acting
along z-direction. The Maxwell’s equation (3.5) gives the expressions of the electro-
magnetic fields such as
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Schematic Representation of the Physical Problem

h = −H0e, F1 = −µ2
0H0

2ϵ0
∂2u

∂t2 − µ0H0
2 ∂2u

∂x2 − µ0H0
2 ∂2v

∂x∂y
,

F2 = −µ2
0H0

2ϵ0
∂2v

∂t2 + µ0H0
2 ∂2u

∂x∂y
+ µ0H0

2 ∂2v

∂y2 (3.6)

Using the equation (3.6), the equations (3.1)-(3.4) are obtained as

∂N

∂t
= DE

∂2N

∂x2 + ∂2N

∂y2

− N

τ
+ k1θ (3.7)

K

1 + τθ
∂

∂t

∂2θ

∂x2 + ∂2θ

∂y2

+ Eg

τ
N =

1 + λq1

∂

∂x
+ λq2

∂

∂y
+ τq

∂

∂t


ρce

∂θ

∂t
+ αθ0

∂

∂t

∂u

∂x
+ ∂v

∂y

 (3.8)

ρ
∂2u

∂t2 = (λ + 2µ)∂2u

∂x2 + µ
∂2u

∂y2 + (λ + µ) ∂2v

∂x∂y
− α

∂θ

∂x
− δn

∂N

∂x

+ µ2
0H

2
0 ϵ0

∂2u

∂t2 + µ0H
2
0

∂2u

∂x2 + ∂2v

∂x∂y

 (3.9)
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ρ
∂2v

∂t2 = (λ + 2µ)∂2v

∂y2 + µ
∂2v

∂x2 + (λ + µ) ∂2u

∂x∂y
− α

∂θ

∂y
− δn

∂N

∂y

+ µ2
0H

2
0 ϵ0

∂2v

∂t2 − µ0H
2
0

 ∂2u

∂x∂y
+ ∂2v

∂y2

 (3.10)

σxx = (λ + 2µ)∂u
∂x

+ λ∂v
∂y

− αθ − (3λ + 2µ)δnN (3.11)

σyy = (λ + 2µ)∂v
∂y

+ λ∂u
∂x

− αθ − (3λ + 2µ)δnN (3.12)

σzz = λ

∂u
∂x

+ ∂v
∂y

− αθ − (3λ + 2µ)δnN (3.13)

σxy = µ

∂u
∂y

+ ∂v
∂x

 (3.14)

The non-dimensional parameters are as

(x′, y′, u′, v′, λ′
qi) = c0η0(x, y, u, v, λqi), i = 1, 2 , (t′, τ ′

q, τ ′
θ) = c2

0η0(t, τq, τ ′
θ),

σ′
ij = σij

µ
, θ′ = αθ

ρc2
0
, N ′ = δnN

λ + 2µ
(3.15)

By using the above non-dimensional parameters given in equation (3.15), the non-
dimensional form of the equations (3.7)-(3.14), ignoring the prime notation conven-
tionally, are obtained as

∂N

∂t
= ϵ3

∂2N

∂x2 + ∂2N

∂y2

− ϵ4N + ϵ5θ (3.16)

1 + τθ
∂

∂t

∂2θ

∂x2 + ∂2θ

∂y2

+ ϵ2N =
1 + λq1

∂

∂x
+ λq2

∂

∂y
+ τq

∂

∂t


∂θ

∂t
+ ϵ1

∂

∂t

∂u

∂x
+ ∂v

∂y

 (3.17)

m2
∂2u

∂t2 = m1
∂2u

∂x2 + β0
∂2u

∂y2 + a3
∂2v

∂x∂y
− ∂θ

∂x
− ∂N

∂x
(3.18)

m2
∂2v

∂t2 = m1
∂2v

∂y2 + β0
∂2v

∂x2 + a3
∂2u

∂x∂y
− ∂θ

∂y
− ∂N

∂y
(3.19)
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and the expression for cubical dilatation is

e = ∂u

∂x
+ ∂v

∂y
(3.20)

The non-dimensional stress components are

σxx = 1
β0

∂u
∂x

− (1 − 2β0)∂v
∂y

− θ − N

 (3.21)

σyy = 1
β0

∂v
∂y

− (1 − 2β0)∂u
∂x

− θ − N

 (3.22)

σzz = 1
β0

(1 − 2β0)(∂u
∂x

+ ∂v
∂y

) − θ − N

 (3.23)

σxy =
∂u

∂y
+ ∂v

∂x

 (3.24)

where, the constants are given by
a2 = µ2

0H2
0 ε2

0
ρ

, a1 = µ0H2
0

ρc2
0

, β0 = µ
ρc2

0
, a3 = m1 − β0 , β = λ

λ+2µ
, m2 = 1 − a2 , m1 =

1 + a1 , ε1 = α2

γce
, ε2 = Egαc2

τδnk1
, ε3 = DE

cc0
, ε4 = c

c0τ
, ε5 = k1δnc

αc0
.

We now apply the Laplace integral transform for time variable and Fourier integral
transform for space variable x which are defined by

T (x, y, p) =
∫ ∞

0
T (x, y, t)e−ptdt

T 1(ξ, y, p) = 1√
2π

∫ ∞

−∞
T (x, y, p)eiξxdx (3.25)

to the non-dimensional form of the basic equations. As in Das and Lahiri [42], the
transformed basic equations are written compactly in the form of vector-matrix differ-
ential equation

DV (ξ, y, p) = A(ξ, p) V (ξ, y, p) ; D ≡ d

dy
(3.26)

where, V (ξ, y, p) =
[
N̄1 ē1 θ̄1

dN̄1
dy

dē1
dy

dθ̄1
dy

]T
and A(ξ, p) =

 L11 L12

L21 L22

, L11 and L12

are null and identity matrix of order 3 respectively and L21 and L22 are given in the
Appendix.
Initially i.e., at time(t) = 0, we now consider the cubical dilatation and carrier in-
tensity are zero and the time derivatives of these field variables and electromagnetic

82



Chapter 3. ANALYSIS OF NON-LOCAL HEAT PROPAGATION FOR THERMOELASTIC
MEDIUM

fields, temperature distribution are also zero whereas the system maintains a reference
temperature θ0.

e(x, y, 0) = ∂e(x, y, 0)
∂t

= 0 ; ∂θ(x, y, 0)
∂t

= 0 ; N(x, y, 0) = ∂N(x, y, 0)
∂t

= 0 ;

∂h(x, y, 0)
∂t

= ∂E(x, y, 0)
∂t

= 0 (3.27)

As discussed in Das and Lahiri [14], we apply eigenvalue approach methodology to
obtain the solution of vector-matrix differential equation (3.26). The characteristic
equation of the coefficient matrix A is derived from the equation

A Y = λ Y (3.28)

where, Y =[yi]T are the eigenvectors corresponding to the eigenvalues λ = λi which are
obtained from the characteristic equation (3.28) and yi = [Y ]λ=λi

, i = 1(1)6 also given
in Appendix.
By using the expression of the cubical dilatation, the general solution of the equation
(3.26)(omitting prime symbol, conventionally) is

(N̄1, ū1, v̄1, θ̄1) =
4∑

i=1
Pi(G1i, G2i, G3i, G4i) (3.29)

where, Pi’s are the arbitrary parameters. With the help of equations (3.25), the ana-
lytical expression of the stress components are derived from the equation (3.21)-(3.24)
which are of the form [(σ̄xx)1, (σ̄yy)1, (σ̄zz)1, (σ̄xy)1] = ∑4

i=1 Pi[G5i, G6i, G7i, G8i], where,
the values of Gij’s are given in the Appendix. Equation (3.6) also gives the values of
the electromagnetic field components and the expressions of Lorentz force components.

3.1.4 Boundary Conditions

To determine the values of the arbitrary parameters Pi’s, we have prescribed the fol-
lowing boundary conditions:
We now consider a homogeneous, isotropic and thermoelastic semiconducting medium
which is extended along both the directions of x-axis and occupying the specific region
Ω : Ω = {(x, y, z) : −∞ < x < ∞, y ≥ 0, −∞ < z < ∞}. The arbitrary parameters
Pi’s have to be chosen such that the boundary conditions on the surface at y = ±0
(adjacent to vacuum) satisfies the following thermal and mechanical boundary condi-
tions:
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1. Mechanical Boundary Condition:
a) The boundary surface y = 0 is experienced a prescribed time-dependent exponential
compression i.e. σxx(x, 0, t) = −p∗

1, where, p∗
1 = p1 exp(ωt + ibx), p1 is the absolute

value of the mechanical force, ω is the complex circular frequency and b is a wave
number in the x-direction.
b) The boundary surface y = 0 of the half-space semiconducting medium is traction
free i.e. σxy(x, 0, t) = 0.

2. Thermal Boundary Condition:
The temperature gradient is zero at the thermally insulated boundary surface y = 0
i.e. ∂θ(x,0,t)

∂y
= 0

3. Sample Carrier Intensity Restriction:
During the diffusion process, the carrier intensity of the semiconducting half-space
medium reaches at the boundary surface y = 0. So, the gradient of the carrier density
of the sample size with a finite probability of recombinational value i.e. ∂N(x,0,t)

∂x
= S

De
N ,

where, S and De is pre-assigned positive number.
Applying the equations (3.15) and (3.25) to the above three boundary conditions, we
can obtain a system of simultaneous equations satisfied by the four arbitrary parame-
ters.

3.1.5 Numerical Results and Discussions

As discussed in Das and Lahiri [42], the Laplace and Fourier inversion of the solutions in
equations (3.29) and the expressions for the stress components in space-time domain are
carried out by using an efficient programming language (MATLAB R2016a). For the
numerical inversion of the Laplace transform for time variable, we follow the Zakian
[127] method and for the numerical inversion of Fourier transform, we carry out by
seven-point Gaussian quadrature formula for different values of y.
For analyzing the numerical results, we illustrate the physical field variables and the
stress components graphically and comparison is made for different values of physical
parameters. As in Das, Ghosh and Lahiri [41], the values of the material constants
for silicon(in SI units) are: λ = 3.64 × 1010 Nm−2, µ = 5.46 × 1010 Nm−2, κ =
150 Wm−1K−1, αt = 3 × 10−6 K−1, ρ = 2.33 × 103 Kgm−3, CE = 695 JKg−1K−1,
dn = −9 × 10−31 m3, DE = 2.5 × 10−3 m2s−1, Eg = 1.12 ev, τ = 5 × 10−5 s, and the
values of the associated constants used in this problem are: θ0 = 293 K, H0 = 107

4π
,

S = 2.0.
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Figs. 1-5: The variations of physical fields and stress components with respect to
distance for fixed values of λq2

Effect of thermoelastic non-local parameter(λq2)
Figs. 1-5 illustrate the variations of stress components(σxx, σyy, σzz, σxy), temperature
distribution (θ) with distance(y) for fixed values of time (t = 2.0), magnetic intensity
(H0 = 0.3), τq = 0.015, τθ = 0.015 and the five fixed values of λq1 and λq2. These
five fixed values of λq1 and λq2 are 0.0, 0.005, 0.05, 0.2 and 0.4. We are now trying
to characterize the variations of physical field variables under the non-local model.
Fig.1 predicts the stress component (σxx) for the fixed value of λq1 = 0 and λq2 = 0,
in DPL, is propagated with maximum amplitude rather than the other four values
of λq1 and λq2. The stress component (σxx) shows compressive in nature within the
domain 0 ≤ y ≤ 0.35 after that it becomes extensive in nature. The characteristics
of stress(σxx) does not significantly alter for the values of λq2 = 0.005 and 0.05. The
variation of the stress components and the physical field variables are completely dif-
ferent in DPL model (i.e.λq2 = 0) compared to another four values of λq2. Figs. 2-5
predicts that the graphs intersect each other at y = 0.05 for different values of non-
local parameter(λq2) and attain maximum value in the middle plane of the medium.
Shearing stress component (σxy) (Fig.5) behaves in a almost similar manner for the
values λq2 = 0.0 and 0.005. Therefore, we now conclude that the characteristics of all
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the physical field variables and stress components show almost the same behavior in
the generalized thermoelastic model except DPL model.
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Fig. 6 : Distribution of stress components(σxx)
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Fig. 8 : Distribution of stress components(σyy)
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Fig. 9 : Distribution of stress components(σzz)
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Figs. 6-10: The variations of physical fields and stress components with respect to

distance for fixed values of H0
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Effect of magnetic field(H0)
Figs. 6-10 depict the variations of physical field variables such as temperature distri-
bution (θ) and stress components(σxx, σyy, σzz, σxy) with distance(y) of the medium at
a fixed values of time (t = 2.0), τq = 0.015, τθ = 0.015, λq1 = λq2 = 0.005 and the three
fixed values of H0. The characteristics of field variables along with the stress compo-
nents are studied for three fixed values of magnetic field(H0 = 0, 3 × 107 and 3 × 109)
under the non-local parametric value. Figs. 7, 9 and 10, temperature distribution
and the stress components (σzz, σxy) are not significantly characterized at the value
of H0 = 0. In this case, the distribution of these stress components and temperature
distribution almost coincide with the horizontal axis. Whereas, the normal stress com-
ponents (σxx, σyy)(Figs. 6 ,8) more prominently behave at H0 = 0. The characteristics
of stress component (σxx) and the temperature(Figs. 6, 7) are more significant for the
value of H0 = 3 × 107. The deflection of this stress component as well as temperature
are very much prominent at H0 = 3 × 109. The normal stress components (Figs. 6, 8,
9) are vanished at the distance y = 0.35 of the medium and the temperature (Fig.7)
and the shearing stress component (σxy)(Fig.10) vanish at y = 0.05. Specifically, it is
concluded that the stress components and temperature distribution are significantly
characterized with the effect of magnetic field intensities.
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Fig. 11 : Distribution of stress components(σxx)
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Figs. 11-15: The variations of physical fields and stress components with respect to

distance for fixed values of τq
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Effect of (τq)
Figs. 11-15 depict the variations of physical field variables such as temperature distri-
bution (θ) and stress components(σxx, σyy, σzz, σxy) with distance(y) of the medium
at a fixed values of time (t = 2.0), λq2 = 0.005, H0 = 0.3 and the four fixed val-
ues of τq. The characteristics of field variables are studied for four fixed values of
(τq = 0.00015, 0.0015, 0.015 and 0.05). Fig. 11 shows that the characteristics of normal
stress component (σxx) have almost same behavior for the four fixed values of (τq). It
vanishes at y = 0.35 and then it becomes compressive in nature. Fig. 13 and 14 show
that the behaviors of the stress components σxx and σyy are almost same whereas the
shearing stress component (σxy) behaves in a completely different way compared to
the normal stresses. It significantly propagates for fixed values of τq and vanishes at
y = 0.05. Fig.12 shows that the temperature distribution is more clear at the middle
of the medium and the absolute value attains maximum at this point. The variations
of the temperature distribution are almost same for the values of τq = 0.00015 and
0.0015. These figures clearly depict the more dependence of the parameter τq.
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Figs. 16-20: The variations of physical fields and stress components with respect to

distance for fixed values of time t
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Effect of time(t)
Figs. 16-20 depict the variations of physical field variables such as temperature distri-
bution (θ) and stress components(σxx, σyy, σzz, σxy) with distance (y) of the medium
at a fixed values H0 = 0.3, τq = τθ = 0.05, λq1 = λq2 = 0.005 and the four fixed
values of time t = 0.1, 0.2, 0.3, 0.4. Fig. 16 shows that variations of the normal stress
component (σxx) are more significant for fixed values of time t = 0.1 and t = 0.2. The
absolute value attains maximum for t = 0.1 and the variations are almost close for
t = 0.3 and t = 0.4. It vanishes at y = 0.35 and then it becomes compressive. Fig.
17 gives the more clear variation of the temperature distribution for t = 0.1 and also
attains maximum at y = 0.5 that is the middle portion of the medium. Fig. 18 and 19
present almost the similar variations of the normal stresses (σyy, σzz). The variations
of the normal stress components are more clear at t = 0.1 and it vanishes at y = 0.35.
Fig. 20 also shows the more prominent variation of the shearing stress ( σxy) for the
value of t = 0.1. The characteristics of field variables along with the stress components
are studied for four fixed values of time. The absolute value of θ and σxy decreases as
time t increases whenever 0 ≤ y ≤ 0.05 and it increases as time t decreases whenever
0.05 ≤ y ≤ 1. It also attains the maximum at y = 0.5. Similarly, the absolute value
of σxx, σyy and σzz decreases with the increase of time t whenever 0 ≤ y ≤ 0.4 and it
increases with the decreases of time t whenever 0.4 ≤ y ≤ 1. Then, it also attains the
maximum at y = 1.

3.1.6 Conclusions

An analytical formulation for an isotropic, homogeneous half-space semiconducting
medium with the effect of phase-lag of heat flux(τq) and the temperature gradient(τθ)
is presented and illustrated graphically for fixed values of physical parameters. A
model has been developed incorporating non-local(λqk) behavior with dual-phase lag-
ging which have the significant effects on the harmonic functions. We also obtained
the interactions between thermal temperature and carrier intensity in heat conduction
equation and the coupled plasma wave equation respectively. Numerical analysis is
carried out for the semiconducting medium silicon and all the physical field variables
are satisfied by the thermoelastic and plasma wave equation as well as the prescribed
boundary conditions. The analysis and results in this problem will be very much sig-
nificant in studying the uses of semiconductors such as diodes, triodes and modern
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electronics devices.
The graphical representations(Figs.1-20) are self-explanatory for representing and an-
alyzing the different results, yet the following conclusions may be added:
(i) According to this theory, we make a generalized thermoelasticity for the Fourier’s
law of heat equation with non-local and dual-phase lagging parameters. These param-
eters indicate its effectiveness to propagate heat in a conducting medium.
(ii) Significant difference in the physical field variables are observed for DPL and non-
local theory. The definition of non-local theory is more intuitionistic to understand the
physical applicability.
(iii) The presence of carrier intensity accelerates the development of generalized ther-
moelasticity which is very much applicable to the modern techniques.

3.1.7 Appendix

L21 =


c41 0 c43

c51 c52 c53

c61 c62 c63

 and L22 =


0 0 0
0 c55 c56

0 c65 c66

,

yi =



f11f12 − f13f14

c61f14 − c51f12

c51f13 − c61f11

λiy1

λiy2

λiy3


=



y1

y2

y3

y4

y5

y6


c41 = p+ξ2ε3+ε4

ε3
, c43 = − ε5

ε3
, c51 = − 1

m1
(ξ2 + ε2

1+τθp
) + 1

m1ε3
(p + ξ2ε3 + ε4),

c52 = 1
m1

{m2p
2 + m1ξ

2 + (1 − iξλq1 + pτq)} ε1p
1+τθp

, c53 = 1
m1

{1 − iξλq1 + pτq} p
1+τθp

− ε5
ε3

,

c55 = λq2ε1p

m1(1+τθp) , c56 = λq2p

m1(1+τθp) , c61 = − ε2
(1+τθp) , c62 = ε1p(1−iξλq1+pτq)

(1+τθp) ,

c63 = (1−iξλq1+pτq)p+(1+τθp)ξ2

(1+τθp) , c65 = ε1pλq2
(1+τθp) , c66 = pλq2

(1+τθp) ,

f11 = c52 + (c55 − λi)λi, f12 = c63 + (c66 − λi)λi, f13 = c62 + c65λi, f14 = c53 + c56λi,

G11 = 0, G12 = y12e
−λ1y, G13 = y14e

−λ3y, G14 = y16e
−λ5y, G21 = e−k5y,
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G22 = iξ(a3y22−y32−y12)e−λ1y

β0(λ2
1−k2

5) , G23 = iξ(a3y24−y34−y14)e−λ3y

β0(λ2
3−k2

5) , G24 = iξ(a3x26−y36−y16)e−λ5y

β0(λ2
5−k2

5) ,

G31 = −iξ
k5

e−k5y, G32 = [ ξ2(a3y22−y32−y12)
β0λ1(λ2

1−k2
5) − y22

λ1
]e−λ1y, G33 = [ ξ2(a3x24−y34−y14)

β0λ3(λ2
3−k2

5) − y24
λ3

]e−λ3y,

G34 = [ ξ2(a3x26−y36−y16)
β0λ5(λ2

5−k2
5) − y26

λ5
]e−λ5y, G41 = 0, G42 = y32e

−λ1y,G43 = y34e
−λ3y,

G44 = y36e
−λ5y, G51 = 2iξ(1 − 1

β0
)e−k5y,

G52 = [2(1−β0)ξ2(a3y22−y32−y12)
β2

0(λ2
1−k2

5) −( 1
β0

− 2)y22 − y32
β0

−y12
β0

]e−λ1y,

G53 = [2(1−β0)ξ2(a3y24−y34−y14)
β2

0(λ2
3−k2

5) −( 1
β0

− 2)y24 − y34
β0

−y14
β0

]e−λ3y,

G54 = [2(1−β0)ξ2(a3y26−y36−y16)
β2

0(λ2
5−k2

5) −( 1
β0

− 2)y26 − y36
β0

−y16
β0

]e−λ5y,

G61 = 2iξ(1 − 1
β0

)e−k5y, G62 = [2(−1+β0)ξ2(a3y22−y32−y12)
β2

0(λ2
1−k2

5) +y22
β0

− y32
β0

−y12
β0

]e−λ1y,

G63 = [2(−1+β0)ξ2(a3y24−y34−y14)
β2

0(λ2
3−k2

5) +y24
β0

− y34
β0

−y14
β0

]e−λ3y,

G64 = [2(−1+β0)ξ2(a3y26−y36−y16)
β2

0(λ2
5−k2

5) +y26
β0

− y36
β0

−y16
β0

]e−λ5y,

G71 = 0, G72 = {(1−2β0)y22−y32−y12}e−λ1y

β0
, G73 = {(1−2β0)y24−y34−y14}e−λ3y

β0
,

G74 = {(1−2β0)y26−y36−y16}e−λ5y

β0
, G81 = −(k5 + ξ2

k5
)e−k5y,

G82 = [− iξ
β0(λ2

1−k2
5)(λ1 + ξ2

λ1
)(a3y22 − y32 − y12)+ iξy22

λ1
]e−λ1y,

G83 = [− iξ
β0(λ2

3−k2
5)(λ3 + ξ2

λ3
)(a3y24 − y34 − y14)+ iξy24

λ3
]e−λ3y,

G84 = [− iξ
β0(λ2

5−k2
5)(λ5 + ξ2

λ5
)(a3y26 − y36 − y16)+ iξy26

λ5
]e−λ5y.
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3.2 Wave propagation in a non-local magneto-thermoelastic
medium permeated by heat source

3.2.1 Introduction

The increasing attention has been fully focussed on the widely spread branch of ther-
moelasticity and magneto-thermoelasticity. Material science researchers and engineers
are more concerned with the thermal effects on elasto-static and elasto-dynamical ob-
jects. In high temperature field like nuclear reactor, thermoelasticity as well as electro-
magneto thermoelasticity play a crucial role. Biot[30] first introduced coupled theory
modifying the conventional Fourier’s law of heat conduction equation. Coupled theory
of heat conduction depicts two physical phenomena (i) infinite speed in propagation of
heat waves and (ii) absence of elastic term. These two phenomena contradicts to the
actual observation and raised the ambiguity about this type of theory. Lord and Shul-
man [80] introduced generalized thermoelasticity and energy equation was modified by
introducing thermal relaxation time parameter. This theory of generalized thermoelas-
ticity is called L-S theory. Green and Lindsay[58] modified L-S theory by introducing
two relaxation time parameters in the equation of motion and energy equation which
are known as Temperature Rate Dependent Thermoelasticity[TRDTE]. Dhaliwal and
Sherief[44] proved the uniqueness of the solution of this type of thermoelastic theory.
Green and Naghdi[59], [60], [61] developed another three models I, II, III of thermoe-
lasticity which are - thermoelasticity with energy dissipation (TEWEDT) and without
energy dissipation (TEWDEDT). A generalized electromagneto-thermoelastic interac-
tion for a thin cylindrical semiconducting medium is discussed by Das et al.[41]. Also,
Ghosh et al. [54] studied the interaction in an anisotropic three-dimensional elastic
slab due to prescribed surface temperature in presence of electro-magnetic field. A
thermoelastic problem with non-linear heat equation was studied by Das et al.[40].
Abbas[2] illustrated a solution for a generalised magneto-thermoelastic problem for a
non-homogeneous and isotropic annular cylinder by using the finite element method.
Eringen [46] proposed the nonlocal theory for an elastic medium which discussed the
long gap in between the limitation of the classical continuum hypothesis and the theory
of atomic structure. The nonlocal thermoelastic model is developed to determine the
thermoelastic behavior of the nanostructure of the continuum. The governing equations
with temperature-dependent thermal relaxation parameters are solved by using the har-
monic plane waves and integral transforms (Laplace and Fourier transforms). However,
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the generalized thermoelastic theory may be considered in some specific cases, such as
the external characteristic length to the internal characteristic length of the structural
approaches. Although, the structural approaches of the molecular dynamic method is
successfully predicting the thermal and mechanical properties of nanomaterial systems
with limited number of molecules and atoms. It requires lengthy computational effort
for nanomaterial systems. To overcome this tremendous computational efforts, it is
better to introduce an additional material length scale parameters to the size effect in
extending generalized thermoelastic theory. According to the Eringen’s nonlocal ther-
moelastic theory, the stress at a point depends on the strain at the point as well as the
strains at other points within the domain. Therefore, the nonlocal stress field is deter-
mined from the convolution of the local strain field and a smoothing kernel function
for a thermoelastic model. Gupta and Mukhopadhyay [62] studied generalized ther-
moelasticity with the help of nonlocal and dual-phase lag theory. Recently, Tzou[113],
[117] developed dual-phase-lag heat equation theory by incorporating two-phase-lag
parameters associated with the temperature gradient and the heat flux vector. Two
phase lag parameters are related to the fastest transient effects of the thermal inertial
and the micro-structural interaction properties of the medium. This theory is known
as dual-phase-lag (DPL) model. Later, three-phase-lag (TPL) model was developed by
Roychoudhury [102]. Tzou and Guo [118] developed a new approach known as non-local
theory which also helps to explore the impact of stress and strain for all the points of
the body at a material point. Zhang and He [140] studied the nono-local thermoelastic
problem with moving heat source. Molla et al. [86] illustrated the propagation of waves
in generalized thermo-viscoelastic medium with nono-local heat transfer. Mondal et al.
[87] analyzed the wave propagation for thermoelastic materials on Eringen’s non-local
thermoelasticity. The Moore-Gibson-Thompson model with nonlocal thermal response
for circular cylindrical cavity was studied by Mohammed et al. [85].
In this problem, we consider a generalized thermoelastic interaction for a two dimen-
sional isotropic medium under non-local heat conduction theory in the presence of elec-
tromagnetic fields and heat source. The governing equations are transformed by using
the harmonic plane waves and then a vector matrix differential equation is formulated
which is solved by eigenvalue method. Finally, the displacement, stress components
and temperature distribution are presented and compared graphically with two theories
such as non-local dual-phase-lag (NLDPL) and non-local Lord-Shulman (NLLS) theory
under the variations of different physical parameters. In presence of electro-magnetic
fields, the significant effects of non-local variables and phase lagging parameters on dis-
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placements, temperature distribution and stress components are analytically studied.
Comparisons are also made graphically for normal stress component with and without
heat-flux and concluding remarks are drawn.

3.2.2 Basic equations for theoretical model

Due to size effect with heat conduction, it is required to modify the classical heat
conduction theory as it is essentially non-local at micro and/or nano-scale. Tzou [113]
suggested the modification introducing material’s characteristic length. As in Eringen
[46] and Challamel et al. [32], the governing equations for an isotropic and homoge-
neous elastic medium in context of non-local Lord-Shulman(NLLS) model are as -

Equation of motion: In the presence of electro-magnetic field, we have the trans-
portation equation of motion for the isotropic body as

σij,j + Fi = ρ
∂2ui

∂t2 (3.30)

where, Fi is the Lorentz force components of the form Fi = µ0(J × H)i.
Stress-strain-temperature relation:

σij = λekkδij + 2µeij − γθδij (3.31)

Energy Equation: In presence of heat source, we consider the energy equation as-

Q − qi,i = ρT0
∂S

∂t
(3.32)

Entropy Equation:
T0ρS = ρCeθ + γT0ekk (3.33)

Heat Conduction Equation: As in Tzou and Guo [118], we consider the modified
non-local heat conduction equation as

(1 + (λq)k
∂

∂xk

+ τq
∂

∂t
)qi = −Kθ(1 + τθ

∂

∂t
)θ,i (3.34)

where, T0 is the uniform reference temperature, S is the entropy per unit mass, ce is
specific heat, ρ denotes the constant mass density, λ and µ are Lamè’s constants, Kθ

is thermal conductivity, α = 3λ+2µ
αθ

, αθ is the co-efficient of linear thermal expansion, τθ

represents phase lag of temperature gradient, τq is phase lag of heat flux and (λq)k is
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the component of non-local length vector.

From equations (3.30)-(3.34), we obtain the modified heat transportation equation
and the equation of motion as-

Kθ(1 + τθ
∂

∂t
)θ,ii = (1 + (λq)k) ∂

∂xk

+ τq
∂

∂t
(ρce

∂θ

∂t
)(ρce

∂θ

∂t
+ γT0

∂

∂t
(uk,k) − Q) (3.35)

ρ
∂2ui

∂t2 = (λ + µ)uj,ji + µui,jj − γθ,i + Fi (3.36)

As in Ghosh and Lahiri [51], the medium in presence of electro-magnetic field must
follow the Maxwell’s field equations which are as following

curl h = J + ε0
∂E
∂t

, (3.37)

div h = 0, E = −µ0(u̇ × H)

curl E = −µ0
∂h
∂t

B = µ0(H + h), D = ε0E

where H⃗ = H⃗0+h⃗, H⃗ is the total magnetic field vector, J⃗ is the electric current density,
ε0 is the electric permeability and µ0 is the magnetic permeability.
The three theories such as the non-local classical dynamical coupled(NLCDC) theory,
the first generalized thermoelastic theory i.e., non-local Lord and Shulman’s(NLLS)
theory and second generalized heat transportation with the non-local dual-phase-
lag(NLDPL) theory proposed by Tzou [116], [114] prescribed by the modified heat
transportation equation (3.35) which are as follows
(i) The non-local classical dynamical coupled (NLCDC) theory
τθ = τq = 0
(ii) The first generalized thermoelastic theory i.e., non-local Lord and Shulman’s (NLLS)
theory
τθ = 0, τq = τ0 > 0
(iii) The second generalized heat transportation with non-local dual-phase-lag(NLDPL)
theory
τq ≥ τθ > 0

3.2.3 Formulation and solution of the problem

We now consider here an isotropic, homogeneous and perfectly conducting thermoe-
lastic two-dimensional half-space(x ≥ 0) in cartesian co-ordinate system ( Figure 3.1)
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Figure 3.1: Schematic diagram of the theoretical model.

in presence of the constant magnetic field H = (0, 0, H0 + h), where H0 = (0, 0, H0)
which is acting in the direction of z-axis). An induced magnetic field h = (0, 0, h0) and
an induced electric field, E = (E1, E2, 0) has been produced according to the appli-
cation of magnetic field H which satisfy the linearized equations of electromagnetism.
By using equation (3.37), the expressions of Lorentz forces are

F1 = µ0H
2
0 (∂2u

∂x2 + ∂2v

∂x∂y
) − ϵ0µ

2
0H

2
0 ü (3.38)

and
F2 = µ0H

2
0 ( ∂2u

∂x∂y
+ ∂2v

∂y2 ) − ϵ0µ
2
0H

2
0 v̈ (3.39)

By using the equations (3.38) and (3.39), equation (3.36) gives the equation of motion
componentwise as

(ρ + ϵ0µ
2
0H

2
0 )∂2u

∂t2 = (λ + 2µ + µ0H
2
0 )∂2u

∂x2 + (λ + µ + µ0H
2
0 ) ∂2v

∂x∂y
+ µ

∂2u

∂y2 − γ
∂θ

∂x
(3.40)

and

(ρ + ϵ0µ
2
0H

2
0 )∂2v

∂t2 = (λ + 2µ + µ0H
2
0 )∂2v

∂y2 + (λ + µ + µ0H
2
0 ) ∂2u

∂x∂y
+ µ

∂2v

∂x2 − γ
∂θ

∂y
(3.41)

Equation (3.35) gives the modified heat transportation equation as

Kθ(1 + τθ
∂

∂t
)(∂2θ

∂x2 + ∂2θ

∂y2 ) = (1 + λq1

∂

∂x
+ λq2

∂

∂y
+ τq

∂

∂t
)(ρce

∂θ

∂t
+ γT0(

∂u

∂x
+ ∂v

∂y
) − Q)
(3.42)

The stress components are derived from the equation (3.31) which are as of the following

σxx = (λ + 2µ)∂u

∂x
+ λ

∂v

∂y
− γθ (3.43)
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σyy = (λ + 2µ)∂v

∂y
+ λ

∂u

∂x
− γθ (3.44)

σxy = µ(∂u

∂x
+ ∂v

∂y
) (3.45)

We now introduce the following variables to get the non-dimensional form of the
above mentioned governing equations

(x∗, y∗) = c0η0(x, y), (u∗, v∗) = c0η0(u, v)
(t∗, τ ∗) = c2

0η0(t, τ), σ∗
ij = 1

ρc2
0
σij

θ∗ = 1
ρc2

0
γθ, Q∗ = ρ2cec4

0η0
γ

Q

h∗ = 1
H0h

, J∗
i = 1

η0c0H0
Ji

(3.46)

Introducing the non-dimensional variables in equations (3.40)-(3.45), we obtain (omit-
ting the asterisks for convention)the equations of motion, heat transportation and stress
components as

α2
0
∂2u

∂t2 = β2
0
∂2u

∂x2 + (β2
0 − 1) ∂2v

∂x∂y
+ ∂2u

∂y2 − β2
0

∂θ

∂x
(3.47)

α2
0
∂2v

∂t2 = β2
0
∂2v

∂y2 + (β2
0 − 1) ∂2v

∂x∂y
+ ∂2v

∂x2 − β2
0

∂θ

∂y
(3.48)

(1+τθ
∂

∂t
)(∂2θ

∂x2 + ∂2θ

∂y2 ) = (1+λq1

∂

∂x
+λq2

∂

∂y
+τq

∂

∂t
)(∂θ

∂t
+ϵ( ∂2u

∂x∂t
+ ∂2v

∂y∂t
)−Q) (3.49)

σxx = ∂u

∂x
+ (1 − 2

β2 )∂v

∂y
− θ (3.50)

σyy = ∂v

∂y
+ (1 − 2

β2 )∂u

∂x
− θ (3.51)

σxy = 1
β2 (∂u

∂x
+ ∂v

∂y
) (3.52)

where
α2

0 = (ρ+ϵ0µ2
0H2

0
µ

)c2
0 and β2

0 = λ+2µ+µ0H2
0

µ
= ρc2

0
µ

,

η0 = ρce

Kθ
and ϵ = γ2T0

ρ2cec2
0
,

c2
0 = λ+2µ

ρ
and β2 = ρc2

0
µ

= λ+2µ
µ

As in Ghosh et al.[54], the physical variables can be decomposed by using normal modes
as in the following form -

ξ(x, y, t) = ξ(x)eωt+iay (3.53)

where ξ = [u v σij θ], ξ∗ = [u∗ v∗ σij
∗ θ∗], ω is the angular frequency and a is the

wave numbers along y-direction.
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By using equation (3.53), equations (3.47)-(3.49) can be written in the form of vector
matrix differential equation

dv

dx
= Av + f (3.54)

where A =
 A11 A12

A21 A22

, v =
[

u v θ u
′

v
′

θ
′
]T

,

f =
[

0 0 0 0 0 C67Q
]T

, A11 is the null matrix, A12 is the identity matrix of
order 3, A21 and A22 are given in Appendix.

3.2.4 Solution of the vector-matrix differential equation:

Let λ = λi , (i = 1(1)6) be the roots of the characteristic equation which is given by

|A − λI| = 0 (3.55)

and these roots i.e. eigenvalues of the coefficient matrix A, λ = λi are in the form of
λ = ±λi , (i = 1(1)3). Also, X(λ) is the eigenvector corresponding to the eigenvalue λ

of the matrix A, which is given as

X(λ) = [δ1 δ2 δ3 λδ1 λδ2 λδ3]T (3.56)

where the analytic expressions of δi, (i = 1(1)3) are given in the Appendix.
Let Vi, (i = 1(1)6) be the eigenvectors corresponding to the eigenvalues λ = λi (i =

1(1)6) which is denoted by Vi =

 (X)λ=λ i+1
2

,(i=1(2)5)

(X)λ=λ −i
2

,(i=2(2)6)

.

For regularity condition as x → +∞ (Ghosh and Lahiri [51]), the general solution of
the differential equation (3.54) for isotropic half-space is

v =
3∑

i=1
Vi yi (3.57)

where
yr = Are

λrx + eλrx
∫ ∞

−∞
Hre

−λrxdx (3.58)

and Hr = V −1f where V = (Vi), i = 1(1)6 (3.59)

where Ar are constants which are to be evaluated by using boundary conditions. With
the help of the equations (3.57)-(3.59), we can find the analytical solutions of the
displacement components and the temperature distribution which are as follows

(u, v, θ) = ∑3
j=1(x1j, x2j, x3j)(Aje

λjx − Hi

λi
) (3.60)
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Using this analytic solution, equation (3.31) gives the expressions of stress components
which are as follows

(σ11, σ22, σ12) =
3∑

j=1
Aj(R1j, R2j, R3j)(x) − dk (3.61)

where, xij(x), Rij(x) and dk (i, j = 1(1)3 and k = 1(2)5) are given in the Appendix II.

3.2.5 Boundary conditions

To obtain the values of Ar, we consider the following boundary conditions
Mechanical Condition: The boundary surface of the medium is traction-free i.e.,

σ11(0, y, t) = 0
σ12(0, y, t) = 0

(3.62)

Thermal Condition: The boundary surface is also experienced a thermal load with
constant intensity i.e.,

qn + νθ = r∗(0, y, t) (3.63)

where qn is the normal components of the heat flux vector, r∗(0, y, t) is the intensity of
applied heat source and ν is the Biot’s number.

Using above mentioned boundary conditions prescribed in equations (3.62) and
(3.63), we now get the following linear equations

∑3
j=1 AjS1j = d1∑3
j=1 AjS3j = d3∑3
j=1 AjS5j = d5

(3.64)

From equation (3.64), we can obtain the values of the arbitrary parameters Ar such as
Ar = Di

D
where Di, D (i, r = 1(1)3); d′

is, S ′
ijs (i = 1(2)5) are given in the Appendix

II.

3.2.6 Numerical results

Several graphs have been presented for comparing the numerical results in the context
of NLCDC, NLLS and NLDPL theories. For analyzing the effect of wave propagation,
we now consider ω = ω0 + iς, ω is a complex number. As in Ghosh and Lahiri [51],
copper(Cu) is taken for numerical computation and the values of the material constants
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are as follows:
λ = 7.76 X 1010kgm−1s−2 µ = 3.86 X 1010kgm−1s−2 ρ = 8954kgm−3

ce = 383.1Jkg−1K
−1 K = 386Wm−1K−1 T0 = 293K

ϵ0 = 10−9

36π
µ0 = 4π × 10−7 H0 = 107

4π

c0 = 2200.0 τ = 5 × 10−5 γ = 210 × 104

r∗ = 20 Q = 0.5

The numerical computations have been carried out with the help of suitable computer
programming language MATLAB R2016a and the analysis are studied on the basis of
the several graphical representations.

3.2.7 Graphical representation and analysis

In order to study the characteristics of various components of the field variables like-
stresses, displacement and temperature, several graphs have been drawn with respect
to different values of the space variable (x, y), time t, and heat source(Q). Along with
the graphical representation, the corresponding analysis are also made.
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Figure 2: Effect of non-local variables(λq1 and λq2) on stress component (σ11)

x   ------->

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(θ
) 

 -
--

--
--

>

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

DPL (λ
q

1

=0,  λ
q

2

=0)

λ
q

1

=0.15,  λ
q

2

=0.15

λ
q

1

=0.15,  λ
q

2

=0.35

λ
q

1

=0.15,  λ
q

2

=0.55

λ
q

1

=0.012,  λ
q

2

=1.2

λ
q

1

=0.12,  λ
q

2

=1.2

λ
q

1

=1.2,  λ
q

2

=1.2

LS (λ
q

1

=0,   λ
q

2

=0, τ
θ

=0)

Figure 3: Effect of non-local variables(λq1 and λq2) on temperature(θ)
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Figure 4: Effect of non-local variables(λq1 and λq2) on displacement(u)

Effect of thermoelastic non-local parameters(λq1 and λq2)
Figures 2-4 illustrate the variations of stress components(σ11), temperature distribu-
tion (θ) and displacement component(u) with distance(x) for fixed values of non-local
parameters λq1 and λq2 in presence of heat-source(Q). Comparisions are also depicted
with well established model of non-local dual phase-lag(NLDPL) and non-local Lord-
Shulman(NLLS) theory.
Figure 2 shows that the normal stress component(σ11) is compressive in nature within
the whole region 0 ≤ x ≤ 1.0. The absolute values of this normal stress component
increases when space variable x increases. The absolute value of the normal stress
component is maximum when ratio of λq2 and λq1 is greater than 1 and the significant
variation of σ11 occurs within the region 0.2 ≤ x ≤ 1.0 when ratio of λq2 and λq1 is less
than and equal to 1. The absolute value of this stress component σ11 increases when
λq1 decreases at the middle portion of the space variable of the medium.
Figure 3 illustrates that the effect of non-local variables (λq1 and λq2) on temperature(θ)
for fixed values of physical field variables. The absolute values of the temperature
distribution(θ) decrease as x increases. The absolute value of temperature attains
maximum at x = 0 for λq1 = λq2 = 1.2. The variations of temperature are almost
parallel for λq1 = 0.012 and λq1 = 0.12. These variation of temperature gradually
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decreases when x increases for different values of λq1 and λq2.
Figure 4 predicts that the significant variation of displacement component(u) within
the region 0 ≤ x ≤ 1.0 when ratio of λq1 and λq2 is less than and equal to 1. The
absolute value of displacement component(u) attains at x = 1 for λq1 = 1.2.
It has been clearly observed that the characteristic curves for NLLS model and NLDPL
model are very much significant in all of the above cases.
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Figure 5: Effect of τq on stress component( σ12)
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Effect of heat flux lagging parameter(τq)
Figures 5-7 depict the variations of stress component(σ12), temperature distribution
(θ) and displacement component (v) with distance(x) for different values of magnetic
intensity (H0 = 107/4π), τθ = 0.02, non-local parameters (λq1 = 0.012, λq2=0.015) and
τq = 0.0015, 0.015, 0.15 in presence of the heat-source(Q). Figures 5, 6 and 7 depict
that the variations of stress component(σ12), temperature distribution (θ) and displace-
ment component (v) are almost same for the values of τq = 0.0015 and 0.015. These
figures also give the different variations for the values of τq = 0.15. The characteristics
of these variations are extensive in nature in the whole region 0 ≤ x ≤ 1.0.
Figure 5 shows that the variations of shearing stress component (σ12) attains maximum
at the middle portion of the medium. The effect of σ12 is more prominent within the
region 0.3 ≤ x ≤ 1.0 for different values of τq.
Figures 6 and 7 clearly say that the temperature distribution and displacement compo-
nent of the medium gradually decrease as x increases. The absolute value temperature
and displacement attains maximum at x = 0.
The effect of τq(= 0.15) is more prominent for stress component (σ12), temperature
distribution (θ) and displacement component (v).
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Figure 8: Effect of τθ on stress component(σ22)
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Effect of phase lagging of temperature gradient parameter(τθ)
Figure 8 depicts the distributions of stress component(σ22) with distance(x) for fixed
values for fixed values of magnetic intensity (H0 = 107/4π), τq = 0.0015, non-local pa-
rameters (λq1 = 0.012, λq2=0.015) and the four fixed values of τθ = 0.002, 0.02, 0.2, 2.0
in presence of heat-source(Q). The normal stress σ22 is compressive for different values
of τθ as shown in the figure. The characteristics of σ22 are identical for different val-
ues of τθ. The effect of the phase-lag parameter τθ for the different values of physical
variables have been illustrated in this figure and clearly declares that the this phase
lag parameter plays an important role for studying the characteristics of this type of
material.
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Three-dimensional Variation of stress components and temperature distribution
Figures 9-11 represent the effects of the two space variable (x and y) of the stress com-
ponents (σ12, σ22) and temperature distribution (θ) in presence of the heat-source(Q).
The nature of the field variables are also studied for fixed values of magnetic inten-
sity (H0 = 107/4π), τq = 0.0015, τθ = 0.02 and non-local parameters (λq1 = 0.012,
λq2=0.015).
Figure 9 represents the shearing stress component σ12 is compressive for different space
variables x and y. The absolute value of shearing stress component(σ12 increases and
attains maximum at x = 1 and y = 0.6.
Figure 10 also predicts the characteristic of the graph of the normal stress component(σ22)
increases as y increases and it attains the maximum at y = 1.
Figure 11 illustrates that the absolute values of temperature distribution (θ) decreases
as y increases.
Three-variational variations of the field variables and the stress components are rep-
resented graphically and the nature of these graphs are wave-like propagation. This
propagations are highly dependent on the space variables as well as time variable.
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Figure 12: Effect of heat source (Q) on stress component (σ22)

Effect of the external heat source(Q)
Figure 12 represents that the effects of the external heat source (Q) on the normal stress
component (σ22) with the space variable x in presence of the external heat source Q

and without heat source. The nature of this normal stress component is also studied
for fixed values of magnetic intensity (H0 = 107/4π), τq = 0.0015, τθ = 2.0 and the
non-local parameters (λq1 = 0.012, λq2=0.015). The absolute strength of the external
heat source is considered here for 0.5 unit. The figure shows that the significant dis-
tributions of the normal stress component(σ22) within the region 0.2 ≤ x ≤ 1.0. The
normal stress σ22 is extensive within the region 0.7 ≤ x ≤ 1.0 for fixed value of y in
the presence of heat source whereas it is compressive without heat source. The figure
depicts that the two graphs, with and without heat source intersects to each other at
x = 0.05, after that the absolute values of the normal stress component decreases as x

increases and it attains minimum at x = 0.15. The presence and absence of external
heat source on the field variables are clearly characterized by these graphical represen-
tations.
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3.2.8 Conclusion

The result that is presented here is more significant for future investigation regarding
the non-local thermoelastic model. The importance of this model is inclusion of the
non-local variables along with the phase-lag parameters in the heat transportation
process which also enhances the thermoscopic effects at a macroscopic level. Non-local
response in dual phase-lag model has been extended to predict the significant effect
of external heat source. Here, it is observed that the significant effects of the non-
local variables (λq1 and λq2) on the displacement components, stress components and
temperature distribution of the medium. Experimental results are underway to support
the NLDPL and NLLS model with phase-lag variables(τq and τθ) proposed herewith.
The primary emphasis has been given on the additional thermal disturbances due
to external heat source. Inclusion of variables(τq and τθ) in the heat transportation
equation caused the term of "non-Fourier" character which may be needed for the effect
of micro-scale heat transfer. This results and analysis provide the natural method to
get well-posed nonlocal elastic problems for application to nano-structure. Therefore,
the nonlocal stress-strain model has been extensively adopted in the various problems
such as the bending and buckling of nano-beams, and the problem of the nonlocal
magneto-thermoelastic behavior for nano-structure size is widely applied in nowadays.
The results obtained here is significant for future investigation regarding non-local
thermoelasticity. The non-local variables in the heat conduction process are included
in this model to observe the enhancement of the thermoscopic effects at a macroscopic
level. We have formulated a two dimensional problem here to investigate the effect
of non local variables in heat conduction equation for the generalized thermoelasticity
theory. Here, we observe the significant effects of the non-local variables (λq1 and λq2)
on displacement, stress components and temperature of the medium. The variations in
characteristic curves due to NLDPL and NLLS models has been depicted graphically.
The effects of phase lag variables (τq and τθ) have also been observed with or without
heat source.
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3.2.9 Appendix

C41 = a2+α2
0ω2

1
β2

0
, C42 = 0, C43 = 0,

C44 = 0, C45 = ia(1−β2
0)

β2
0

, C46 = 1,

C51 = 0, C52 = α2
0β2

1 + a2β2
0 , C53 = iaβ2

0 ,

C54 = 0, C55 = ia(1 − β2
0), C56 = 0

C61 = C41ϵλq1ω1,
C62 = C42ϵλq1ω1 + ϵ(iaω1 − λq2a2ω1 + τqω

2
1ia),

C63 = C43ϵλq1ω1 + ω1 + τqω
2
1 + λq2ω1ia + a2 + a2τθω1,

C64 = C44ϵλq1ω1 + ϵ(ω1 + iaλq2ω1 + τqω
2
1),

C65 = C45ϵλq1ω1 + ϵλq1iaω1, C67 = −(1 + iaλq2 + ω1τq)

A21 =
[

Cij

]
i=4(1)6,j=1(1)3

, A22 =
[

Cij

]
(i,j)=4(1)6

For j=1(1)6, k=1(1)5
R1j(x) = [λjx1j + ia(1 − 2

β2 )x2j − x3j]e−λjx, N1j = 1
λj

[ia(1 − 2
β2 )x2j(x) − x3j],

R2j(x) = [λjx2j + ia(1 − 2
β2 )x1j − x3j]e−λjx N2j = 1

λj
[iax2j − x3j],

R3j(x) = [ 1
β2 λjx1j + iax2j]e−λjx, N3j = 1

λj
[iax2j],

R4j(x) = x2je
−λjx, N4j = 1

λj
[x3j],

R5j(x) = (ν − λj)x3je
−λjx, N5j = 1

λj
[ν],

Rkj(0) = Skj

d1 = ∑6
j=1 AjR1j(0) = ∑6

j=1 HjN1j ,
d3 = ∑6

j=1 AjR3j(0) = ∑6
j=1 HjN3j

and d5 = r∗ +∑6
j=1 HjN5j

D =

∣∣∣∣∣∣∣∣∣
S11 S12 S13

S31 S32 S33

S51 S52 S53

∣∣∣∣∣∣∣∣∣, D1 =

∣∣∣∣∣∣∣∣∣
d1 S12 S13

d3 S32 S33

d5 S52 S53

∣∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣∣
S11 d1 S13

S31 d3 S33

S51 d5 S53

∣∣∣∣∣∣∣∣∣ ,

D3 =

∣∣∣∣∣∣∣∣∣
S11 S12 d1

S31 S32 d3

S51 S52 d5

∣∣∣∣∣∣∣∣∣
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where, δ1 = f12f23 − f13f22,

δ2 = f13f21 − f11f23

and δ3 = f11f22 − f12f21

f11 = C41 + C44λi − λ2
i ; f12 = C42 + C45λi; f13 = C43 + C46λi; f21 = C51 + C54λi; f22 =

C52 + C55λi − λ2
i ; f23 = C53 + C56λi; f31 = C61 + C64λi; f32 = C62 + C65λi; f33 =

C63 + C66λi − λ2
i ; xij = δj, (i, j = 1(1)3).
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4
STUDY OF THERMOELASTIC BEHAVIOUR
IN CURVILINEAR CO-ORDINATE SYSTEM

PROBLEMS :

• PROBLEM -5 Analysis of Multi-Phase Lag Gradients for a Spherical
Cavity due to Prescribed Internal Pressure.

This paper has been communicated.

• PROBLEM -6 Vibrations of a Circular Cylinder in Generalized Ther-
moelasticity.
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4.1 Analysis of multi-phase lag gradients for a spherical cav-
ity due to prescribed internal pressure

4.1.1 Introduction

The phenomenon of finite speed of heat wave propagation was modified applying phase-
lag gradient (τt and τq) and relaxation time parameter to conventional heat equation
due to Fourier’s law in generalized thermoelasticity as in Lord-Shulman [80] and Green-
Lindsay [58]. As an extension Green and Nagdhi [59], [60], [61] proposed three different
models viz. G-N – Type I, Type II and Type III. Basically classical theory of thermoe-
lasticity (CTE) and G-N – Type I model exhibits the same characteristics of infinite
spit of heat propagation in classical coupled thermoelasticity theory. Type II and Type
III are related to non dissipation and dissipation of energy respectively.

In the history of thermoelasticity Tzou [113], [117] introduced the dual phase-lag
model to investigate the effect of lagging behavior within the thermoelastic medium.
Later Roy Choudhuri [102] proposed the concept of three-phase-lag model in the con-
ventional thermal equation. Several researchers like Quintanilla and Racke [99], Ghosh
et al. [49] were able to find the solutions of the heat conduction equation associated
with the three-phase-lag model in their recent studies. Moreover Zenkour [128] recently
came up with a refined two-temperature multi-phase-lag model involving the heat flux
vector and the temperature gradient which is applicable to generalized thermoelastic
medium. Researchers like Bagri and Eslami [24]-[26], Kar and Kanoria [69]-[70], Das et
al. [43] solved several problems applying the above mentioned theories of generalized
thermoelasticity.

Chandrasekharaiah and Keshavan [34] solved a thermoelastic problem regarding
an unbounded solid with cylindrical cavity, whereas a theoretical study was done by
Misra et al. [82], [83] to generate stress in elastic and viscoelastic solids containing a
spherical and a circular cylindrical hole respectively. Sinha and Elsibai [109] presented
thermoelastic interaction in an infinite solid having a spherical hole. Sherief and Saleh
[108] were concerned with a one-dimensional problem to figure out thermal stresses and
temperature in an unbounded solid with a spherical cavity considering a sudden varia-
tion in the temperature. Abd-Alla et al. [6] analyzed the thermoelastic interaction in
an orthotropic solid having a spherical cavity. Mukhopadhyay [88] dealt with a thermo-
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viscoelastic problem in an infinite solid consisting of a spherical cavity under a periodic
loading and temperature remaining unchanged. Moreover, Mukhopadhyay [89] studied
the thermoealstic behaviour without energy dissipation in the same medium consider-
ing a stressed free cavity surface under a thermal shock. Abd-Alla et al. [7] analyzed
a viscoelastic medium containing a spherical cavity to figure out the field quantities
in the said medium. Mukhopadhyay [90] discussed the thermally induced vibration in
an unbounded continuum with a spherical cavity. Rakshit Kundu and Mukhopadhyay
[100] evaluated the field quantities while analyzing a viscoelastic medium containing
a spherical hole. Youssef [124] studied the thermoelastic behavior of an infinite solid
having a cylindrical cavity. Abbas [1] solved a thermoelastic problem in an unbounded
solid containing either a spherical or cylindrical hole. Aouadi [22] dealt with a one
dimensional issue in a infinite solid with a spherical cavity in context of generalized
thermal diffusion. Itu et al. [67] studied composite circular plates through radial ribs
to examine improved rigidity.

Ghosh and Kanoria [55], [56] solved a thermoelastic problem to determine the field
quantities in an isotropic medium containing a spherical cavity. They also did the
same for a functionally graded spherically infinite continuum having a spherical hole.
Abbas and Abd-Alla [4] considered a infinite solid having a cylindrical cavity to study
its thermoelastic behaviour. G-N Type III model was applied by Mukhopadhyay and
Kumar [92] to examine the thermoelastic behaviour of a unbounded body with cylin-
drical cavity. Xia et al. [121] examined the dynamic nature of an infinite body having
a cylindrical cavity under thermal shock. Youssef [125] came up with two solutions dis-
cussing the thermoelastic interactions in an infinite solid respectively having a spherical
and a cylindrical hole. Allam et al. [21] presented the electromagneto-thermoelastic
interactions of an infinite body containing a spherical cavity applying the generalised
thermoelasticity theory proposed by Green-Nagdhi.

The refined two-temperature multi-phase-lag model, proposed by Zenkour [128] has
drawn attention of many researchers and has been used in various studies of thermoe-
lastic analysis of different structures. Sardar et al. [103] dealt with a three-dimensional
problem on coupled thermoelasticity in an anisotropic half-space using two-temperature
multi-phase-lag model. In a recent work of ours (Lahiri et al. [75]), we have analyzed
the dimensional variations of stress, strain and temperature of a two-dimensional homo-
geneous isotropic solid based on multi-phase-lag model. In this problem, an unbounded
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Figure 1: Schematic diagram

thermoelastic body with a spherical cavity equipped with two-temperature multi-phase-
lag (RPL) thermoelastic model, which is solved using vector matrix method. Some
special cases drawn from RPL have also been investigated through graphical analysis.

4.1.2 Formulation of the problem

In the curvilinear coordinate system, we have worked on a multi-phase lag model
with a spherical cavity. We have considered the unbounded isotropic thermoelastic
medium here. The displacement has radial component u(r, t) only here. There are
three principal stresses which acts along radial direction (σr), cross-radial direction
(σθ) and transverse direction (σϕ). Here, we consider the case of the stresses along
radial direction (σr) and along transverse direction (σϕ = σθ).

In absence of the body forces, the displacement equation of motion for spherical
symmetry is obtained as

ρC2
1

∂

∂r

∂u

∂r
+ 2u

r

− β

∂T

∂r
+ α

∂2T

∂t∂r

 = ρ
∂2u

∂t2 (4.1)
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and the heat conduction equation in context of multi-phase lag thermoelasticity is given
by1 +

N∑
n=1

τn
T

n!
∂n

∂tn

K∇2T =
R + τ0

∂

∂t
+

N∑
n=1

τn+1
q

(n + 1)!
∂n+1

∂tn+1


ρC

∂T

∂t
+ α0

∂2T

∂t2

+ βT0

 ∂

∂t
+ τ

∂2

∂t2

∂u

∂r
+ 2u

r

 (4.2)

The constitutive relation between the stresses σr and σϕ can be written as

σr = ρC2
1

∂u

∂r
+ 2ρC3

1u

r(1 − C1)
− β

T + α
∂T

∂t

 (4.3)

and

σϕ = ρC3
1

1 − C1

∂u

∂r
+ ρC3

1u

r(1 − C1)
− β

T + α
∂T

∂t

 (4.4)

To make the equations dimension free, we introduce the following variables

r′ = r

a
t′ = Kt

ρCa2 u′ = ρC2
1u

βaθ0

T ′ = T − T0

T0
(τ ′, τ ′

0, τ ′
T , τ ′

q) = K

ρCa2 (τ, τ0, τT , τq) (α′, α′
0) = K

ρCa2 (α, α0)

(σ′
r, σ′

ϕ) = ρC2
1

2µT0
(σr, σϕ)

Introducing non-dimensional variables in the equations (4.1)-(4.4), we obtain (drop-
ing the primes)

∂

∂r

∂u

∂r
+ 2u

r

−

1 + α
∂

∂t
T

 = δ2 ∂2u

∂t2 (4.5)

1 +
N∑

n=1

τn
T

n!
∂n

∂tn

∂2T

∂r2 + 2
r

∂T

∂r

 =
R + τ0

∂

∂t
+

N∑
n=1

τn+1
q

(n + 1)!
∂n+1

∂tn+1


1 + α0

∂

∂t

∂T

∂t
+ ϵ

1 + τ
∂

∂t

 ∂

∂t

∂u

∂r
+ 2u

r

 (4.6)

σr = 1
1 − 2ν

(1 − ν)∂u

∂r
+ 2νu

r
− (1 − ν)

1 + α
∂u

∂t

T

 (4.7)

σϕ = 1
1 − 2ν

ν
∂u

∂r
+ u

r
− (1 − ν)

1 + α
∂

∂t

T

 (4.8)

where δ = K
ρCC1a

is a dimension-free inertial parameter and ν is the poisson ratio of
the material.
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4.1.3 Method of Solution: Formulation of a Vector-Matrix
Differential Equation

Now applying the Laplace transform of the form

u(r, p) =
∫ ∞

0
u(r, t)e−ptdt (4.9)

T (r, p) =
∫ ∞

0
T (r, t)e−ptdt (4.10)

L = d2

dr2 + 2
r

d

dr
− 2

r2 (4.11)

to the eqs (4.5) and (4.6), we obtain

L(u) =δ2p2u + (1 + αp)dT

dr
(4.12)

L

dT

dr

 =ϵ1ϵp(1 + τp)δ2p2u + ϵ1{p(1 + α0p) + ϵp(1 + τp)(1 + αp)}dT

dr
(4.13)

where L= ∂2

∂r2 + 2
r

∂
∂r

− 2
r2

Equations (4.12) and (4.13) can be expressed as a vector matrix differential equation
given by

LṼ = ÃṼ (4.14)

where

Ṽ =
[

u dT
dr

]T
(4.15)

A =
 C11 C12

C21 C22

 (4.16)

and

C11 = δ2p2,

C12 = 1 + αp,

C21 = ϵ1ϵp(1 + τp)δ2p2,

C22 = ϵ1{p(1 + α0p) + ϵp(1 + τp)(1 + αp)}

4.1.4 Solution of the problem using Vector-Matrix Differen-
tial Equation

To solve the equation (4.14), we substitute

Ṽ = X̃(λ)ω(r, γ) (4.17)
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where λ is a scalar, X̃ is a vector independent of r and ω(r, γ) is a non-trivial solution
of the scalar differential equation

L(ω) = 0 (4.18)

The solution of the above equation will be

w = γ

r
e−γr + 1

r2 e−γr (4.19)

Using (4.17) and (4.19), we obtained from the equation (4.14) the following algebraic
eigenvalue problem

ÃX̃(γ) = γ2X̃(γ) (4.20)

where X̃(γ) is the eigenvector corresponding to the eigenvalue γ2. The characteristic
equation corresponding to the matrix Ã is given by

γ4 − γ2(C11 + C22) + (C11C22 − C12C21) = 0 (4.21)

The roots of the characteristic equation (4.21) are of the form γ = γ2
1 and γ = γ2

2 ,
where

γ2
1 + γ2

2 = C11 + C22

γ2
1γ2

2 = C11C22 − C12C21
(4.22)

The eigenvectors X̃(γ2
j ), j = 1, 2 corresponding to the eigenvalues γ2

j , j = 1, 2 can be
calculated as

X̃j(γj) =
 X1(γ2

j )
X2(γ2

j )


j=1,2

=
 −C12

C11 − γ2
j


j=1,2

(4.23)

Thus the solution of equation (4.14) can be written as

Ṽ (r, p) = AX̃(γ2
1)
e−γ1r

r2 + γ1

r
e−γ1r

+ BX̃(γ2
2)
e−γ2r

r2 + γ2

r
e−γ2r

 (4.24)

where the constants A and B can be obtained using boundary conditions. Components
of Ṽ are given by

u(r, p) = −AC12

e−γ1r

r2 + γ1

r
e−γ1r

− BC12

e−γ2r

r2 + γ2

r
e−γ2r

 (4.25)

and

dT

dr
= A(C11 − γ2

1)
e−γ1r

r2 + γ1

r
e−γ1r

+ B(C12 − γ2
2)
e−γ2r

r2 + γ2

r
e−γ2r

 (4.26)
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From (4.26) we obtain

T (r, p) = −A(C11 − γ2
1)e−γ1r

r
− B(C12 − γ2

2)e−γ2r

r
(4.27)

Applying Laplace transform given by (4.11) to the equations (4.7) and (4.8) and
using (4.22) and (4.24) we obtain

σr = 1
1 − 2ν

Ae−γ1r

(1 − ν)
γ2

1
r

+ 2γ1

r2 + 2
r3

C12 − 2νC12

 1
r3 + γ1

r2


+ (1 − ν)(1 + αp)C11 − γ2

1
r

+ Be−γ2r

(1 − ν)
γ2

2
r

+ 2γ2

r2 + 2
r3

C12 − 2νC12

 1
r3 + γ2

r2


+ (1 − ν)(1 + αp)C11 − γ2

2
r


 (4.28)

and

σϕ = C12

1 − 2ν

Ae−γ1r


ν

γ2
1
r

+ 2γ1

r2 + 2
r3

−

 1
r3 + γ1

r2

+ (1 − ν)C11 − γ2
1

r


+ Be−γ2r

ν

γ2
2
r

+ 2γ2

r2 + 2
r3

−

 1
r3 + γ2

r2

+ (1 − ν)C11 − γ2
2

r


 (4.29)

4.1.5 Boundary Condition

We now study the thermoelastic interactions when the boundary of the cavity is main-
tained at zero temperature. The boundary condition at the surface of the cavity r = 1
is taken as

σr(1, t) =H(t) (4.30)

T (1, t) =0, (4.31)

where

H(t) =


1, if t ≥ 0

0, otherwise.

Taking Laplace transform of (4.28) and (4.29), we have

Am11 + Bm12 = m13 (4.32)

Am21 + Bm22 = 0, (4.33)
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where

m11 =e−γ1{(1 − ν)(γ2
1 + 2γ1 + 2)C12 − 2νC12(1 + γ1) + (1 − ν)(1 + αp)(C11 − γ2

1)},

m12 =e−γ2{(1 − ν)(γ2
2 + 2γ2 + 2)C12 − 2νC12(1 + γ2) + (1 − ν)(1 + αp)(C11 − γ2

2)},

m13 = 1 − 2ν

p
, m21 = (C11 − γ2

1)e−γ1 , m22 = (C11 − γ2
1)e−γ1

Solving (4.32) and (4.39), we obtain

A = m13m22

m11m22 − m12m21
, B = − m13m21

m11m22 − m12m21

4.1.6 Numerical analysis

Numerical analysis and computations have been done using the mechanical and ther-
mal conditions as mentioned in euations (4.30) and (4.31) to study the characteristic
behaviours of the physical constants with respect to space variables and time.
The numerical values (in SI unit) of constants are taken as in:

τq = 0.01, τθ = 0.0001, τ0 = 0.01,

R = 1, t = 0.7, δ = 7.3 × 10−9,

p = 7, α = 0.1, α0 = 0.05,

ϵ = 2.97 × 10−4, τ = 0.05, r = 2

4.1.7 Geometrical Representation and analysis

Depending upon the boundary conditions and using above mentioned numerical val-
ues, the geometrical representation of different physical variables are provided in two
separate cases as follows -
Figure 2 to 5 represent the variation of non-dimensional numeric values of displace-
ment, two stress components(σr, σϕ) and temperature along radius for t=01, t=0.2 and
t=0.3 .
Figure 6 to 9 represent the variation of non-dimensional numeric values of displace-
ment, two stress components(σr, σϕ) and temperature for r=1, r=1.5 and r=2 .
Figure 10 to 13 depict the three-dimensional characteristics of displacement, two stress
components(σr, σϕ) and temperature with respect to radius and time.
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Figure 2: Distribution of displacement(u) along radius(r) for different t..
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Figure 3: Distribution of temperature(T ) along radius(r) for different t.

130



Chapter 4. STUDY OF THERMOELASTIC BEHAVIOUR IN CURVILINEAR CO-ORDINATE
SYSTEM

t=0.1

t=0.2

t=0.3

1.0 1.5 2.0 2.5 3.0

0

100 000

200 000

300 000

400 000

Space variable(r)→

S
tr
e
ss
c
o
m
p
o
n
e
n
t
(σ
r
)
→

Figure 4 : Distribution of σr along radius(r) for different t.
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Figure 5 : Distribution of σϕ along radius(r) for different t.
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Figure 6: Representation of displacement(u) w.r.to t for different values of r.
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Figure 7: Representation of temperature(T ) w.r.to t for different values of r.
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Figure 8: Representation of σr w.r.to t for different values of r.
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Figure 9: Representation of σϕ w.r.to t for different values of r.
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Figure 10: Distribution of displacement(u) w.r.to t and r.

Figure 11: Distribution of temperature(T ) w.r.to t and r.
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Figure 12: Distribution of σr w.r.to t and r.

Figure 13: Distribution of σϕ w.r.to t and r.
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N=1 N=2 N=3 N=4

u 0.140441 0.0677516 0 0.140441 0.257153 0.00184237 0.0665107 0.0664713 0.066471 0.066471

T 1528.55 1521.42 1449.52 1528.55 1535.35 1497.62 1521.25 1521.243851 1521.243756 1521.243755

�r 6568.66 6536.32 6223.8 6568.66 6600.27 6431.89 6535.57 6535.542545 6535.542123 6535.542117

�� 2585.77 2573.63 2452.08 2585.77 2597.39 2533.35 2573.35 2573.340338 2573.340179 2573.340176

CTE
PHYSICAL 

VARIABLES

RPL
DPLSPLG-N -IIIG-N -IIL-S

Figure 14: Data table for non-dimensional numeric values of displacement,
temperature and stresses due to different multi-phase lag models.

The data table displays the numeric values of displacement, two stress components(σr, σϕ)
and temperature due to different phase lag models and different multi phase lag models.

4.1.8 Conclusion

In this work, the multiphase lag concept is studied and verified successfully using
the prominent mechanical and thermal boundary conditions associated to governing
equations. The two and three dimensional variations of the different stress components,
strain components and temperature curves has been represented graphically.

The tabular data in Fig. 14 represents the compact variations of the numerical value
of different stress components, temperature and displacement components in context
of different thermoelastic models compared to multiphase lag model. From the data
table differentiation for the effect of different phase lag models and multi phase lags on
different physical variables can be easily achieved.
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4.2 Vibrations of a circular cylinder in generalized thermoe-
lasticity

4.2.1 Introduction

The classical uncoupled theory of thermoelasticity has two shortcomings. One of them
is the absence of elastic terms in the heat conduction equation. Secondly, the heat
conduction equation is parabolic in nature, which indicates infinite speeds of propa-
gation for heat waves. These two phenomena are not compatible with the physical
observations.

Biot [30] introduced the theory of coupled thermoelasticity to eliminate the first
paradox, though this theory fails to overcome the second shortcoming. Lord and Shul-
man [80] introduced a generalized theory of coupled thermoelasticity consisting of a
wave type-heat conduction equation which ensures finite speeds of propagation for heat
waves.

There is another generalization of theory of coupled thermoelasticity, consisting of
two relaxation time parameters, which is called the theory of temperature rate depen-
dent thermoelasticity (TRDTE). While reviewing the thermodynamics of thermoelastic
solids, Müller [93] put some restrictions on a class of constitutive equations by propos-
ing an entropy production inequality, which is generalized by Green and Laws [57].
Moreover Green and Lindsay [58] established an explicit form of these constitutive
equations. Şuhubi [111] was able to obtain these equations independently. Eraby and
Şuhubi [45] examined wave propagation in a cylinder. Ignaczak [65], [66] established a
decomposition theorem regarding the theory of generalized thermoelasticity and stud-
ied a strong discontinuity wave considering relaxation times.

Chandrasekharaiah and Keshavan [34] solved a thermoelastic problem regarding
an unbounded solid with cylindrical cavity, whereas a theoretical study was done by
Misra et al. [82], [83] to generate stress in elastic and viscoelastic solids containing a
spherical and a circular cylindrical hole respectively. Sinha and Elsibai [109] presented
thermoelastic interaction in an infinite solid having a spherical hole. Sherief and Saleh
[108] were concerned with a one-dimensional problem to figure out thermal stresses and
temperature in an unbounded solid with a spherical cavity considering a sudden varia-
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tion in the temperature. Abd-Alla et al. [6] analyzed the thermoelastic interaction in
an orthotropic solid having a spherical cavity. Mukhopadhyay [88] dealt with a thermo-
viscoelastic problem in an infinite solid consisting of a spherical cavity under a periodic
loading and temperature remaining unchanged. Moreover, Mukhopadhyay [89] studied
the thermoealstic behaviour without energy dissipation in the same medium consider-
ing a stressed free cavity surface under a thermal shock. Abd-Alla et al. [7] analyzed
a viscoelastic medium containing a spherical cavity to figure out the field quantities
in the said medium. Mukhopadhyay [90] discussed the thermally induced vibration in
an unbounded continuum with a spherical cavity. Rakshit Kundu and Mukhopadhyay
[100] evaluated the field quantities while analyzing a viscoelastic medium containing
a spherical hole. Youssef [124] studied the thermoelastic behavior of an infinite solid
having a cylindrical cavity. Abbas [1] solved a thermoelastic problem in an unbounded
solid containing either a spherical or cylindrical hole. Aouadi [22] dealt with a one
dimensional issue in a infinite solid with a spherical cavity in context of generalized
thermal diffusion. Itu et al. [67] studied composite circular plates through radial ribs
to examine improved rigidity.

In this problem, the eigenvalue approach as in Lahiri et al. [75] has been applied
to analyze the longtudinal vibrations of an infinite thermoelastic medium containing a
circular cylindrical cavity considering the governing equations of generalized thermoe-
lasticity obtained by Lord and Shulman [80].

4.2.2 Formulation of the problem

The fundamental equations for a thermoelastic medium can be written as

(λ + 2µ)∇div u⃗ − µ rot rot u⃗ − γ∇θ = ρ
∂2u

∂t2

K1 div ∇ θ − γT

ρc

∂

∂t
div u⃗ = ∂θ

∂t

(4.34)

where λ and µ are the Lame’s constant, u⃗ is the displacement vector, γ = αT (3λ +
2µ), αT is thermal expansion coefficient, θ is the differential temperature distribution,
ρ is the mass density of the medium, K1 = K

ρc
is the diffusivity, K is the thermal

conductivity, c is the specific heat per unit mass at constant strain, T is the reference
temperature.

Reducing the equations in (4.34) in cylindrical polar co-ordinates (r, ϕ, z), z being
the axis of the cylinder and assuming uϕ = 0 and ur, uz and θ are functions of r and
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z only, we obtain

(λ + 2µ)
∂2ur

∂r2 + 1
r

∂ur

∂r
− ur

r2

+ µ
∂2ur

∂z2 + (λ + µ) ∂2uz

∂r∂z
− γ

∂θ

∂r
= ρ

∂2ur

∂t2 (4.35)

(λ+2µ)
 ∂2ur

∂r∂z
+ 1

r

∂ur

∂z
+ ∂2uz

∂z2

− µ

r

∂ur

∂z
− ∂uz

∂r

−γ
∂θ

∂z
−µ

 ∂2ur

∂z∂r
− ∂2uz

∂r2

 = ρ
∂2uz

∂t2

(4.36)

K1

∂2θ

∂r2 + 1
r

∂θ

∂r
+ ∂2θ

∂z2

− γT

ρc

∂

∂t

∂ur

∂r
+ ur

r
+ ∂uz

∂z

 = ∂θ

∂t
(4.37)

The stress components are given by

σr = λ

∂ur

∂r
+ ur

r
+ ∂uz

∂z

+ 2µ
∂ur

∂r

τrz = µ

∂ur

∂z
+ ∂uz

∂r


τrθ = 0

(4.38)

4.2.3 Method of Solution: Formulation of a Vector-Matrix
Differential Equation

Let us assume that all the quantities are simple harmonic functions of z and t.

ur =U(r)ei(qz+pt)

uz =iW (r)ei(qz+pt)

θ =H⃝(r)ei(qz+pt)

(4.39)

If we introduce the irrotational velocity c1 =
√

λ+2µ
ρ

and the equivoluminal velocity
c2 =

√
µ
ρ

and the dimensionless quantities τ = qr, ω = P
qc1

, βω = P
qc2

, β =
√

λ+2µ
µ

and a
differential operator L = d2

dζ2 + 1
ζ

d
dζ

− 1
ζ2 , the longitudinal vibration of a cylinder coupled

with a thermal field (4.37) can be written as

L(U) = − IU + G
dW

dζ
+ H

dθ

dζ

L

dW

dζ

 =IFU − (E + FG)dW

dζ
+ H

dθ

dζ

L

dθ

dζ

 = − NIU + N(G − l)dW

dζ
+ (M + NH)dθ

dζ

(4.40)
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where

I = l

β2 (β2ω2 − l), G = 1
β2 (β2 − l), H = γ

ρc2
1q

E = β2(ω2 − l), F = β2 − l, Q = γ

ρc2
2q

M = l + p(i − pτ)
K1q2 ,N = pγT (i − pτ)

K1qρc

Now the equations in (4.40) can be written in the matrix form as

Lv̄(ζ) = Āv̄(ζ) (4.41)

where λ̄ = −α2 and X̄ is a scalar function of α.

4.2.4 Solution of the problem using Vector-Matrix Differen-
tial Equation

Let the eigenvalues of the matrix Ā be λ1, λ2 and λ3. Then the eigenvectors X̄j

corresponding to the eigenvalues λ1, λ2 and λ3 can be calculated as

X̄j =



1
β2 (1 − β2)

(
λj − 1 − i c1ω

K1q

)
+ iωΓ

iωΓλj −
(
λj − 1 − i c1ω

K1q

)(
λj + β2ω2−1

β2

)

i pγT
ρcK1qβ2 (λj + β2ω2 − 1)


j=1,2

X̄3 =



1−β2

β2

(
λ3 − 1 − i c1ω

K1q
+ iωΓ

)

iωΓλ3 −
(
λ3 − 1 − i c1ω

K1q

)(
λ3 + β2ω2−1

β2

)

0


The solution of Eq. (4.41) can be written as

v̄(ζ) = AX̄1J1(α1ζ) + BX̄2J1(α2ζ) + CX̄3J1(α3ζ) (4.42)

where α2
j = −λj, j = 1, 2, 3 and A, B and C are arbitrary constants. The components
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of space vector v̄(ζ) in (4.42) can be written as

U = A

β2 − 1
β2

α2
1 + 1 + i

c1ω

K1q

+ iωΓ
J1(α1ζ)

= B

β2 − 1
β2

α2
2 + 1 + i

c1ω

K1q

+ iωΓ
J1(α2ζ)

= C

β2 − 1
β2

α2
3 + 1 + i

c1ω

K1q

+ iωΓ
J1(α3ζ)

(4.43)

dW

dζ
= A

− iωΓα2
1 −

α2
1 + 1 + i

c1ω

K1q

α2
1 − β2ω2 − 1

β2

J1(α1ζ)

= B

− iωΓα2
2 −

α2
2 + 1 + i

c1ω

K1q

α2
2 − β2ω2 − 1

β2

J1(α2ζ)

= C

− iωΓα2
3 −

α2
3 + 1 + i

c1ω

K1q

α2
3 − β2ω2 − 1

β2

J1(α3ζ)

(4.44)

dH⃝
dζ

= −i
γPT

ρcK1qβ2 (α2
1−ω2β2+1)AJ1(α1ζ)−i

γPT

ρcK1qβ2 (α2
2−β2ω2+1)BJ1(α2J) (4.45)

The stress components are given by

σr =AR11 + BR12 + CR13

σrz =AR21 + BR22 + CR23
(4.46)

where

R11

= q

1 + α2
1

α2
1

β2 − 1
β2

α2
1+1+i

c1ω

K1q

+iωΓ

λJ0(α1ζ)+ 2µα2

1
α2

1 + 1

J0(α1ζ)−J1(α1ζ)
αζ


− γ2T

iωΓρc

1 + α2
1

α2
1

(ω2−iωΓ−1−α2
1)

β2 − 1

β1

α2
1+1+ ic1ω

K1q

+iωΓ
J0(α1ζ)

ei(qz+pt)

R12

= q

1 + α2
2

α2
2

β2 − 1
β2

α2
2+1+i

c1ω

K1q

+iωΓ

λJ0(α2ζ)+ 2µα2

2
α2

2 + 1

J0(α2ζ)−J1(α2ζ)
α2ζ


+ γ2T

iωΓρc

1 + α2
2

α2
2

(ω2−iωΓ−α2
2−1)


β2 − 1

β2

α2
2+1+i

c1ω

K1q

+iωΓ
J0(α2ζ)

ei(qz+pt)
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R13 = q

 2µα3

α2
3 + 1f(−α2

3)
J0(α3ζ) − J1(α3ζ)

α3ζ

ei(qz+pt)

R21 =
2iµq

β2 − 1
β2

α2
1 + 1 + i

c1ω

K1q

+ iωΓ
J1(α1ζ)

ei(qz+pt)

R22 =
2iµq

β2 − 1
β2

α2
2 + 1 + i

c1ω

K1q

+ iωΓ
J1(α2ζ)

ei(qz+pt)

R23 =
iµq

α2
3 − 1

α2
3 + 1f(−α2

3)J1(α3ζ)
ei(qz+pt)

The temperature is given by

θ = AR31 + BR32 + CR33 (4.47)

where

R31 = qγT

iωΓρc

1 + α2
1

α1
(ω2 − iωΓ − 1 − α2

1)
β2 − 1

β2

α2
1 + 1 + i

c1ω

K1q

+ iωΓ
J0(α1ζ)

ei(qz+pt)

R32 = qγT

iωΓρc

1 + α2
2

α2
(ω2 − iωΓ − 1 − α2

2)
β2 − 1

β2

α2
2 + 1 + i

c1ω

K1q

+ iωΓ
J0(α2ζ)

ei(qz+pt)

R33 = 0

4.2.5 Boundary Conditions

Now we study the thermoelastic interactions of the cavity by considering two cases,
viz.
Case 1: Lateral surface of the cylinder kept at ambient temperature.

In this case the boundary conditions are given by

σr = σrz = 0, θ = θ0 at r = a and t = 0 (4.48)

Case 2: Surface of the cylinder impervious to heat.
In this case the boundary conditions are given by

σr = σrz = ∂θ

∂r
= 0, forϕ = qa = u. (4.49)
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4.2.6 Numerical Analysis

We analyzed the characteristic behaviours of the physical constants with respect to
the space variables numerically. The numerical values of the constants for the material
aluminium in SI units are as follows

λ = 4.137 × 1010 N/m2, µ = 2.75 × 1010N/m2, ρ = 2.7 × 103kg/m3,

K1 = 8.418 × 10−5 m2/s, c = 8.96 × 102 J/kg◦C, q = 0.1 × 1010 ,

αT = 2.4 × 10−5 ◦C, m = 1.76543 × 10−3 , Γ = 1.6481482 × 10−3,

αT = 2.4 × 10−5 ◦C, m = 1.76543 × 10−3 , Γ = 1.6481482 × 10−3,

τ = 2.95503 × 10−16

4.2.7 Geometrical Representation

Depending upon the boundary conditions and using above mentioned numerical val-
ues, the geometrical representation of different physical variables are provided in two
separate cases as follows.
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Case1: Fig.1 : Distribution of radial stress(σr) and cross-radial stress (σrz)
along radius (r)
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4.2.8 Conclusion

An analysis of the longitudinal vibration of a circular cylinder has been accomplished
considering the generalised thermoelasticity theory proposed by Lord and Shulman. A
solution for several field variables and stress components has been obtained solving a
vector matrix differential equation through an eigenvalue approach. The said theory
has been verified successfully by graphical illustrations. The validity and accuracy of
this research work has been assured through the boundary condition provided for two
different cases.
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