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Chapter 1

Introduction

• Historical sketch

The theory of elasticity is dependent on the fact that an elastic body responds

when a force is applied to it. In a body that is elastic, the original shape is recovered

after the forces causing deformation (not too large) are removed. All materials share

the elastic property determined by substances as long as the deformation does not

exceed specific limitations defined by the fundamental properties of the body.

A strained body is one in which the relative positions of points are altered. In the

analysis of strain, deformations are the changes in the relative positions of points.

The distance between 2 points of a rigid body remains constant throughout its

history. Within a rigid body, rotations and translations may occur as displacements.

A number of milestones have been made in the development of this theory

since Galileo’s time (1638), including Hooke’s law discovery in 1678 and Navier’s

formulation of the general equations in 1821.

Some specific correlation between forces and deformations describes the nature

of elastic solids. A linear law derived from Hooke’s law generalization is fundamen-

tal to such relationships. As per Hooke’s law (1678), the extensions of spring-like

bodies are proportional to the tensile forces. Later in (1980), Mariotte explored a

similar type of law to study the stability of cantilever beams. According to Mariotte,

cantilever beams resist flexure because some longitudinal fibers extend, while others

1



1 Introduction 2

contract. It is true that Mariotte’s assumption about the force distribution in fibers

was accurate, but his study did not examine the form that the beam’s axis assumed.

Jacob Bernoulli (1705) considered the elastic nature of a solid by deriving the equa-

tion of a curve presumed by a deformed beam’s axis. According to his equation, the

bending moment across the point determines the elastic’s curvature at every point.

Navier first derived the general equations for equilibrium & vibration related to

elastic solid material in 1821. Navier derived three macroscopic differential equations

for the components of displacement within an isotropic elastic material using a

description of molecular interaction in which forces act along the lines linking two

particles and are proportional to the change in distance between them. The form of

these equations is accurate; however, the Navier equations include just one elastic

constant due to an oversimplification of molecular interaction. Navier was also

able to determine the equilibrium equations on the solid surface (the boundary

conditions) taking the assistance concerning Lagrange’s virtual work concept.

Cauchy (1823), who started from distinct assumptions and was drawn to Navier’s

work, developed the linear theory of elasticity, which is essentially unaltered today.

Later on, a revolutionary principle about energy conservation of elastic solid was

presented by George Green. Contributions from Navier, Cauchy, and Green weren’t

as important. Much is involved in developing foundations and broad ideas as it is

in solving a particular sort of boundary-value problem.

The development throughout the 20th century was mainly focused on the issues

of the presence of solutions along with the integration of numerous wide categories

of boundary value problems. Significant research was conducted on the shell theory

and the development of non-linear elasticity theories, and the basic issues in plane

elasticity were addressed in detail.

The research about waves and vibration phenomena also become a significant

history from hundred years ago. Next to the findings of Galileo, the name of a few

famous researchers in the wave propagation field are Navier, Poisson, Ostrogradsky,

Lame, Stokes, Clebsch, and Christoffel. G. Kirchhoff (1824-1887) made significant

advancements in the kinematic theory of thin rods and the investigation of plate

deflection.
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Discussions about different wave propagation in solids have been made in the

books written by Yoffe (1951), Kolsky (1963), Brekhovskikh (1960), Graff (1973),

and Hudson (1980), Broberg (1999), Zhang and Gross (1999), T. Kundu (2008), J.

Achenbach (2012), R.C. Payton (2012).

A rigid body will deform in direct proportion to the applied force, and it would

return to its original shape once an applied force is withdrawn. Finding is applicable

to the majority of construction materials due to working loads even if certain bodies

flow and others break. Strain, denoted by

e = (∆l/1),

is expressed as a ratio of rate of change in a dimension ((∆l)) to the original dimen-

sion (l), whereas stress is described as the ratio of force to the area over which it

operates. When done correctly, the amount of stress to strain depends only on the

material and not on the material’s form or size. This could only be handled in basic

situations, but from simple situations, it is always possible to calculate the outcome

in more complex situations, like torsion or bending. The constant, which has the

same dimensions as the stress, is known as the modulus.

Things become easier if we just think about a little portion of the subject,

like a tiny cube that we mentally mark off in a distant part of the body. Any tiny

surface, like one of the cube’s faces, experiences a force that may be broken down

into 3 mutually perpendicular components: a normal compression or tension, and

2 shearing forces parallel to the surface. We get the equivalent stresses by dividing

them by the area of the surface. Each of the cube’s six faces is affected by these

stresses. There should be relationships between the stresses since the cube cannot

physically rotate or move. Only 3 elongations and 3 shears, or six total, may be

individually defined. Six strains were found in the strained state of the cube, which

may be resolved in stretches parallel to the faces and distortions of the faces into

rhombuses. There might be as many as 36 possible elastic constants since every one

of the 6 strains is dependent on each of the 6 stresses. For the least symmetric types

of crystals, there are still twenty-one elastic constants.

Fortunately, the characteristics of most materials exhibit some degree of symme-

try, and this symmetry may be utilized to lower the number of independent elastic
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constants. Only materials that are isotropic, or identical in all directions, will be

taken into consideration since they are the most symmetric. This is common in

substances that are uniformly composed and either polycrystalline or amorphous.

Other situations are tensor analysis tasks that we won’t cover here. A matrix with 3

rows and 3 columns that relate to the 3 coordinate directions in space may be used

to represent both the stress and the strain. These matrices have the feature of being

decreased to a diagonal of three elements by making an appropriate decision for the

axes’ orientation since they are symmetric (may be mirrored in the main diagonal).

We now only have three normal strains that are dependent on three normal stresses

(the shears have disappeared in the diagonalization) since the stress and strain are

diagonalized along the same axes. These are referred to as the primary stresses and

strains. Since each of the axes should be relatively similar, we may have a maximum

of nine elastic constants.

• Types of Elastic Body

With reference to properties of elastic materials, classification of solids may be

done in two categories as follows:

1) homogeneous and non-homogeneous solid.

2) isotropic, orthotropic and anisotropic solid.

In an elastic solid, if the elastic properties seems to be exactly equal throughout

all of its points, the solid body is named as homogeneous; otherwise, the body is

said to be non-homogeneous. Within an elastically homogeneous solids, relations

of stress-strain become independent with respect to the position, while in non-

homogeneous solids, they become functions of a position, i.e., when the medium

has non-homogeneous elastic characteristics, the modules of rigidity µ and Poisson’s

ratio ν are not remaining constants and should be anticipated with change from

point to point inside solid material. They might differ either regularly, as in the

case of differential functions of spatial coordinates, or discretely, as in the instance

of artificial laminated materials.

An isotropic body has elastic qualities that are consistent in all directions drawn

through a particular location, while an anisotropic body often has variable elastic
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properties for each direction. Elastically equivalent directions are those for which

the elastic characteristics are the same. All paths traced through a specific point

in an isotropic body are elastically comparable, but only some of them are in an

anisotropic body. Materials that are orthotropic vary in their physical characteristics

along three rotating axes that are mutually orthogonal. They became subsets of

anisotropic solids as their characteristics vary depending on the direction from which

measurements are taken.

• Stress

A mechanical structure absorbs external forces that the body experiences as

surface forces (such as when bending a stick) as well as body forces (vertical tele-

phone pole standing weight on its own). Internal forces develop within the body as

a consequence of these pressures. Understanding internal forces is crucial because

they must be less than the strength of the material used to construct the body at all

places. This information is determined by stress, which is understood to represent

the load per unit area intensity since the material strengths are recognized in terms

of stress inherently.

Consider a body (Fig.1.1) that is in equilibrium with varied loads. If a body is

divided into cross-sections, forces must be applied to its “cross-sectional” area for it

to remain in equilibrium like the original body. A force △P is operating on a portion

of area △A at any cross-section. This force vector has a component normal to the

surface, △Pn , as well as another parallel to the surface, △Ps . The description of

stress then provides

σn = lim
△A→0

△Pn
△A

, τs = lim
△A→0

△Ps
△A

.

The stress components perpendicular with the surface, σn, is known as “normal

stress”, and the stress parallel to the surface, τs, is known as the “shear stress”. The

stress is unchanged if a new cross-section is taken through the same point, but its

two components, normal stress σn, and shear stress τs, will vary. Nevertheless, it

was shown that any 3 mutually orthogonal coordinate systems (x, y, z) including

a Cartesian coordinate system, are sufficient to define stress at a location.
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Now, we have considered a cross-section of the body that is parallel to the yz−
plane as illustrated in Fig.1.2. An area △A is subject to the force vector △P . △Px
is normal to a surface as the component. The force vector △P being paraller with

the surface may be further factorised into components with respect to y and z axes

as △Py and △Pz.

Fig.1.1 Stresses on an infinitesimal area on an arbitrary plane.

The different stress’s definitions are as follows:

σx = lim
△A→0

△Px
△A

, τxy = lim
△A→0

△Py
△A

, τxz = lim
△A→0

△Pz
△A

.

For cross-sections that are perpendicular to the xy and xz planes, stresses may

also be determined. The typical method for determining all of these stresses is to
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take an infinitesimal cuboid inside ”right-hand coordinate system” and calculate the

stresses on every of its faces. The six shear stresses are related as

τxy = τyx, τyz = τzy, τzx = τxz.

Fig.1.2 Forces on an infinitesimal area on the y-z plane.

Therefore, there are six stresses independent with each other. The stresses σy,

σy, σz are normal to the cuboid’s surfaces, and the stresses τyz, τzx, τxy are along

the cuboid’s surfaces.
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Fig.1.3 Stresses on an infinitesimal cuboid.

We can write the nine different stresses in a 3× 3 matrix as :

σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz


Normal compressive stress is negative, but normal tensile stress is positive. The

shear stress is positive or negative depending on whether the normal to the face it

is acting on and the direction of the shear stress are both negative or positive.

• Strain

Similar to the necessity of understanding internal forces, understanding deforma-

tions brought on by external pressures is crucial. Additionally, discovering stresses

in a body often necessitates discovering deformations.
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Fig.1.4 Normal and shearing strains on an infinitesimal area in the x-y

plane.

Deformations are defined in terms of strains, or the relative alteration in the

body’s shape and size. Additionally, a general definition of the strain at a point is

given on an infinitesimal cuboid inside a right-hand coordinate system. The sides

of the infinitesimal cuboid’s lengths vary under loads. The cube’s faces also become

deformed. A normal strain is represented by the length change, while a shearing

strain is represented by the distortion. The strain on the cuboid’s ABCD face is

seen in Fig.1.4.

• P-waves and S-waves

P - waves are longitudinal and resemble sound waves. In P - waves, particle motion

either moves in the same direction as or in the opposite direction from how waves

move. These waves go through a medium at the quickest speed and are connected

to volume changes.

S - waves also termed transverse or shear waves, are waves in which the direction

of the particles motion is perpendicular to the direction in which the wave is prop-

agating. They can seed pure rotation inside the medium with no change of volume.
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Shear modulus and density both affect S wave velocity. Because fluids have no shear

resistance, they cannot spread across fluids like air or water.

• Hooke’s Law and Stress-strain Relations

According to “Hooke’s Law”, the correlation between strain and stress is the

same for a force acting in either direction, and the strain created due to many forces

equals the total of the strains which can be created from every force acting alone.

The simplest relation is a linear one, referred to as Hooke’s Law. If we stretch a

sample in the x direction - i.e., apply normal stress σx then we can write ex = σx
E
,

where E denotes the modulus of elasticity related to tension. Now stretching a

sample in one direction will usually have the effect of changing its shape in others -

usually decreasing it. The effect here is to produce strains

ey = −ν σx
E
, ez = −ν σx

E
,

where ν is a property of the material called Poisson’s ratio. It usually takes values

in the range of 0.25 - 0.3.

These statements are accurate for the case where the stresses become lower than

the material’s elastic limit. It is possible for a solid body to have no elastic area at

all. Every stress component is a linear function of each of the 6 strain components

in the general situation of anisotropy. The Hookes law’s generalized form is

σij = Cijklekl, (i, j, k, l = 1, 2, 3). (1.1)

Here where σij indicates the stress components, ekl denotes the strain components.

The coefficients Cijkl represent symmetric with relation to the first 2 and the last 2

indices.

We may use the notation to avoid dealing with a double sum.

σ11 = σ1, σ22 = σ2, σ33 = σ3, σ23 = σ4, σ31 = σ5, σ12 = σ6,

e11 = e1, e22 = e2, e33 = e3, e23 = e4, e31 = e5, e12 = e6.
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Equation (1.1) reduces to

σi = Cijej, (i, j = 1, 2, 3, 4, 5, 6).

So, the general stress-strain law may be expressed using a highest of 36 independent

constants.

With the presence of strain energy density function W , the coefficient matrix takes

symmetric form, i.e.

σi = Cijej, (i, j = 1, 2, 3, 4, 5, 6).

with

Cij = Cji,

and the number of elastic constants concerning a general anisotropic material di-

minishes to 21.

The significant types of symmetry about elastic material are as follows:

1. One plane of elastic symmetry:

Consider a material that is elastically symmetric in terms of x1x2-plane (also

described by x3−plane). Thus, in the x1 direction, there is a normal to the x2x3-

plane, which is the plane of symmetry. Material with one symmetry plane is also

called monoclinic material (for example, Gypsum, Borax, Ice etc.). Here, the number

of elastic constants diminishes to 13. The coefficient matrix appears as
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

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


The stress-strain relation becomes



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66





e1

e2

e3

e4

e5

e6



2. Three plane of elastic symmetry (Orthotropic bodies):

A material that displays symmetry with reference to elastic properties regarding

two orthogonal planes is termed as orthotropic (for example, Prepeg, Carbon fiber,

Graphite-epoxy Composite, Glass-epoxy Composite etc.). Two planes of symmetry

imply three planes of symmetry. Here, we get total 9 elastic constants. We get the

coefficient matrix in transformed form as



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


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The stress-strain relations are



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





e1

e2

e3

e4

e5

e6



3. Plane of isotropy (Transversely isotropic body):

Assume a solid as described below:

Parallel planes of elastic symmetry passing through each point have elastic equivalent

(planes of isotropy) in all directions. In other terms, a material is considered as

transversely isotropic when it admits an axis of symmetry such that all rays pointing

in its direction are equal (for example, Boron-Epoxy Composite). Therefore, the

independent elastic constants reduced to 5. When the axis of symmetry is x3-axis,

the coefficient matrix appears as



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)


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The stress-strain relation becomes



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)





e1

e2

e3

e4

e5

e6



4. Isotropic body:

In isotropic material, elastic properties are same in all directions (for example,

Aluminum alloy, Brass, Nickel alloy etc.). Here, we get 2 elastic constants which are

independent, and the matrix concerning coefficient takes the form



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 (C11 − C12) 0 0

0 0 0 0 (C11 − C12) 0

0 0 0 0 0 (C11 − C12)


i.e.,



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


where C12 = λ, C11 − C12 = 2µ, C11 = λ+ 2µ.
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The stress-strain relation becomes

σij = λδijenn + 2µeij, (i, j, n = 1, 2, 3).

Relations between Stress-strain in anisotropic body:

Orthotropic solid( plane stress):

σxx/µ12 = C11exx + C12exy,

σyy/µ12 = C12exy + C22eyy,

σxy/µ12 = exy.

Cij (i, j = 1, 2) indicates dimensionless parameters connected with the elastic

constants of the material as stated below [Lekhiniskii (1963)]

C11 = E1/µ12(1− ν212E2/E1),

C22 = E2/µ12(1− ν212E2/E1) = C11E2/E1,

C12 = ν12E2/µ12(1− ν212E2/E1) = ν12C22 = ν21C11,

related to generalized plane stress, and with

C11 = (E1/△µ12)(1− ν23ν32),

C22 = (E2/△µ12)(1− ν13ν31),

C12 = E1(ν21 + ν13ν32E2/E1)/△µ12

= E2(ν12 + ν23ν31E1/E2)/△µ12,

△ = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν21ν32,

related to plane strain. The material’s engineering elastic constants are represented

in the aforementioned equations by Ei, µij as well as νij (i, j = 1, 2, 3), where

the subscripts 1, 2, and 3 correspond to the axes of the material’s orthotropy in the
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x, y and z directions, respectively and Ei and νij also fulfill Maxwell’s relation.

νij/Ei = νji/Ej.

Transversely isotropic body:

Letting the z−axis perpendicular with isotropic plane, where the x-axis and y-axis

are taken arbitrarily in this plane, the relations between stress and strain in terms

of the five independent elastic constants are prescribed as follows:

exx = C11σxx + C12σyy + C13σzz,

eyy = C12σxx + C11σyy + C13σzz,

ezz = C13(σxx + σyy) + C33σzz,

exy = 2(C11 − C12)σxy,

eyz = C44σyz,

ezx = C44σzx,

where Cij (i, j = 1, 2, 3) denotes dimensionless parameters connected with the

elastic constants of the material as follows [Lekhiniskii (1963)].

C11 =
E1

∆ µ13

(1− E1

E3

ν231),

C33 =
E3

∆ µ13

(1− ν212),
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C12 =
E1

∆ µ13

(ν12 +
E1

E3

ν231),

C13 =
E1

∆ µ13

ν31(1 + ν12),

∆ = 1− ν212 − 2
E1

E3

ν231(1 + ν12).

In the twentieth century, the field of fracture mechanics was established and

matured. Its literature is currently quite vast. Fatigue is perhaps the most effective

application of fracture mechanics. It is essential to take a step back and examine the

advancement of fracture mechanics at the beginning of the new century. The first

example is a stone hand-axe from the Paleolithic period. Nevertheless, when it was

created, man and his hominid predecessors had been shaping stone for more than a

million years. One man had to make sure that the massive, costly constructions he

was building wouldn’t break and fall apart.

Scaling is a major component of fracture mechanics. At first, Leonardo da

Vinci (1452–1519) reported an understanding of the scaling of fracture, and the 2nd

explanation can be understood from one of his note-books, which shows his strength

experiments on iron wires. The exact scaling rules for bars under tension and bend-

ing were originally provided by Galileo Galilei in his “Dialogues Concerning Two

New Sciences ”in 1638. He used it to illustrate a topic on beam fracture. It was

difficult to construct ships, palaces, or temples of immense scale such that all of

their oars, yards, beams, iron bolts, etc., would keep together, and Galileo observed

that this effect imposed a limit on the size of buildings, both man-made and natural.

Due to the fact that their branches would collapse under their weight, nature grows

very large trees. The discipline, which combines the mechanics of cracked mediums

with mechanical characteristics, is known as ”fracture mechanics”. As suggested by

the name fracture mechanics focuses on the occurrences and phenomena associated

with fractures. Some well-known catastrophes in recent history have a dense con-

nection to the development of fracture mechanics. Several hundred Liberty ships

suffered significant damage during World War II. The failures were mostly caused

by the transition from riveted to welded construction, and the main reason was the
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combination of poor weld characteristics with stress concentrations, as well as the

construction’s poor use of fragile materials.

According to a collection of ideas known as fracture mechanics, solids or structures

that have a geometric discontinuity at the scale of the structure behave differently.

Discontinuity properties could take the form of line discontinuities in 2D medium

(like shells and plates) or surface discontinuities inside 3D medium. Our knowl-

edge of the behavior of engineered materials has been fundamentally altered by the

development of fracture mechanics into a mature scientific and technical field.

Some fundamental works and concepts dealing with fracture mechanics have

been described in the books by Kassir and Sih (1975), Murakami and Keer (1993),

G.C. Sih (1991, 2008), L.B. Freund (1998), L. S. Sokolnikoff (2008), A.E.H. Love

(2013), M.Kuna (2013), T.L. Anderson (2017). The adoption of a new design phi-

losophy is one of the key effects of fracture mechanics: The damage tolerance design

technique is widely accepted as the industry standard for designing airplanes. At

the University of Dorpat (now Tartu), in Estonia, Kolosov (1909) developed fun-

damental mathematical tools for his Ph.D. dissertation. Inglis (1913) addressed a

fundamental crack model independently, and Hopkinson (1913) recommended that

nonlinear events at the crack edge must be taken into consideration in his discus-

sion of Inglis’ article. Griffith (1920) eventually accomplished this, but by applying

surface energy and energy considerations idea, he prevented the examination of the

crack edge neighborhood. Weibull (1939 a, b) developed a statistical theory of frac-

ture in response to Griffith’s studies with thin glass rods. Orowan (1952) expanded

Griffith’s technique with all situations related to small-scale yielding (where plastic

flow is restricted to a tiny area along the edge of the crack) including all dissipative

energy, namely plastic work and surface energy. New and practical ideas like the

SIF: stress intensity factor and energy release rate were first proposed by Irwin in

1957. The notions that formed the basis of LEFM (Linear Elastic Fracture Mechan-

ics) were the critical SIF or the fracture toughness. Barenblatt (1959 a, b) proposed

the notion of field autonomy at the crack edge, and his concept of cohesion modulus

was derived from a linearized model of the neighborhood of the fracture edge. In

reality, all the various LEFM ideas are constructed directly or implicitly based on

the notion of autonomy, which therefore serves as the core foundation of LEFM.
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In a brief, autonomy denotes that, given specific general parameters, the processes

along a fractured edge are always identical in any material, independent of body &

loading geometry, and followed by some predetermined general conditions. Both

mathematically and qualitatively, the advancement in the domains of fracture and

crack mechanics was fairly significant since the 1950s. In this somewhat limited

area, it is impossible to adequately explain the evolution, although a few people will

be named. The first person that comes to recognise is J. R. Rice, who developed

exceptional contributions in almost every domains of fracture and crack analysis.

Starting in the mid-1960s, he introduced a path-independent integral, J-integral

concept, for crack analysis [Rice (1968)], which served as the basis for nonlinear

fracture mechanics, and more recently, he has made contributions to 3D dynamic

crack propagation [ Rice and Geubelle (1995), Rice and Cochard (1997), Rice and

Morrisey (1998)].

The important and innovative contributions made in the dynamic sector by L.

B. Freund and B. V. Kostrov deserve special recognition. Kostrov found solutions

to many challenging issues for the study of earthquake source physics as well as

dynamic propagation of crack. He was the 1st to find a solution to the nonconstant

crack expansion model [Kostrov, 1966]. A 4 publications series on crack propaga-

tion with nonconstant velocity along with other dynamic issues, like stress wave

interaction with cracks, may be listed among Freund’s many contributions [Freund

(1972a, 1972b, 1973, 1974)].

A comprehension about fracture mechanics become essential to establish profound

design methodologies to ensure the structural integrity of solid body. The mechanics

of dynamic fracture may be roughly defined as the solid mechanics having stationary

or moving cracks, where material inertia and stress wave interaction have a major

effect. Dynamic fracture problems can be classified as following:

(i) Solids with stationary cracks under dynamic loading.

(ii) Solids with dynamic and moving crack subject to quasi-static loading.

(iii) Solids with dynamic and moving crack subject to dynamic loading.
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It may be challenging for designers and mechanical engineers to create technical

structures that are suitable for their intended purpose and to accurately determine

how safe they are against failure.

There are essentially three considerations that must be made to tackle this issue.:

- How may the nature of a certain material be characterized ?

- What mechanisms of failure does the taken material demonstrate, and what is

corresponding quantitative failure conditions ?

- How could stresses and strains in each location within the material be accurately

calculated while considering the recognized behavior of the material and the external

load, and how could the behaviour of the concerning failure be acquired ?

The employment of elastic waves in seismology and geophysics has made difficul-

ties with the diffraction of these waves of major relevance in current times. These

categories of problems may be divided into 2 types. Primarily, the waves diffraction

due to semi-infinite plane barriers or cracks located within the medium, and sec-

ondly, the diffraction influenced by inclusions such as a wedge, circular disc, rigid

strips, cones, or barrier of several random shapes. Due to the presence of entrapped

imperfections, it is frequently impossible to acquire a homogeneous perfect bond

between 2 materials with various mechanical elastic properties, as is the case, for

instance, in the joints of various reinforced composites, ceramics, and metals uti-

lized in the production of electronic devices. Layered composites are also common

in nature, such as Earth’s stratification. In reality, faults appear at the interface of

geophysical stratifications, while during the manufacture process, defects occur at

the interface between two bonded layers.

Problems related to mechanics of solids may be divided into two types: exact an-

alytical solutions and approximate solutions employing several numerical techniques

where it is not possible to solve analytically. In real situation, it seems tough to find

exact analytical solution. For this reason, several techniques have been derived to

handle the solution regarding solid mechanics. The complex variable technique is a

numerical method to solve mixed bounadary value problems in 2 - dimension. The

other well-known recent technique to solve these models in solid mechanics is the

approach to solve by of an integral equation. When we consider The other technique
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is the integral equation technique where components of displacement are expressed

in terms of potential function to reduce mathematical computation.

There are essentially three categories that may be used to categorize wave

propagation in solids. The first kind of wave is elastic, where the stresses within

the substance adhere to Hooke’s law. The two other major kinds are visco-elastic

waves, in which both elastic and viscous stresses are present, and plastic waves, in

which the material’s yield stress is surpassed.

Next, we turn our attention to a fascinating research aspect in electrodynamics,

the diffraction of elastic waves with cracks. Almost all structural materials have

cracks, whether as a consequence of inherent flaws or production techniques. Many

times, the cracks are negligibly tiny, meaning that they have little effect on the ma-

terial’s strength. However, in other cases, the cracks are significant enough or could

grow to be large enough to cause fatigue, stress, corrosion cracking, etc., necessitat-

ing their consideration when determining the strength. Due to its use in seismology

and geophysics, crack models involving the diffraction of elastic waves have gained

significant attention in recent years. In reality, faults are found at the interfaces of

geophysical stratifications, whereas imperfections are found at the junctions of ad-

jacent layers in manufactured laminates. This stress singularity at the bi-material

interface, which is close to the vicinity of the finite fracture, is significant due to its

potential practical use. There are many engineering fields that are susceptible to

rapid crack propagation. In Earth science, a study of the elastic field close to the

moving fracture has become crucial from the perspective of earthquake engineering.

The traditional analytical inspection of fracture mechanics entails computing the

stress and deformation fields near the rim of the crack while also applying a fracture

criterion inside the context of a continuum model, like the homogeneous, isotropic

linearly elastic continuum. The analytical effort is quasi-static in traditional analysis

since inertia (or dynamic) effects are disregarded.

Fracture mechanics analysis must be handled as dynamic problems and can be clas-

sified into two major categories as:

1. Cracked bodies exposed to quickly changing loads.

2. Bodies with cracks that are moving quickly.
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The crack tip is an environment that is disrupted by wave motions in both classes.

The first class of dynamic difficulties are concerns with impact and vibration. In

the study of such problems, it is discovered that the dynamic stresses at in homo-

geneity in a body are larger than the stresses calculated from the equivalent static

equilibrium problem. This happens when a mechanical disturbance with propagat-

ing waves hits a cavity. When cavity has a sharp edge, the overshoot related to

dynamic stress will be more noticeable. When a crack opens, the stress field close

to the fracture tip may be considerably modified by dynamic processes. Because of

dynamic amplification, there may be situations in which a crack does not propagate

when subjected to a applied system of loads, but does so when subjected to a quickly

applied system of loads, generating waves that impact rim of the crack.

The second type of problems is also equivalently significant. In fact, there exists

various forms of big engineering structures where crack expansion occurs quickly.

Some specimens can be stated like ship hulls, gas transmission pipelines, aircraft

fuselages, as well as nuclear reactor components. Earthquake analysis is another

field where moving cracks can be observed.

• Modes and Shapes of Crack

Crack propagation within engineering solids often involves the separation of

crack surfaces. Mainly crack opening is observed in the following 3 types:

Mode I:

Mode I takes place when the crack surface proceeds to open due to the normal stress

(σ). That is why, Mode I is also named as the opening mode.

Mode II:

Mode II occurs when the crack surfaces slide over one another. For this reason,

Mode II is also known as Sliding Mode or the In-Plane Shear Mode.

Mode III:

In the case of Mode-III, crack surfaces have a movement parallel to the leading edge

and tear apart because they move relative to each other. Mode - III occurs when
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the crack surfaces move, that is why, another name of Mode-III is Tearing Mode or

the Out-of-Plane Mode.

So far, the following shapes have been observed in cracks:

Fig.1.5 Different modes of crack.

As of now. several crack shapes can be revealed as stated below: follows:

1. Semi-infinite crack.

2. Finite Griffith crack.

3. Penny shaped crack.

4. Non-planar crack.

5. Edge crack.

• Boundary Value Problem

Mixed boundary value problems are linked to the wave propagation and diffrac-

tion problems. Numerous types related to boundary value problems concerning the

elasticity theory have been illustrated in the book by Knops and Payne (1971).

In general, classification of boundary value problems may be done in the following

major three categories:
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A. Traction boundary value problems.

On the boundary surface, the components of stress are specified.

B. Displacement boundary value problems.

The components of displacement are described on the boundary surface.

C. Mixed boundary value problems.

In this case, several forms of mixed boundary conditions can be described upon the

surface or different parts of the surface.

• Stress Intensity Factor

It is used to forecast the stress state created by an applied force at the crack

tip in fracture mechanics. This stress state is defined as stress intensity factor (SIF)

and generally denoted by K. It is a significant method in the domain of damage

tolerance and is a theoretical construct that is typically used for a homogeneous,

linear elastic material. It is essential for developing a failure criteria for brittle

materials. Materials with small-scale yielding at a crack tip may also benefit from

the method. The position and size of the fracture, the distribution of the stresses

on the components, and the geometry of the material all affect magnitude of K.

The stress distributions (τij) at the crack rim, in polar coordinate (r, θ) consid-

ering origin at the rim of the crack, are estimated by the linear elastic theory and

appears in as following:

τij(r, θ) =
K√
2πr

fij(θ) + higher order terms.

Here, K indicates the SIF and fij(θ) signifies dimensionless quantity based on

the applied load and the geometry of the material. The stress becomes unbounded
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as r tends to zero, which causes this relation to break extremely near the crack

tip. The linear elastic solution is no longer valid close to the fracture tip where

plastic distortion generally occurs at high loads. However, it may be argued that

the aforementioned relation still describes the stress distribution around the crack

if the plastic zone is modest.

The SIF for each of the three modes is denoted by a distinct subscript. The SIF

concerning mode-I is denoted as KI and is used as the mode to open cracks. The SIF

concerning mode-II denoted by KII is employed in the sliding mode of cracks, and

the SIF concerning mode-III denoted by KIII is used in the tearing mode. Formally,

these factors are expressed in the following form

KI = lim
r→0

√
2πrτyy(r, 0),

KII = lim
r→0

√
2πrτxy(r, 0),

KIII = lim
r→0

√
2πrτyz(r, 0).

Several articles reviewing the field of elastodynamic fracture mechanics have

been published. Example of such articles are Achenbach (1972), Freund (1975),

Achenbach (1976), Freund (1976), and Kanninen (1978).

Current dynamic fracture mechanics solutions are mostly limited to valid situ-

ations of linear elastic fracture mechanics (LEFM). These became acceptable when

the fracture tip’s plastic deformation was minimal enough to be overpowered with

the elastic field around it. Using dynamically calculated fields of stress and defor-

mation, LEFM may be used to address issues with crack growth initiation under

imposed loads as well as quickly unstable crack propagation and arrest. Neverthe-

less, engineering structures that need to be protected against the danger of catas-

trophic large-scale fracture propagation are often made of ductile, strong materials.

For such materials, LEFM techniques can only provide roughly accurate forecasts

for the start of fracture propagation. Even under static settings, the elastic-plastic

procedures needed to get exact results have not yet been fully realized. The em-

ployment of elastic waves in seismology and geophysics has made difficulties with

their diffraction by cracks or strips of major relevance in recent years. Almost all



1 Introduction 26

structural materials include cracks or inclusions, either naturally or as a consequence

of production methods. The branch of mechanics known as ”fracture mechanics”

focuses on the investigation of the growth of inclusions or cracks within materials.

It employs experimental solid mechanics approaches to determine the resistance

of the material to fracture and analytical solid mechanics techniques to examine the

driving force upon a crack. Failures have happened for a variety of causes, such

as unpredictability in the environment or loads, material flaws, inadequate design,

and shortcomings in construction or maintenance. There is a technique for design

against fracture, and this is a highly active field of the current study. Due to the

limited use of the previously stated stress analysis techniques, without a grasp of

fracture, this study will serve as an introduction to a crucial area of this discipline.

We shall concentrate on fractures brought on by straightforward tensile over stress,

although the designer is once again advised to take into account as many potential

failure reasons as feasible. The investigation of elastic wave diffraction by inclusions

or cracks in composite materials has grown significantly relevant. If the inclusions

or cracks are found near the interface of the stacked medium, the study’s relevance

increases.

The investigation about propagation of wave and diffraction problems is concerned

with mixed boundary value problems. The stress singularity close to the finite crack’s

edge is significant due to its potential practical use. If the cracks or inclusions have

been observed within finite or infinite elastic strips, the investigations seems to be

difficult. Also, crack problems situated in composite elastic media are more relevant

in the present day.

One of the key issues in light of the manufacturing process and construction

technology is the dynamic problem subject to impact of torsional load. The crack

is mainly generated by the impact of torsional load. The study of the sudden im-

pact by torsional load in half-space is investigated by M. L. Ghosh (1964), G. Eason

(1966) and R. Shail (1970). T. Shibuya (1975) analyzed the problem of the torsional

impact of a thick elastic plate. Hadi Hafezi et al. (2012) investigated elastic-plastic

stress-strain relationships at the crack tip area and strain-life damage in the re-

search of fatigue crack development models. In this research, the UniGrow model

performance is evaluated on the basis of existing experimental constant amplitude
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crack propagation data gathered from Portuguese riveted metallic bridges for nu-

merous metallic materials. Recently, a number of new developments on the basis of

the elasticity theory, fatigue crack growth models, stress intensity factors for some

practical crack geometries and their numerical analysis are discussed in the book

of T. Kundu (2008). The solution for obtaining the transient stress intensity fac-

tor of an elliptical crack within a thick plate, one side of which is subjected to a

sudden temperature change under arbitrary normal loading, was analyzed by Shah

and Kabayashi (1971). An elliptical crack in a large beam in pure bending is also

described in this paper. Transient dynamic of SIF concerning a crack located within

a non-homogeneous interfacial layer between 2 distinct half-planes have been con-

sidered by S. Itou (2001).

Matysiak and Pauk (2003) looked at the model based of edge cracks inside an

elastic layer lying on the Winkler foundation. Berinci and Erdol (2004) conducted

an analysis of the issue of a layered composite with a crack at the bottom layer

loaded with a hard stamp. The dynamic behaviour regarding a crack located at the

edge of a orthotropic strip which is functionally graded was examined by Guo et

al. (2005). Kadioglu (2005) investigated response concerning an edge crack located

within a hollow cylinder made of transversely isotropic material. Li (2005) analyzed

two fully bonded distinct strips (orthotropic) containing a crack which is located at

the interface of the strips and perpendicular to the boundaries of the strips.

Matbuly (2008) analyzed the mode-III crack perpendicular to the interface

between two distinctr strips. Mode I conducting crack under generally applied loads

in piezo-electromagnetic-elastic-layer was investigated by Rogowski (2014). Ding

and Li (2014) considered analysis of the crack which are collinear in nature and

located within a functionally graded coating-substrate model made of orthotropic

media. Hu and Chen (2015) have explored a magnetoelectroelastic layer bonded

between 2 half-planes that contains a mode-I crack.

The BEM (boundary element method) is used to analyze the stress intensity fac-

tors (SIF) of interface cracks between dissimilarly adjoined anisotropic materials by

Shiah et al. (2019). Fakoor and Farid (2019) addressed a crack problem (combina-

tion of mode-I and mode-II) to study crack propagation in orthotropic media where

cracks follow fibers. Singh et al. (2019) calculated the SIF and COD around the

rim of a crack (semi-infinite) which is propagating within a linear orthotropic media
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inserted between 2 similar type of half-planes. Adopting the Fourier transform tech-

nique, Basak and Mandal (2019) deduced fracture analysis for a crack (semi-infinite)

located at the interface of two distinct strips made of isotropic material using the

Wiener-Hopf equation. P. Mandal (2020) derived equationss regarding SIF and COD

near a crack (semi-infinite) moving within a semi-infinite and isotropic half-space

under the influence of SH-wave. Influence of the elastic wave dispersion caused

by 2 parallel cracks (semi-infinite) within mechanical metamaterials based on the

discrete Wiener–Hopf method by Huang et al. (2021). Numerous solutions to the

issue of orthotropic media with a semi-infinite and moving crack were extensively

studied. Among these is the behaviour of a semi-infinite moving crack between

two bonded distinct orthotropic strips by Naskar and Mandal (2022); scattering

phenomena of longitudinal shear loads of a semi-infinite crack in a homogeneous,

elastic orthotropic material by Emenogu et al. (2022); Applying systematic 2D FEA

(“Two-Dimensional Finite Element Analysis”) in orthotropic SENB (“Single-Edge

Notched Bend”) specimens, SIF and COD was determined by Huang and Wang et

al. (2022).

The SIF of a 3D interface crack in dissimilar anisotropic materials was analyzed

by Nagai et al. (2007). Yosibash (2007) discovered the functions of edge stress

intensity in three-dimensional anisotropic composites. Fo-tuhi and Fariborz (2007)

investigated the in-plane stress analysis of an orthotropic plane with several flaws.

Itou (2012) has explored the SIF for two parallel interface fractures between two

distinct orthotropic half-planes under strain and a nonhomogeneous bonding layer.

Monfared and Ayatollahi (2013) have explored the dynamic stress intensity charac-

teristics of many fractures in an orthotropic strip having FGM covering. Tavangari

and Salehzadeh (2014) discovered the SIF using the Ritz approach in a media with

a penny-shaped crack. Munshi and Mandal (2006) addressed the P-wave diffraction

problem caused by an edge crack inside an infinitely long elastic strip. The issue

of a flexible plate experiencing vertical vibration with a stiff core on the ground

(saturated) was examined by Chen et al. (2007). Crack front waves inside an

anisotropic material have been discussed by Willis and Movchan (2007) and and the

problem of stability of an intersonic crack to a perturbation of its edge was solved by

Obrezanova and Willis (2008). Morteza (2011) found a solution to the rigid circular

disc’s rocking vibration issue in a transversely isotropic full-space, while Morteza
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et al. (2010) examined the rigid circular disc’s forced vertical vibration within a

transversely isotropic half-space.

The technology of layered composites has experienced significant development in

the field of structural design, process engineering, macromechanics, material charac-

terization, and optimization. The influence of torsional waves can not be avoided to

prevent damage to solids by an earthquake and many more real situations. Torsion

is one kind of wave disturbance originating pressure on the crack surface and disc

surfaces leading to the onset of crack propagation and stress field around the circular

discs within engineering solids. Propagation of torsional waves takes place in tur-

bines, drillings, etc. Also, in the field of engineering foundations, various shapes of

inclusion as circular, strip, rectangular, and other types, have been used to make the

desired foundation. The orthotropic materials are themselves a composite medium

made up of a stack of layers (called plies/ lamina) to formulate a laminate [Nayfeh

(2006)]. These orthotropic materials, such as graphite, epoxy, aluminium compos-

ite, carbon-fiber offers a remarkable advantage compared to conventional isotropic

materials as they provide a high strength ratio, long fatigue life, high stiffness,

corrosion-resistance, etc. In commercial industries such as the airline market, these

composite materials are used for profit by reducing the mass of aircraft to save fuel

costs [A.K. kaw (2005), Ahmad et al. (2019)]. To get a high level of mechanical

performance like high-stiffness, lightweight phenomena, flexibility, durability, etc,

orthotropic materials are designed as multi-directinal laminates by combining two

or more materials. In fracture analysis, the response of layered composites having

cracks and inclusions is highly influenced by the orthotropic anisotropy.

Some books related to composite materials providing rigorous applications in

the fields of aircraft, automotive, infrastructure, recreational (sports) industries, ge-

omechanics etc., are written by Sih and Chen (1981), D. Roylance (1995), Nayfeh

(2006), Vasiliev (2008). Within engineering solids, generally, it is observed that the

set of cracks starts when the numerical values of SIFs exceed a certain limit (de-

pending on material anisotropy), named as critical SIFs. In structural engineering,

our main aim is to prevent crack propagation to avoid damage of solid structure by

controlling the values of SIFs within a certain range, called critical SIFs. Among

the problems related to multilayered anisotropic media, Sih and Chen (1972) gave a

solution to a penny-shaped crack problem situated inside a four-layered composite
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laminate of isotropic elastic media subject to torsion. Stress analysis was investi-

gated by Rabieifar et al. (2018) of functionally graded orthotropic medium with

several axisymmetric cracks by the impact of torsional load, by Wu et al. (2021) for

multiple penny-shaped crack in an infinite transversely isotropic magneto-electro-

elastic space. The solution to an impact caused by torsion around a crack shaped

like a penny has been derived for an orthotropic FGM by Li et al. (1999). Craciun

and Barbu (2015) carried out a solution in compact closed form for a prestressed

orthotropic composite with an elliptical hole due to uniform tensile and uniform

tangential shear loads using a conformal mapping technique. Selvadurai and Samea

(2021) represented the axisymmetric problem of a penny-shaped crack in a poroelas-

tic half-space based on Biot poroelasticity. He et al. (2021) proposed the simulation

model for penny-shaped cracks with the help of Lagrange interpolation polynomials

and the boundary element method (BEM).

The problem of torsional elastic wave diffraction using a rigid annular disk at a

bi-material interface was solved by Ghosh and Mandal (1993). Wang et al. (1999)

studied the crack model of functionally graded penny-shaped crack subject to dy-

namic loads. Wang et al. (2000) investigated the fracture mechanics for multilayers

with penny-shaped crack influenced by dynamic load due to torsion. A.P.S. Sel-

vadurai (2002) investigated the mechanics of an elastic half-space that is cracked

and attached to a rigid circular disk. Manna et al. (2003) investigated the model

of a rigid disc oscillating due to torsion within an infinite cylinder. Huang et al.

(2005) investigated the stress analysis regarding a crack shaped like a penny within

a non-homogeneous solid media influenced by torsion. Menshykov et al. (2008)

discussed the contact problem for an open crack shaped like a penny during a

tension-compression wave incident perpendicularly. Mykhaskiv and Khay (2009)

investigated fracture analysis regarding an inserted rigid-disc and a penny-shaped

crack due to incidence of wave, which is time-harmonic by nature. The stress analy-

sis for a crack in the form of a penny interacting with inclusions and voids was taken

into investigation by Lee and Tran (2010). Li et al. (2011) analyzed the crack model

involving coulomb traction on a crack in the form of a penny inside a 3D piezoelectric

body. Dovzhik (2012) has studied the half-space fracture compressed across crack

shaped like a penny that is close to the surface. The analysis of a crack in the form of

a penny inside a plate with finite thickness due to homogeneous shearing stress was

examined by D.-S. Lee (2013). The penny-shaped crack model within transversely
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isotropic media exposed to uniform symmetric as well as anti-symmetric heat flow

was examined by Yang et al. (2014). Aizikovich et al. (2015) have established a

semi-analytical explanation for a crack shaped like a penny within a soft inhomo-

geneous layer. Gilbert and Lee (2015) further considered the crack model involving

Penny-Shaped Crack in a Poroelastic Plate. I.A. Abbas (2016) discussed the finite

element analysis of an internal penny-shaped crack in an unbounded thermoelastic

medium.

A penny-shaped crack problem in thermo-magneto-electro-elasticity has been

solved by Li et al. (2017). Propagation of time-harmonic elastic waves through a

double-periodic array of penny-shaped cracks was investigated by Mykhaskiv et al.

(2019). Dynamic stress factor due to the penny-shaped crack in a three-component

elastic solid consisting of two dissimilar half-spaces and an intermediate layer have

been analyzed by Mykhaskiv and Stankevych (2019). An infinite homogeneous

isotropic elastic medium with surface elasticity on the crack boundary is studied

for a nanosized penny-shaped crack by Yang et al. (2021). Yang et al. (2022) stud-

ied an infinite three-dimensional isotropic elastic solid with a penny-shaped crack

whose boundary is enhanced by the incorporation of surface elasticity in terms of its

torsional deformation. Madani and Kebli (2019) solved the problem of axisymmetric

torsion of an elastic layer with a penny-shaped crack by a cylindrical rigid disc at the

symmetry plane. Madani and Kebli (2019) studied a cracked semi-infinite medium

under the torsion of a rigid disc using dual integral equations. Using dual integral

equations, Hankel and Weber-Orr transform, Pinchas Malits (2020) investigated the

rotation of an elastic body by an embedded semi-infinite rigid cylinder with a penny-

shaped crack. The torsion of an elastic layer attached to a rigid circular base with a

circular rigid punch is solved by Kebli et al. (2020). The solution of an axisymmetric

problem of a penny-shaped crack near and parallel to a graded interface was given by

Chen et al. (2022). An investigation into the fracture mechanics of elastic cracked

materials exposed to transient dynamic loading has been done by Menshykov et al.

(2020). Stress intensity factors around multiple radial cracks within circular shafts

with an FG coating layer under transient torsional loading have been analyzed by

Mahmoodi et al. (2022). In view of the above literature survey, we present our

thesis chapters as follows:

Only numerical techniques may be used to evaluate stresses and strains because
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of the complicated geometries and loads placed on composite materials. In our

investigations, we have studied some mixed type “boundary value problems”. To

solve these problems, we have used some standard methods and techniques, which

are presented briefly in Chapter 2.

In Chapter 3, the first problem, shear wave propagation through an orthotropic

strip with an edge crack has been analyzed. Dual integral equations have been

developed for the solution of the governing mixed boundary value problem with

the aid of the Hankel transform technique. Then, the dual integral equations have

been transformed into a second kind of Fredholm integral equation employing Abel’s

transformation. The numerical calculations of stress intensity factor and crack open-

ing displacement are performed utilizing the Fox & Goodwin method and displayed

graphically. Elastic constants of two orthotropic materials have been used to illus-

trate the influence of material orthotropy and normalized strip width on SIF and

COD.

Secondly, we investigated the motion of a semi-infinite moving crack inside a

semi-infinite half-space of an orthotropic medium subjected to an anti-plane shear

wave. The crack is located at a finite depth from the surface of the semi-infinite

orthotropic medium. Our aim is to examine how such anisotropy and geometric

parameters can be adjusted to reduce the magnitude of the stress intensity factor

to control the crack propagation near the crack tip region. As mathematical tools,

Fourier transformation and inverse Fourier transformation techniques are employed

to convert the governing mixed boundary value problem to the well-known Wiener-

Hopf equation with suitable boundary conditions. Some physical quantities, such as

stress intensity factor (SIF) at the crack tip and crack opening displacement (COD)

around the crack tip, have been derived. A graphical exhibition has been carried

out to show the impact of relevant parameters such as crack velocity, layer depth

from the surface to crack and orthotropic material properties on SIF and COD. The

numerical results show that SIF decay with crack depth from the layer. It is also

observed that SIF decreases with an increase in crack velocity and finally tends to

zero as crack velocity approaches near SH-wave velocity. Also, the value of COD

decays as we move along the damage near the crack tip along the negative x-axis

and finally tends to zero at the crack tip. This behaviour of COD is consistent

with the physical nature of the semi-infinite crack of the problem. The results are
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validated for isotropic material with some reported work and are well in agreement.

The study of these physical quantities (SIF, COD) ensures the arrest of the onset

of crack expansion by monitoring geometric parameters and wave velocity to avoid

fracture.

In Chapter 4, we studied the influence of a suddenly applied impact load due to

torsion upon a crack in the form of a penny sandwiched in between 2 elastic layers

inserted in an elastic media. Hankel and Laplace’s transformations are utilized

to resolve the axisymmetric model with mixed boundary conditions into two dual

integral equations. The equations are further simplified into a 2nd kind integral

equation Fredholm type which is then numerically solved. Stress intensity factor

(SIF) around the crack rim has been derived and is then displayed taking several

geometric parameters and set of composite mediums.

Lastly, in Chapter 5, we have considered the torsional wave propagation of a

penny-shaped crack in an orthotropic layer and two circular discs bonded between

the layer and half-spaces. A general solution for the system is presented as a set of

dual integral equations using the Hankel transform technique. Using Abel’s trans-

form method, the equations have been transformed into Fredholm integral equations

of the second kind, which have been solved numerically to compute the stress inten-

sity factors (SIFs) near the rims of crack and discs. Numerical results are obtained

using material constants of two orthotropic mediums to demonstrate the impact of

material non-homogeneity, normalized disc radius, and layer depth on SIFs and por-

trayed by virtue of graphs. The analysis of the physical quantity SIF in the present

model leads to speculation about the stability of composites against the propaga-

tion of cracks in layered engineering solids by surveilling geometric parameters of

orthotropic materials and layer depth.



Chapter-2

Methodology



Chapter 2

Methodology

Mixed boundary value problems are linked to wave propagation and diffraction

problems. Near the crack edges, the stress singularity is crucial in view of its practical

usage. Also, results of dynamic-crack propagation research are relevant in numerous

applications. Generally, the aim of structural engineering is to resist a propagating

crack once it begins. If cracks or inclusions occur in finite or infinite elastic strips,

the problem becomes more onerous. The orthotropic anisotropy has a significant

impact on the influence of multilayer composites with fractures and inclusions in

fracture analysis. Evaluation of stresses and strains can only be done numerically

due to the complicated geometries and loads placed on composite materials. In our

research work, we have studied some mixed boundary value problems.

Integral equations are often employed to address this kind of boundary value

problem. By using Hankel, Laplace, or Fourier transforms, the axisymmetric mixed

boundary value problem can initially be reduced into a pair involving dual integral

equations. The dual integral equation can be inverted into a second kind integral

equation of Fredholm type employing Abel’s integral formula or Hankel’s transform.

It is often necessary to apply the Wiener-Hopf technique in such cases.

Methods for numerical calculation and solving boundary value problems in

elasticity are listed below.

1. Dual Integral Equation Method

35
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2. Abel’s Integral Equation Solution

3. Integral Equation Solution following the Hankel Transform approach

4. Linear non-singular Integral Equations numerical solution by Fox and Goodwin

Method

5. Numerical Inversion of Laplace Transform

6. Gaussian Integration

7. Wiener-Hopf Method

2.1 Dual Integral Equation Method

When a mixed boundary value problem is given, this method can be used

successfully. At first, this problem is reduced to a dual integral equation system

using Fourier transform or otherwise. Then this method is used to reduce dual

integral equations set in a single Fredholm type integral equation of some unknown

variable. After resolving the Fredholm integral equation, the desired function is

obtained by performing simple integration.

Let us suppose that formulation of the model based on mixed boundary conditions

is done with suitable integral transformation to derive a equation set of dual integrals

as: ∫ ∞

0

x−1
[
1 +K(x)

]
S(x)Jν(rx) dx = f(r), 0 ≤ r ≤ a, (2.1.1)

∫ ∞

0

S(x)Jν(rx) dx = g(r), r > a, (2.1.2)

where K(x), f(r) and g(r)) represents known functions. As reported by Noble

(1963), considering ν > −1
2

S(x) =

√
2x

π

{∫ a

0

t1/2θ(t)Jν− 1
2
(xt) dt+

∫ ∞

a

tν+
1
2G(t)Jν− 1

2
(xt) dt

}
,
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where θ(t) satisfies the Fredholm integral equation

θ(t) +
1

π

∫ a

0

M(τ, t)θ(τ) dτ = t−νF (t)−H(t), 0 ≤ t ≤ a, (2.1.3)

in which

M(τ, t) = π
√
τt

∫ ∞

0

xK(x)Jν− 1
2
(τx)Jν− 1

2
(tx) dx,

F (t) =
d

dt

∫ t

0

f(r)rν+1(t2 − r2)−1/2 dr,

H(t) = t1/2
∫ ∞

0

xK(x)Jν− 1
2
(xt)dx

∫ ∞

a

ξν+
1
2G(ξ)Jν− 1

2
(xξ) dξ,

G(ξ) =

∫ ∞

ξ

g(r)r−ν+1(r2 − ξ2)−1/2 dr.

The above given integral equations is also further solved for θ(t) and consequently

S(x) can be determined.
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2.2 Abel’s Integral Equation Solution

In 1823, Abel studied how a particle moves when it is pulled downward by gravity

along an unknown smooth curve at a vertical plane. The particle moves from high

vertical height point ζ to a low point a for time u(ζ). To determine the curve’s

equation, the Abel’s problem is developed. Abel used the singular integral equation

to calculate the sliding particle’s motion equation along a smooth curve.

Abel used the singular integral equation to calculate the sliding particle’s motion

equation along a smooth curve.

u(ζ) =

∫ ζ

a

q(t) dt√
ζ − t

, (2.2.1)

In the above equation u(ζ) represents pre-determined data function and q(ζ) is the

solution to be calculated. Equation (2.2.1) is in form of the Abel’s Integral Equation

which is also termed as the 1st kind Volterra integral equation. In this equation the

kernal K(ζ, t) is expressed as

K(ζ, t) =
1√
ζ − t

−→ ∞ as t −→ ζ, (2.2.2)

and the solution is of the form

q(ζ) =
1

π

d

dζ

∫ ζ

a

u(t)dt√
ζ − t

=
u(a)

π
√
ζ − a

+
1

π

∫ ζ

a

u′(t)dt√
ζ − t

. (2.2.3)
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2.3 Integral Equation Solution following the Hankel Trans-

form approach

Bessel functions serve as the kernels of “Hankel Transforms”, which are one type

of integral transformations. They are sometimes known as Bessel transforms. Hankel

transformations may be quite helpful when dealing with models that exhibit circular

symmetry. This transform could be used to convert Laplace’s partial differential

equation in cylindrical coordinates to an ordinary differential equation. Let g(r) is

a function defined when r ≥ 0. The νth order “Hankel transform” of g(r) can be

prescribed as

Gν(s) ≡
∫ ∞

0

r g(r) Jν(sr) dr. (2.3.1)

In the above equation, Jν(sr) denotes first kind Bessel function with order ν and

r Jν(sr) represents kernel related to the transformation. If ν > −1
2
, an inversion

formula is formed immediately by Hankels repeated integral:

g(r) ≡
∫ ∞

0

s Gν(s) Jν(sr) ds. (2.3.2)

The Hankel transform’s two most significant special types are found when ν takes

the values 0 and 1. Conditions that are sufficient but not essential for the validity

of (2.3.1) and (2.3.2) are

1. Here g(r) =O(r−k), r → ∞, where k > 3
2
.

2. Piecewise continuous function g′(r) exists throughout all bounded subinterval

of [0,∞).

3. g(r) could be described as [g(r+)+g(r−)]
2

.”

It is possible to relax the above conditions.
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2.4 Linear non-singular Integral Equations numerical solu-

tion by Fox and Goodwin Method

We will use the continental convention of calling Fredholm type equations those

with constant limits in the integral and Volterra type equations those with variable

limits. Fredholm type first and second kind equations are given by:

∫ b

a

k(x, y)f(y) dy = g(x), (2.4.1)

∫ b

a

k(x, y)f(y) dy = g(x) + f(x). (2.4.2)

For frequent occurrence another equation can be given as:

λ

∫ b

a

k(x, y)f(y) dy = g(x). (2.4.3)

In Equations (2.4.1) and (2.4.2), the wanted function is given by f , all other func-

tions are known ether numerically, graphically or analytically. Both the eigenvalue

λ and eigenfunction f appearing in Equation (2.4.3) are to be determined.

To describe the integral in each instance as a finite sum of terms of the type

ark(xs, yr)f(yr), we must first look at certain numerical integration formulas.

Numerical Integration:

Difference-based equations are often preferable over Lagrangian-based ones.

The former may be truncated when contributions are negligible, but the degree of

a suitable Lagrangian polynomial is unknown without considering the differences.

The best finite-difference integration formulas are expressed as follows:

1

h

∫ a+nh

a

f(x)dx =
1

2
f0 + f1 + .....+ fn−1 +

1

2
fn +∆, (2.4.4)

where f0 = f(a), fr = f(a+ rh) and ∆, denotes difference correction related to the

function f .
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For the simplest scenario, when n = 1, and the integral is calculated between

neighbouring pivotal points, we get the expression using central differences.

1

h

∫ a+h

a

f(x)dx =
1

2
(f0 + f1)−

1

12
µδ2f 1

2
+

11

720
µδ4f 1

2
, (2.4.5)

and in the general case,

1

h

∫ a+nh

a

f(x)dx =
1

2
f0 + f1 + ...+ fn−1 +

1

2
fn +∆, (2.4.6)

∆ = (− 1

12
∆1 +

1

24
∆2 − 19

720
∆3...)(fn − f0). (2.4.7)

These formulas all make use of differences discovered at pivotal points beyond

the integration range. Equation (2.4.7) may be converted into a formula that only

uses pivot points within the range by rewriting the difference correction as:

∆ = −(
1

12
∇1 +

1

24
∇2 +

19

720
∇3...)fn + (

1

12
∆1 − 1

24
∆2 +

19

720
∆3...)f0. (2.4.8)

This is Gregory’s integration formula’s difference correction.

Our major ally in solving Fredholm type integral equations is the Gregory

formula. We are only interested in its solution at pivotal points under a designated

integration range; the kernel can not even be described beyond the range, making it

difficult to employ formulas like (2.4.6). Less terms are involved in the correction,

and the accuracy is somewhat improved due to the lower coefficient.
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Solution of second kind Fredholm’s equation:

We begin by addressing 2nd kind Fredholm’s equation which is represented in

equation (2.4.2).

Equation (2.4.2) may be written as follows using Equation (2.4.4) as the integral’s

representation:

h[
1

2
k(x, 0)f0 + k(x, 1)f1 + ...+ k(x, n− 1)fn−1 +

1

2
k(x, n)fn +∆(x)] = g(x) + f(x),

where k(x, y) value at point(x, sh) is indicated by k(x, s). We may then substitute

the integral equation with a set of (n+1) linear simultaneous equation taking into

account all of the pivotal points as

h[
1

2
k(r, 0)f0 + k(r, 1)f1 + ...+ k(r, n− 1)fn−1 +

1

2
k(r, n)fn +∆r] = gr + fr,

Where r now takes the values 0, 1, ...., n. and k(r, s) signifies k(x, y) value on point

(rh, sh). We may formulate the equations in the following form by combining the

fr on the left with those on the right.

{1− 1

2
hk(0, 0)}f0 − hk(0, 1)f1...− hk(0, n− 1)fn−1 −

1

2
hk(0, n)fn = −g0 + h∆0,

−1

2
hk(1, 0)f0 + {1− hk(1, 1)}f1...− hk(1, n− 1)fn−1 −

1

2
hk(1, n)fn = −g1 + h∆1,

........................................................................................................ (2.4.9)

−1

2
hk(n− 1, 0)f0 − hk(n− 1, 1)f1...+ {1− hk(n− 1, n− 1)}fn−1 −

1

2
hk(n− 1, n)fn

= −gn−1 + h∆n−1,

−1

2
hk(n, 0)f0 − hk(n, 1)f1...− hk(n, n− 1)fn−1 + {1− 1

2
hk(n, n)}fn = −gn + h∆n.

We will quickly discuss a few options for solving these problems.

The ∆r are linear functions of the fr when the Gregory formula is used. These

linear functions would be known if we also knew the order of the most recent sig-

nificant difference in (2.4.8). The ∆r in (2.4.9) could therefore be moved to the

left, leading to a set of expressions for the fr that only had distinct coefficients and
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the gr on the right. This is practically equal to representing the integral using a

Lagrangian formula.

As an alternative, we may select a very tiny interval h with the goal of making

the ∆r insignificant. This might require solving a large number of linear equations,

which would require a lot of work and present the risk of mistakes due to improper

conditioning. Finally, we may calculate the equation while accounting for up to

fourth and sixth differences, respectively, and compare the outcomes.

It appears more appealing to take an iterative approach. By ignoring the ∆r in

Equations (2.4.9), the simplest quadrature formula is used in this technique to get

a first approximation to the desired answer. We next use the roughly determined

estimated fr to compute and difference the values k(x, 0)f0, k(x, 1)f1, etc. for each

x. Then, all the ∆r may be computed and added in right-hand sides of Equation

(2.4.9) for correction. Next, necessary corrections to f are acquired trivially and the

method is then repeated until there is no more change.

This method may be represented symbolically as follows. We solve the equations

sequentially if A signifies coefficient matrix (square) related to fr, the vector g having

coefficients gr and the vector ∆ admits ∆r as components.

Af (0) = −g,

Af (1) = h∆(f (0)),

Af (2) = h∆(f (1)),

.........................,

the final solution being given by

f = f (0) + f (1) + f (2) + ....

For models containing differential equations of the boundary-value type, this method

is the exact same as that of Fox (1949).
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Of course, picking the interval h was rather arbitrary. The number of linear

equations should be kept to a minimum; but the interval shouldn’t be so wide that

the finite-difference expressions become useless. The procedure protects against

the danger of getting inaccurate findings from this cause since the differences are

investigated. Additionally, the truncation point should not be the same for every x,

ensuring that neither too few differences nor too many differences are kept in the

quadrature equations.

2.5 Numerical Inversion of Laplace Transform

Below given is the Laplace transform H(s) of h(t):

H(s) =

∫ ∞

0

e−sth(t) dt, s ≥ 0 (s = transform parameter).

Here, Zakian’s Algorithm is used for the Laplace inversion.

Zakian’s Algorithm:

This represents a class of algorithms, where calculation of the function h(t) has

been performed as the total sum of H(s) as

h(t) =
M∑
j=1

KjH(sj),

where a specific technique determines the values of Kj, sj and M . The condition

that the time function may be connected with a finite series involving exponential

functions is a critical aspect of the derivation.

M∑
j=1

Kje
αjt .
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This specification is significant because it shows how well Zakian’s Algorithm per-

forms for systems that are slightly underdamped and slightly overdamped. However,

it is inaccurate for systems that oscillate for a long time. The following equation

denotes Zakian’s Algorithm and enables us to get the numerical value of h(t) for

known value of H(s) and time t.

h(t) =
2

t

5∑
j=1

REAL
(
KjH

(αj
t

))
.

Table 2.1 provides the set of 5 complex constants for αj.

Table 2.1: Five constant set for αj and Kj for the Zakian’s approach.

i αj Kj

1 12.83767675 + i 1.666063445 -36902.08210 + i 196990.4257

2 12.22613209 + i 5.012718792 61277.02524 - i 95408.62551

3 10.93430308 + i 8.409673116 -28916.56288 + i 18169.18531

4 8.776434715 + i 11.92185389 4655.361138 - i 1.901528642

5 5.225453361 + i 15.72952905 -118.7414011 - i 141.3036911

The Zakian algorithm computes rapidly and is easy to use. But it can be noticed

that it is impossible to determine the primary value, h(t) at t = 0. Additionally,

h(t) becomes incorrect in oscillatory systems after around the second cycle.
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2.6 Gaussian Integration

The Gauss quadrature formula was introduced by the famous German mathe-

matician Kerl Friedrich Gauss (1777-1855). He proved that the points of subdivision

should not be equidistant, but must be symmetrically placed with respect to the mid-

point of the interval of integration. Gauss integration is based on the fact that the

accuracy of numerical integration can be improved by selecting the function values

sensibly rather than on the basis of equal spacing.

Thus, we have∫ b

a

f(x) dx ≃
n∑
i=0

cif(xi), xi = a+ ih, h =
b− a

n
. (2.6.1)

where the coefficients c′is are the parameters which are the weighting factors applied

to the function values. Gauss observed that if we do not restrict the function values

to be evaluated at predetermined equally spaced x-values, an (n+ 1) term formula

will contain (2n+ 2) parameters. The Gaussian Quadrature is written in the form

∫ 1

−1

F (u) du =
n∑
i=1

wiF (ui), (2.6.2)

where n values of ui and n values of weights wi are 2n unknowns. The 2n unknowns

are derived such that the above formula give exact values for F (u) being a polynomial

of degree less than or equal to 2n− 1.

Let us consider

F (u) =
2n−1∑
k=0

aku
k. (2.6.3)

Now, substituting (2.6.2) in (2.6.3), we obtain

∫ 1

−1

(
2n−1∑
k=0

aku
k) du =

n∑
i=1

aku
k,
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or 2a0 +
2

3
a2 +

2

5
a4 + . . .+

2a2n−2

2n− 1
=

n∑
i=1

wi[
2n−1∑
k=0

aku
k].

The above equations must be true for all polynomials of degree less than or equal

to 2n− 1, i.e. for all ak and, hence, equating the coefficients of ak on either side, we

get the following 2n equations

w1 + w2 + . . .+ wn = 2,

u1w1 + u2w2 + . . .+ unwn = 0,

u21w1 + u22w2 + . . .+ u2nwn =
2

3
,

... (2.6.4)

u2n−1
1 w1 + u2n−1

2 w2 + . . .+ u2n−1
n wn = 0.

The above is a set of 2n equations in the 2n unknowns w1, w2, ....., wn and

u1, u2, ....un . It is obvious that the equations are quite complicated, and it is cum-

bersome to solve them by ordinary methods of algebra.

However, it can be shown by using the theory of orthogonal polynomials that the

u′is are the zeros of the Legendre Polynomial Pn(u) of degree n. Substituting the

values of u′is in any set of n equations from (2.6.4), the weights wi can be determined.

The values of these 2n parameters are listed in the table for various values of n. The

abscissa and the weights are irrational numbers, and their values have been provided

in Table 2.2.
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Table 2.2: Gauss Quadrature Table

It is to be noted that the Gaussian formula is applied for the limits of integration

−1 to 1. To use the Gaussian quadrature for evaluating
∫ b
a
f(x) dx, we can use a

transformation of variable to change the limits of integration to (−1, 1) in the form

x = b−a
2
u+ b+a

2
. So that

∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f(
b− a

2
+
b+ a

2
) du.

Errors in Gausssian Formula

1. One-point formula E1 = high error.

2. Two-point formula E2 = −F 4(ξ)
135

, − 1 < ξ < 1.

3. Three-point formula E3 = −F 4(ξ)
15750

, − 1 < ξ < 1.

4. Four -point formula E4 = − F 8(ξ)
3471875

, − 1 < ξ < 1.

5. Five-point formula E5 = − F 10(ξ)
123773650

, −1 < ξ < 1 where F i(ξ) means di

dxi
(F (ξ)).
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2.7 Wiener-Hopf Method

Noble (1958) developed the Wiener-Hopf approach for solution of integral

equations in the following general form

f(x) +

∫ ∞

0

k(x− η)f(η)dη = g(x), 0 ≤ x <∞. (2.7.1)

Here the kernel k(x) can be described in −∞ < x < ∞. The function g(x) is

described in 0 ≤ x < ∞, and undefined in −∞ < x < 0. The function f(x) is

identically zero in −∞ < x < 0 and to be measured within range 0 ≤ x <∞.

Particularly instrumental to solve (2.7.1) is a convolution theorem stating:∫ ∞

−∞
e−ζxdx

∫ ∞

−∞
k(x− η)f(η)dη = k∗f ∗, (2.7.2)

where f ∗(ζ) and k∗(ζ) are the 2 sided Laplace transforms of f(x) and k(x) . Equation

(2.7.1) will not be complicated to resolve when the integral equation were described

for the entire range of x such as -∞ < x <∞. So, Equation (2.7.1) can be rewritten

as

f+(x) +

∫ ∞

−∞
k(x− η)f+(η)dη = g+(x) + h−(x), (2.7.3)

where

f+(x) =

{
f(x), x ≥ 0

0, x < 0
(2.7.4)

h−(x) =

{
0, x ≥ 0

h(x), x < 0
(2.7.5)
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It is noted that for x ≥ 0, Equation (2.7.3) just reduced to Equation (2.7.1). For

x < 0, we have∫ ∞

−∞
k(x− η)f+(η) = h−(x). (2.7.6)

Suppose, γ a real number may be estimated so that k(x)e−γx is integrable

absolutely for −∞ < x < ∞. Further, it can be considered that f+(x)e
−γx and

g+(x)e
−γx are integrable absolutely for 0 < x < ∞ and also that h−(x)e

−γx is

integrable absolutely for −∞ < x < 0. So, the transforms are defined as:

k∗(ζ) =

∫ ∞

−∞
e−ζxk(x)dx, (2.7.7)

f ∗
+(ζ) =

∫ ∞

0

e−ζxf+(x)dx, (2.7.8)

g∗+(ζ) =

∫ ∞

0

e−ζxg+(x)dx, (2.7.9)

h∗−(ζ) =

∫ 0

−∞
e−ζxh−(x)dx. (2.7.10)

k∗(ζ) is regular for R(ζ) = γ. f ∗
+(ζ) and g∗+(ζ) become regular when R(ζ) > γ

and h∗− become regular when R(ζ) < γ. In addition to this, using the convolution

theorem from Equation (2.7.3) we get:-

f ∗
+ + k∗f ∗

+ = g∗+ + h∗−, (2.7.11)

on the line R(ζ) = γ.

It can be further assumed that, 1 + k∗(ζ) don’t have roots on R(ζ) = γ. With

some weak conditions, 1 + k∗(ζ) could be factored, that is 1 + k∗(ζ) is specified as:

1 + k∗ = m∗
+m

∗
−. (2.7.12)

Here m∗
+ as well as (m∗

+)
−1 are bounded on R(ζ) = γ, and regular for R(ζ) > γ,

whereas m∗
− and (m∗

−)
−1 are also bounded on R(ζ) = γ, but regular on R(ζ) < γ.

Equation (2.7.1) can be written as

m∗
+f

∗
+ =

g∗+
m∗

−
+
h∗−
m∗

−
. (2.7.13)
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Subsequently the term
g∗+
m∗

−
may usually be split up in the following way :

g∗+
m∗

−
= n∗

+ + n∗
−, (2.7.14)

where n∗
+ is regular in R(ζ) > γ and n∗

− is regular in R(ζ) < γ. Substitution of

Equation (2.7.14) into Equation (2.7.13) yields

m∗
+f

∗
+ − n∗

+ =
h∗−
m∗

−
+ n∗

− on R(ζ) = γ. (2.7.15)

Now, we describe the functions

e∗+(ζ) = m∗
+f

∗
+ − n∗

+, (2.7.16)

and

e∗−(ζ) =
h∗−
m∗

−
− n∗

−. (2.7.17)

Then, e∗+(ζ) is regular for R(ζ) > γ and e∗−(ζ) is regular for R(ζ) < γ, whereas

for R(ζ) = γ the functions e∗+(ζ) and e
∗
−(ζ) are continuous and identical with one

another. On the basis of functional analysis theorem, e∗+(ζ) might further be taken

as the analytic continuation of e∗−(ζ) and vice versa. Therefore, the functions e∗+(ζ)

as well as e∗−(ζ) present one and the same entire function e∗(ζ) (a function that

is regular throughout the whole ζ−plane). In following step, Liouville’s theorem is

used, which describes: If e∗(ζ) is entire and |e∗(ζ)| become bounded considering every

values of ζ within the complex plane, then e∗(ζ) should be a constant. To find the

constant’s exact value, calculation of the value of either e∗+(ζ) or e
∗
−(ζ) at one specific

value of ζ is required. Generally, it may be illustrated that e∗(ζ) = 0(1) for |ζ| → ∞.

So, conclusions can be drawn with help of Liouville’s theorem that e∗(ζ) ≡ 0 and as

a consequence, the following equation can be obtained using Equation (2.7.16)

f ∗
+ =

n∗
+

m∗
+

. (2.7.18)

The two-sided Laplace transform’s inversion integral may then be used to derive the
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function f(x). The numerous stages that led to the solution of Equation (2.7.1) will

be outlined below:

1. The definition range of integral equation is extended to: −∞ < x <∞.

2. A two-sided Laplace transform is then applied.

3. Line of juncture is determined.

4. Factorization is then conducted.

1 + k∗ = m∗
+m

∗
−,

and rewrite

m∗
+f

∗
+ =

g∗+
m∗

−
+
h∗−
m∗

−
.

5. Split up the term

g∗+
m∗

−
= n∗

+ + n∗
−,

and below relation is achieved:

m∗
+f

∗
+ − n∗

+ =
h∗−
m∗

−
+ n∗

− = entire function.

6. The Liouville’s theorem is applied for concluding the entire function C.

7. Observing the nature of f(x) for small values of x, calculate C. Physical factors

are often able to predict this behaviour.

8. Inverse transform is evaluated.

The hardest component of the process is often factorization. It may be important

to highlight that the 2 half-planes of regularity do not always overlap in the current

explanation of the Wiener-Hopf approach. Simply having the two half-planes border

along the line R(ζ) = γ is sufficient. Also to be observed is the fact that the whole
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function should not be bounded and might instead be 0(ζ1/2) as |ζ| → ∞. The

function’s constant nature may then be deduced using an extension of Liouville’s

theorem.

One of the most striking features of the mathematical description of natural

phenomena by means of a partial differential equation is the comparative case with

which solutions can be obtained for certain geometrical shapes, for example, circles

and infinite strips, by the method of separation of variables. But for geometrical

shapes outside the scope of the method of separation of variables, it is quite difficult

to find solution. This is where the Wiener-Hopf technique comes quite handy and

provides a significant extension to the range of problems which can be solved using

Fourier, Laplace and Mellin integrals.
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Chapter 3

Interaction of Shear Wave with Cracks

3.1 Edge crack subject to anti-plane shear wave in an or-

thotropic strip

• Introduction

In general, it is familiar that orthotropic materials have intrinsic material prop-

erties that differ from each other along three symmetric plane which are mutually

orthogonal. These planes intersect to form three mutually perpendicular axes known

as principal axes of material symmetry. Because of its high anisotropy nature, or-

thotropic materials are widely used in a vareity of fields such as material science,

structural engineering, aerospace engineering, geophysics, etc. To get advanced me-

chanical performance, orthotropic materials are designed with multidirectional lam-

inates. The high-stiffness, high-strength and lightweight phenomena of orthotropic

materials make it extremely desirable in the application of aircraft, automotive, ma-

rine, energy, infrastructure, biomedical, and recreational (sports) industries [Daniel

et al. (2006), Sun et al. (2022)]. When influenced by anti-plane shear wave propaga-

tion, this orthotropic materials, which are made by two or more different laminates,

can fail prematurely due to propagation of cracks created at the time of manufac-

ture. Our main aim is to resist the stress initiated by controlling a physical quantity

named as stress intensity factor (SIF). Also, length of displacement between two

edges of the crack is called crack opening displacement (COD) is a physical quantity

leading to fracture toughness of a solid material and vanishes at the crack tip. So,

55
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the study of analysis of these physical quantities related to orthotropic materials in

presence of edge crack reveals an emerging area of research in designing engineering

structures and machines.

Various crack problems in orthotrotropic strips [ Nandi and Mandal (2017), Das

et al. (2008), X.-F. Li (2005), Monfared and Ayatollahi (2013), Basak and Mandal

(2017), Naskar and Mandal (2022)] have been analyzed extensively because of rig-

orous usage of composite materials in engineering fields. The problem of shear wave

propagation in orthotropic media has received much attention in a large number

of articles. Using the Fourier series method, X.-F. Li (2003) derived the solution

concerning an orthotropic strip of finite width having two mode-III collinear cracks.

Lü et al. (2011) addressed the dynamic fracture problems related to asymmetri-

cal mode-III crack inside a solid made of orthotropic media. A finite orthotropic

plate has been considered with an edge crack under anti-plane shear by Wang et

al. (1992). Y. Wang et al. (1992) calculated stress intensity factors of an edge

cracked body by shear force with the aid of integral transform method. Panja and

Mandal (2021) calculated stress intensity factors for a griffith crack situated within

a strip of infinite length influenced by magnetoelastic shear wave. Guo et al. (2005)

examined the fracture behavior caused by an edge crack inside a functionally graded

orthotropic strip. Several moving crack problems influenced by shear wave have

been investigated in an orthotropic strip by Ayatollahi et al. (2012) and in an infi-

nite strip of functionally graded material (FGM) by Bi et al. (2003). Considering

several defects and cracks in functionally graded orthotropic strips, stress intensity

factors has been determined by Ayatollahi and Bahgeri (2013) subject to anti-plane

time- harmonic concentrated loads and Asadi et al. (2012) due to anti-plane shear

deformation.

The problem of a cracked functionally graded orthotropic strip has been addressed

by Mausavi and Paavola (2013). Again, Mausavi and Fariborz (2012) analyzed anti-

plane stress fields caused by viscous damping in a cracked graded orthotropic layer.

The solution was derived by Bayat et al. (2015) for an orthotropic strip reinforeced

by a piezoelectric coating having several defects. Adopting the distribution disloca-

tion technique, Ayatollahi and Fariborz (2009) deduced stress intensity factors of a

strip with cracks and cavities due to time-harmonic anti-plane vibrations. Ing and

Ma (2003) investigated stress wave scattering of horizontally polarized shear waves
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in anisotropic material with finite cracks. Mostly in the above pieces of literatures,

the model was solved by converting into a integral equation of singular type using

Laplace and Fourier technique.

In addition, the effective crack problems (including edge crack) with shear

wave propagation entailing properties of orthotropic solid composites has been ex-

tensively studied. Among these are, scattering phenomena of shear waves within a

functionally graded strip having a vertical edge crack by Li et al. (2006); behavior

concerning an interfacial edge crack within a semi-infinite strip sandwiched through

a functionally graded interlayer due to impact of shear wave by H. J. Choi (2018);

influence of the magneto-electro-elastic impact of a strip with multiple and edge

cracks based on transient loading by Bagheri and Manfared (2018); behaviour of

edge interfacial cracks situated within dissimilar strips sandwiched by a functionally

graded interlayer due to antiplane deformation by H. J. Choi (2020); mode III fa-

tigue crack propagation in an orthotropic piezoelectric ceramic strip by Narita and

Shindo (1999); interface stress analysis of nano defects situated in an orthotropic

material induced by shear loading by Xiao et al. (2016). Analysis of p-wave through

an orthotropic strip was addressed by Basu and Mandal (2016) for two rigid strips,

by Nandi et al. (2015) with an edge crack, by Basak and Mandal (2015) for a asym-

metric crack. Recently, in our previous literature [Karan et al. (2021)], we studied

semi-infinite moving crack in an orthotropic strip under the effect of shear wave

propagation.

The technology of orthotropic composites has experienced remarkable develop-

ment in various fields like structural design, material characterization, and optimiza-

tion. Evidently, an analysis of stress in orthotropic strips weakened by edge crack

owing to shear wave propagation, has not attracted much attention. In the present

article, stress analysis is carried out for an edge crack with anti-plane shear wave

in an orthotropic strip. Dual integral equations have been developed to solve the

governing mixed boundary value problem with aid of Hankel transform technique.

Then, the dual integral equations were converted into a second kind integral equa-

tion of Fredholm type employing Abel’s transformation. The numerical calculations

of SIF and COD are performed utilizing the Fox & Goodwin method and displayed

graphically. Elastic constants of two orthotropic materials have been used to il-

lustrate the influence of orthotropic non-homogeneity and normalized strip width
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upon SIF and COD. This study will be useful to compare the fracture toughness of

orthotropic composite materials with edge cracks by arresting crack propagation in

several engineering structures.

• Formulation of the Elasticity Problem

In the present study, an infinitely long orthotropic strip with finite width

D consisting an edge crack with length b subject to shear wave propagation has

been considered. As shown in Fig.3.1, an edge crack of finite length is located at

0 ≤ X ≤ b, − ∞ < Z < ∞, Y = 0 referring to Cartesian axes (X, Y, Z). By

letting X
b
= x, Y

b
= y, D

b
= d, all the lengths have been normalized with reference to

b and then the crack’s location becomes 0 ≤ x ≤ 1, −∞ < z < ∞, y = 0 . The

plane of analysis is taken to be the x − y plane. Let the edge crack is influenced

due to time-harmonic shear-wave incident normally along direction of the positive

y−axis.

Fig.3.1 Cracked orthotropic strip
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Due to the shear wave motion, the displacement components can be considered

as ux = 0, uy = 0, and uz = uz(x, y, t). For an orthotropic solid, the anti-plane

equation of motion takes a form similar to that below [Mandal and Mandal (2021)]:

C55
∂2uz
∂x2

+ C44
∂2uz
∂y2

=
b2

c2s

∂2uz
∂t2

, (3.1.1)

where C44, C55 are orthotropic shear moduli along x and y directions respectively,

and cs =
√

C55

ρ
is SH-wave velocity depending on the orthotropic medium.

By substituting uz(x, y, t) = Uz(x, y)e
−iωt, the Equation (3.1.1) is converted to

C55
∂2Uz
∂x2

+ C44
∂2Uz
∂y2

+
b2ω2

c2s
Uz = 0. (3.1.2)

The nonzero component of the stress tensor can be expressed as follows:

σxz(x, y) = C55
∂Uz(x, y)

∂x
,

σyz(x, y) = C44
∂Uz(x, y)

∂y
.

Application of the standard Hankel integral transform, Equation (3.1.2) admits

solution as

Uz(x, y) =

∫ ∞

−∞
D1(ζ)e

−ϕyeiζxdζ +∫ ∞

0

[
D2(λ)e

ψx +D3(λ)e
−ψx)sin(λy) dλ, (3.1.3)

with

ϕ =
√
Q(ζ2 − k2s), ζ > ks

= −i
√
Q(k2s − ζ2), ζ < ks

and

ψ =

√
1

Q
(λ2 − k2s), λ > ks

= −i
√

1

Q
(k2s − λ2), λ < ks
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and Q = C55

C44
, k2s = b2ω2

c2sC55
. In Equation (3.1.3), D1(ζ), D2(λ) and D3(λ) appears as

unknown functions to be evaluated utilizing boundary conditions.

When y = 0, the boundary conditions can be prescribed as

σyz(x, 0) = −σ0, 0 ≤ x ≤ 1, (3.1.4)

Uz(x, 0) = 0, 1 ≤ x ≤ d. (3.1.5)

The two edges of the infinite strip appears as liberated out of traction. Therefore,

at the edges x = 0 and x = d, we have the following boundary conditons

σxz(0, y) = 0, |y| <∞, (3.1.6)

σxz(d, y) = 0, |y| <∞. (3.1.7)

The expressions for stresses τθz now becomes

σyz(x, y) = −C44

∫ ∞

−∞
ϕD1(ζ)e

−ϕyeiζxdζ +

C44

∫ ∞

0

λ
[
D2(λ)e

ψx +D3(λ)e
−ψx
]
cos(λy)dλ, (3.1.8)

σxz(x, y) = iC44

∫ ∞

−∞
ζD1(ζ)e

−ϕyeiζxdζ +

C44

∫ ∞

0

ψ
[
D2(λ)e

ψx −D3(λ)e
−ψx
]
sin(λy)dλ. (3.1.9)

• Derivation of Integral Equation

The following dual integral equations has been obtained utilizing boundary

conditions (3.1.4) and (3.1.5) as∫ ∞

−∞
ϕD1(ζ)e

iζxdζ =
σ0
C44

+

∫ ∞

0

λ
[
D2(λ)e

ψx +D3(λ)e
−ψx
]
dλ, 0 ≤ x ≤ 1, (3.1.10)

and ∫ ∞

−∞
D1(ζ)e

iζxdζ = 0, 1 ≤ x ≤ d. (3.1.11)
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Boundary conditions (3.1.6) and (3.1.7) with the help of inverse Fourier sine and

cosine transform leads to the unknown functions D2(λ) and D3(λ) in terms of D1(ζ)

as following

D2(λ) =
2iλ

πψ(e2dψ − 1)

(∫ ∞

−∞

ζD1(ζ)

ϕ2 + λ2
dζ − edψ

∫ ∞

−∞

ζD1(ζ)e
idζ

ϕ2 + λ2
dζ

)
, (3.1.12)

D3(λ) =
2iλ

πψ(1− e−2dψ)

(∫ ∞

−∞

ζD1(ζ)

ϕ2 + λ2
dζ − e−dψ

∫ ∞

−∞

ζD1(ζ)e
idζ

ϕ2 + λ2
dζ

)
. (3.1.13)

Utilizing Equations (3.1.12) and (3.1.13) into Equation (3.1.10), dual integral

equations concerning the unknown function D1(ζ) can be derived as follows∫ ∞

0

ζ
(
1 +G(ζ)

)
D1(ζ)cos(ζx)dζ = R(x), 0 ≤ x ≤ 1, (3.1.14)

∫ ∞

0

D1(ζ)cos(ζx)dζ = 0, 1 ≤ x ≤ d, (3.1.15)

where

G(ζ) =
( ϕ√

Qζ
− 1
)
, (3.1.16)

with

R(x) =
σ0

C44

√
Q

+
1√
Q

∫ ∞

0

λ
[
D2(λ)e

ψx +D3(λ)e
−ψx
]
dλ, 0 ≤ x ≤ 1. (3.1.17)

To convert above system of Equation (3.1.14) and Equation (3.1.15) to a second

kind Fredholm integral equation, D1(ζ) is taken as

D1(ζ) =
σ0

2C44

√
Q

∫ 1

0

ηp(η)J0(ζη)dη, (3.1.18)

that satisfy Equation (3.1.15) and p(η) is an unknown function to be evaluated.

The Equation (3.1.14) with aid of expression (3.1.18) yields a second kind Fred-

holm integral equation as

p(η) +

∫ 1

0

µp(µ)M1(µ, η)dµ =
2C44

πσ0

∫ t

0

R(x)√
η2 − x2

dx, (3.1.19)
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where

M1(µ, η) =

∫ ∞

0

ζG(ζ)J0(ζµ)J0(ζη)dζ. (3.1.20)

Putting the expression of D1(ζ) from Equation (3.1.18) into (3.1.17), we get

∫ t

0

R(x)√
η2 − x2

dx =
πσ0

2C44

√
Q

[
1 +

∫ 1

0

µp(µ)
(
M2(µ, η) +M3(µ, η)

)
dµ
]
dµ, (3.1.21)

with

M2(µ, η) =

∫ ∞

0

ζ2I0(ψµ)

ψ(e2dψ − 1)

(
I0(ψη) + L0(ψη)

)
dλ, (3.1.22)

and

M3(µ, η) =

∫ ∞

0

ζ2I0(ψµ)e
−2dψ

ψ(1− e−2dψ)

(
I0(ψη)− L0(ψη)

)
dλ, (3.1.23)

where I0() represents modified Bessel function with an imaginary argument with

zero order and L0() represents modified Struve function with zero order. Employing

Abel’s transformation in Equation (3.1.19) and Equation (3.1.21), we obtained the

following second kind integral equation of Fredholm type

p(η) +

∫ 1

0

µp(µ)M(µ, η)dµ = 1, (3.1.24)

where the kernel M(µ, η) =M1(µ, η)−M2(µ, η)−M3(µ, η).

Applying the process of contour integration technique, the integral M1(µ, η) in

(3.1.20) can be transformed into integral with finite limit as

M1(µ, η) = −ik2s
∫ 1

0

√
1− γ2J0(ksγµ)H

(1)
0 (ksγη)dγ, (3.1.25)

M2(µ, η) +M3(µ, η) = −
∫ ks

0

λ2J0(ψ
′
µ)J0(ψ

′
η)eiψ

′
d

ψ′sin(ψ′d)
dλ

+

∫ ∞

ks

λ2I0(ψµ)I0(ψη)e
−ψd

ψsinh(ψd)
dλ,

(3.1.26)

where ψ
′
=
√

1
Q
(k2s − λ2).
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Letting λ2 = k2s(1−δ2) and λ2 = k2s(1+δ
2) in the integrals

∫ ks
0

and
∫∞
ks

respectively,

we obtain

M2(µ, η) +M3(µ, η) = −
√
Qk2s

∫ 1

0

√
1− δ2J0

(
ksδµ√
Q

)
J0
(
ksδη√
Q

)
e

(
i ksδd√

Q

)
sin
(
ksδd√
Q

) dδ

+
√
Qk2s

∫ ∞

0

√
1 + δ2I0

(
ksδµ√
Q

)
I0
(
ksδη√
Q

)
e

(
− ksδd√

Q

)
sinh

(
ksδd√
Q

) dδ.

(3.1.27)

• Quantities of Physical Interest

With aid of Equations (3.1.8), (3.1.12), and (3.1.13), the expression of shear

stress σyz(x, 0) near rim of the crack may be expressed as

σyz(x, 0) =
σ0x√
x2 − 1

p(1) +O(1), x > 1. (3.1.28)

Stress intensity factor (SIF) is a quantity of physical interest representing state

of stress originated in a cracked structure. Denoting dimensionless SIFs as KIII , we

define it as

KIII = lim
x→1+

∣∣∣√x− 1σyz(x, 0)

σ0

∣∣∣. (3.1.29)

Finally, using Equation (3.1.26), SIF can be written as

KIII =
|p(1)|√

2
. (3.1.30)

The jump of the displacement L(x), called crack opening displacement(COD) in the

plane of the edge crack can be derived from

L(x) = Uz(x, 0
+)− Uz(x, 0

−). (3.1.31)

Substitution of Equation (3.1.3) into the relation (3.1.26) leads to

L(x) = 2

∫ ∞

0

D1(ζ)e
iζxdζ, x > 1, (3.1.32)
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which with the help of expression (3.1.18) can be written as

L(x) =
2σ0
C44

∣∣∣ ∫ 1

x

ηp(η)√
η2 − x2

dη
∣∣∣. (3.1.33)

The value of crack opening displacement can be assumed for the static case as

L0 =
2σ0
C44

.

Finally, we obtained normalized COD with reference to the static crack opening

displacement L0 as

L =
L(x)

L0

= |
√

(1− x2)p(1)−
∫ 1

x

√
η2 − x2p′(η)dη|, x < 1. (3.1.34)

• Numerical and Graphical Demonstration

To explain the theoretical results graphically, numerical values concerning stress

intensity factor (SIF) near the crack rim and normalized crack opening displacement

(COD) are calculated from Equations (3.1.30) and (3.1.34) respectively.

Fig.3.2 Variation of SIF with frequency ks for Type-I medium
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Numerical computations are performed with the help of the Fox & Goodwin

(1953) method and Gauss quadrature rule by use of the MATLAB software. We

considered elastic constants for two sets of medium as listed in Table 3.1 [Lü et al.

(2001), Mandal and Mandal (2021)].

Table 3.1. Elastic constants of orthotropic medium

Elastic medium C44(GPA unit) C55(GPA unit)

Type-I 5.40 5.50

Type-II 5 10.0

Here, numerical values of normalized SIF (KIII) against dimensionless frequency

ks have been portrayed through graphs as shown in Figs.3.2 − 3.3. To inspect the

influence of normalized strip width d = D
b
and the anisotropy nature of orthotropic

medium on SIF, three distinct strip width, namely (d = 1.5, 2.5, 3.5) have been

considered.

From Figs.3.2− 3.3, it might be noticed that the peak value of SIF at the crack

tip for Type-I medium (Fig.3.2) is higher than that for Type-II medium (Fig.3.3)

with the same frequency ks. For all values of the dimensionless frequency ks, it

seems that with the decrease of strip width (d), the peak value of SIF will increase

gradually. In addition, based on Figs.3.2 − 3.3 we may conclude that the curve of

SIF attains a peak value first and then diminishes gradually as an increase in the

magnitude of frequency. So, the peak value of SIF may be raised or reduced by

differing the strip width and orthotropic medium.
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Fig.3.3 Variation of SIF with frequency ks for Type-II medium

Fig.3.4 Variation of SIF with frequency ks with strip width d = 1.5

In Fig.3.4, SIF values have been plotted for two different orthotropic mediums

(Type-I, Type-II) against frequency ks with fixed strip width d = 1.5 to observe
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the effect of orthotropic nature on SIF. It is observed that SIF is higher for Type-I

medium than for Type-II medium with the same strip width. So, conclusion can be

drawn as the Type-I medium seems elastically stronger compared with the Type-II

medium.

Generally, it is observed that crack begins to propagate within engineering

solids when the SIF values exceed a certain limit (depending on medium orthotropy)

termed critical SIF. In structural engineering, the main aim is to resist the onset of

crack within a composite medium to avoid damage to solid bodies by controlling SIF

within a specific range that is critical SIF. Considering this fact, we may conclude

that SIF values might be controlled by monitoring the width of the strip (d) and

geometric parameters of the orthotropic medium, which is rightly envisioned in

fracture analysis.

Fig.3.5 COD versus distance x for Type-I medium (fixed normalized strip

width d = 3.5).
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Fig.3.6 COD versus distance x for Type-II medium (fixed normalized strip

width d = 3.5).

From all configurations of COD (Figs.3.5-3.10), it is noticed that COD values

diminish when we move forward along the crack rim across the direction of the x-axis

and ultimately approach near zero at the tip of the crack (x = 1). Figs.(3.5−3.6) de-

scribes the effect of frequency ks (taking ks = 0.5, 1.0, 1.5) with constant normalized

strip width d = 3.5 in the case of Type-I and Type-II medium, respectively. Tyhe

fact can be revealed as the rise of frequency ks leads to a decrease in COD gradually

for Type-I medium (Fig.3.5) and an increase in COD gradually for Type-II medium

(Fig.3.6).

Furthermore, the effect of COD on different normalized strip width d =

1.5, 2.5, 3.5 keeping frequency ks = 1.5 constant has been plotted through Figs.3.7−
3.8 taking both (Type-I and Type-II) medium, respectively. The conclusion can

be drawn as COD is higher for a lower value of strip width when the frequency is

retained constant for both materials.
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Fig.3.7 COD versus distance x for Type-I medium (fixed frequency

ks = 1.5).

Fig.3.8 COD versus distance x for Type-II medium (fixed frequency

ks = 1.5).
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Fig.3.9 COD versus distance x for different values frequency of ks with

strip width d = 1.5.

Fig.3.10 COD versus distance x for different values of strip width d with

frequency ks = 0.5.
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In addition, Figs.3.9 and 3.10 have been plotted to compare the influence of

material constants of orthotropic mediums on COD taking various combinations of

strip width d and dimensionless frequency ks. Here, COD is decreasing with distance

x like previous Figs. of COD. Fig.3.9 describes nature of COD taking two different

orthotropic medium (Type-I and Type-II) for three values of dimensionless frequency

ks = 0.5, 1.0, 1.5 with fixed strip width d = 1.5. We can conclude that COD values

are higher for Type-I medium than for Type-II medium when strip width d remains

the same.

Next, Fig.3.10 describes nature of COD taking both orthotropic medium (Type-I

and Type-II) for three distinct strip width d = 0.80, 0.84, 0.88 with fixed dimension-

less frequency ks = 0.5. It can conclude from Fig.3.10 that COD values are higher

for Type-I medium than for Type-II medium when frequency ks is kept constant.

So, the values of COD are changing considerably for different orthotropic medi-

ums. Therefore, elastic constants of orthotropic mediums have admit a remarkable

influence upon the values of COD.

• Conclusion

Stress analysis of a crack on the edge of an orthotropic strip with finite width

subject to anti-plane shear wave propagation has been executed in this formulation.

Abel’s transform technique is utilized to solve the mixed boundary value problem

by converting it into dual integral equations and then second kind integral equation

of Fredholm type. To illustrate the influence of material orthotropy, several graphs

have been presented for SIF and COD with varying different geometric parameters.

It was observed that the strip width and geometric parameter have a revealing

effect on SIF and COD. So, SIF and COD may be kept in control surveiling these

geometric parameters so that crack propagation can be arrested to avoid damage to

solids. This theoretical analysis is formulated to address characterization, structural

design analysis, and optimization of composite materials with pre-existing cracks.
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3.2 Interaction of shear waves with semi-infinite moving

crack inside of a orthotropic media

• Introduction

Orthotropic material being a composite material have unique mechanical prop-

erties since they have three orthogonal planes of symmetry. Some of this material

like Prepreg, Carbon fiber, Epoxy has found in high-performance structural appli-

cations such as designing of aircraft, aerospace, corrosion- resistance equipment,

marine, load-bearing components for vehicles, metal and polymer-forming process

[A.K. Kaw (2006), Vasiliev and Morozov (2018)]. Their rigorous anisotropic prop-

erties in addition to the presence of moving cracks have a strong application in

Seismology. Area inside the Earth and the geological structure adjacent to surface

are considered as a composite material formed by rocks, crystalline minerals, etc.

which is highly anisotropic. When an earthquake arises, waves travel across different

anisotropic parts of the earth. Crack started to propagate in different modes (II,

III, or in a mixture of mode of II and III) due to sliding motion as a consequence of

Earthquake [B. K. Broberg (1999)]. Semi-infinite moving crack is acknowledged as a

well-known failure model within orthotropic composites. So, it intrigued significant

interest to develop methods for describing the behavior of orthotropic bodies with

semi-infinite moving cracks under the influence of shear wave. Hence, this model

may be adopted in several field like construction, seismic, geology, and earthquake

disaster prevention as well [Mandal and Mandal (2022), Gupta and Bhengra (2017)].

Investigation of composites with semi-infinite moving cracks under shear wave inci-

dence are very little due to its abundance of parameters which may effect phenomena

of propagation of crack. So, in order to ensure safe and robust structures, it has

become crucial to analyze the failure of composites caused by propagation of crack.

The study of moving semi-infinite crack model based on Weiner-Hopf technique

has been described first by E. H. Yofee (1951). The solution of semi-infinite crack

problem located inside an infinitely isotropic strip with finite width considering

Published in Waves in Random and Complex Media, pp. 1-17, 2021,
DOI:10.1080/17455030.2021.1987583.
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displaced and clamped boundary perpendicular to the crack was given by W. H.

Knauss (1966) where Weiner-Hopf technique was employed to find stress intensity

factor. Later, that work has been modified by J. R. Rice (1967). A method was

proposed by F. Nilsson (1972, 1973) using the Weiner-Hopf technique to solve a semi-

infinite crack propagating inside an isotropic strip. After that, this same method

was used by Atkinson and Popelar (1979), H. G. Georgiadis (1986), Kousionelos and

Williams (1982) in their respective solutions.

Although traveling cracks in elastic material under longitudinal wave was intro-

duced first by McClintock and Sukhatme (1960), later in many engineering smart

structures such as the couple stress elastic materials, orthotropic thin plate, elastic

plate carrying an electric current, semi-infinite cracks appeared [Thomson and Abra-

hams (2007), Abraham and Lawrie (2012), Morini et al. (2014)]. An interfaced crack

(mode-III) located between two distinct layers of equal thickness has been studied

by X. F. Li (2001). Wang et al. (2001) discussed the process to find dynamic SIF of

a crack (semi-infinite) in orthotropic solid under the impact of concentrated shear

load. Using Laplace and Fourier transformation method, he problem was reduced to

the solution and finally, the Weiner-Hopf technique has been employed to find SIF.

De and Patra (1990), Das and Ghosh (1992), Ma et al. (2005) studied the dynamic

griffith crack behavior in isotropic and orthotropic elastic materials.

Wu et al. (2002) introduced the analytical expression for complex SIF and

release rate of energy concerning a semi-infinite interfacial crack sandwiched by two

distinct elastic strips using conformal mapping technique. Sarkar et al. (1991) an-

alyzed scattering of the anti-plane shear wave upon a crack (semi-infinite) moving

uniformly across the interface between two distinct semi-infinite medium. Solving

the boundary value problem with the help of Fourier transform and Weiner-Hopf

technique, they found that SIF is influenced by the motion of the crack expansion,

the incidence angle formed by the incoming wave, and properties of elastic material.

An effective approach for finding fields of stress and displacement along interface

between two dissimilar orthotropic mediums containing a crack moving under a dy-

namic loads (mode I, mode II) has been investigated by K. H. Lee (2000). Analysis

of four coplanar moving Griffith cracks subject to anti-plane stress inside an infi-

nite strip has been treated by Sarkar et al. (1996). A moving semi-infinite crack

(mode III) located between two sandwiched layers that are orthotropic has been
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solved analytically by Singh et al. (2008). Hongmin et al. (2008) considered the

investigation of semi-infinite crack within an infinite orthotropic functionally graded

medium. They solved the problem involving two impact loads (opening mode, in-

plane shear mode). Basak et al. (2017). addressed the problem of semi-infinite crack

moving, considering a orthotropic strip with boundaries displaced normally. Here,

applying Fourier transformation method the boundary value problem was reduced

to the well-known Weiner-Hopf equation to be solved in asymptotic behaviour to

obtain the physical quantities like stress intensity factor and crack opening displace-

ment. Fracture analysis regarding a semi-infinite crack located between two distinct

orthotropic composite materials was treated by Junlin and Shaoqin (2010) using

the composite complex function method. Different moving cracks in a piezoelectric

strip and layers have been analyzed by Bagheri et al. (2016) and Nourazar and

Ayatollahi (2016). Propagation of anti-plane moving griffith crack was solved by Hu

and Li (2005) and Jin et al. (2003).

In most of the above studies, the problems were assumed on anisotropic and

isotropic media by different ( finite or semi-infinite ) moving crack. Very recently, P.

Mandal (2022) studied the problem of semi-infinite crack (mode-III) moving inside

the semi-infinite isotropic medium considering an isotropic case. To date, how-

ever, fracture analysis for the case of semi-infinite moving crack inside semi-infinite

orthotropic media has not received much attention. Therefore, in the current inves-

tigation, the emphasis is on finding the theoretical and analytical nature of a moving

semi-infinite crack at a finite depth from the surface of a orthotropic medium in-

fluenced by shear load applied on the surface. Fourier transformation method is

applied to convert the mixed boundary value type problem for obtaining solution to

the well-known Weiner-Hopf equation. Further, the expressions for SIF and COD

by solving the Weiner-Hopf equation have been derived asymptotically. The results

show that the corresponding SIF and COD are influenced by crack propagation ve-

locity, layer width, and material constants. The discussion about these quantities

of physical interest (SIF, COD) ensures the arrest of crack propagation by moni-

toring geometric parameters of the orthotropic material. Our prime objective is to

reduce damages in buildings fracture, geophysical interpretation of seismic waves by

controlling the onset of crack growth within a structure.
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• Formulation of the Problem

We consider a horizontal semi-infinite moving crack with crack tip coincides

with the origin of the moving coordinates. Let (X, Y, Z) be the fixed cartesian

co-ordinates which are the axes of symmetry of the orthotropic material. Then the

crack position is −∞ < X < 0, Y = 0. We assume that the crack is propagating

with a constant velocity V along the positive X -axis parallel to the surface of the

semi-infinite orthotropic medium at a depth ‘d’ from the surface. So, at any time t,

the position of the crack is −∞ < X < V t, Y = 0 (Fig.3.11).

Since the crack motion is maintained under anti-plane shear mode, the dis-

placement vector takes the form (0, 0, UZ). Here, UZ is the only nonvanishing

out-of-plane component of displacement in the Z-direction presented as

UZ = UZ(X, Y, t)

from which relation between nonzero shear stress and displacement component for

orthotropic materials (mode-III) are as follows

Fig.3.11 Semi-infinite crack moving inside of a semi-infinite orthotropic

media
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τXZ = C55
∂UZ
∂X

,

τY Z = C44
∂UZ
∂Y

,

(3.2.1)

where C44 and C55 represent the principal shear moduli directed along X and Y

−axes of the orthotropic material respectively. The anti-plane equation of motion

requires the gratification of the following wave equation for orthotropic medium [G.

C. Sih (1981)],

C55
∂2UZ
∂X2

+ C44
∂2UZ
∂Y 2

= ρ
∂2UZ
∂t2

(3.2.2)

where, ρ is the material density. It is convenient to define the constant

β =

√
C44

C55

while the SH-wave velocity of orthotropic material designated by CS, is

CS =

√
C55

ρ

so that Equation (3.2.2) can be cast into the form

∂2UZ
∂X2

+ β2∂
2UZ
∂Y 2

=
1

C2
S

∂2UZ
∂t2

(3.2.3)

To make the crack stationary, a moving framework x = X − V t, y = Y

(Galilean transformation) has been introduced which reduces the number of inde-

pendent variables to the same as for static deformations. Therefore the displacement

Equation (3.2.3) in the moving coordinate system (x, y, z) become

G2∂
2uz
∂x2

+
∂2uz
∂y2

= 0 (3.2.4)

where G2 = 1
β2 (1 − V 2

C2
S
), V is the crack velocity, and uz(x, y) = UZ(X, Y, t) is the

displacement along the moving coordinate z.
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We may also transform the moving coordinates simply by replacing X and Y

in Equation (3.2.1) by x and y, respectively and UZ by uz. The mixed boundary

conditions on and outsides the crack for y = 0 are given by

τyz(x, 0) = 0, x < 0 (3.2.5)

uz(x, 0) = 0, x > 0 (3.2.6)

Stress and displacement across the surface y = d are

τyz(x, d) = 0, −∞ < x <∞ (3.2.7)

uz(x, d) = uz0 , −∞ < x <∞ (3.2.8)

where uz0 is constant displacement applied at the surface boundary y = d. For

applying the Weiner-Hopf technique, we consider a different set of boundary con-

ditions by superimposing a constant load p0 in the original system which does not

affect the value of SIF obtained by solving the modified problem. The new boundary

conditions are (Fig.3.12)

τyz(x, 0) = p0, x < 0 (3.2.9)

uz(x, 0) = 0, x > 0 (3.2.10)

τyz(x, d) = 0, −∞ < x <∞ (3.2.11)

uz(x, d) = 0, −∞ < x <∞ (3.2.12)

The above two problems are identical for a particular value of p0. For generalized
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plane stress problems, the appropriate value of p0 is given by (−C44uz0
d

). The com-

plete procedure to find the value of p0 has been elaborated in the work of Georgiadis

and Papadopoulos (1988).

To proceed for the solution, we introduce the standard definition of complex

Fourier transform pair as

ḡ(ξ, y) =
1√
2π

∫ ∞

−∞
g(x, y)eiξxdx (3.2.13)

and

g(x, y) =
1√
2π

∫ ∞

−∞
ḡ(ξ, y)e−iξxdξ (3.2.14)

where ξ = η+ iγ, is to be understood as a complex variable in the Fourier transform

plane, η and γ being the real and imaginary parts of the complex variable ξ.

Fig.3.12 Transformed geometry of the semi-infinite crack

According to Nilsson (1973), the boundary condition (3.2.9) in lieu of constant

load p0 can be written with a slight modification as follows

τyz(x, 0) = p0e
δx, x < 0 (3.2.15)
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where δ > 0, which is a very small quantity and tending to zero.

Applying the Fourier transform, the boundary conditions (3.2.10) and (3.2.11) will

become

τ̄yz(ξ, d) = 0 (3.2.16)

ūz(ξ, d) = 0 (3.2.17)

After applying the Fourier transform on the variable ξ the solution of the Equation

(3.2.4) is obtained as

ūz(ξ, y) = A1(ξ) e
−Gξy + A2(ξ) e

Gξy, 0 ≤ y ≤ d

= A3(ξ) e
Gξy, −∞ < y ≤ 0

(3.2.18)

provided that the crack velocity (V ) is less than the shear wave velocity (CS) of the

material. Here ūz(ξ, y) be the Fourier transform of displacement component uz(x, y)

and A1(ξ), A2(ξ), A3(ξ) are unknown functions of the transformed variable ξ which

are not independent.

Shear stress now becomes

τ̄yz(ξ, y) = C44Gξ[A2(ξ)e
Gξy − A1(ξ)e

−Gξy], 0 ≤ y ≤ d

= C44A3(ξ)Gξe
Gξy, −∞ < y ≤ 0

(3.2.19)

• Solution Procedure

Let us introduce two unknown functions for determining the complete solution

by Weiner -Hopf method

τyz(x, 0) = r(x), x > 0, (3.2.20)

uz(x, 0) = s(x), x < 0, (3.2.21)



3.2 Interaction of shear waves with semi-infinite moving crack inside of a
orthotropic media 80

By taking both sides Fourier transformation of Equations (3.2.20) and (3.2.21), we

obtain

r̄+(ξ) =
1√
2π

∫ ∞

0

r(x)eiξxdx, (3.2.22)

s̄−(ξ) =
1√
2π

∫ 0

−∞
s(x)eiξxdx, (3.2.23)

where the (+) and (−) subscript denote that the functions are analytic above or

bellow a certain line in the complex ξ − plane.

The functions r̄(x) and s̄(x) are bounded at infinity as the stress and displacements

are tending to zero at infinity which is obvious from the physical nature of the

problem. So we assume the following bounds

|r̄(x)| < Rx−lr , as x→ ∞ (3.2.24)

|s̄(x)| < S|x|−ls , as x→ −∞ (3.2.25)

where lr > 0, ls > 0, R > 0 and S > 0. Here R and S are finite. Now it can be shown

that the functions r̄+(ξ) and s̄−(ξ) are analytic for γ ≥ 0 and γ ≤ 0 respectively.

Making use of the boundary conditions (3.2.9) and (3.2.10) with the help of the

Equations (3.2.22) and (3.2.23), we get a pair of Equations as follows

τ̄yz(ξ, 0) = r̄+(ξ) +
p0√

2π(δ + iξ)
(3.2.26)

ūz(ξ, 0) = s̄−(ξ) (3.2.27)

Now Equation (3.2.26) can be rewritten as

r̄+(ξ) = τ̄yz(ξ, 0)−
p0√

2π(δ + iξ)
(3.2.28)
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With the help of boundary condition (3.2.17), we get

A2(ξ) = −A1(ξ)e
−2Gξd (3.2.29)

At y = 0, the solutions are

ūz(ξ, 0) = A1(ξ) + A2(ξ), 0 ≤ y ≤ d (3.2.30)

and

ūz(ξ, 0) = A3(ξ), −∞ ≤ y ≤ 0 (3.2.31)

Equation (3.2.30) in view of(3.2.27) and (3.2.29), assumes the form

A1(ξ) =
s̄−(ξ)

1− e−2Gξd
(3.2.32)

From Equations (3.2.27) and (3.2.31), we obtain

A3(ξ) = s̄−(ξ) (3.2.33)

Substitution of the values of stress from (3.2.19) into the Equation (3.2.28) and

then using (3.2.26) and (3.2.32) renders the well-known Weiner-Hopf Equation of

the unknown functions as r̄+(ξ) and s̄−(ξ)

r̄+(ξ) = T (ξ)s̄−(ξ)−
p0√

2π(δ + iξ)
(3.2.34)

where the kernel T (ξ) is given by

T (ξ) =
−C44Gξ(1 + e−2Gξd)

1− e−2Gξd
(3.2.35)



3.2 Interaction of shear waves with semi-infinite moving crack inside of a
orthotropic media 82

• Solution of the Weiner- Hopf Equation

In order to solve the Equation (3.2.34), it is necessary to split the kernel T (ξ) in

the following form [B. Noble (1958)]

T (ξ) = T+(ξ)T−(ξ) (3.2.36)

where the functions T+(ξ) and T−(ξ) both are analytic and non-zero for γ > γ1 (γ1 <

0) and γ < γ2 (γ2 > 0).

Consequently, Equation (3.2.34) by virtue of (3.2.36) becomes

r̄+(ξ)

T+(ξ)
= T−(ξ)s̄−(ξ)−

p0√
2π(δ + iξ)T+(ξ)

(3.2.37)

The last term of Equation (3.2.37) has been decomposed as a sum of two analytic

functions given by

p0√
2π(δ + iξ)T+(ξ)

= D+(ξ) +D−(ξ) (3.2.38)

where the functions D+(ξ) and D−(ξ) can be obtained as

D+(ξ) =
p0√

2π(δ + iξ)

[
1

T+(ξ)
− 1

T+(iδ)

]
(3.2.39)

D−(ξ) =
p0√

2π(δ + iξ)T+(iδ)
(3.2.40)

We have checked the analyticity of the functions D+(ξ) and D−(ξ) and these two

functions are non-zero in γ > γ1 and γ < δ respectively. Rearranging the Equation

(3.2.37), with the help of (3.2.38), we get

r̄+(ξ)

T+(ξ)
+D+(ξ) = T−(ξ)s̄−(ξ)−D−(ξ) (3.2.41)

From Equation (3.2.41), it is observed that the region of analyticity of the

functions r̄+(ξ), s̄−(ξ), T+(ξ), T−(ξ), D+(ξ) and D−(ξ) are γ ≥ 0, γ ≤ 0, γ >

γ1 (γ1 < 0), γ < γ2 (γ2 > 0), γ > γ1 (γ1 < 0) and γ < δ respectively. The left side
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and the right side of the Equation (3.2.41), both are analytic at the region of the

upper half-plane γ ≥ 0 and the lower half-plane γ ≤ 0 where δ(> 0) is a very small

quantity. The common part of analyticity is the line γ = 0. The Equation (3.2.41) is

analytic and single-valued in the whole complex ξ− plane by analytic continuation.

By considering the large values of ξ, the functions T+(ξ) and T−(ξ) tend to be ξ
1
2

and the functions r̄+(ξ) and s̄−(ξ) will be bounded. Now we consider both sides of

the Equation (3.2.41) equal to F (ξ). This function is analytic and the function F (ξ)

is tending to ξ−
1
2 for large value of ξ in the upper half-plane γ ≥ 0. Moreover using

the same arguments on the right-hand side of the Equation (3.2.41) is analytic and

tending to ξ
1
2 for large value of ξ in the lower half-plane γ ≤ 0. It can be culminated

that the function F (ξ) is identically zero by the extended Liouville’s theorem.

F (ξ) = 0 (3.2.42)

Now utilizing (3.2.39− 3.2.41), the functions of interest can be found from (3.2.42)

as

r̄+(ξ) =
p0√

2π(δ + iξ)

[
T+(ξ)

T+(δ)
− 1

]
(3.2.43)

and s̄−(ξ) =
p0√

2π(δ + iξ)T+(iδ)T−(ξ)
(3.2.44)

So we may take δ → 0 for constant loading and consequently the above expressions

become

r̄+(ξ) =
p0√
2πiξ

[
T+(ξ)

T+(0)
− 1

]
(3.2.45)

and s̄−(ξ) =
p0√

2πiξT+(0)T−(ξ)
(3.2.46)

Nilsson (1972) introduced a process where SIF can be obtained by only knowing

the values of T (ξ) for very large and small values of ξ.
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After algebraic manipulation, we get the following asymptotic values of the kernel

T (ξ):

lim
ξ→∞

T (ξ)

ξ
= −C44G (3.2.47)

and

lim
ξ→0

T (ξ) = −C44

d
(3.2.48)

The Equations (3.2.45) and (3.2.46) can be written for large values of ξ as

lim
ξ→∞

r̄+(ξ) = lim
ξ→∞

p0√
2πiT+(0)ξ

1
2

T+(ξ)

ξ
1
2

(3.2.49)

lim
ξ→∞

s̄−(ξ) = lim
ξ→∞

p0√
2πiT+(0)ξ

3
2

ξ
1
2

T−(ξ)
(3.2.50)

Taking inverse fourier transform on (3.2.49) and (3.2.50) with the help of

Equations (3.2.47) and (3.2.48), we finally obtain the following expressions for the

unknown functions

lim
x→0+

r(x) = −p0

√
Gd

π
x−

1
2 (3.2.51)

lim
x→0−

s(x) = −p0

√
d

πC2
44G

(−x)
1
2 (3.2.52)

From the definition of the function r(x), Equation (3.2.51) represents distribution

of the shear stress component τyz along the x−axis just outside the crack and the

structure of the shear stress component in Equation (3.2.51) reveals a square root

singularity at the crack tip which is very much expected in the field of Fracture

Mechanics. Furthermore, the Equation (3.2.52) represents the displacement uz in
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the vicinity of the crack tip. This quantity known as Crack Opening Displacement

(COD) is also important in view of the physical nature of the crack.

• Quantities of Physical Interest

The quantity that reveals state of stress (SIF) at the crack tip, denoted by KIII

is defined by

KIII = lim
x→0+

√
2πxτyz(x, 0) (3.2.53)

In this case, the SIF can be found as

SIF = KIII = −p0
√
2Gd (3.2.54)

Therefore, the SIF of the original problem (normalized with respect to uz0) is given

by

SIF = KIII = C44

√
2G

d
(3.2.55)

Next the Crack Opening Displacement (COD) is defined by

COD = uz(x, 0
+)− uz(x, 0

−) (3.2.56)

In this problem , the COD can be written as

COD = − 2p0

√
d

πC2
44G

(−x)
1
2 (3.2.57)

Therefore, COD of the original problem (normalized with respect to uz0) is

COD = 2

√
1

πGd
(−x)

1
2 (3.2.58)

• Numerical Results and Discussion

Analytical expressions need to be translated into numerical solutions for bet-

ter understanding of the nature of the physical quantities in the light of relevant
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parameters. The normalized SIF (KIII) and normalized COD with respect to uz0

depend on crack velocity (V ), crack depth (d) and material constants (C44, C55, ρ)

. Therefore, the numerical solutions of (3.2.55) and (3.2.58) are facilely obtained to

show the effects of the material orthotropy on the SIF and COD by virtue of graphs.

The general theoretical upper limit [B. K. Broberg (1999)] of crack propagation

velocity is the SH-wave velocity (CS) for mode III cracks i.e. 0 < V < CS. In

particular, SIF at the crack tip asymptotically vanishes when V → CS.

Material constants (n unit GPA) and densities (in unit gm/cm3 ) of two orthotropic

materials are provided [J. G. Yu (2011)] in Table 3.2.
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Fig.3.13 Variation of anti-plane shear SIF with

crack velocity V for Type - I material.
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Table 3.2: Engineering elastic constants of two materials

Name of the material C44 C55 ρ

Type - I Prepreg 7.8 7.8 1.595

Type - II Carbon fiber 6.15 6.15 1.5

The velocity of SH-wave for Type-I and Type-II material are CI
S = 2.2114 cm/µs

and CII
S = 2.0248 cm/µs. Fig.3.13 and Fig.3.14 show the variation of the normalized

SIF (KIII/uz0) against crack velocity (V in cm/µs) for various values of the crack

depth d = 2, 4, 6 cm. It is seen that with the increase in the value of V , the stress

intensity factor decreases and finally tends to zero as V approaches to SH-wave

velocity CS.
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Fig.3.14 Variation of anti-plane shear SIF with crack velocity V for Type -

II material.

The graph is not valid for super SH-wave velocities (V > CS) as CS is the

theoretical upper limit of crack propagation velocity V . In addition, the effect
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of crack depth d on the SIF is also shown in Figs.3.13-3.14. The increase in the

crack depth d induces the decrement in stress intensity factor for all values of crack

velocity (V ). This represents the physical significance of the expression of SIF

from Equation (3.2.55) which can be justified with the fact that the impact of the

constant displacement at the crack tip region becomes lower as the crack depth

becomes higher.
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Fig.3.15 Variation of COD with distance x for Type - I material (fixed crack

velocity V = 0.1 in cm/µs.)

Also, it is observed from Fig.3.13 and Fig.3.14 that the values of SIF of Type-I

material are greater than the values of Type-II material. So the peak value of KIII

can either be raised or lowered by varying the material constants. As the SIF and the

toughness of the material are directly proportional to each other, fracture toughness

of Type-I material is more than Type-II material.

Our primary motivation in fracture mechanics is to resist the process of propaga-

tion of fracture. When SIF at the crack tip region exceeds a particular limit known
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as critical SIF, it leads to failure of the composite which involves the cracking of

the orthotropic material at relatively high velocities known as crack propagation.

So, we want to control the value of SIF, so that SIF can’t exceed the critical SIF.

For this reason, by varying different geometric parameters (like crack velocity, the

width of layer), we may control the magnitude of SIF which helps to prevent crack

growth leading to a safe structure. For this purpose, we observe the cases when SIF

is decreasing (Figs.3.13− 3.14). If we observe the case when SIF is increasing, then

SIF may exceed critical SIF that leads to crack growth which is not expected in a

practical situation. Therefore, these results can be used to control the geometric

parameters of these materials concerning for the magnitude of SIF which will help

to prevent the expansion of the semi-infinite crack.

-0.010 -0.008 -0.006 -0.004 -0.002 0.000
0.00

0.02

0.04

0.06

0.08

0.10
 d = 2
 d = 4
 d = 6

Negative X-axis

C
O
D

Fig.3.16 Variation of COD with distance x for Type - II material

(fixed crack velocity V = 0.1 in cm/µs.)
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From all figures of COD ( Figs.3.15− 3.18), it is observed that the value of COD

decreases as we approach near the crack tip along the negative x-axis and finally

wiped out at the crack tip i.e. origin. This result is very much agreed with the

physical nature of the crack.
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Fig.3.17 Variation of COD with distance x for Type - I material

(fixed crack depth d = 2 cm).

Figs.3.15 and 3.16 illustrate the effect of crack depth d (d = 2, 4, 6 cm) on the

COD for fixed value of V = 0.1 cm/µs and it is observed that COD decreases with

the increasing value of d which signifies the Equation (3.2.58) physically.
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Fig.3.18 Variation of COD with distance x for Type - II material

(fixed crack depth d = 2 cm).

Again, Figs.3.17−3.18 show the effect of crack velocity V (V = 0.05, 0.10, 0.15 cm/µs)

on the COD for fixed value of crack depth d = 2 cm. It is seen that COD increases

with the increasing value of V subjected to same crack depth. Further investigation

disclosed that the variation of crack opening displacement is found to be prominent

for different orthotropic materials.

Further, semi-infinite mode-III crack inside the semi-infinite orthotropic medium

has been considered following the model developed by P. Mandal (2022) in isotropic

medium.
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Fig.3.19 Variation of anti-plane shear SIF with crack velocity V for

Isotropic medium.

For validation of this work, we converted this orthotropic medium problem to

isotropic medium problem by putting C44 = C55 = µ, where µ is shear modulus

of the isotropic material and we deduce the following expressions

β = 1, shear wave velocity = CS =

√
µ

ρ

G2 = (1− V 2

C2
S

)
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Fig.3.20 Variation of COD with distance x for Isotropic medium

(fixed crack velocity V = 0.1 cm/µs.)

The above expressions and governing Equation (3.2.4) are identical to those

obtained by the work of P. Mandal (2022) for isotropic elastic medium. Also, it is

found that the corresponding SIF and COD for the Type - I material (copper) are

identical to that of P. Mandal’s (2022) findings. Henceforth, the obtained graphs

represented in Figs.3.19 − 3.21 are of similar with Figs.3, 5a, 5b of the paper of P.

Mandal (2022).
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Fig.3.21 Variation of COD with distance x for Isotropic medium

(fixed crack depth d = 2 cm).

• Conclusion

The problem of a moving semi-infinite crack in semi-infinite orthotropic medium

has been investigated subject to SH-wave incidence. The mixed boundary value

problem has been reduced to the standard Wiener-Hopf equation by applying Fourier

transformation. Due to the complex nature of the kernel, the Weiner-Hopf equation

has been solved only for the asymptotic case which is sufficient to obtain SIF and

COD. By plotting the numerical values of SIF and COD, the dependency of the

material constants (C44, C55, ρ) crack propagation velocity (V ) as well as crack

depth (d) on SIF and COD have been shown by virtue of graphs. The predicted



3.2 Interaction of shear waves with semi-infinite moving crack inside of a
orthotropic media 95

behavior of SIF and COD graphs were similar and in good agreement with available

literature data.

Based on the numerical calculations outlined above, the following conclusions

have been established.

1) The values of SIF and COD can be controlled and arrested within a certain

range by varying the above-mentioned parameters to avoid the process of propaga-

tion of fracture if the manuscripted model is considered practically for an experiment.

2) The material properties are also playing a vital role here. Two types of or-

thotropic materials have been used here to obtain the above SIF and COD graphs. It

has been concluded that Type-I material is elastically harder than Type-II material.

Damage of solid material, earth’s surface building is subjected to the propagation

of cracks due to seismic hazards, earthquake which is a big challenge in the fields

of construction engineering and geophysics as well. The proposed model offers a

useful means by which mechanical design of large composite structures can be done

to prevent earthquake disasters.
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Chapter 4

Impact of a torsional load on a penny-shaped

crack sandwiched between two elastic layers

embedded in an elastic medium

• Introduction

As composite materials render advantages such as low weight, strength ratio,

corrosion resistance, and high fatigue strength, they have become an essential com-

modity in modern times. There are many composite materials that are used in the

manufacture of aircraft structures, golf clubs, medical equipment, electronic packag-

ing, space vehicles, and homes construction. Increasing commercial applications of

composite materials have also been observed. Nonhomogeneous, multiphased, and

anisotropic are the characteristics of advanced composite materials. It complicates

stress analysis for fracture, especially if the loading is dependent on time and the

crack grows at sharp edges.

It is important to investigate the effect of cracks and inclusions on the performance

of engineered composite systems. The dynamic problem of torsional impact is one

of the important part in view of construction technology and fabrication process.

The crack is mainly generated by impact of torsional load. The problem of sudden

Published in Acta Mechanica, Vol. 229(4), pp. 1759-1772, 2018, DOI:10.1007/s00707-017-
2073-3.
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impact of torsional load in half-space are investigated by M. L. Ghosh (1964), G.

Eason (1966), R. Shail (1970). Shibuya (1975) analyzed the impact of torsion on a

thick elastic plate.

Sih and Chen (1980) developed an effective method for finding dynamic stresses

in layered composites with cracks. Keer and Jabali (1974) solved the problem of

oscillation due to torsion attached to a layer bonded to an half-space. The concept

of penny-shaped crack has been first considered in 1970’s by Arin and Erdogan

(1971, 1972), Kassir and Bregman (1972), and E. P. Chen (1979). In these studies,

some numerical examples are discussed to find stress intensity factors and the strain

energy release rate at the edge of the crack with different material properties Within

a power low infinite solid medium, the stress analysis for cracks like penny-shaped

and plane strain have been studied by He and Hutchinson (1981). Ueda et al.

(1983, 1984) also analyzed the impact of torsion upon a penny-shaped interface

crack . In both the cases, with the help of Laplace and Hankel transformation, the

model is reduced to the solution of a pair of dual integral equations. An integral

transformation method has been applied to solve the equations and the result has

been expressed in terms of the second kind integral equations of Fredholm type.

Applying numerical method of inverse Laplace transform, the time dependent solu-

tion has been obtained and depending upon time and elastic constants of medium

the values of stress intensity factor (SIF) have been calculated. The mechanics

of interface crack (penny-shaped) between different nonhomogeneous layers and two

different transversely isotropic half-spaces a influenced by axisymmetric torsion have

been studied by Saxena and Dhaliwala (1990, 1993). Das et al. (1998) determined

the stress intensity factors for a crack at the interface of an orthotropic half-plane

connected with different orthotropic layer having punch. In this study, simultaneous

integral equations was derived with help of chebyshev polynomials. In a FGM inter-

laying between different half-spaces, Li and Weng (2002) solved the dynamic fracture

problem using a penny-shaped crack as a model. Menshykov et al. (2008) derived

effect of tension-compression wave which are incident normally to an penny-shaped

crack and due to time-harmonic waves, Mykhaskiv and Khay (2009) discussed state

of stress of rigid disc interacting with penny-shaped cracks. Lee and Tran (2010)

considered interaction of a penny-shaped crack, inclusions, and voids. An analysis



4 Impact of a torsional load on a penny-shaped crack sandwiched between two
elastic layers embedded in an elastic medium 99

of the fracture of a half-space compressed by a penny-shaped crack at a short dis-

tance from the surface has been presented by M.V. Dovzhik (2012). In his study,

D.-S. Lee (2013) examined stress analysis for a penny-shaped crack that appears in

a plate effected by uniform shear. Recently Basu and Mandal (2016) addressed the

nature of how a penny-shaped crack situated in a layer bonded between two similar

half-spaces is affected by a torsional impact load.

In most of the above discussed literature, the problem due to impact of torsion

upon penny-shaped crack within a layer bonded to a half-space, a non-homogeneous

layer at the interface of two different half-planes, within an unbounded thermo-elastic

medium or in a layer bonded by two similar half-space has been considered. But the

torsional problem of penny-shaped crack bonded by two isotropic layers sandwitched

by another isotropic media has not been treated yet. So in this investigation, impact

caused by torsion upon a penny-shaped crack bonded by two dissimilar isotropic lay-

ers sandwitched by another isotropic media has been analyzed. With the help of

Hankel and Laplace transformations, the second kind integral equation of Fredholm

type has been derived to be solved with aid of the Fox and Goodwin (1953) tech-

nique. After taking numerical inversion of Laplace Transform, numerical values of

stress intensity factor (SIF) has been derived at the crack tip for several geometric

parameter and set of mediums to compare the bonded strength of the materials.

• Formulation of the Problem and Method of Solution

A study is made of torsional load on a penny-shaped crack with radius a which

lies between two dissimilar elastic layer each of thickness b with material properties

µ1, ν1, ρ1 (type - I) and µ2, ν2, ρ2 (type - II) in cylindrical co-ordinates (r, θ, z). This

two layers are embedded in an infinite elastic medium with properties µ3, ν3, ρ3 (type

- III) as shown in Fig.4.1. Due to the symmetry of the problem, let the load is of

magnitude σ0 which is applied suddenly at time t = 0 so that the surface on the

upper and lower sides will have an opposite movement.
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Fig.4.1 Geometry of the composite model.

In this study, uθ is the non-zero displacement component and the non-zero stress

component σθz is defined by the relation

σθz = µ
∂uθ
∂z

, (4.1)

where µ is the shear modulus of the elastic material.

The displacement component uθ satisfies the partial differential equation [G. C. Sih

(1977)]

∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

+
∂2uθ
∂z2

=
1

c2j

∂2uθ
∂t2

(j = 1, 2, 3), (4.2)

where cj =
(µj
ρj

) 1
2 is velocity of shear wave and the density of the material is ρ. In

Equation (4.2), subscripts “1”, “2” and “3” have been used to refer type-I, type-II

and type-III material respectively.

To eliminate the time variable from Equation (4.2), Laplace transform pair have
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been used which are defined as

h̄(p) =

∫ ∞

0

h(t)e−ptdt, (4.3)

h(t) =
1

2πi

∫
Br

h̄(p)eptdp, (4.4)

where Br is the Bromwich integral.

Applying Laplace transformation, the Equation (4.2) transformed to

∂2ūθ
∂r2

+
1

r

∂ūθ
∂r

− ūθ
r2

+
∂2ūθ
∂z2

=
p2

c2j
ūθ (j = 1, 2, 3). (4.5)

At the plane z = 0 the boundary condition for r ≤ a and r > a are

σ
(1)
θz (r, 0, t) = σ

(2)
θz (r, 0, t) = σ0

(r
a

)
H(t), 0 ≤ r ≤ a, (4.6)

u
(1)
θ (r, 0, t) = u

(2)
θ (r, 0, t), r > a, (4.7)

where H(t) is the Heaviside unit step function.

Also the interfaced layer z = ±b are bonded perfectly to the elastic medium. The

continuity conditions at the interface are given by

σ
(1)
θz (r, b, t) = σ

(3)
θz (r, b, t), (4.8)

u
(1)
θ (r, b, t) = u

(3)
θ (r, b, t), (4.9)

σ
(2)
θz (r,−b, t) = σ

(3)
θz (r,−b, t), (4.10)

u
(2)
θ (r,−b, t) = u

(3)
θ (r,−b, t). (4.11)
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With help of the Laplace transform, the boundary and continuity equations (4.6)−
(4.11) can be written as :

σ̄
(1)
θz (r, 0, p) = σ̄

(2)
θz (r, 0, p) =

σ0

(
r
a

)
p

, 0 ≤ r ≤ a, (4.12)

ū
(1)
θ (r, 0, p) = ū

(2)
θ (r, 0, p), r > a, (4.13)

σ̄
(1)
θz (r, b, p) = σ̄

(3)
θz (r, b, p), (4.14)

ū
(1)
θ (r, b, p) = ū

(3)
θ (r, b, p), (4.15)

σ̄
(2)
θz (r,−b, p) = σ̄

(3)
θz (r,−b, p), (4.16)

ū
(2)
θ (r,−b, p) = ū

(3)
θ (r,−b, p). (4.17)

To solve the Equation (4.5), Hankel transform has been used and the displace-

ment component in Laplace transform domain for the region I (0 < z < b), region

II (−b < z < 0), region III (|z| ≥ b) are in the following form :

ū
(1)
θ (r, z, p) =

∫ ∞

0

[A1(s, p) e
−γ1z + A2(s, p) e

γ1z]J1(sr)ds, (4.18)

ū
(2)
θ (r, z, p) =

∫ ∞

0

[A3(s, p) e
−γ2z + A4(s, p) e

γ2z]J1(sr)ds, (4.19)

ū
(3)
θ (r, z, p) =

∫ ∞

0

A5(s, p) e
−γ3(z−b)J1(sr)ds, z ≥ b, (4.20)

ū
(3)
θ (r, z, p) =

∫ ∞

0

A6(s, p) e
γ3(z+b)J1(sr)ds, z ≤ −b. (4.21)

where

γ1 = (s2 + k21)
1
2 , γ2 = (s2 + k22)

1
2 , γ3 = (s2 + k23)

1
2 ,

k1 = p/c1 , k2 = p/c2 , k3 = p/c3, (4.22)

c1 =

√
µ1

ρ1
, c2 =

√
µ2

ρ2
, c3 =

√
µ3

ρ3
.

and J1 is the 1st kind Bessel function with order one.

In Equations (4.18)− (4.21), Ai (i = 1, 2, · · ·, 6) are the constants to be found out

later. With the help of Equations (4.18)−(4.21), stress components τ̄θz are obtained
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as

σ̄
(1)
θz = −µ1

∫ ∞

0

γ1[A1(s, p) e
−γ1z − A2(s, p) e

γ1z]J1(sr)ds, (4.23)

σ̄
(2)
θz = −µ2

∫ ∞

0

γ2[A3(s, p) e
−γ2z − A4(s, p) e

γ2z]J1(sr)ds. (4.24)

and

σ̄
(3)
θz = −µ3

∫ ∞

0

γ3[A5(s, p) e
−γ3(z−b)]J1(sr)ds, z ≥ b, (4.25)

= µ3

∫ ∞

0

γ3[A6(s, p) e
γ3(z+b)]J1(sr)ds, z ≤ −b. (4.26)

Using the above expressions, the boundary conditions (4.12) and (4.13) yield

µ1

∫ ∞

0

γ1[A1(s, p)− A2(s, p)]J1(sr)ds

= µ2

∫ ∞

0

γ2[A3(s, p)− A4(s, p)]J1(sr)ds,

(4.27)

∫ ∞

0

[A1(s, p) + A2(s, p)]J1(sr)ds =∫ ∞

0

[A3(s, p) + A4(s, p)]J1(sr)ds.

(4.28)

and from the continuity conditions (4.14)− (4.17), we obtain

µ1

∫ ∞

0

γ1[A1(s, p) e
−γ1b − A2(s, p) e

γ1b]J1(sr)ds

= µ3

∫ ∞

0

γ3A5(s, p)J1(sr)ds,

(4.29)

−
∫ ∞

0

[A1(s, p) e
−γ1b + A2(s, p) e

γ1b]J1(sr)ds =

∫ ∞

0

A5(s, p)J1(sr)ds, (4.30)

−µ2

∫ ∞

0

γ2[A3(s, p) e
γ2b − A4(s, p) e

−γ2b]J1(sr)ds

= µ3

∫ ∞

0

γ3A6(s, p)J1(sr)ds,

(4.31)
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0

[A3(s, p) e
γ2b + A4(s, p) e

−γ2b]J1(sr)ds =

∫ ∞

0

A6(s, p)J1(sr)ds. (4.32)

Inverting equations (4.27)−(4.32) using inverse Hankel transformation, the following

relations are derived :

γ1[A1(s, p)− A2(s, p)] = G1 γ2[A3(s, p)− A4(s, p)], (4.33)

A1(s, p) + A2(s, p) = A3(s, p) + A4(s, p), (4.34)

γ1[A1(s, p) e
−γ1b − A2(s, p) e

γ1b] = G2 γ3A5(s, p), (4.35)

A1(s, p) e
−γ1b + A2(s, p) e

γ1b = A5(s, p), (4.36)

−γ2[A3(s, p) e
γ2b − A4(s, p) e

−γ2b] = G3 γ3A6(s, p), (4.37)

A3(s, p) e
γ2b + A4(s, p) e

−γ2b = A6(s, p). (4.38)

where G1 = µ2/µ1, G2 = µ3/µ1, G3 = µ3/µ2 .

After solving the Equations (4.33)−(4.38) forA2(s, p), A3(s, p), A4(s, p), A5(s, p), A6(s, p)

in terms of A1(s, p), the expression for constants can be written as

A2(s, p) =
(γ1 −G2 γ3
γ1 +G2 γ3

)
e−2γ1bA1(s, p), (4.39)

A3(s, p) = GA1(s, p), (4.40)

A4(s, p) =
(γ2 +G3 γ3
γ2 −G3 γ3

)
e2γ2bGA1(s, p), (4.41)

A5(s, p) =
2γ1

(γ1 +G2 γ3)
e−γ1bA1(s, p), (4.42)

A6(s, p) =
2γ2 e

γ2b

(γ2 −G3 γ3)
GA1(s, p), (4.43)

where

G =
[
1−

(γ1 −G2 γ3
γ1 +G2 γ3

)
e−2γ1b

]/G1 γ2
γ1

[
1−

(γ2 +G3 γ3
γ2 −G3 γ3

)
e2γ2b

]
.

Applying (4.18), (4.19) and (4.23) in the boundary conditions (4.13) and (4.12),
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the following dual integral equations has been deduced involving the unknown func-

tion B(s, p). ∫ ∞

0

B(s, p)J1(sr)ds = 0 , r > a, (4.44)∫ ∞

0

sP1(s, p)B(s, p)J1(sr)ds = −
σ0(

r
a
)

pµ1

, 0 ≤ r ≤ a, (4.45)

where

B(s, p) =
[{

1 +
(γ1 −G2γ3
γ1 +G2γ3

)
e−2γ1b

}
−G

{
1 +

(γ2 +G3γ3
γ2 −G3γ3

)
e2γ2b

}]
A1(s, p), (4.46)

and

P (s, p) =
γ1

[
1−

(
γ1−G2γ3
γ1+G2γ3

)
e−2γ1b

]
s
[{

1 +
(
γ1−G2γ3
γ1+G2γ3

)
e−2γ1b

}
−G

{
1 + γ2+G3γ3

γ2−G3γ3

)
e2γ2b

}] . (4.47)

To convert the dual integral Equations (4.44) and (4.45) to a second kind of Fred-

holm integral equation, the form of B(s, p) to satisfy Equation (4.44) automatically

can be considered as

B(s, p) =
4σ0 a

5
2

3µ1p (2π)
1
2

√
s

∫ 1

0

√
ηΦ(η, p)J 3

2
(saη)dη, (4.48)

where Φ(η, p) is unknown function to be determined.

Using the formula

J 3
2
(s1η) = −

√
η

s1

d

dη

{
η−

1
2J 1

2
(s1η)

}
, s1 = sa,

B(s, p) may be written like

B
(s1
a
, p
)
=

4σ0 a
2

3µ1p (2πs1)
1
2

[ ∫ 1

0

Φ1(η, p)J 1
2
(s1η)dη − Φ(1, p)J 1

2
(s1)

]
, (4.49)

where

Φ1(η, p) = η−
1
2
d

dη
[ηΦ(η, p)]. (4.50)
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When s1 is large, the expression of P
(
s1
a
, p
)
approaches to 1/G4 so that

1−G4P
(s1
a
, p
)

−→ 0 as s1 −→ ∞,

where G4 = 1 + µ1
µ2

= 1 + 1
G1

.

Now the expression of Equations (4.45) in dimensionless quantities are∫ ∞

0

s1B
(s1
a
, p
)
J1(R s1)ds1 = −σ0 a

2G4R
pµ1

+

∫ ∞

0

s1

[
1−G4P

(s1
a
, p
)]
B
(s1
a
, p
)
J1(R s1)ds1,

(R < 1)

where R = r
a
.

With the help of Equations (4.49) and using the result

∫ ∞

0

t
1
2J1(at)J 1

2
(bt)dt =

 0 , 0 < a < b,√
2
π

√
b

a
√
a2−b2 , 0 < b < a.

the above equation becomes∫ R

0

√
η√

R2 − η2
Φ1(η, p)dη

= −3πG4R2

4
+

√
πR√
2

∫ 1

0

√
ηΦ(η, p)dη

∫ ∞

0

s
3
2
1M

(s1
a
, p
)
J1(R s1)J 3

2
(ηs1)ds1

= Q(R) (4.51)

where M
(
s1
a
, p
)
= 1−G4P

(
s1
a
, p
)
,

and Q(R) = −3πG4R2

4
+

√
π

2
R
∫ 1

0

√
ηΦ(η, p)dη

∫ ∞

0

s
3
2
1M

(s1
a
, p
)
J1(R s1)J 3

2
(ηs1)ds1 .

By setting Abel’s integral as

√
ηΦ1(η, p) =

2

π

d

dη

∫ η

0

RQ(R)√
η2 −R2

dR,
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and with the help of expression (4.50), Equation (4.51) becomes

ηΦ(η, p) =
2

π

∫ η

0

R√
η2 −R2

[−3πG4R2

4
+

√
π

2
R
∫ 1

0

√
uΦ(u, p)du

×
∫ ∞

0

s
3
2
1M

(s1
a
, p
)
J1(R s1)J 3

2
(us1)ds1

]
dR, (4.52)

which can be converted by using Hankel transform in to a second kind integral

equation of Fredholm type as

Φ(η, p) +

∫ 1

0

Φ(u, p)L3(η, u, p)du = −G4η
2, (4.53)

where L3(η, u, p) = −√
ηu

∫ ∞

0

s1

[
1−G4P

(s1
a
, p
)]
J 3

2
(us1)J 3

2
(ηs1)ds1. (4.54)

• Stress Intensity Factor

For determining stress intensity factor (SIF) K1(t) from K∗
1(p), we expressed the

components of stress in the matrix layer with reference to local co-ordinates (r1, θ1)

(when r1 is very small) as following

r = a+ r1cosθ1,

z = r1sinθ1.

}
(4.55)

where x = rcosθ and y = rsinθ.

Equation (4.23) can be written as

σ̄
(1)
θz (r, 0, p) = −µ1

∫ ∞

0

sP (s, p)B(s, p)J1(sr)ds, (r > a). (4.56)

Now, letting P (s, p) −→ 1/G4 as s −→ ∞, the Equation (4.56) becomes

σ̄
(1)
θz (r, 0, p) =

4σ0
3πpG4

[ ϕ(1, p)

R
√
R2 − 1

−
∫ 1

0

√
η

R
√
R2 − η2

ϕ1(η, p)dη
]

=
4σ0

3πpG4

ϕ(1, p)

(R
√
R2 − 1)

+O(1), (R > 1). (4.57)
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Derivation of singularity requires calculation of the term |σ̄(1)
θz (r, 0, p)|. Therefore,

|σ̄(1)
θz (r, 0, p)| =

4σ0
3πpG4

ϕ(1, p)

(R
√
R2 − 1)

(R > 1)

=
4σ0

3πpG4

ϕ(1, p)

( r
a

√
r
a
− 1

√
r
a
+ 1)

(r > a)

=
4σ0

3πpG4

√
a ϕ(1, p)

( r
a

√
r1
√

r
a
+ 1)

(r > a). (4.58)

where r1 = r − a.

The formula to define stress-intensity factor in Laplace transform domain is as fol-

lowing

K∗
1(p) = lim

r→a
[ |σ̄(1)

θz (r, 0, p)|
√
r − a ]. (4.59)

Fig.4.2 Normalized stress intensity factor against time t for set-I materials

(b = 2.0)
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Fig.4.3 Normalized stress intensity factor against time t for set-II materials

(b = 2.0)

With the help of Equation (4.58), the Equation (4.59) becomes

K∗
1(p) =

2
√
2a σ0

3π G4

ϕ(1, p)

p
. (4.60)

Applying Laplace inversion method, the expression of K1(t) has been obtained as

K1(t) =
2
√
2a

3π G4

σ0
2πi

∫
Br

ϕ(1, p)

p
eptdp, (4.61)

where Br is denoted by Bromwich contour.
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• Numerical Results and Discussions

The Equation (4.53) has been solved to obtain ϕ(1, p) by the Fox and Goodwin

numerical method (1953). After solving the integral Equation (4.53), Zakian Algo-

rithm (1969, 1970) has been used for the Laplace inversion of (4.61) to find the stress

intensity factor K1(t) at the crack rim considering two dissimilar set of composite

material. Then, the value of K1(t)/σ0 has been displayed along time t for several

values of a and b. We considered the numerical values of material constants for two

sets of composite material as listed in Tables 4.1 and 4.2 [D. Roylance (1995)].

Table 4.1. Elastic constants

Set I Name of the material ρ (Density, Mg/m3) µ (Shear Modulus)

Type-I Aluminum alloy (7075-T6) 2.7 28

Type-II Brass (70Cu30Zn, annealed) 8.4 39

Type-III Nickel alloys 8.5 70

Table 4.2. Elastic constants

Set II Name of the material ρ (Density, Mg/m3) µ (Shear Modulus)

Type-I Brass (70Cu30Zn, annealed) 8.4 39

Type-II Aluminum alloy (7075-T6) 2.7 28

Type-III Nickel alloys 8.5 70
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Fig.4.4 Normalized stress intensity factor against time t for set-I materials

(b = 3.0)

Fig.4.5 Normalized stress intensity factor against time t for set-II materials

(b = 3.0)
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Fig.4.6 Normalized stress intensity factor against time t for set-I materials

(a = 2.0)

Fig.4.7 Normalized stress intensity factor against time t for set-II materials

(a = 2.0)
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Fig.4.8 Normalized stress intensity factor against time t for set-I materials

(a = 3.0)

Fig.4.9 Normalized stress intensity factor against time t for set-II materials

(a = 3.0)
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In Figs.(4.2) and (4.4), K1(t)/σ0 has been plotted against t for set - I mate-

rials and in Figs.(4.3) and (4.5) for set - II materials taking several crack radius

a (1.5, 2.0, 3.0) and thickness of layer b (2.0, 3.0). Again, K1(t)/σ0 has been plot-

ted against t in Figs.(4.6) and (4.8) for set-I materials and in Figs.(4.7) and (4.9).

for set-II materials for different layer thickness b (1.5, 2.0, 3.0) for the crack radius

a = 2.0 and a = 3.0. As t increases, SIF value first increases and reaches its max-

imum value nearly at t=0.5, then decreases to its minimum value close to t=1.0,

then reveals wave-like behavior and finally decreases with time t. In case of set-I

materials, it is found SIF to be more wavy than set-II materials. It is also seen that

for fixed b, SIF is higher for higher value of crack radius a (Figs.4.2− 4.5).

If the system of equilibrium is disturbed by applying sudden torsion, then it

reaches to maximum angular displacement with respect to equilibrium position. At

that moment, due to this displacement an internally developed reacting force act on

the material for which it move opposite direction to that of the initial position and

then again it moves to the other extreme due to inertia. Here, it is clearly identified

that at first, there is a raise in SIF values reaching to its peak value, which later

on, diminishes with time t revealing damped oscillation. This nature of SIF helps

to prevent the crack in solid to propagate. In the case concerning set-II materials,

elastic limit of those materials is higher than set-I materials. It can be concluded

that set-II materials is elastically harder than the other.

• Conclusions

A penny-shaped crack sandwiched between two different isotropic layers embed-

ded in an isotropic medium, whose propagation is arrested by calculating SIF at the

crack tip, is the main objective for this investigation. Dynamic fractures develop

when stress waves and crack interact which are seriously impeded by experimental

measurement techniques because of its inherent time dependency and it is enor-

mously difficult to measure the quantities of interest without interfering with the

process being observed here. This model of experiment can be further used in the

study of strength of these type of composite materials.
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Chapter 5

Torsional wave propagation on a penny-shaped

crack in an orthotopic layer sandwiched between

two rigid discs bonded by an orthotropic elastic

half-space

• Introduction

An orthotropic material is one with material properties that differ from each

other along three rotationally symmetric axes which are mutually orthogonal. High

anisotropy of these materials with nine elastic constants are very useful in fabrication

process. Continued works [AA. Lukyanov (2010), Swain (2017), Nath and Afsar

(2009)] have been carried out upon modeling wave propagation through layered

orthotropic materials for application in fields of non-destructive evaluation such as

geophysics, aircraft engineering, aerospace engineering, acoustics, civil engineering

etc. In fracture analysis, the response of layered composites having cracks and

inclusion is highly influenced by the orthotropic anisotropy. Our main objective

is to resist the stress initiated by controlling a physical quantity named as stress

intensity factor. In this context, taking a look at orthotropic layered structures with

Published in Waves in Random and Complex Media, 2022,
DOI:10.1080/17455030.2022.2132315.
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the presence of cracks and inclusion reveals an emerging area of research in designing

engineering structures and machines.

A wide variety of analytical and closed-form solutions for different wave propa-

gation including torsion in various anisotropic layered systems have been discussed

by many researchers such as Kumari and Sharma (2014), Chattopadhyay (2013),

Guillen-Rujano (2021), Kumari et al. (2015), Alam et al. (2018), Alvarez and Bis-

agni (2020)]. The study of impact of torsional load on several axisymmetric crack

within orthotropic strip coated FGM orthotropic was proposed by Bagherpoor and

Pourseifi (2022) using the distributed dislocation technique. Effected by a twisting

load, displacement pf crack within a half-space surface was reported by Skalsky et

al. (2013) applying the Fourier transformation technique. Investigation regarding

stresses associated with torsional study of cracks in circular bars with a piezoelectric

coating and surface cracks in semi-elliptical form within a cylindrical bar due to pure

tension through closed form is presented in papers by Hassani and Faal (2016) and

Ramezani et al. (2022) respectively. Trivedi et al. (2022) determined SIF for an

edge crack influenced by time harmonic wave in orthotropic strip and orthotropic

vertical semi-infinite strip utilizing Fourier transformation and Schmidh method.

Among the problems related to multilayered anisotropic media, Wang et al.

(2000) studied stress behaviour regarding interface crack in the shape of a penny

caused by the action of dynamic torsional load on different layers made of orthotropic

media. The impact due to torsion near a penny-shaped crack has been considered

within a strip made of transversely isotropic material by Feng and Zou (2003). Here,

the nature of stress around the crack rim has been derived employing Bessel func-

tion concerning asymptotic behavior. The impact of a sudden load caused by torsion

upon a penny-shaped crack within a isotropic layer bonded by two another elastic

half-space was considered by Basu and Mandal (2016). Erdogan and Arin (1972)

analyzed axially symmetric elastostatic problem for a penny-shaped interface crack

between an elastic layer and half-space. Stress intensity factors have been deter-

mined for a interfaced crack in the shape of a penny within two different half-space

(transversely isotropic) bonded with each other by Saxena and Dhaliwal (1990). In

all the pieces of literature mentioned above, for the purpose of obtaining the solu-

tion, mainly employing Hankel transforms, the mixed boundary type problems were

converted to dual integral equations first and then transformed to the reduction to
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second kind integral equations of Fredholm type. Behaviour of stress around a crack

in the form a penny was evaluated by Lee and Tran (2010), by Ueda et al. (1984) in

a layered composite under the torsional impact, by Li and Weng (2002) within an

FGM interlayer between two different half-spaces subject to torsional impact load,

by Saxena et al. (1993) for two dissimilar bonded elastic layers subjected to axially

symmetric torsion.

Several studies were carried out to examine the effects of stresses arised within

composites due to subsurface disk-shaped torsion (mode-III type) cracks by V. Bo-

hdanov (2015), around two coaxial cylindrical cracks by S. Itou (2013). Here, tensile

stress is applied to cracks in normal direction. Based on interaction integral method,

the SIFs for circular arc-shaped cracks in orthotropic nonhomogeneous media is de-

rived by Yu and Wang (2019).

Recently, Madani and Kebli (2019), first implemented the torsional wave propa-

gation in a composite media with two rigid discs and a cracked isotropic layer. Based

on the study above, in the context of applications of composite materials [Afsar et

al. (2008)] such as orthotropic laminates, the above types of problems may provide

a basis for designing layered composite structures. In many actual-world situations

like impresser and turbine disks, various pipes where the geometry type and pressure

are axially symmetric, composite materials have faced several types of waves and

disturbances.

Also, in the field of engineering foundation, various shapes of inclusion as circular,

strip, rectangular, and other types have been used to make the desired foundation.

To get a high level of mechanical performance like high-stiffness, lightweight phenom-

ena, flexibility, durability, etc, orthotropic materials are designed multi-directinal

laminates by combining two or more materials. So, orthotropic solids may be con-

sidered as composite material. In composite materials, crack-like flaws may be

initiated during the manufacturing process. In light of this, the stress behavior of

orthotropic composites influenced by torsional wave attains a significant field of re-

search in geomechanics as well as applied mechanics. This communication aims to

illustrate the nature of stress on geometric parameters of the assumed model for

torsional wave propagation.
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In what follows, the present article derives fracture analysis of composite or-

thotropic medium with penny-shaped crack and two circular discs subjected to the

axisymmetric torsional response. The geometry of the orthotropic composite is

modeled based on a layer with finite depth bonded by two dissimilar orthotropic

half-spaces. Hankel transform technique was utilized to obtain a set of pair of inte-

gral equations. With help of Abel’s transform technique, the set of integral equations

were expressed in terms of Fredholm integral equations of the second kind. The in-

tegral equations are solved numerically by applying the Simpson quadrature formula

to compute the stress intensity factors (SIFs) near the rims of the crack and discs.

Stress intensity factors (SIFs) have been computed considering material constants

of two different orthotropic materials as the layer (L1) and the half-spaces (L2) and

charted graphically. The grpahs reveal that the material non-homogeneity, disc size,

crack size, and layer depth have a significant influence on SIFs. The study can serve

as a guideline in controlling failure mechanisms, failure propagation, fracture tough-

ness, and the overall stress-strain behavior of composite materials. It is possible to

use the conclusions obtained as a guide to engineering practice by comparing the

hardness against failure revealed by orthotropic solids.

• Formulation of the Elasticity Problem

Schematic illustration (Fig.5.1) of a crack (radius h1) shaped like a penny is

taken into account in an orthotropic layer (L1) of thickness 2d where the media have

a symmetry along the z-axis. The orthotropic layer (L1) and half-space (L2) are

connected by two rigid discs. Two rigid discs having radius h2 are symmetrically

placed between the layer (L1) and half-space (L2) in the planes z = ±d and are

twisted by the axisymmetric torsion. The coordinate system in cylindrical polar

form (r, θ, z) yield displacement components showing a form similar to that below:

ur = 0, uθ = uθ(r, z), uz = 0.
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Fig.5.1 Geometry and notation of the problem

The governing wave equation concerning orthotropic material [Hassani et al.

(2018)] takes the form

∂2u
(j)
θ

∂ r2
+

1

r

∂u
(j)
θ

∂r
− u

(j)
θ

r2
+ C(j)∂

2u
(j)
θ

∂z2
= 0 (j = 1, 2). (5.1)

where C(j) =
C

(j)
44

C
(j)
66

, and C
(j)
44 , C

(j)
66 are orthotropic shear moduli in the radial and

circumferential direction. Throughout the manuscript, superscripts ”1”, ”2” have

been used to refer sandwiched orthotropic layer (L1), orthotropic half-space (L2),
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respectively. The nonzero component of stress tensor can be expressed as follows:

σ
(j)
θr = C

(j)
66

(∂u(j)θ
∂r

− u
(j)
θ

r

)
,

σ
(j)
θz = C

(j)
44

(∂u(j)θ
∂z

)
.

The regularity conditions at infinity are

lim
r,z→∞

u
(j)
θ (r, z) = 0,

lim
r,z→∞

σ
(j)
θz (r, z) = 0.

(5.2)

The boundary conditions regarding the formulated problem can be stated as:

σ
(1)
θz (r, 0

+) = 0, 0 ≤ r ≤ h1, (5.3)

u
(1)
θ (r, 0+) = 0, r > h1, (5.4)

u
(1)
θ (r, d−) = u

(2)
θ (r, d+) = ωr, 0 ≤ r ≤ h2. (5.5)

Also, the interfaces z = ±d between the rigid discs and orthotropic half-spaces

are bonded perfectly. So, at the interface z = ±d we find the continuity conditions

as

σ
(1)
θz (r, d

−) = σ
(2)
θz (r, d

+) = 0, r > h2, (5.6)

u
(1)
θ (r, d−) = u

(2)
θ (r, d+) = 0, r > h2. (5.7)

Application of the standard Hankel integral transform to the regularity condition

given by Equation (5.2), the solution of Equation (5.1) for the orthotropic layer

L1 (|z| ≤ d), and orthotropic half-space L2 (|z| ≥ d) can be taken as

u
(1)
θ (r, z) =

∫ ∞

0

[
E(ζ)e

− ζz√
C(1) + F (ζ)e

ζz√
C(1)

]
J1(ζr) dζ, (5.8)

and

u
(2)
θ (r, z) =

∫ ∞

0

[
G(ζ)e

− ζz√
C(2)

]
J1(ζr) dζ, (5.9)
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where J1(.) is the first kind of Bessel function of order one and C(1) =
C

(1)
44

C
(1)
66

, C(2) =

C
(2)
44

C
(2)
66

. In Equations (5.8)− (5.9), E(ζ), F (ζ), G(ζ) represents unknown functions to

be derived from boundary conditions. The expressions for stresses τθz now becomes

σ
(1)
θz (r, z) = P (1)

∫ ∞

0

ζ
[
− E(ζ)e

− ζz√
C(1) + F (ζ)e

ζz√
C(1)

]
J1(ζr) dζ, (5.10)

σ
(2)
θz (r, z) = −P (2)

∫ ∞

0

ζ
[
G(ζ)e

− ζz√
C(2)

]
J1(ζr) dζ, (5.11)

where

P (1) =

√
C

(1)
44 .C

(1)
66 , P (2) =

√
C

(2)
44 .C

(2)
66 .

• Derivation of Integral Equation

Using the above expressions, the continuity condition (5.7) yields

G(ζ) = E(ζ)eζdQ3 + F (ζ)eζdQ4 , (5.12)

where

Q3 =
1√
C(2)

− 1√
C(1)

, Q4 =
1√
C(2)

+
1√
C(1)

,

and we derived the following set of dual integral equations utilizing boundary con-

ditions Equation (5.3)− (5.6)∫ ∞

0

ζ
[
F (ζ)− E(ζ)

]
J1(ζr) dζ = 0, 0 ≤ r ≤ h1, (5.13)

∫ ∞

0

[
E(ζ) + F (ζ)

]
J1(ζr) dζ = 0, r > h1, (5.14)

∫ ∞

0

[
E(ζ)e

− ζd√
C(1) + F (ζ)e

ζd√
C(1)

]
J1(ζr) dζ = ωr, 0 ≤ r ≤ h2, (5.15)
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0

ζ
[
F (ζ)e

ζd√
C(1)

]
J1(ζr) dζ = 0, r > h2. (5.16)

The above set of dual integral equations were converted to a set of integral

equations of Fredholm type incorporating two auxiliary functions m1(x), m2(x) as

follows:

E(ζ) + F (ζ) =
√
ζ

∫ h1

0

[√
xm1(x)

]
J 3

2
(ζx) dx, (5.17)

F (ζ)e
ζd√
C(1) =

√
ζ

∫ h2

0

[√
xm2(x)

]
J 1

2
(ζx) dx. (5.18)

After solving the unknown functions, we get

E(ζ) =
√
ζ

∫ h1

0

[√
xm1(x)

]
J 3

2
(ζx) dx

−
√
ζe

− ζd√
C(1)

∫ h2

0

[√
xm2(x)

]
J 1

2
(ζx) dx,

(5.19)

F (ζ) =
√
ζe

− ζd√
C(1)

∫ h2

0

[√
xm2(x)

]
J 1

2
(ζx) dx. (5.20)

Now, Equations (5.13) and (5.15) become in the following form∫ h1

0

√
xm1(x)dx

∫ ∞

0

ζ
3
2 g1(ζ)J 3

2
(ζx)J1(ζr)dζ+∫ h2

0

√
xm2(x)dx

∫ ∞

0

ζ
3
2 g2(ζ)J 1

2
(ζx)J1(ζr)dζ = 0, r < h1,

(5.21)

and ∫ h1

0

√
xm1(x)dx

∫ ∞

0

ζ
1
2 g3(ζ)J 3

2
(ζx)J1(ζr)dζ+∫ h2

0

√
xm2(x)dx

∫ ∞

0

ζ
1
2 g4(ζ)J 1

2
(ζx)J1(ζr)dζ = ωr, r < h2,

(5.22)
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where

g1(ζ) = 1 , g2(ζ) = −2e−
ζd√
C(1)

,

g3(ζ) = e−
ζd√
C(1)

, g4(ζ) = 1− e−
2ζd√
C(1)

.

Using the following results

∫ ∞

0

ζ
1
2J2(ζr)J 3

2
(ζx)dx =

 0 ; x > r,√
2
π

x
3
2

r2
√
r2−x2 ; x < r.

and

ζJ1(ζr) =
1

r2
d

dr
[r2J2(ζr)],

the Equation (5.21) converted to Abel equation as√
2

π

∫ r

0

x2m1(x)√
r2 − x2

dx+ r2
∫ h1

0

√
xm1(x)dx

∫ ∞

0

ζ
1
2 (g1(ζ)− 1)J 3

2
(ζx)J2(ζr)dζ

+r2
∫ h2

0

√
xm2(x)dx

∫ ∞

0

ζ
1
2 g2(ζ)J 1

2
(ζx)J2(ζr)dζ = 0, r < h1,

(5.23)

which can be inverted by using Abel transform as follows

x2m1(x) =

√
2

π

d

dx

∫ x

0

r3√
x2 − r2

[
−
∫ h1

0

√
λm1(λ)dλ

∫ ∞

0

ζ
1
2 (g1(ζ)− 1)J 3

2
(ζλ)J2(ζr)dζ

−
∫ h2

0

√
λm2(λ)dλ

∫ ∞

0

ζ
1
2 g2(ζ)J 1

2
(ζλ)J2(ζr)dζ

]
dr, r < h1. (5.24)

With the help of the formula√
2

π

d

dt

∫ x

0

r3√
x2 − r2

J2(ζr)dr =
√
ζx

5
2J 3

2
(ζx),
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the Equation (5.24) is rewritten as a second kind of Fredholm integral equation in

the following form

m1(x) + x
1
2

∫ h1

0

λ
1
2m1(λ)P (x, λ)dλ+ x

1
2

∫ h2

0

λ
1
2m2(λ)Q(x, λ)dλ

= 0, r < h1,

(5.25)

where

P (x, λ) =

∫ ∞

0

ζ(g1(ζ)− 1)J 3
2
(ζx)J 3

2
(ζλ)dζ,

Q(x, λ) =

∫ ∞

0

ζg2(ζ)J 3
2
(ζx)J 3

2
(ζλ)dζ.

Following a similar type of analysis, we get another Fredholm integral equation

of the second kind from Equation (5.22) as

m2(x) + x
1
2

∫ h1

0

λ
1
2m1(λ)R(x, λ)dλ+ x

1
2

∫ h2

0

λ
1
2m2(λ)S(x, λ)dλ

=
4ω√
2π
x, 0 < x < h2,

(5.26)

where

R(x, λ) =

∫ ∞

0

ζg3(ζ)J 1
2
(ζx)J 3

2
(ζλ)dζ,

S(x, λ) =

∫ ∞

0

ζ(g4(ζ)− 1)J 1
2
(ζx)J 1

2
(ζλ)dζ.

We then introduced dimensionless variables (ξ and µ) as:

λ = h1ξ, 0 < λ < h1; x = h1µ, 0 < x < h1;

λ = h2ξ, 0 < λ < h2; x = h2µ, 0 < x < h2.

Then, Equations (5.25) and (5.26) have been multiplied by
√
2πm1(h1µ)
4h1ω

and
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√
2πm2(h2µ)
4h2ω

respectively and rewritten in terms of the dimensionless variables to ob-

tain the non-dimensional form:

M1(x) + a2µ
1
2

∫ 1

0

ξ
1
2M1(ξ)P (µ, ξ)dξ +

µ
1
2

a
1
2

∫ 1

0

ξ
1
2M2(ξ)Q(µ, ξ)dξ

= 0, µ < 1,

(5.27)

M2(x) + a
5
2µ

1
2

∫ 1

0

ξ
1
2M1(ξ)R(µ, ξ)dξ + µ

1
2

∫ 1

0

ξ
1
2M2(ξ)S(µ, ξ)dξ

= µ, µ < 1,

(5.28)

where

P (µ, ξ) = 0, Q(µ, ξ) =

∫ ∞

0

ηg2(η)J 3
2
(ηaµ)J 1

2
(ηξ)dη,

R(µ, ξ) =

∫ ∞

0

ζg3(η)J 1
2
(ηµ)J 3

2
(ηaξ)dη, S(µ, ξ) =

∫ ∞

0

η(g4(η)− 1)J 1
2
(ηµ)J 1

2
(ηξ)dη.

In the above system, we have used the following transformations:

M1(µ) =

√
2π

4h1ω
m1(h1µ), M2(µ) =

√
2π

4h2ω
m2(h2µ), a =

h1
h2
, ζ =

η

h2
, D =

d

h2
.

• The Solution Method of Integral Equations

The Fredholm integral Equations (5.27) and (5.28) have been solved by applying

Gaussian quadrature formula. Here the interval [0, 1] has been divided into T equal

sub-interval each of length 1
T
. Next, Equations (5.27) and (5.28) can be written as:

M1α +
1

Ta
1
2

µ
1
2
α

∑T

β=1
(µ

1
2
βM2βQαβ) = 0, α, β = 1, 2, ...., T

M2α +
a

5
2

T
µ

1
2
α

∑T

β=1
(µ

1
2
βM1βRαβ) +

1

T
µ

1
2
α

∑T

β=1
(µ

1
2
βM2βSαβ) = µα, α, β = 1, 2, ...., T
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with the following notations

µ = µα =
2α− 1

2T
, ξ = µβ =

2β − 1

2T
,

M1(µα) =M1α, M2(µα) =M2α, Q(µα, µβ) = Qαβ,

R(µα, µβ) = Rαβ, S(µα, µβ) = Sαβ,

Qαβ =

∫ ∞

0

ηg2(η)J 3
2
(ηaµα)J 1

2
(ηµβ)dη,

Rαβ =

∫ ∞

0

ηg3(η)J 1
2
(ηµα)J 3

2
(ηaµβ)dη,

Sαβ =

∫ ∞

0

η(g4(η)− 1)(η)J 1
2
(ηµα)J 1

2
(ηµβ)dη.

Also, the unknown functions E(ζ), F (ζ), G(ζ) can approximated from Equations

(5.12), (5.19), (5.20) as following for numerical computation:

G(η) = E(η)eηDQ3 + F (η)eηDQ4 ,

E(η) =
4h22ω√
2πT

η
1
2

∑T

α=1
µ

1
2
α

[
a

5
2M1αJ 3

2
(ηaµα)− e

− ηD√
C(1)M2αJ 1

2
(ηµα)

]
,

F (η) =
4h22ω√
2πT

η
1
2 e

− ηD√
C(1)

T∑
α=1

[
µ

1
2
αM2αJ 1

2
(ηµα)

]
.

• Quantities of Physical Interest

The stress intensity factors (SIFs) near the vicinity of the crack and near the

rim of the disc can be illustrated as follows:

Kh1 = lim
r→h+1

√
2π(r − h1) σ

(1)
θz (r, z)|z=0, (5.29)

Kh2 = lim
r→h−2

√
2π(h2 − r) σ

(1)
θz (r, z)|z=d. (5.30)

From Equation (5.10), the expression of stress across the plane z = 0 for r ≥ h1

and z = d becomes

σ
(1)
θz (r, 0) = P (1)

∫ ∞

0

ζ
3
2

[
−
∫ h1

0

x
1
2m1(x)J 3

2
(ζx)dx+

2e
−ζd√
C(1)

∫ h2

0

x
1
2m2(x)J 1

2
(ζx)dx

]
J1(ζx)dζ, (5.31)
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σ
(1)
θz (r, d) = P (1)

∫ ∞

0

ζ
3
2

[
− e

−ζd√
C(1)

∫ h1

0

x
1
2m1(x)J 3

2
(ζx)dx+

(1 + e
−2ζd√
C(1) )

∫ h2

0

x
1
2m2(x)J 1

2
(ζx)dx

]
J1(ζx)dζ. (5.32)

Using the following relation,

J1(ζχ) = −1
ζ
d
dχ
J0(ζχ),

we obtain

σ
(1)
θz (r, 0) = P (1)

∫ h1

0

x
1
2m1(x)dx

∫ ∞

0

ζ
1
2J 3

2
(ζx)J0(ζr)dζ +

2P (1)

∫ h2

0

x
1
2m2(x)dx

∫ ∞

0

ζ
3
2 e

−ζd√
C(1) J 1

2
(ζx)J1(ζr)dζ, (5.33)

σ
(1)
θz (r, d) = −P (1)

∫ h2

0

x
1
2m2(x)dx

∫ ∞

0

ζ
1
2J 1

2
(ζx)J0(ζr)dζ − P (1)

∫ h1

0

x
1
2m1(x)dx∫ ∞

0

ζ
3
2 e

−ζd√
C(1) J1(ζr)dζ + P (1)

∫ h2

0

x
1
2m2(x)dx

∫ ∞

0

ζ
3
2 e

−2ζd√
C(1) J 1

2
(ζx)J1(ζr)dζ. (5.34)

Based on the the formula Jϑ(ζ) ≃
√

2
πζ
cos(ζ − πϑ

2
− π

4
) for asymtotic behaviour

of the first kind of Bessel function for large values of ζ, we get the relations as

J 3
2
(ζx) ≃

√
2

πζx
cos(ζx− π) = −

√
2

πζx
cos(ζx),

J 1
2
(ζx) ≃

√
2

πζx
cos(ζx− π

2
) = −

√
2

πζx
sin(ζx).

Next, we use the following integral formula

∫ ∞

0

cos(ζx)J0(ζr)dζ =

{
0 , r < x,
1√

r2−x2 , r > x.

and

∫ ∞

0

sin(ζx)J0(ζr)dζ =

{
0 , r > x,
1√

x2−r2 , r < x.
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to get

σ
(1)
θz (r, 0) = −

√
2

π
P (1) d

dr

∫ h1

0

m1(x)√
r2 − x2

dx+ χ1(r), (5.35)

σ
(1)
θz (r, d) = −

√
2

π
P (1) d

dr

∫ h2

0

m2(x)√
x2 − r2

dx+ χ2(r), (5.36)

where

χ1(r) = 2P (1)

∫ h2

0

x
1
2m2(x)dx

∫ ∞

0

ζ
3
2 e

−ζd√
C(1) J 1

2
(ζx)J1(ζr)dζ,

χ2(r) = −P (1)

∫ h1

0

x
1
2m1(x)dx

∫ ∞

0

ζ
3
2 e

−ζd√
C(1) J1(ζr)dζ +

P (1)

∫ h2

0

x
1
2m2(x)dx

∫ ∞

0

ζ
3
2 e

−2ζd√
C(1) J 1

2
(ζx)J1(ζr)dζ.

Then, we obtain by integrating

σ
(1)
θz (r, 0) = −

√
2

π
P (1)

[ h1m1(h1)

r
√
r2 − h21

−
∫ h1

0

xm
′
1(x)

r
√
r2 − x2

dx
]
+ χ1(r), (5.37)

σ
(1)
θz (r, d) = −

√
2

π
P (1)

[ h2m2(h2)

r
√
h22 − r2

−
∫ h2

r

xm
′
2(x)

r
√
x2 − r2

dx
]
+ χ2(r). (5.38)

So, SIFs at r = h1 and r = h2 can be written as

Kh1 = lim
r→h+1

√
2π(r − h1) P

(1)

√
2

π
(
h1m1(h1)

r
√
r2 − h21

), (5.39)

Kh2 = lim
r→h+2

√
2π(h2 − r) P (1)

√
2

π
(
h2m2(h2)

r
√
h21 − r2

). (5.40)

Next, applying the transformations

m1(h1) =
4h1ω√
2π
M1T and m2(h2) =

4h2ω√
2π
M2T ,
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we can write

Kh1 =
4ωP (1)

√
h1√

π
M1T , (5.41)

Kh2 =
4ωP (1)

√
h2√

π
M2T . (5.42)

• Numerical and Graphical Demonstration

To explain the theoretical results graphically, numerical values of the SIFs are

calculated near the edge concerning the penny-shaped crack and near the rim of

circular disc from Equations (5.41) and (5.42) respectively. We use here Gaussian

quadrature rule and the numerical computations are performed by using MATLAB

software. We considered elastic constants and densities concerning orthotropic layer

and half-space as listed in Table 5.1 [Panja and Mandal (2022)].

Table 5.1: Elastic constants of layer (L1) and half-space (L2)

Elastic medium C44(GPA unit) C66(GPA unit) ρ(kg/m3

Orthotropic layer (L1) 5.35 6.47 3400

Orthotropic half-space (L2) 4.35 5.0 9890
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Fig.5.2 SIF as a function of the ratio of h1/h2 = a for crack

Fig.5.3 SIF as a function of the ratio of h1/h2 = a for circular disc
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In this section, numerical values of normalized SIFs along with the ratio of

crack radius h1, to radius h2 of disc (i.e. a = h1/h2) are displayed through graph-

ical demonstrations as shown in Figs.5.2 − 5.3. In order to explore the effect of

normalized layer depth (D = d/h2) on SIFs, four values of layer depth, namely

D = 0.25, 0.50, 0.75, 1.0 has been considered.

From Fig.5.2, it can be observed that the depth of the orthotropic layer has

significant effects on the normalized SIFs for the penny-shaped crack. Considering

any values of the ratio ′a′, it seems that with the decrease of layer depth (D), the

peak SIFs will increase gradually. Also, it is seen that the curve of SIFs gradually

increases first, attains to peak value at a = 1.0, and then decreases with an increase

of the ratio ′a′.

In Fig.5.3, The SIFs at the rim of circular discs versus the ratio a of the

crack radius with disc radius has been depicted. Here, the ratio a have a revealing

influence on the values of SIFs, in which a rise in this ratio leads to a lower value

of SIF. Furthermore, like Fig.5.2, this figure suggests that the peak value of SIF

increases when layer depth D decreases.

Based on Figs.5.2− 5.3, we may conclude that the values of SIFs variate in large

scale for large values of ′a′ than those of the smaller values. Lastly, the highest value

regarding SIFs may be increased or diminished with change of the layer depth (i.e.

the width between the circular disc and penny-shaped crack). Within engineering

solids, it has been seen that onset of fracture occurs when the numerical values of

SIFs cross a certain limit (depending on material anisotropy) named as critical SIFs.

Our main objective in fracture analysis of composite medium is to prevent the crack

propagation to avoid damage of solid structure by controlling the values of SIFs

within a certain range called critical SIFs. In this regard, these results indicate that

by modifying crack and disc size (a) and layer depth (D), the magnitude of SIFs can

be controlled which is expected in fracture mechanics for safe structure. Therefore,

the analysis can help us in studying the fracture toughness of composite orthotropic

bodies with cracks and inclusion under stress.

Now, the outcomes of the problem have been compared with reference to current

available literature [Madani and Kebli (2019)] for isotropic material. Axisymmetric

torsion applied upon an internally cracked isotropic medium with 2 embedded rigid
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discs have been investigated by Madani and Kebli (2019). The presented model

was formulated for a cracked orthotropic layer with two rigid discs bonded by the

layer and half-spaces under axially symmetric torsion. To verify our results with an

isotropic case, we substitute C44 = C66 = µ (µ is shear modulus of the isotropic

maedium) to convert the problem of orthotropic medium to isotropic medium. The

following expressions of stress and governing partial differential equation have been

obtained

σ
(j)
θr = µ(j)

(∂u(j)θ
∂r

− u
(j)
θ

r

)
,

σ
(j)
θz = µ(j)

(∂u(j)θ
∂z

)
.

(5.43)

∂2u
(j)
θ

∂r2
+

1

r

∂u
(j)
θ

∂r
− u

(j)
θ

r2
+ C(j)∂

2u
(j)
θ

∂z2
= 0 (j = 1, 2). (5.44)

In our problem, some terms have been converted to following forms which are similar

to isotropic case.

C(j) =
C

(j)
44

C
(j)
66

=
µ(j)

µ(j)
= 1, P (1) = µ(1), P (2) = µ(2).

Finally, the forms of SIF near the crack rim and disc rim become

Kh1 =
4ωµ(1)

√
h1√

π
M1T , (5.45)

Kh2 =
4ωµ(1)

√
h2√

π
M2T . (5.46)

The expressions stated above and Equations (5.43), (5.44), (5.45), (5.46) are

exactly the same as that expressions and equations (1), (2), (56), (57) respectively

of the work of Madani and Kebli (2019) for isotropic case. Similar expressions can

be found in all the other expressions. Therefore, according to Madani and Kebli

(2019), our results are consistent.
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• Conclusion

In this research, the problem was formulated for a cracked orthotropic layer with

two rigid discs bonded by the layer and dissimilar orthotropic half-spaces under

axially symmetric torsion. Hankel transform was employed to obtain a set of dual

integral equation. Further, the set of dual integral equations has been converted

into a pair of second kind integral equations of Fredholm type by virtue of Abel’s

transforms and appropriate integral formula. Finally, to unfold the impact of layer

depth and normalized disc size on SIFs, numerical implementations have been carried

out using a quadrature rule and expressed through graphical presentation.

It has been observed that the SIFs diminish with the increase of layer depth i.e.

the distance of crack and disc. Also, the curve of SIFs shows a wave like nature and

decreases as the ratio disc radius to crack radius increases and gradually tends to a

static value. So, we can say that SIFs values at the vicinity of crack and disc may

be prevented in a specific range by changing several geometric parameters (layer

depth, disc size and crack size). The technology of layered composites has experi-

enced a significant development in the field of structural design, process engineering,

macromechanics, material characterization, and optimization. The influence of tor-

sional waves can not be avoided to prevent damage to solids by an earthquake and

many more real situations. So the present study confirms the importance of stress

analysis of orthotropic composites under a torsional wave. The proposed model can

provide an analytical approach of characterizing structural behavior, stress analy-

sis, nondestructive evaluation of material integrity, and comparing the resistance of

composite anisotropic bodies with cracks and inclusion against crack growth.
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ABSTRACT
The present work investigates the motion of a semi-infinite mov-
ing crack inside a semi-infinite half-space of orthotropic medium
subjected to anti-plane shear wave. The crack is located at a finite
depth from the surface of semi-infinite orthotropic medium. Our
aim is to examine how such anisotropy and geometric parameters
can be adjusted to reduce the magnitude of stress intensity factor
(SIF) to control the crack propagation near the crack tip region. As
mathematical tools, Fourier transformationand inverse Fourier trans-
formation techniques are employed to convert the governingmixed
boundary value problem to the well-known Weiner-Hopf equation
with suitable boundary conditions. Some physical quantities such as
SIF at the crack tip and crack opening displacement (COD) around
the crack tip have been derived. Graphical exhibition has been car-
ried out to show the impact of relevant parameters such as crack
velocity, layer depth from the surface to crack and orthotropic mate-
rial properties on SIF and COD. The numerical results show that SIF
decay with crack depth from the layer. It is also observed that SIF
decreases with an increase in crack velocity and finally tends to zero
as crack velocity approches near SH-wave velocity. Also, the value of
COD decays as we move along the damage near the crack tip along
negative x-axis and finally tends to zero at the crack tip. This behav-
ior of COD is consistent with the physical nature of the semi-infinite
crack of the problem. The results are validated for isotropic mate-
rial with some reported work and are well in agreement. The study
of these physical quantities (SIF, COD) ensures the arrest of onset
of crack expansion by monitoring geometric parameters and wave
velocity to avoid fracture.
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1. Introduction

Orthotropic material being a composite material have uniquemechanical properties since
they have three orthogonal planes of symmetry. Some of this material like Prepreg, Car-
bon fiber, Epoxy has found in high-performance structural applications such as designing
of aircraft, aerospace, corrosion- resistance equipment, marine, load-bearing components
for vehicles, metal and polymer-forming process [1,2]. Their rigorous anisotropic properties
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in addition to the presence of moving cracks have a strong application in Seismology.
Earth’s interior and the geological structure near-surface are considered as a composite
material formed by rocks, crystalline minerals, etc. which is highly anisotropic. When an
earthquake arises, waves travel across different anisotropic parts of the earth. Earthquake
sliding motion constitutes a prominent example of dynamic crack propagation in modes
II, III, or in a mixed mode of II and III [3]. Semi-infinite moving crack is one of the most
common failure methods in orthotropic laminates. So, it intrigued significant interest to
developmethods for describing the behavior of orthotropic bodies with semi-infinitemov-
ing cracks under the influence of shearwave. Hence, thismodel canbeutilized in the field of
construction engineering, seismic engineering, geology, geophysics, and earthquake dis-
aster prevention aswell [4,5]. Only a few problems of composites with semi-infinitemoving
cracks under shear wave incidence have been studied due to its multitude of parameters
which can effect crack propagation. So, analytical modeling of composite failure by crack
propagation has become vital to ensure safe and robust structures.

The study of moving semi-infinite crack model based on Weiner-Hopf technique has
been described first by Yofee [6] and the problem of a semi-infinite crack running with a
constant velocity in an infinite solid had been addressed here. The solution of semi-infinite
crack problem situated in an infinitely isotropic strip of finite width considering displaced
clamped boundaries normal to the crack was given by Knauss [7] whereWeiner-Hopf tech-
nique was employed to find stress intensity factor. Later, that work has been modified by
Rice [8]. AmethodwasproposedbyNilsson [9,10] using theWeiner-Hopf technique to solve
a moving semi-infinite crack in an isotropic strip. After that, the same technique was used
by Atkinson et al. [11], Georgiadis [12], Kousionelos et al. [13] in their respective solutions.

Although traveling cracks in elastic material under longitudinal wave was introduced
first byMcClintock et al. [14] in 1960, later inmany engineering smart structures such as the
couple stress elastic materials, orthotropic thin plate, elastic plate carrying an electric cur-
rent, semi-infinite cracks appeared [15–17]. A mode-III crack at the interface between two
dissimilar layers of equal thickness has been studiedby Li [18].Wanget al. [19] discussed the
process to find dynamic SIF for a semi-infinite crack in orthotropic materials with concen-
trated shear impact loads. Laplace and Fourier transforms are used to reduce the problem
to the solution which has been solved by the Weiner-Hopf technique to find SIF. De and
Patra [20], Das and Ghosh [21], Ma et al. [22] studied the dynamic griffith crack behavior in
isotropic and orthotropic elastic materials.

Wu et al. [23] introduced the analytical expression for complex SIF and energy release
rate for a semi-infinite interfacial crack between two bonded dissimilar elastic strips using
conformal mapping technique. Sarkar et al. [24] analyzed scattering of the antiplane shear
wave by a semi-infinite crack running uniformly along with the interface of two dissimilar
semi-infinite elastic media. Solving the boundary value problem with the help of Fourier
transform and Weiner-Hopf technique, they found that SIF is influenced by the speed
of the crack growth, the incidence angle of the incoming wave, and material properties
of elastic media. An effective approach for finding stress and displacement fields along
the interface of two dissimilar orthotropic mediums containing a crack moving under a
dynamic mode I and mode II load has been investigated by Lee [25]. Four coplanar Grif-
fith cracks moving in an infinite elastic strip under anti-plane shear stress has been treated
by Sarkar et al. [26]. A (mode III) moving semi-infinite crack at the interface of two bonded
orthotropic layers has been solved analytically by Singh et al. [27]. Hongmin et al. [28]
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considered the problem of semi-infinite crack in an infinite orthotropic functionally
graded material. They solved the problem for two impact loading modes, i.e. open-
ing and in-plane shear. Basak et al. addressed the problem of semi-infinite moving
crack, considering a orthotropic strip due to normally displaced boundaries. Apply-
ing Fourier transform technique the boundary value problem has been reduced to
the standard Weiner-Hopf equation which has been solved in asymptotic cases to
obtain the physical quantities like stress intensity factor and crack opening displace-
ment [29]. Fracture analysis of a semi-infinite crack between two dissimilar orthotropic
composite materials has been treated by Junlin et al. [30] using the composite
complex function method. Different moving cracks in a piezoelectric strip and lay-
ers have been analyzed by Bagheri et al. [31] and Nourazar and Ayatollahi [32].
Propagation of anti-plane moving griffith crack was solved by Hu and Li [33] and
Jin et al. [34].

In most of the above studies, the problems were assumed on anisotropic and isotropic
media by different (griffith or semi-infinite) moving crack. Very recently, Mandal [35] stud-
ied the problem of moving semi-infinite mode-III crack inside the semi-infinite elastic
media considering an isotropic case. To date, however, fracture analysis for the case of
semi-infinite moving crack inside semi-infinite orthotropic media has not received much
attention. Therefore, the focus of the present work is concentrated to find the theoret-
ical and analytical behavior of a moving semi-infinite crack at a finite depth from the
surface of a orthotropic elastic medium subjected to shear load applied on the surface.
Fourier transform is used to convert the mixed boundary value problem to the solution
of the well-known Weiner-Hopf equation. Further, the analytical expressions of SIF and
COD by solving the Weiner-Hopf equation have been derived asymptotically. The results
show that the corresponding SIF and COD are influenced by crack propagation veloc-
ity, layer width, and material constants. The study of these physical quantities (SIF, COD)
ensures the arrest of propagation of crack by monitoring geometric parameters of the
orthotropic material. Our prime objective is to reduce damages in buildings fracture, geo-
physical interpretation of seismic waves by controlling the onset of crack growth within a
structure.

2. Formulation of the problem

We consider a horizontal semi-infinite moving crack with crack tip coincides with the ori-
gin of the moving coordinates. Let (X , Y , Z) be the fixed cartesian co-ordinates which are
the axes of symmetry of the orthotropic material. Then the crack position is −∞ < X < 0,
Y = 0. We assume that the crack is propagating with a constant velocity V along the
positive X-axis parallel to the surface of the semi-infinite orthotropic medium at a depth
‘d’ from the surface. So, at any time t, the position of the crack is −∞ < X < Vt, Y = 0
(Figure 1).

Since the crack motion is maintained under anti-plane shear mode, the displacement
vector takes the form (0, 0,UZ). Here, UZ is the only nonvanishing out-of-plane component
of displacement in the Z-direction presented as

UZ = UZ(X , Y , t)
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Figure 1. Semi-infinite crack moving inside of a semi-infinite orthotropic media.

from which relation between nonzero shear stress and displacement component for
orthotropic materials (mode-III) are as follows

τXZ = C55
∂UZ

∂X
,

τYZ = C44
∂UZ

∂Y
,

(1)

where C44 and C55 represent the principal shear moduli directed along X and Y axes
of the orthotropic material, respectively. The anti-plane equation of motion requires the
gratification of the following wave equation for orthotropic medium [36],

C55
∂2UZ

∂X2
+ C44

∂2UZ

∂Y2
= ρ

∂2UZ

∂t2
(2)

where ρ is the material density. It is convenient to define the constant

β =
√
C44
C55

while the SH-wave velocity of orthotropic material designated by CS, is

CS =
√
C55
ρ

so that Equation (2) can be cast into the form

∂2UZ

∂X2
+ β2 ∂2UZ

∂Y2
= 1

C2S

∂2UZ

∂t2
(3)

To make the crack stationary, a moving framework x = X − Vt, y = Y (Galilean transfor-
mation) has been introduced which reduces the number of independent variables to the
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same as for static deformations. Therefore, the displacement Equation (2) in the moving
coordinate system (x, y, z) become

G2 ∂2uz
∂x2

+ ∂2uz
∂y2

= 0 (4)

whereG2 = 1
β2 (1 − V2

C2S
),V is the crack velocity, anduz(x, y) = UZ(X , Y , t) is thedisplacement

along the moving coordinate z.
We may also transform the moving coordinates simply by replacing X and Y in Equa-

tions (1) by x and y, respectively, and UZ by uz . The mixed boundary conditions on and
outside the crack for y = 0 are given by

τyz(x, 0) = 0, x < 0 (5)

uz(x, 0) = 0, x > 0 (6)

Stress and displacement across the surface y = d are

τyz(x, d) = 0, −∞ < x < ∞ (7)

uz(x, d) = uz0 , −∞ < x < ∞ (8)

where uz0 is constant displacement applied at the surface boundary y = d. For applying the
Weiner-Hopf technique, we consider a different set of boundary conditions by superimpos-
ing a constant load p0 in the original systemwhich does not affect the value of SIF obtained
by solving the modified problem. The new boundary conditions are (Figure 2)

τyz(x, 0) = p0, x < 0 (9)

uz(x, 0) = 0, x > 0 (10)

τyz(x, d) = 0, −∞ < x < ∞ (11)

uz(x, d) = 0, −∞ < x < ∞ (12)

The above two problems are identical for a particular value of p0. For generalized plane

stress problems, the appropriate value of p0 is given by (−C44uz0
d ). The complete procedure

to find the value of p0 has been elaborated in the work of Georgiadis et al. [37].
To proceed for the solution, we introduce the standard definition of complex Fourier

transform pair as

ḡ(ξ , y) = 1√
2π

∫ ∞

−∞
g(x, y)eiξxdx (13)

and

g(x, y) = 1√
2π

∫ ∞

−∞
ḡ(ξ , y)e−iξxdξ (14)

where ξ = η + iγ , is to be understood as a complex variable in the Fourier transformplane,
η and γ being the real and imaginary parts of the complex variable ξ .
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Figure 2. Transformed geometry of the semi-infinite crack.

According to Nilsson [10], the boundary condition (9) in lieu of constant load p0 can be
written with a slight modification as follows

τyz(x, 0) = p0e
δx , x < 0 (15)

where δ > 0, which is a very small quantity and tending to zero.
Applying the Fourier transform, the boundary conditions 10 and 11 will become

τ̄yz(ξ , d) = 0 (16)

ūz(ξ , d) = 0 (17)

After applying the Fourier transform on the variable ξ , the solution of the equation of (4) is
obtained as

ūz(ξ , y) = A1(ξ) e−Gξy + A2(ξ) eGξy , 0 ≤ y ≤ d (18)

= A3(ξ) eGξy , −∞ < y ≤ 0

provided that the crack velocity (V ) is less than the shear wave velocity (CS) of thematerial.
Here ūz(ξ , y)be the Fourier transformof displacement componentuz(x, y) andA1(ξ),A2(ξ),
A3(ξ) are unknown functions of the transformed variable ξ which are not independent.

Shear stress now becomes

τ̄yz(ξ , y) = C44Gξ [A2(ξ)eGξy − A1(ξ)e−Gξy], 0 ≤ y ≤ d

= C44A3(ξ)GξeGξy , −∞ < y ≤ 0 (19)
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3. Solution procedure

Let us introduce two unknown functions for determining the complete solution byWeiner-
Hopf method

τyz(x, 0) = r(x), x > 0, (20)

uz(x, 0) = s(x), x < 0, (21)

By taking both sides fourier transformation of Equations (20) and (21), we obtain

r̄+(ξ) = 1√
2π

∫ ∞

0
r(x)eiξxdx, (22)

s̄−(ξ) = 1√
2π

∫ 0

−∞
s(x)eiξxdx, (23)

where the (+) and (−) subscript denote that the functions are analytic above or bellow a
certain line in the complex ξ − plane.

The functions r̄(x) and s̄(x) are bounded at infinity as the stress and displacements are
tending to zero at infinity which is obvious from the physical nature of the problem. So we
assume the following bounds

|r̄(x)| < Rx−lr , as x → ∞ (24)

|s̄(x)| < S|x|−ls , as x → −∞ (25)

where lr > 0, ls > 0, R>0 and S>0. Here R and S are finite. Now it can be shown that the
functions r̄+(ξ) and s̄−(ξ) are analytic for γ ≥ 0 and γ ≤ 0, respectively.

Making use of the boundary conditions (9)and (10) with the help of the Equations (22)
and (23), we get a pair of equations as follows

τ̄yz(ξ , 0) = r̄+(ξ) + p0√
2π(δ + iξ)

(26)

ūz(ξ , 0) = s̄−(ξ) (27)

Now Equation (26) can be rewritten as

r̄+(ξ) = τ̄yz(ξ , 0) − p0√
2π(δ + iξ)

(28)

With the help of boundary condition (17), we get

A2(ξ) = −A1(ξ)e−2Gξd (29)

At y = 0, the solutions are

ūz(ξ , 0) = A1(ξ) + A2(ξ), 0 ≤ y ≤ d (30)

and

ūz(ξ , 0) = A3(ξ), −∞ ≤ y ≤ 0 (31)
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Equation (30) in view of (27) and (29) assumes the form

A1(ξ) = s̄−(ξ)

1 − e−2Gξd
(32)

From Equations (27) and (31), we obtain

A3(ξ) = s̄−(ξ) (33)

Substitution of the values of stress from (19) into the Equation (28) and then using (26)
and (32) renders the well-knownWeiner-Hopf equation of the unknown functions as r̄+(ξ)

and s̄−(ξ)

r̄+(ξ) = T(ξ)s̄−(ξ) − p0√
2π(δ + iξ)

(34)

where the kernel T(ξ) is given by

T(ξ) = −C44Gξ(1 + e−2Gξd)

1 − e−2Gξd
(35)

4. Solution of theWeiner-Hopf equation

In order to solve the Equation (34), it is necessary to split the kernel T(ξ) in the following
form (Noble [38] )

T(ξ) = T+(ξ)T−(ξ) (36)

where the functions T+(ξ) and T−(ξ) both are analytic and non-zero for γ > γ1(γ1 < 0)
and γ < γ2(γ2 > 0).

Consequently, Equation (34) by virtue of (36) becomes

r̄+(ξ)

T+(ξ)
= T−(ξ)s̄−(ξ) − p0√

2π(δ + iξ)T+(ξ)
(37)

The last term of Equation (37) has been decomposed as a sum of two analytic functions
given by

p0√
2π(δ + iξ)T+(ξ)

= D+(ξ) + D−(ξ) (38)

where the functions D+(ξ) and D−(ξ) can be obtained as

D+(ξ) = p0√
2π(δ + iξ)

[
1

T+(ξ)
− 1

T+(iδ)

]
(39)

D−(ξ) = p0√
2π(δ + iξ)T+(iδ)

(40)

We have checked the analyticity of the functionsD+(ξ) andD−(ξ) and these two functions
arenon-zero inγ > γ1 andγ < δ, respectively. Rearranging theEquation (37),with thehelp
of (38), we get

r̄+(ξ)

T+(ξ)
+ D+(ξ) = T−(ξ)s̄−(ξ) − D−(ξ) (42)

From Equation (42), it is observed that the region of analyticity of the functions r̄+(ξ),
s̄−(ξ), T+(ξ), T−(ξ), D+(ξ) and D−(ξ) are γ ≥ 0, γ ≤ 0, γ > γ1 (γ1 < 0), γ < γ2(γ2 > 0),
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γ > γ1 (γ1 < 0) and γ < δ, respectively. The left side and the right side of Equation (41),
both are analytic at the region of the upper half-plane γ ≥ 0 and the lower half-plane γ ≤ 0
where δ(> 0) is a very small quantity. The common part of analyticity is the line γ = 0.
Equation (41) is analytic and single-valued in the whole complex ξ − plane by analytic con-
tinuation. By considering the large values of ξ , the functions T+(ξ) and T−(ξ) tend to be
ξ

1
2 and the functions r̄+(ξ) and s̄−(ξ) will be bounded. Now we consider both sides of the

Equation (41) equal to F(ξ). This function is analytic and the function F(ξ) is tending to ξ− 1
2

for large value of ξ in the upper half-plane γ ≥ 0. Moreover using the same arguments on
the right-hand side of Equation (41) is analytic and tending to ξ

1
2 for large value of ξ in the

lower half-plane γ ≤ 0. It can be culminated that the function F(ξ) is identically zero by the
extended Liouville’s theorem.

F(ξ) = 0 (42)

Now utilizing (39)–(41), the functions of interest can be found from (42) as

r̄+(ξ) = p0√
2π(δ + iξ)

[
T+(ξ)

T+(δ)
− 1

]
(43)

and

s̄−(ξ) = p0√
2π(δ + iξ)T+(iδ)T−(ξ)

(44)

So we may take δ → 0 for constant loading and consequently the above expressions
become

r̄+(ξ) = p0√
2π iξ

[
T+(ξ)

T+(0)
− 1

]
(45)

and

s̄−(ξ) = p0√
2π iξT+(0)T−(ξ)

(46)

Nilsson [9] introduced a process where SIF can be obtained by only knowing the values of
T(ξ) for very large and small values of ξ .

After algebraic manipulation, we get the following asymptotic values of the kernel T(ξ):

lim
ξ→∞

T(ξ)

ξ
= −C44G (47)

and

lim
ξ→0

T(ξ) = −C44
d

(48)

The Equations (45) and (46) can be written for large values of ξ as

lim
ξ→∞

r̄+(ξ) = lim
ξ→∞

p0√
2π iT+(0)ξ

1
2

T+(ξ)

ξ
1
2

(49)

lim
ξ→∞

s̄−(ξ) = lim
ξ→∞

p0√
2π iT+(0)ξ

3
2

ξ
1
2

T−(ξ)
(50)
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Taking inverse fourier transform on (49) and (50) with the help of Equations (47) and (48),
we finally obtain the following expressions for the unknown functions

lim
x→0+

r(x) = −p0

√
Gd

π
x− 1

2 (51)

lim
x→0−

s(x) = −p0

√
d

πC244G
(−x)

1
2 (52)

From the definition of the function r(x), Equation (51) represents distribution of the shear
stress component τyz along the x-axis just outside the crack and the structure of the shear
stress component in Equation (51) reveals a square root singularity at the crack tip which
is very much expected in the field of Fracture Mechanics. Furthermore, the Equation (52)
represents the displacement uz in the vicinity of the crack tip. This quantity known as Crack
Opening Displacement (COD) is also important in view of the physical nature of the crack.

5. Quantities of physical interest

The quantity that reveals state of stress (SIF) at the crack tip, denoted by KIII is defined by

KIII = lim
x→0+

√
2πxτyz(x, 0) (53)

In this case, the SIF can be found as

SIF = KIII = −p0
√
2Gd (54)

Therefore, the SIF of the original problem (normalized with respect to uz0 ) is given by

SIF = KIII = C44

√
2G
d

(55)

Next the COD is defined by

COD = uz(x, 0+) − uz(x, 0−) (56)

In this problem, the COD can be written as

COD = −2p0

√
d

πC244G
(−x)

1
2 (57)

Therefore, COD of the original problem (normalized with respect to uz0 ) is

COD = 2

√
1

πGd
(−x)

1
2 (58)

6. Numerical results and discussion

Analytical expressions need to be translated into numerical solutions for better under-
standing of the nature of the physical quantities in the light of relevant parameters. The
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Table 1. Engineering elastic constants of two orthotropic materials.

Name of the material C44 C55 ρ

Type-I Prepreg 7.8 7.8 1.595
Type-II Carbon fiber 6.15 6.15 1.5

Figure 3. Variation of anti-plane shear SIF with crack velocity V for Type-I material.

normalized SIF (KIII) and normalized COD with respect to uz0 depend on crack velocity
(V), crack depth (d) and material constants (C44, C55, ρ). Therefore, the numerical solutions
of (55) and (58) are facilely obtained to show the effects of the material orthotropy on the
SIF and COD by virtue of graphs.

The general theoretical upper limit (Broberg [3]) of crack propagation velocity is the
SH-wave velocity (CS) for mode III cracks i.e. 0 < V < CS. In partcular, SIF at the crack tip
asymptotically vanishes when V → CS.

Material constants (in unit GPA) and densities (in unit gm/cm3) of two orthotropic
materials are provided (Yu et al. [39]) in Table 1.

The velocity of SH-wave for Type-I and Type-II material are CIS = 2.2114 cm/μs and CIIS =
2.0248 cm/μ s. Figures 3 and 4 show the variation of the normalized SIF (KIII/uz0 ) against
crack velocity (V in cm/μ s) for various values of the crack depth d = 2, 4, 6 cm. It is seen
thatwith the increase in the value of V, the stress intensity factor decreases and finally tends
to zero as V approaches to SH-wave velocity CS.

The graph is not valid for super SH-wave velocoties (V > CS) asCS is the theoretical upper
limit of crack propagation velocity V. In addition, the effect of crack depth d on the SIF is also
shown in Figures 3 and 4. The increase in the crack depth d induces the decrement in stress
intensity factor for all values of crack velocity (V ). This represents the physical significance
of the expression of SIF from Equation (55) which can be justified with the fact that the
impact of the constant displacement at the crack tip region becomes lower as the crack
depth becomes higher.

Also, it is observed from Figures 3 and 4 that the values of SIF of Type-I material are
greater than the values of Type-II material. So the peak value of KIII can either be raised
or lowered by varying the material constants. As the SIF and the toughness of the material
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Figure 4. Variation of anti-plane shear SIF with crack velocity V for Type-II material.

are directly proportional to each other, fracture toughness of Type-I material is more than
Type-II material.

Our primary motivation in fracture mechanics is to resist the process of propagation of
fracture. When SIF at the crack tip region exceeds a particular limit known as critical SIF,
it leads to failure of the composite which involves the cracking of the orthotropic mate-
rial at relatively high velocities known as crack propagation. So, we want to control the
value of SIF, so that SIF can’t exceed the critical SIF. For this reason, by varying different geo-
metric parameters (like crack velocity, the width of layer), we may control the magnitude
of SIF which helps to prevent crack growth leading to a safe structure. For this purpose,
we observe the cases when SIF is decreasing (Figures 3 and 4). If We observe the case
when SIF is increasing, then SIF may exceed critical SIF that leads to crack growth which
is not expected in a practical situation. Therefore, these results can be used to control the
geometric parameters of these materials concerning for the magnitude of SIF which will
help to prevent the expansion of the semi-infinite crack.

From all figures of COD (Figures 5–8), it is observed that the value of COD decreases as
we approach near the crack tip along the negative x-axis and finally wiped out at the crack
tip i.e. origin. This result is very much agreed with the physical nature of the crack.

Figures 5 and 6 illustrate the effect of crack depth d (d = 2, 4, 6 cm) on the COD for fixed
value of V = 0.1 cm/μ s and it is observed that COD decreases with the increasing value of
d which signifies the Equation (58) physically.

Again, Figures 7 and 8 show the effect of crack velocity V (V = 0.05, 0.10, 0.15 cm/μ s)
on the COD for fixed value of crack depth d = 2 cm. It is seen that COD increases with
the increasing value of V subjected to same crack depth. Further investigation disclosed
that the variation of crack opening displacement is found to be prominent for different
orthotropic materials.

Further, semi-infinite mode-III crack inside the semi-infinite orthotropic medium has
been considered following the model developed by Mandal [35].

For validation of this work, we converted this orthotropic medium problem to isotropic
medium problem by putting C44 = C55 = μ, where μ is shear modulus of the isotropic
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Figure 5. Variation of COD with distance x for Type-I material (fixed crack velocity V = 0.1 in cm/μ s).

Figure 6. Variation of COD with distance x for Type-II material (fixed crack velocity V = 0.1 in cm/μ s).

Figure 7. Variation of COD with distance x for Type-I material (fixed crack depth d = 2 cm).
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Figure 8. Variation of COD with distance x for Type-II material (fixed crack depth d = 2 cm).

Figure 9. Variation of anti-plane shear SIF with crack velocity V for Isotropic medium.

material and we deduce the following expressions

β = 1, shear wave velocity = CS =
√

μ

ρ

G2 =
(
1 − V2

C2S

)

The above expressions and governing Equation (4) are identical to those obtained by the
work of Mandal [35] for isotropic elastic medium. Also, it is found that the correspond-
ing SIF and COD for the Type-I material (copper) are identical to that of Mandal’s [35]
findings. Henceforth, the obtained graphs represented in Figures 9–11 are of similar with
Figures 3, 5a,b of the paper of Mandal [35].
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Figure 10. Variation of CODwith distance x for Isotropic medium (fixed crack velocity V = 0.1 cm/μ s).

Figure 11. Variation of COD with distance x for Isotropic medium (fixed crack depth d = 2 cm).

7. Conclusion

The problem of a moving semi-infinite crack in semi-infinite orthotropic medium has been
investigated subject to SH-wave incidence. The mixed boundary value problem has been
reduced to the standardWiener-Hopf equation by applying Fourier transformation. Due to
the complex nature of the kernel, the Weiner-Hopf equation has been solved only for the
asymptotic case which is sufficient to obtain SIF and COD. By plotting the numerical values
of SIF and COD, the dependency of the material constants (C44, C55, ρ) crack propagation
velocity (V ) as well as crack depth (d) on SIF and COD have been shown by virtue of graphs.
The predicted behavior of SIF and COD graphs were similar and in good agreement with
available literature data.

Based on the numerical calculations outlined above, and with reference to Figure 3
through Figure 8, the following conclusions have been established.
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(1) The values of SIF and COD can be controlled and arrested within a certain range by
varying the above-mentioned parameters to avoid the process of propagation of fracture
if the manuscripted model is considered practically for an experiment.

(2) The material properties are also playing a vital role here. Two types of orthotropic
materials have been used here to obtain the above SIF and COD graphs. It has been con-
cluded that Type-I material is elastically harder than Type-II material. Damage of solid
material, earth’s surface building is subjected to the propagation of cracks due to seismic
hazards, earthquake which is a big challenge in the fields of construction engineering and
geophysics as well. The proposedmodel offers a useful means bywhichmechanical design
of large composite structures can be done to prevent earthquake disasters.
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Abstract The paper is focused on the effect of a sudden impact of a torsional load on a penny-shaped crack
sandwiched between two elastic layers embedded in an elastic medium. The axisymmetric mixed boundary
value problem is reduced to the problem of solving a pair of dual integral equations by using Hankel and
Laplace transforms. Further, the integral equations are then reduced to a Fredholm integral equation of second
kind which is solved numerically. Expression for the stress intensity factor at the tip of the crack is obtained
and plotted for different parameters and materials.

1 Introduction

Composite materials are becoming an essential commodity in modern era as they offer advantages such as
low weight to strength ratio, corrosion resistance, and high fatigue strength. Many composite materials are
used in making aircraft structures to golf clubs, electronic packaging to medical equipment, and space vehicles
to home building. It has been observed that applications of composite materials in the commercial market
are also increasing day by day. Advanced composite materials are multi-phased non-homogeneous materials
with anisotropic properties. This complicates the stress analysis for fracture, particularly if the loading is time
dependent and the crack growth involves sharp edges.

The performance of engineered composite systems is affected by inhomogeneities such as cracks and
inclusions which become the subject of investigations. The study of the fatigue crack growth models based on
elastic–plastic stress–strain analysis at the crack tip region and strain–life damage has been discussed by Hadi
Hafezi et al. [1]. In this paper, the authors assess the performance of the UniGrow model based on available
experimental constant amplitude crack propagation data, derived for severalmetallicmaterials fromPortuguese
riveted metallic bridges. Recently, a number of new developments based on the theory of elasticity, fatigue
crack growth models, and stress intensity factors for some practical crack geometries and their numerical
analyses are discussed in the book of Kundu [2]. The solution to determine the transient stress intensity factor
of an elliptical crack embedded in a thick plate, one side of which is subjected to a sudden temperature change
under arbitrary normal loading, was given by Shah and Kobayashi [3]. An elliptical crack in a large beam in
pure bending is also described in this paper. Transient dynamic stress intensity factors around a crack in a
non-homogeneous interfacial layer between two dissimilar elastic half-planes have been considered by Itou [4].

The dynamic problem of torsional impact is one of the important parts in view of construction technology
and fabrication process. The crack is mainly generated by the impact of a torsional load. The problem of a
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sudden impact of torsional load in a half-space was investigated byGhosh [5], Eason [6], and Shail [7]. Shibuya
[8] analyzed the problem of torsional impact of a thick elastic plate.

An effective approach for finding dynamic stresses in a layered composite containing a crack has been
performed by Sih and Chen [9]. Keer and Jabali [10] solved the problem of torsional oscillation of a layer
bonded to an elastic half-space. The model of the penny-shaped crack has been first considered in 1970’s
by Arin and Erdogan [11,12], Kassir and Bregman [13], and Chen [14]. In these papers, some numerical
examples are discussed to find stress intensity factors and the strain energy release rate at the edge of the
crack with different material properties. The penny-shaped crack and the plane strain crack in an infinite body
of power low material have been studied by He et al. [15]. Ueda et al. [16,17] also analyzed the problem of
torsional impact of a penny-shaped interface crack. In both cases, Laplace and Hankel transforms are used
to reduce the problem to the solution of a pair of dual integral equations which have been solved by using
an integral transform technique, and the result is expressed in terms of a Fredholm integral equation of the
second kind. A numerical Laplace inversion technique is also used to recover the time dependence of the
solution, and the dynamic stress intensity factor is determined which is dependent on the time and material
constants. But these are simple problems of diffraction of transient torsional shear waves by a penny-shaped
crack at the interface of two bonded dissimilar elastic half-spaces. A penny-shaped interface crack of two
bonded dissimilar transversely isotropic elastic half-spaces and dissimilar non-homogeneous elastic layers
under axially symmetric torsion have been analyzed by Saxena et al. [18,19]. Das et al. [20] considered the
problem of determining the stress intensity factors for an interfacial crack between an orthotropic half-plane
bonded to a dissimilar orthotropic layer with a punch. In this paper, they reduced the problem to a system of
simultaneous integral equations which have been solved by using Chebyshev polynomials. Li [21] solved the
problem of dynamic fracture for a penny-shaped crack in an FGM interlaying between dissimilar half-spaces.
The contact problem for an open penny-shaped crack under normally incident tension-compression wave has
been developed by Menshykov et al. [22], and Mykhaskiv and Khay [23] discussed the problem of interaction
between a rigid-disk inclusion and a penny-shaped crack under an elastic time-harmonic wave. Lee and Tran
[24] considered the stress analysis for a penny-shaped crack interacting with inclusions and voids. Fracture
of a half-space compressed along a penny-shaped crack located at a short distance from the surface has been
discussed by Dovzhik [25]. Lee [26] considered the problem of a penny-shaped crack in a plate of finite
thickness subjected to a uniform shearing stress. Recently Basu and Mandal [27] solved the problem of the
impact of a torsional load on a penny-shaped crack in an elastic layer sandwiched between two similar elastic
half-spaces.

In most of the above discussed papers, the problem involving the impact of torsional waves on a penny-
shaped crack in a layer bonded to an elastic half-space, a non-homogeneous interfacial layer between two
dissimilar elastic half-planes, in an unbounded thermo-elastic medium or in an elastic layer sandwiched
between two similar elastic half-spaces has been considered. But the torsional problem of a penny-shaped
crack sandwiched between two elastic layers embedded in another medium has not been treated yet. So, in this
paper, the sudden impact of torsional load on a penny-shaped crack bonded by two dissimilar elastic layers
embedded in an elastic medium has been analyzed. Using Hankel and Laplace transforms, the axisymmetric
mixed boundary value problem has been reduced to a Fredholm integral equation of the second kind which has
been solved numerically by the Fox andGoodwinmethod [28]. After taking numerical inversion of the Laplace
Transform, the stress intensity factor (SIF) has been calculated at the tip of the crack and presented graphically
for different parameters and different sets of materials to compare the bonded strength of the materials.

2 Formulation of the problem and method of solution

A study is made of torsional load on a penny-shaped crack of radius a which lies at the interface of two
dissimilar elastic layers each of thickness b with material propertiesμ1, ν1, ρ1 (type-I) andμ2, ν2, ρ2 (type-II)
with reference to the cylindrical polar coordinates (r, θ, z). These two layers are embedded in an infinite elastic
medium with properties μ3, ν3, ρ3 (type-III) as shown in Fig. 1. Due to the symmetry of the problem, it is
assumed that the magnitude of the load is τ0 which is applied suddenly at time t = 0 such that the upper and
lower surfaces will move in opposite directions.

In this problem, the only nonzero component of displacement is the circumferential component uθ , and
the only nonzero component of stress σθ z is defined by the relation

σθ z = μ
∂uθ

∂z
(1)
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Fig. 1 Geometry of the penny-shaped crack

where μ is the shear modulus of the elastic material.
The displacement component uθ satisfies the partial differential equation [29]

∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
+ ∂2uθ

∂z2
= 1

c2j

∂2uθ

∂t2
( j = 1, 2, 3) (2)

where c j = (μ j
ρ j

) 1
2 is the shear wave velocity and ρ is the density of the material. In Eq. (2), subscripts “1,”

“2”, and “3” have been used to refer to the materials of type-I, type-II, and type-III, respectively.
To eliminate the time variable from Eq. (2), a Laplace transform pair has been used which is defined by

f̄ (p) =
∫ ∞

0
f (t)e−ptdt, (3)

f (t) = 1

2π i

∫

Br
f̄ (p)eptdp (4)

where Br is the Bromwich path of integration (see the Appendix II).
By the use of Laplace transform, Eq. (2) is transformed to

∂2ūθ

∂r2
+ 1

r

∂ ūθ

∂r
− ūθ

r2
+ ∂2ūθ

∂z2
= p2

c2j
ūθ ( j = 1, 2, 3). (5)

The boundary conditions on the plane z = 0 for r ≤ a and r > a are

τ
(1)
θ z (r, 0, t) = τ

(2)
θ z (r, 0, t) = τ0

( r
a

)
H(t), 0 ≤ r ≤ a, (6)

u(1)
θ (r, 0, t) = u(2)

θ (r, 0, t), r > a (7)

where H(t) is the Heaviside unit step function.
Also, the interfaces of the layer z = ±b are bonded perfectly to the elastic medium. The continuity

conditions at the interface are given by

τ
(1)
θ z (r, b, t) = τ

(3)
θ z (r, b, t), (8)

u(1)
θ (r, b, t) = u(3)

θ (r, b, t), (9)
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τ
(2)
θ z (r, −b, t) = τ

(3)
θ z (r, −b, t), (10)

u(2)
θ (r, −b, t) = u(3)

θ (r, −b, t). (11)

Applying the Laplace transform on the boundary and continuity conditions (6)–(11), it can be written as :

τ̄
(1)
θ z (r, 0, p) = τ̄

(2)
θ z (r, 0, p) =

τ0

(
r
a

)

p
, 0 ≤ r ≤ a, (12)

ū(1)
θ (r, 0, p) = ū(2)

θ (r, 0, p), r > a, (13)

τ̄
(1)
θ z (r, b, p) = τ̄

(3)
θ z (r, b, p), (14)

ū(1)
θ (r, b, p) = ū(3)

θ (r, b, p), (15)

τ̄
(2)
θ z (r, −b, p) = τ̄

(3)
θ z (r, −b, p), (16)

ū(2)
θ (r, −b, p) = ū(3)

θ (r, −b, p). (17)

To solve Eq. (5), Hankel transform has been used to obtain the Laplace transform of the displacement
component for the region I (0 < z < b), and region I I (−b < z < 0), and region I I I (|z| ≥ b) in the
following form:

ū(1)
θ (r, z, p) =

∫ ∞

0
[A1(s, p) e

−γ1z + A2(s, p) e
γ1z]J1(sr)ds, (18)

ū(2)
θ (r, z, p) =

∫ ∞

0
[A3(s, p) e

−γ2z + A4(s, p) e
γ2z]J1(sr)ds, (19)

ū(3)
θ (r, z, p) =

∫ ∞

0
A5(s, p) e

−γ3(z−b) J1(sr)ds, z ≥ b, (20)

ū(3)
θ (r, z, p) =

∫ ∞

0
A6(s, p) e

γ3(z+b) J1(sr)ds, z ≤ −b (21)

where

γ1 = (s2 + k21)
1
2 , γ2 = (s2 + k22)

1
2 , γ3 = (s2 + k23)

1
2 ,

k1 = p/c1, k2 = p/c2, k3 = p/c3,

c1 =
√

μ1

ρ1
, c2 =

√
μ2

ρ2
, c3 =

√
μ3

ρ3
(22)

and J1 is the bessel function of the first kind of order one.
In Eqs. (18)–(21), Ai (i = 1, 2, . . . , 6) are the constants which are to be determined later on. With the help

of Eqs. (18)–(21), the expressions for τ̄θ z are

τ̄
(1)
θ z = −μ1

∫ ∞

0
γ1[A1(s, p) e

−γ1z − A2(s, p) e
γ1z]J1(sr)ds, (23)

τ̄
(2)
θ z = −μ2

∫ ∞

0
γ2[A3(s, p) e

−γ2z − A4(s, p) e
γ2z]J1(sr)ds, (24)

and

τ̄
(3)
θ z = −μ3

∫ ∞

0
γ3[A5(s, p) e

−γ3(z−b)]J1(sr)ds, z ≥ b (25)

= μ3

∫ ∞

0
γ3[A6(s, p) e

γ3(z+b)]J1(sr)ds, z ≤ −b. (26)

Using the above expressions, the boundary conditions (12) and (13) yield

μ1

∫ ∞

0
γ1[A1(s, p) − A2(s, p)]J1(sr)ds = μ2

∫ ∞

0
γ2[A3(s, p) − A4(s, p)]J1(sr)ds, (27)
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∫ ∞

0
[A1(s, p) + A2(s, p)]J1(sr)ds =

∫ ∞

0
[A3(s, p) + A4(s, p)]J1(sr)ds, (28)

and from the continuity conditions (14)–(17) we obtain

μ1

∫ ∞

0
γ1[A1(s, p) e

−γ1b − A2(s, p) e
γ1b]J1(sr)ds = μ3

∫ ∞

0
γ3A5(s, p)J1(sr)ds, (29)

−
∫ ∞

0
[A1(s, p) e

−γ1b + A2(s, p) e
γ1b]J1(sr)ds =

∫ ∞

0
A5(s, p)J1(sr)ds, (30)

−μ2

∫ ∞

0
γ2[A3(s, p) e

γ2b − A4(s, p) e
−γ2b]J1(sr)ds = μ3

∫ ∞

0
γ3A6(s, p)J1(sr)ds, (31)

∫ ∞

0
[A3(s, p) e

γ2b + A4(s, p) e
−γ2b]J1(sr)ds =

∫ ∞

0
A6(s, p)J1(sr)ds. (32)

Inverting Eqs. (27)–(32) by means of the Hankel inversion formula, we obtain the following relations:

γ1[A1(s, p) − A2(s, p)] = G1 γ2[A3(s, p) − A4(s, p)], (33)

A1(s, p) + A2(s, p) = A3(s, p) + A4(s, p), (34)

γ1[A1(s, p) e
−γ1b − A2(s, p) e

γ1b] = G2 γ3A5(s, p), (35)

A1(s, p) e
−γ1b + A2(s, p) e

γ1b = A5(s, p), (36)

−γ2[A3(s, p) e
γ2b − A4(s, p) e

−γ2b] = G3 γ3A6(s, p), (37)

A3(s, p) e
γ2b + A4(s, p) e

−γ2b = A6(s, p) (38)

where G1 = μ2/μ1, G2 = μ3/μ1, and G3 = μ3/μ2 .
After solving Eqs. (33)–(38) for A2(s, p), A3(s, p), A4(s, p), A5(s, p), andA6(s, p) in terms of A1(s, p),

the expression for the constants can be written as

A2(s, p) =
(γ1 − G2 γ3

γ1 + G2 γ3

)
e−2γ1b A1(s, p), (39)

A3(s, p) = GA1(s, p), (40)

A4(s, p) =
(γ2 + G3 γ3

γ2 − G3 γ3

)
e2γ2b GA1(s, p), (41)

A5(s, p) = 2γ1
(γ1 + G2 γ3)

e−γ1b A1(s, p), (42)

A6(s, p) = 2γ2 eγ2b

(γ2 − G3 γ3)
GA1(s, p) (43)

where

G =
[
1 −

(
γ1 − G2 γ3

γ1 + G2 γ3

)
e−2γ1b

] /G1 γ2

γ1

[
1 −

(γ2 + G3 γ3

γ2 − G3 γ3

)
e2γ2b

]
.

Applying (18), (19), and (23) in the boundary conditions (13) and (12), the following dual integral equations
can be obtained involving the unknown function B(s, p):

∫ ∞

0
B(s, p)J1(sr)ds = 0, r > a, (44)

∫ ∞

0
sP1(s, p)B(s, p)J1(sr)ds = −τ0(

r
a )

pμ1
, 0 ≤ r ≤ a (45)

where

B(s, p) =
[{

1 +
(γ1 − G2γ3

γ1 + G2γ3

)
e−2γ1b

}
− G

{
1 +

(γ2 + G3γ3

γ2 − G3γ3

)
e2γ2b

}]
A1(s, p) (46)
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and

P(s, p) =
γ1

[
1 −

(
γ1−G2γ3
γ1+G2γ3

)
e−2γ1b

]

s
[{

1 +
(

γ1−G2γ3
γ1+G2γ3

)
e−2γ1b

}
− G

{
1 + γ2+G3γ3

γ2−G3γ3

)
e2γ2b

}] . (47)

To convert the dual integral Eqs. (44) and (45) to a single Fredholm integral equation of the second kind, the
form of B(s, p) that satisfies Eq. (44) automatically can be considered as

B(s, p) = 4 τ0 a
5
2

3μ1 p (2π)
1
2

√
s
∫ 1

0

√
ξ �(ξ, p)J 3

2
(saξ)dξ (48)

where �(ξ, p) is an unknown function to be determined.
Using the formula

J 3
2
(s1ξ) = −

√
ξ

s1

d

dξ

{
ξ− 1

2 J 1
2
(s1ξ)

}
, s1 = sa,

B(s, p) can be written as

B
( s1
a

, p
)

= 4 τ0 a2

3μ1 p (2πs1)
1
2

[ ∫ 1

0
�1(ξ, p)J 1

2
(s1ξ)dξ − �(1, p)J 1

2
(s1)

]
(49)

where

�1(ξ, p) = ξ− 1
2
d

dξ
[ξ�(ξ, p)]. (50)

The expression for P
(
s1
a , p

)
approaches 1/G4 for large values of s1, so that

1 − G4P
( s1
a

, p
)

−→ 0 as s1 −→ ∞

where G4 = 1 + μ1
μ2

= 1 + 1
G1

.
Now Eq. (45) can be written in terms of dimensionless quantities as

∫ ∞

0
s1B

( s1
a

, p
)
J1(R s1)ds1 = −τ0 a2G4R

pμ1
+

∫ ∞

0
s1

[
1 − G4P

( s1
a

, p
)]

B
( s1
a

, p
)
J1(R s1)ds1, (R < 1)

where R = r
a .

With the help of Eq. (49) and using the result

∫ ∞

0
t
1
2 J1(at)J 1

2
(bt)dt =

{
0, 0 < a < b√

2
π

√
b

a
√
a2−b2

, 0 < b < a

the above equation becomes
∫ R

0

√
ξ

√
R2 − ξ2

�1(ξ, p)dξ

= −3πG4R2

4
+

√
π

2
R

∫ 1

0

√
ξ�(ξ, p)dξ

∫ ∞

0
s
3
2
1 M

( s1
a

, p
)
J1(R s1)J 3

2
(ξs1)ds1

= F(R) (51)

where M
(
s1
a , p

)
= 1 − G4P

(
s1
a , p

)

and F(R) = −3πG4R2

4
+

√
π

2
R

∫ 1

0

√
ξ�(ξ, p)dξ

∫ ∞

0
s
3
2
1 M

( s1
a

, p
)
J1(R s1)J 3

2
(ξs1)ds1.
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By setting Abel’s integral formula as

√
ξ �1(ξ, p) = 2

π

d

dξ

∫ ξ

0

R F(R)
√

ξ2 − R2
dR

and with the help of expression (50), Eq. (51) becomes

ξ�(ξ, p) = 2
π

∫ ξ

0
R√

ξ2−R2

[−3πG4R2

4 +
√

π
2 R

∫ 1
0

√
u�(u, p)du

× ∫ ∞
0 s

3
2
1 M

(
s1
a , p

)
J1(R s1)J 3

2
(us1)ds1

]
dR (52)

which can be converted by using the Hankel transform into a Fredholm integral equation of the second kind
as

�(ξ, p) +
∫ 1

0
�(u, p)L3(ξ, u, p)du = −G4ξ

2 (53)

where L3(ξ, u, p) = −√
ξu

∫ ∞

0
s1

[
1 − G4P

( s1
a

, p
)]

J 3
2
(us1)J 3

2
(ξs1)ds1. (54)

3 Stress intensity factor

For determining the stress intensity factor (SIF) K1(t) from its Laplace transform K ∗
1 (p), the stress components

in the matrix layer are expanded in terms of the local coordinates r1 and θ1 for small values of r1. The local
coordinates (r1, θ1) are related to (r, θ) as

r = a + r1 cos θ1
z = r1 sin θ1

}
(55)

where x = r cos θ, y = r sin θ .
From Eq. (23), it is obtained that

τ̄
(1)
θ z (r, 0, p) = −μ1

∫ ∞

0
sP(s, p)B(s, p)J1(sr)ds, (r > a). (56)

Now, letting P(s, p) −→ 1/G4 as s −→ ∞, Eq. (56) becomes

τ̄
(1)
θ z (r, 0, p) = 4τ0

3πp G4

[ φ(1, p)

R
√
R2 − 1

−
∫ 1

0

√
ξ

R
√
R2 − ξ2

φ1(ξ, p)dξ
]

= 4τ0
3πp G4

φ(1, p)

(R
√
R2 − 1)

+ O(1), (R > 1). (57)

To evaluate the singularity it is important to calculate the term |τ̄ (1)
θ z (r, 0, p)|. Therefore,

|τ̄ (1)
θ z (r, 0, p)| = 4τ0

3πp G4

φ(1, p)

(R
√
R2 − 1)

(R > 1)

= 4τ0
3πp G4

φ(1, p)
(
r
a

√
r
a − 1

√
r
a + 1

) (r > a)

= 4τ0
3πp G4

√
a φ(1, p)

(
r
a
√
r1

√
r
a + 1

) (r > a) (58)

where r1 = r − a.
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Table 1 Engineering elastic constants for elastic layer (Set-I)

Set-I Name of the material ρ (Density, Mg/m3) μ (shear modulus)

Layer I Aluminum alloy (7075-T6) 2.7 28
Layer II Brass (70Cu30Zn, annealed) 8.4 39
Layer III Nickel alloys 8.5 70

Table 2 Engineering elastic constants for elastic layer (Set-II)

Set-II Name of the material ρ (Density, Mg/m3) μ (shear modulus)

Layer I Brass (70Cu30Zn, annealed) 8.4 39
Layer II Aluminum alloy (7075-T6) 2.7 28
Layer III Nickel alloys 8.5 70
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The Laplace transform of the stress intensity factor is defined by

K ∗
1 (p) = lim

r→a

[
|τ̄ (1)

θ z (r, 0, p)| √r − a
]
. (59)

With the help of Eq. (58), Eq. (59) becomes

K ∗
1 (p) = 2

√
2a τ0

3π G4

φ(1, p)

p
. (60)

Using the inverse Laplace transform, the stress intensity factor K1(t) is obtained as

K1(t) = 2
√
2a

3π G4

τ0

2π i

∫

Br

φ(1, p)

p
eptdp (61)

where Br is the Bromwich path of integration. The values of the engineering elastic constants are given in
Tables 1, 2 [30].
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4 Numerical results and discussion

The method of Fox and Goodwin [28] has been used to solve the integral equation (53) numerically to obtain
φ(1, p). The integral in (53) has been represented by a quadrature formula involving values of the desired
function φ at pivotal points in the range of integration which leads to a set of algebraic linear simultaneous
equations. The solution of the set of linear algebraic equations gives a first approximation of the required
pivotal values of φ which has been improved by the use of difference correction technique.

After solving the integral equation (53), the Zakian Algorithm (see the Appendix II) has been used for the
Laplace inversion of (61) to find the stress intensity factor K1(t) at the tip of the crack for the engineering
elastic constants of different types of material. Then, the value of K1(t)/τ0 has been plotted against the time
t for different values of a and b.

In Figs. 2 and 4, K1(t)/τ0 has been plotted against t for set-I materials and in Figs. 3 and 5 for set-II
materials for different values of crack radius a (1.5, 2.0, 3.0) with respect to different layer thicknesses
b = 2.0 and b = 3.0. Again, K1(t)/τ0 has been plotted against t in Figs. 6 and 8 for set-I materials and in
Figs. 7 and 9 for set-II materials for different layer thicknesses b (1.5, 2.0, 3.0) for the crack radius a = 2.0
and a = 3.0. In all cases it is observed that the SIF increases first and attains its maximum value near about
t = 0.5 and then decreases to its minimum value near t = 1.0 and then shows wave like nature and finally
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decreases as t increases. In case of set-I materials, the SIF is found to be more wavy than in case of set-II
materials. It is also seen that for fixed b the SIF is higher for a higher value of crack radius a (Figs. 2, 3, 4, 5).

If the system of equilibrium is disturbed by applying sudden torsion, then it reaches to maximum angular
displacement with respect to the equilibrium position. At that moment, due to this displacement an internally
developed reacting force acts on the material for which it moves in the opposite direction to that of the initial
position, and then again it moves to the other extreme due to inertia. Here, it is clearly identified that the SIF
initially increases and attains its maximum value, but after that it decreases showing damped oscillation for all
the cases. This ensures the arrest of crack propagation or expansion of the crack. In the case of set-II materials,
the elastic limit of those materials is higher than that of set-I materials. It can be concluded that set-II materials
are elastically harder than the other.

5 Conclusions

The primary motivation of this investigation is to arrest the propagation of a penny-shaped crack sandwiched
between two elastic layers embedded in an elastic medium when a sudden torsional load is applied, and this is
analyzed to calculate the stress intensity factor (SIF) at the tip of the crack. The development of dynamic fracture
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by the interaction of stress waves and crack is seriously impeded by experimental measurement techniques
because of its inherent time dependency, and it is enormously difficult to measure the quantities of interest
without interfering with the process being observed here. This model of experiment can be further used in the
study of strength of these types of composite materials.

Acknowledgements We are thankful to the referee for valuable suggestions for the improvement of the paper.

Appendix I

The Solution of the Integral Equation by Hankel Transform Technique:

Hankel transforms are integral transformations whose kernels are Bessel functions. They are sometimes
referred to as Bessel transforms. When we are dealing with problems that show circular symmetry in cylindri-
cal coordinates, Hankel transforms may be very useful. Laplace’s partial differential equation in cylindrical
coordinates can be transformed into an ordinary differential equation by using the Hankel transform. Let f (r)
be a function defined for r ≥ 0. The νth-order Hankel transform of f (r) is defined as

Fν(s) ≡
∫ ∞

0
r f (r) Jν(sr) dr (62)

where Jν(sr) is theBessel function of the first kind of order ν. r Jν(sr) is called the kernel of the transformation.
If ν > − 1

2 , Hankels repeated integral immediately gives the inversion formula

f (r) ≡
∫ ∞

0
s Fν(s) Jν(sr) ds (63)

The most important special cases of the Hankel transform correspond to ν = 0 and ν = 1. Sufficient but not
necessary conditions for the validity of (62) and (63) are

1. f (r) = ◦(r−k), r → ∞ where k > 3
2.

2. f ′(r) is piecewise continuous over each bounded subinterval of [0,∞).
3. f (r) is defined as [ f (r+)+ f (r−)]

2 .

These conditions can be relaxed.

Hankel functions:

The two linearly independent solutions to Bessel’s equation are the Hankel functions of the first and second
kind, H (1)

ν and H (2)
ν , defined by

H (1)
ν = Jν + iYν,

H (2)
ν = Jν − iYν

where i is the imaginary unit, Jν and Yν are the Bessel functions of first and second kind, respectively. These
linear combinations are also known as Bessel functions of the third kind.

The importance of Hankel functions of the first and second kind lies more in theoretical development than
in application. These forms of linear combination satisfy numerous simple-looking properties like asymptotic
formulae or integral representations. The Bessel function of the second kind can be thought to naturally appear
as the imaginary part of the Hankel functions. The Hankel functions are used to express outward- and inward-
propagating cylindrical wave solutions of the cylindrical wave equation, respectively (or vice versa, depending
on the sign convention for the frequency).
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Appendix II

Numerical inversion of the Laplace transform:

Let the Laplace transform F(p) of f (t) be given by

F(p) =
∫ ∞

0
e−pt f (t)dt, p ≥ 0 (p is transform parameter).

The function F of the complex variable p is analytic throughout the finite p plane except for a finite number
of isolated singularities. Then, let LR denote a vertical line segment from s = γ − i R to s = γ + i R where
the constant γ is positive and large enough that the singularities of F all lie to the left of that segment. A new
function f of the real variable t is defined for positive values of t by means of the equation

f (t) = 1

2π i
lim
R→∞

∫

LR

ept F(p) dp (t > 0)

= 1

2π i
P.V .

∫ γ+i∞

γ−i∞
ept F(p) dp (t > 0),

and such an integral is called a Bromwich integral [31]. For the Laplace inversion we use here Zakian’s
Algorithm.

Zakian’s Algorithm:

This algorithm is one of a class of algorithms in which f (t) is computed as a sum of weighted evaluations
of F(p),

f (t) =
N∑

i=1

Ki F(pi ),

where the values of Ki , pi , and N are dictated by a particular method. The development of Zakian’s algorithm
is given in Rice and Do [32]. A significant feature of the derivation is the specification that the time function
can be related to a finite series of exponential functions,

N∑

i=1

Kie
αi t .

The significance of this specification is that Zakian’s Algorithm is very accurate for overdamped and slightly
underdamped systems. But it is not accurate for systems with prolonged oscillations:

Given F(p) and a value of time t , the following equation implements Zakian’s Algorithm and allows us
to calculate the numerical value of f (t):

f (t) = 2

t

5∑

i=1

RE AL
(
Ki F

(αi

t

))
.

Table 3 gives the set of five complex constants for αi and for Ki as in [33,34].
Zakian’s Algorithm is simple to implement and computes quickly. But note that the initial value, f (t)

at t = 0, cannot be computed. Also, when there are oscillatory systems, f (t) becomes inaccurate after
approximately the second cycle.

Table 3 Set of five constants for αi and Ki for Zakian’s Method

i αi Ki

1 12.83767675 + i 1.666063445 − 36902.08210 + i 196990.4257
2 12.22613209 + i 5.012718792 61277.02524 − i 95408.62551
3 10.93430308 + i 8.409673116 − 28916.56288 + i 18169.18531
4 8.776434715 + i 11.92185389 4655.361138 − i 1.901528642
5 5.225453361 + i 15.72952905 − 118.7414011 − i 141.3036911
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ABSTRACT
Themechanical stability of the interface of twomaterials determines
the stress behavior of the interface. So, observation of failure analy-
sis in orthotropic composites with penny-shaped crack and circular
disc in orthotropic materials due to the presence of torsional waves
play a major role in structural design. The present article concerns
the study of the torsional wave propagation of a penny-shaped crack
in an orthotropic layer and two circular discs bonded between the
layer and half-spaces. A general solution for the system is presented
as a set of dual integral equations using the Hankel transform tech-
nique. Using Abel’s transform method, the equations have been
transformed into Fredholm integral equations of the second kind,
which have been solved numerically to compute the stress intensity
factors (SIFs) near the rims of crack and discs. Numerical results are
obtained using material constants of two orthotropic mediums to
demonstrate the impact of material non-homogeneity, normalized
disc radius, and layer depthonSIFs andportrayedby virtue of graphs.
The analysis of the physical quantity SIF in the present model leads
to speculation about the stability of composites against the propaga-
tion of cracks in layered engineering solids by surveilling geometric
parameters of orthotropic materials and layer depth.
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1. Introduction

In the field of material science and solid mechanics, orthotropic materials have material
properties that differ from each other along three mutually orthogonal two-fold axes of
rotational symmetry. High anisotropy of thesematerials with nine elastic constants are very
useful in the fabrication process. Continued works [1–3] have been carried out upon mod-
eling wave propagation through layered orthotropic materials for application in fields of
non-destructive evaluation such as geophysics, aircraft engineering, aerospace engineer-
ing, acoustics, civil engineering, etc. In fracture analysis, the response of layered composites
having cracks and inclusion is highly influenced by the orthotropic anisotropy. Our main
objective is to resist the stress initiated by controlling a physical quantity named as stress
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intensity factor. In this context, taking a look at orthotropic layered structureswith the pres-
ence of cracks and inclusion reveals an emerging area of research in designing engineering
structures and machines.

A wide variety of analytical and closed-form solutions for different wave propagation
including torsion in various anisotropic layered systems have been discussed by many
researchers [4–9]. The problem of multiple interfacial axisymmetric cracks in orthotropic
layer with FGM orthotropic coating subjected to torsional impact loading was proposed
by Bagherpoor et al. [10] using the distributed dislocation technique. The displacement
field at a half-space surface caused by an internal crack under a twisting load was reported
by Skalsky et al. [11] in the Fourier transform domain. An investigation of stresses associ-
ated with the torsional study of cracks in circular bars with a piezoelectric coating and for
semi-elliptical surface cracks in a cylindrical bar under pure tension in closed form is pre-
sented in papers by Hassani et al. [12] and Ramezani et al. [13] respectively. Trivedi et al. [14]
determined SIF for an edge crack influenced by time harmonic wave in orthotropic strip
and orthotropic vertical semi-infinite strip utilizing Fourier transformation and Schmidh
method.

Sih and Chen [15] gave a solution to the problem of a penny-shaped crack situated in a
four-layered composite laminate of isotropic elastic media subject to torsion. Stress anal-
ysis was investigated by Rabieifar et al. [16] of functionally graded orthotropic medium
with several axisymmetric cracks by the impact of torsional load, byWu et al. [17] for multi-
ple penny-shaped cracks in an infinite transversely isotropicmagneto-electro-elastic space.
The solution to torsional impact around a penny-shaped crack has been derived for an
orthotropic FGMby Li et al. [18]. Craciun and Barbu [19] carried out the solution in compact
closed form for prestressed orthotropic composite with an elliptical hole due to uniform
tensile and uniform tangential shear loads using the conformal mapping technique. Sel-
vadurai et al. [20] represented the axisymmetric problem of a penny-shaped crack in a
poroelastic half-space based on Biot poroelasticity. He et al. [21] proposed the simulation
model for penny-shaped cracks with the help of Lagrange interpolation polynomials and
the boundary element method (BEM).

Among the problems related to multilayered anisotropic media, Wang et al. [22] stud-
ied the problem of an interface crack in the shape of a penny caused by the action of
dynamic torsional load on different layers made of orthotropic media. Torsional impact
near a penny-shaped crack has been considered in a transversely isotropic strip by Feng
and Zou [23]. Here, the stress field near the crack tip has been derived by applying the
asymptotic behavior of the Bessel function. The impact of a sudden torsional load on a
penny-shaped crack in an elastic layer sandwiched between two elastic half-space has
been considered by Basu et al. [24]. Erdogan and Arin [25] analyzed an axially symmet-
ric elastostatic problem for a penny-shaped interface crack between an elastic layer and
a half-space. Stress intensity factors have been determined for a penny-shaped crack
located at the interface of two bonded dissimilar transversely isotropic half-spaces by Sax-
ena and Dhaliwal [26]. In all the pieces of literature mentioned above, for the purpose
of obtaining the solution, mainly with the aid of Hankel transforms, the mixed bound-
ary value problem has been transformed into dual integral equations, which enables
the reduction to second kind integral equations of Fredholm type. Stress analysis for a
crack, shaped like a penny was evaluated by Lee and Tran [27], by Ueda et al. [28] in
a layered composite under the torsional impact, by Li and Weng [29] within an FGM
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interlayer between two different half-spaces subject to torsional impact load, by Sax-
ena [30] for two dissimilar bonded elastic layers subjected to axially symmetric tor-
sion.

Several studieswere carried out to examine the effects of stresses on the fracture of com-
posites weakened by subsurface disk-shaped torsion (mode-III) cracks by Bohdanov [31],
around two coaxial cylindrical cracks by Itou [32]. Here, tensile stress is applied to cracks
in the normal direction. Based on the interaction integral method, the SIFs for circular
arc-shaped cracks in orthotropic nonhomogeneous media is derived by Yu et al. [33].

Recently, Madani and Kebli [34], first implemented the torsional wave propagation
in a composite media with two rigid discs and a cracked isotropic layer. Based on
the study above, in the context of applications of composite materials [35] such as
orthotropic laminates, the above types of problems may provide a basis for designing
layered composite structures. In many actual-world situations like impresser and tur-
bine disks, various pipes where the geometry type and pressure are axially symmet-
ric, composite materials have faced several types of waves and disturbances. Torsion is
one kind of wave disturbance originating from pressure on the crack surface and disc
surfaces leading to the onset of crack propagation and stress field around the circular
discs within engineering solids. Propagation of torsional waves takes place in turbines,
drillings, etc. Also, in the field of engineering foundation, various shapes of inclusion as
circular, strip, rectangular, and other types have been used to make the desired founda-
tion. To get a high level of mechanical performance like high-stiffness, lightweight phe-
nomena, flexibility, durability, etc, orthotropic materials are designed as multi-directinal
laminates by combining two or more materials. So, orthotropic solids may be consid-
ered composite materials. In composite materials, crack-like flaws may be initiated dur-
ing the manufacturing process. In light of this, the stress behavior of orthotropic com-
posites influenced by torsional waves attains a significant field of research in geome-
chanics as well as applied mechanics. This communication aims to illustrate the nature
of stress on geometric parameters of the assumed model for torsional wave propaga-
tion.

In what follows, the present article derives fracture analysis of a composite orthotropic
medium with a penny-shaped crack and two circular discs subjected to the axisymmetric
torsional response. The geometry of the orthotropic composite ismodeled based on a layer
of finite depth sandwiched between two half-spaces made of the dissimilar orthotropic
medium. Hankel transform technique has been utilized to convert the problem to a set
of dual integral equations. With the help of Abel’s transform technique, the set of integral
equations has been expressed in terms of Fredholm integral equations of the second kind.
The integral equations are solved numerically by applying the Simpson quadrature for-
mula to compute the stress intensity factors (SIFs) near the rims of the crack and discs. The
numerical values of stress intensity factors (SIFs) have been computed considering mate-
rial constants of two different orthotropicmaterials as the layer (L1) and the half-spaces (L2)
and charted graphically. The grpahs reveal that the material non-homogeneity, disc size,
crack size, and layer depth have a significant influence on SIFs. The study can serve as a
guideline in controlling failure mechanisms, failure propagation, fracture toughness, and
the overall stress–strain behavior of composite materials. It is possible to use the conclu-
sions obtained as a guide to engineering practice by comparing the fracture toughness of
orthotropic materials.
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2. Formulation of the elasticity problem

Schematic illustration (Figure 1) of a crack (radius h1) shaped like a penny is taken into
account in an orthotropic layer (L1) of thickness 2d where the media have a symmetry
along the z-axis. The orthotropic layer (L1) and half-space (L2) are connected by two rigid
discs. Two rigid discs having radius h2 are symmetrically placed between the layer (L1) and
half-space (L2) in the planes z = ±d and are twisted by the axisymmetric torsion. Cylindri-
cal polar coordinates of (r, θ , z) yield displacement components with a form similar to that
below:

ur = 0, uθ = uθ (r, z), uz = 0.

The governing equation of motion for orthotropic material (Hassani et al. [36]) takes the
form

∂2u(j)
θ

∂ r2
+ 1

r

∂u(j)
θ

∂r
− u(j)

θ

r2
+ C(j) ∂

2u(j)
θ

∂z2
= 0 (j = 1, 2), (1)

where C(j) = C(j)
44

C(j)
66

, and C(j)
44, C

(j)
66 are orthotropic shear moduli in the radial and circumferen-

tial direction. Throughout the manuscript, superscripts ‘1’, ‘2’ have been used to refer to
sandwiched orthotropic layer (L1), orthotropic half-space (L2), respectively. The nonzero
component of stress tensor can be expressed as follows:

σ
(j)
θ r = C(j)

66

(
∂u(j)

θ

∂r
− u(j)

θ

r

)
,

σ
(j)
θz = C(j)

44

(
∂u(j)

θ

∂z

)
.

The regularity conditions at infinity are

lim
r,z→∞ u(j)

θ (r, z) = 0,

lim
r,z→∞ σ

(j)
θz (r, z) = 0.

(2)

The boundary conditions for the formulated problem are as follows:

σ
(1)
θz (r, 0+) = 0, 0 ≤ r ≤ h1, (3)

u(1)
θ (r, 0+) = 0, r > h1, (4)

u(1)
θ (r, d−) = u(2)

θ (r, d+) = ωr, 0 ≤ r ≤ h2. (5)

Also, the interfaces z = ±d between the rigid discs and orthotropic half-spaces are bonded
perfectly. So, at the interface z = ±d we find the continuity conditions as

σ
(1)
θz (r, d−) = σ

(2)
θz (r, d+) = 0, r > h2, (6)

u(1)
θ (r, d−) = u(2)

θ (r, d+) = 0, r > h2. (7)

Application of the standard Hankel integral transform to the regularity condition given
by Equation (2), the solution of Equation (1) for the orthotropic layer L1 (|z| ≤ d), and
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orthotropic half-space L2 (|z| ≥ d) can be taken as

u(1)
θ (r, z) =

∫ ∞

0

[
E(ζ ) e

− ζ z√
C(1) + F(ζ ) e

ζ z√
C(1)

]
J1(ζ r)dζ , (8)

and

u(2)
θ (r, z) =

∫ ∞

0

[
G(ζ ) e

− ζ z√
C(2)

]
J1(ζ r)dζ , (9)

where J1(.) is the first kind of Bessel function of order one and C(1) = C(1)
44

C(1)
66

, C(2) = C(2)
44

C(2)
66

. In

Equations (8)–(9), E(ζ ), F(ζ ),G(ζ ) are unknown functions which are to be determined with
the help of boundary conditions. The expressions for stresses τθz now becomes

σ
(1)
θz (r, z) = P(1)

∫ ∞

0
ζ

[
−E(ζ ) e

− ζ z√
C(1) + F(ζ ) e

− ζ z√
C(1)

]
J1(ζ r)dζ , (10)

σ
(2)
θz (r, z) = −P(2)

∫ ∞

0
ζ

[
G(ζ ) e

− ζ z√
C(2)

]
J1(ζ r)dζ , (11)

where

P(1) =
√
C(1)
44 .C

(1)
66 , P(2) =

√
C(2)
44 .C

(2)
66 .

3. Derivation of integral equation

Using the above expressions, the continuity condition (7) yields

G(ζ ) = E(ζ ) eζdQ3 + F(ζ ) eζdQ4 , (12)

where

Q3 = 1√
C(2)

− 1√
C(1)

, Q4 = 1√
C(2)

+ 1√
C(1)

,

and we derived the following set of dual integral equations utilizing boundary conditions
(3)–(6) ∫ ∞

0
ζ [F(ζ ) − E(ζ )] J1(ζ r)dζ = 0, 0 ≤ r ≤ h1, (13)

∫ ∞

0
[E(ζ ) + F(ζ )] J1(ζ r)dζ = 0, r > h1, (14)

∫ ∞

0

[
E(ζ ) e

− ζd√
C(1) + F(ζ ) e

ζd√
C(1)

]
J1(ζ r)dζ = ωr, 0 ≤ r ≤ h2, (15)

∫ ∞

0
ζ

[
F(ζ ) e

ζd√
C(1)

]
J1(ζ r)dζ = 0, r > h2. (16)

The above set of dual integral equations has been converted to a set of integral equations
of Fredholm type by introducing two auxiliary functionsm1(x) andm2(x) as follows:

E(ζ ) + F(ζ ) =
√

ζ

∫ h1

0

[√
xm1(x)

]
J 3
2
(ζx)dx, (17)

F(ζ ) e
ζd√
C(1) =

√
ζ

∫ h2

0

[√
xm2(x)

]
J 1
2
(ζx)dx. (18)
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After solving the unknown functions, we get

E(ζ ) =
√

ζ

∫ h1

0

[√
xm1(x)

]
J 3
2
(ζx)dx −

√
ζ e

− ζd√
C(1)

∫ h2

0

[√
xm2(x)

]
J 1
2
(ζx)dx, (19)

F(ζ ) =
√

ζ e
− ζd√

C(1)

∫ h2

0

[√
xm2(x)

]
J 1
2
(ζx)dx. (20)

Now, Equations (13) and (15) become the following form∫ h1

0

√
xm1(x)dx

∫ ∞

0
ζ

3
2 g1(ζ )J 3

2
(ζx)J1(ζ r)dζ

+
∫ h2

0

√
xm2(x)dx

∫ ∞

0
ζ

3
2 g2(ζ )J 1

2
(ζx)J1(ζ r)dζ = 0, r < h1, (21)

and ∫ h1

0

√
xm1(x)dx

∫ ∞

0
ζ

1
2 g3(ζ )J 3

2
(ζx)J1(ζ r)dζ

+
∫ h2

0

√
xm2(x)dx

∫ ∞

0
ζ

1
2 g4(ζ )J 1

2
(ζx)J1(ζ r)dζ = ωr, r < h2, (22)

where

g1(ζ ) = 1, g2(ζ ) = −2 e− ζd√
C(1)

,

g3(ζ ) = e− ζd√
C(1)

, g4(ζ ) = 1 − e− 2ζd√
C(1)

.

Using the following results

∫ ∞

0
ζ

1
2 J2(ζ r)J 3

2
(ζx)dx =

⎧⎪⎨
⎪⎩
0 ; x > r,√

2
π

x
3
2

r2
√
r2 − x2

; x < r,

and

ζ J1(ζ r) = 1
r2

d
dr

[r2J2(ζ r)],

Equation (21) converted to Abel equation as√
2
π

∫ r

0

x2m1(x)√
r2 − x2

dx + r2
∫ h1

0

√
xm1(x)dx

∫ ∞

0
ζ

1
2 (g1(ζ ) − 1)J 3

2
(ζx)J2(ζ r)dζ

+ r2
∫ h2

0

√
xm2(x)dx

∫ ∞

0
ζ

1
2 g2(ζ )J 1

2
(ζx)J2(ζ r)dζ = 0, r < h1, (23)

which can be inverted by using Abel transform as follows

x2m1(x) =
√

2
π

d
dx

∫ x

0

r3√
x2 − r2

[
−
∫ h1

0

√
λm1(λ)dλ

∫ ∞

0
ζ

1
2 (g1(ζ ) − 1)J 3

2
(ζλ)J2(ζ r)dζ

−
∫ h2

0

√
λm2(λ)dλ

∫ ∞

0
ζ

1
2 g2(ζ )J 1

2
(ζλ)J2(ζ r)dζ

]
dr, r < h1. (24)
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With the help of the formula√
2
π

d
dt

∫ x

0

r3√
x2 − r2

J2(ζ r)dr =
√

ζx
5
2 J 3

2
(ζx),

Equation (24) is rewritten as a second kind of Fredholm integral equation in the following
form

m1(x) + x
1
2

∫ h1

0
λ

1
2m1(λ)P(x, λ)dλ + x

1
2

∫ h2

0
λ

1
2m2(λ)Q(x, λ)dλ = 0, r < h1, (25)

where

P(x, λ) =
∫ ∞

0
ζ(g1(ζ ) − 1)J 3

2
(ζx)J 3

2
(ζλ)dζ ,

Q(x, λ) =
∫ ∞

0
ζg2(ζ )J 3

2
(ζx)J 3

2
(ζλ)dζ .

Following a similar type of analysis, we get another Fredholm integral equation of the
second kind from Equation (22) as

m2(x) + x
1
2

∫ h1

0
λ

1
2m1(λ)R(x, λ)dλ + x

1
2

∫ h2

0
λ

1
2m2(λ)S(x, λ)dλ = 4ω√

2π
x, 0 < x < h2,

(26)
where

R(x, λ) =
∫ ∞

0
ζg3(ζ )J 1

2
(ζx)J 3

2
(ζλ)dζ ,

S(x, λ) =
∫ ∞

0
ζ(g4(ζ ) − 1)J 1

2
(ζx)J 1

2
(ζλ)dζ .

We then introduced dimensionless variables (ξ and μ) as:

λ = h1ξ , 0 < λ < h1; x = h1μ, 0 < x < h1;

λ = h2ξ , 0 < λ < h2; x = h2μ, 0 < x < h2.

Then, Equations (25) and (26) have been multiplied by
√
2πm1(h1μ)
4h1ω

and
√
2πm2(h2μ)
4h2ω

respec-
tively and rewritten in terms of the dimensionless variables to obtain the non-dimensional
form:

M1(x) + a2μ
1
2

∫ 1

0
ξ

1
2M1(ξ)P(μ, ξ)dξ + μ

1
2

a
1
2

∫ 1

0
ξ

1
2M2(ξ)Q(μ, ξ)dξ = 0, μ < 1, (27)

M2(x) + a
5
2 μ

1
2

∫ 1

0
ξ

1
2M1(ξ)R(μ, ξ)dξ + μ

1
2

∫ 1

0
ξ

1
2M2(ξ)S(μ, ξ)dξ = μ, μ < 1, (28)

where

P(μ, ξ) = 0, Q(μ, ξ) =
∫ ∞

0
ηg2(η)J 3

2
(ηaμ)J 1

2
(ηξ)dη,

R(μ, ξ) =
∫ ∞

0
ζg3(η)J 1

2
(ημ)J 3

2
(ηaξ)dη, S(μ, ξ) =

∫ ∞

0
η(g4(η) − 1)J 1

2
(ημ)J 1

2
(ηξ)dη.



8 S. KARAN ET AL.

Figure 1. Geometry and notation of the problem.

In the above system, we have used the following transformations:

M1(μ) =
√
2π

4h1ω
m1(h1μ), M2(μ) =

√
2π

4h2ω
m2(h2μ), a = h1

h2
, ζ = η

h2
, D = d

h2
.

4. The solutionmethod of integral equations

The Fredholm integral Equations (27) and (28) have been solved by applying the Gaussian
quadrature formula. Here the interval [0, 1] has been divided into T equal sub-interval each
of length 1

T . Next, Equations (27) and (28) can be written as:

M1α + 1

Ta
1
2

μ
1
2
α

∑T

β=1
(μ

1
2
βM2βQαβ) = 0, α,β = 1, 2, . . . , T

M2α + a
5
2

T
μ

1
2
α

∑T

β=1
(μ

1
2
βM1βRαβ) + 1

T
μ

1
2
α

∑T

β=1
(μ

1
2
βM2βSαβ) = μα , α,β = 1, 2, . . . , T

with the following notations

μ = μα = 2α − 1
2T

, ξ = μβ = 2β − 1
2T

,

M1(μα) = M1α , M2(μα) = M2α , Q(μα ,μβ) = Qαβ ,

R(μα ,μβ) = Rαβ , S(μα ,μβ) = Sαβ ,
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Qαβ =
∫ ∞

0
ηg2(η)J 3

2
(ηaμα)J 1

2
(ημβ)dη,

Rαβ =
∫ ∞

0
ηg3(η)J 1

2
(ημα)J 3

2
(ηaμβ)dη,

Sαβ =
∫ ∞

0
η(g4(η) − 1)(η)J 1

2
(ημα)J 1

2
(ημβ)dη.

Also, the unknown functions E(ζ ), F(ζ ),G(ζ ) can approximated from Equations (12), (19)
and (20) as following for numerical computation:

G(η) = E(η) eηDQ3 + F(η) eηDQ4 ,

E(η) = 4h22ω√
2πT

η
1
2
∑T

α=1
μ

1
2
α

[
a

5
2M1αJ 3

2
(ηaμα) − e

− ηD√
C(1) M2αJ 1

2
(ημα)

]
,

F(η) = 4h22ω√
2πT

η
1
2 e

− ηD√
C(1)

T∑
α=1

[
μ

1
2
αM2αJ 1

2
(ημα)

]
.

5. Quantities of physical interest

The stress intensity factors (SIFs) at the edge of the crack and at the rim of the disc are as
follows:

Kh1 = lim
r→h+

1

√
2π(r − h1) σ

(1)
θz (r, z)|z=0, (29)

Kh2 = lim
r→h−

2

√
2π(h2 − r) σ

(1)
θz (r, z)|z=d . (30)

From Equation (10), the stress on the plane z = 0 for r ≥ h1 and z = d becomes

σ
(1)
θz (r, 0) = P(1)

∫ ∞

0
ζ

3
2

[
−
∫ h1

0
x
1
2m1(x)J 3

2
(ζx)dx

+ 2 e
−ζd√
C(1)

∫ h2

0
x
1
2m2(x)J 1

2
(ζx)dx

]
J1(ζx)dζ , (31)

σ
(1)
θz (r, d) = P(1)

∫ ∞

0
ζ

3
2

[
−e

−ζd√
C(1)

∫ h1

0
x
1
2m1(x)J 3

2
(ζx)dx

+(1 + e
−2ζd√
C(1) )

∫ h2

0
x
1
2m2(x)J 1

2
(ζx)dx

]
J1(ζx)dζ . (32)

Using the following relation,

J1(ζχ) = −1
ζ

d
dχ

J0(ζχ),
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we obtain

σ
(1)
θz (r, 0) = P(1)

∫ h1

0
x
1
2m1(x)dx

∫ ∞

0
ζ

1
2 J 3

2
(ζx)J0(ζ r)dζ

+ 2P(1)
∫ h2

0
x
1
2m2(x)dx

∫ ∞

0
ζ

3
2 e

−ζd√
C(1) J 1

2
(ζx)J1(ζ r)dζ , (33)

σ
(1)
θz (r, d) = −P(1)

∫ h2

0
x
1
2m2(x)dx

∫ ∞

0
ζ

1
2 J 1

2
(ζx)J0(ζ r)dζ − P(1)

∫ h1

0
x
1
2m1(x)dx

∫ ∞

0
ζ

3
2 e

−ζd√
C(1) J1(ζ r)dζ + P(1)

∫ h2

0
x
1
2m2(x)dx

∫ ∞

0
ζ

3
2 e

−2ζd√
C(1) J 1

2
(ζx)J1(ζ r)dζ .

(34)

Basedon the formula Jϑ(ζ ) �
√

2
πζ

cos(ζ − πϑ
2 − π

4 ) for asymtoticbehavior of the first kind

of Bessel function for large values of ζ , we get the relations as

J 3
2
(ζx) �

√
2

πζx
cos(ζx − π) = −

√
2

πζx
cos(ζx),

J 1
2
(ζx) �

√
2

πζx
cos

(
ζx − π

2

)
= −

√
2

πζx
sin(ζx).

Next, we use the following integral formula

∫ ∞

0
cos(ζx)J0(ζ r)dζ =

⎧⎨
⎩
0 ; r < x,

1√
r2 − x2

; r > x.
and

∫ ∞

0
sin(ζx)J0(ζ r)dζ =

⎧⎨
⎩
0 ; r > x,

1√
x2 − r2

; r < x,

to get

σ
(1)
θz (r, 0) = −

√
2
π
P(1) d

dr

∫ h1

0

m1(x)√
r2 − x2

dx + χ1(r), (35)

σ
(1)
θz (r, d) = −

√
2
π
P(1) d

dr

∫ h2

0

m2(x)√
x2 − r2

dx + χ2(r), (36)

where

χ1(r) = 2P(1)
∫ h2

0
x
1
2m2(x)dx

∫ ∞

0
ζ

3
2 e

−ζd√
C(1) J 1

2
(ζx)J1(ζ r)dζ ,

χ2(r) = −P(1)
∫ h1

0
x
1
2m1(x)dx

∫ ∞

0
ζ

3
2 e

−ζd√
C(1) J1(ζ r)dζ

+ P(1)
∫ h2

0
x
1
2m2(x)dx

∫ ∞

0
ζ

3
2 e

−2ζd√
C(1) J 1

2
(ζx)J1(ζ r)dζ .
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Table 1. Elastic constants of layer (L1) and half-space (L2).

Elastic medium C44 (GPA unit) C66 (GPA unit) ρ(kg/m3)

Orthotropic layer (L1) 5.35 6.47 3400
Orthotropic half-space (L2) 4.35 5.0 9890

Then, we obtain by integrating

σ
(1)
θz (r, 0) = −

√
2
π
P(1)

⎡
⎣ h1m1(h1)

r
√
r2 − h21

−
∫ h1

0

xm′
1(x)

r
√
r2 − x2

dx

⎤
⎦+ χ1(r), (37)

σ
(1)
θz (r, d) = −

√
2
π
P(1)

⎡
⎣ h2m2(h2)

r
√
h22 − r2

−
∫ h2

r

xm′
2(x)

r
√
x2 − r2

dx

⎤
⎦+ χ2(r). (38)

So, SIFs at r = h1 and r = h2 can be written as

Kh1 = lim
r→h+

1

√
2π(r − h1) P

(1)

√
2
π

⎛
⎝ h1m1(h1)

r
√
r2 − h21

⎞
⎠ , (39)

Kh2 = lim
r→h+

2

√
2π(h2 − r) P(1)

√
2
π

⎛
⎝ h2m2(h2)

r
√
h21 − r2

⎞
⎠ . (40)

Next, applying the transformations

m1(h1) = 4h1ω√
2π

M1T and m2(h2) = 4h2ω√
2π

M2T ,

we can write

Kh1 = 4ωP(1)√h1√
π

M1T , (41)

Kh2 = 4ωP(1)√h2√
π

M2T . (42)

6. Numerical and graphical demonstration

To explain the theoretical results graphically, numerical values of the SIFs are calculated at
the edge of the penny-shaped crack and near the rim of circular disc from Equations (41)
and (42) respectively. We use here Gaussian quadrature rule and the numerical computa-
tions are performed by using MATLAB software. We considered the numerical values of
elastic constants and densities of the orthotropic layer and half-space as listed in Table 1
(Sourav et al. [37]).

In this section, numerical values of normalized SIFs along with the ratio of crack radius
h1, to radius h2 of disc (i.e. a = h1/h2) are displayed through graphical demonstrations as
shown in Figures 2–3. In order to explore the effect of normalized layer depth (D = d/h2)
on SIFs, four values of layer depth, namely D = 0.25, 0.50, 0.75, 1.0 has been considered.
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Figure 2. SIF as a function of the ratio of h1/h2 = a for crack.

Figure 3. SIF as a function of the ratio of h1/h2 = a for circular disc.

From Figure 2, it can be observed that the depth of the orthotropic layer has significant
effects on the normalized SIFs for the penny-shaped crack. For all values of the ratio ′a′, it
seems that with the decrease of layer depth (D), the peak SIFs will increase gradually. Also,
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it is seen that the curve of SIFs gradually increases first, attains to peak value at a = 1.0, and
then decreases with an increase of the ratio ′a′.

In Figure 3, the SIFs at the rim of circular discs versus the ratio a of the crack radius with
disc radius have been depicted. Here, the ratio a have a revealing influence on the values
of SIFs, in which a rise in this ratio leads to a lower value of SIF. Furthermore, like Figure 2,
this figure suggests that the peak value of SIF increases when layer depth D decreases.

Based on Figures 2–3, wemay conclude that the values of SIFs variate in a large scale for
large valuesof ′a′ than thoseof the smaller values. Lastly, thepeak valueof SIFs canbe raised
or lowered by varying the layer depth (i.e. the width between the circular disc and penny-
shaped crack). Within engineering solids, it has been seen that the onset of fracture occurs
when the numerical values of SIFs cross a certain limit (depending on material anisotropy)
named as critical SIFs. Our main objective in fracture analysis of composite medium is to
prevent the crack propagation to avoid damage of solid structure by controlling the values
of SIFs within a certain range called critical SIFs. In this regard, these results indicate that
by modifying crack and disc size (a) and layer depth (D), the magnitude of SIFs can be con-
trolled which is expected in fracture mechanics for safe structure. Therefore, the analysis
can help us in studying the fracture toughness of composite orthotropic bodies with cracks
and inclusion under stress.

Now, the results of our problem have been compared with existing literature [34] for
isotropicmaterial. Axisymmetric torsionof an internally cracked isotropic elasticmediumby
two embedded rigid discs has been investigated byMadani et al. [34]. The presentedmodel
was formulated for a cracked orthotropic layer with two rigid discs bonded between the
layer and half-spaces under axially symmetric torsion. To verify our results with an isotropic
case, we substitute C44 = C66 = μ (μ = shear modulus of the isotropic material) to con-
vert the problem of orthotropic material to isotropic material. The following expressions of
stress and governing partial differential equation have been obtained

σ
(j)
θ r = μ(j)

(
∂u(j)

θ

∂r
− u(j)

θ

r

)
,

σ
(j)
θz = μ(j)

(
∂u(j)

θ

∂z

)
.

(43)

∂2u(j)
θ

∂r2
+ 1

r

∂u(j)
θ

∂r
− u(j)

θ

r2
+ C(j) ∂

2u(j)
θ

∂z2
= 0 (j = 1, 2). (44)

In our paper, some terms have been converted to the following forms which are similar to
the isotropic case.

C(j) = C(j)
44

C(j)
66

= μ(j)

μ(j)
= 1, P(1) = μ(1), P(2) = μ(2).

Finally, the expressions of SIF at the rim of the crack and disc become

Kh1 = 4ωμ(1)√h1√
π

M1T , (45)

Kh2 = 4ωμ(1)√h2√
π

M2T . (46)
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The expressions stated above and Equations (43), (44), (45), (46) are exactly the same as
that expressions and Equations (1), (2), (56), (57) respectively of the work of Madani [34] for
isotropic case. Similar terms can be found in all the other expressions. Therefore, according
to Madani [34], our results are consistent.

7. Conclusion

In this research, the problem was formulated for a cracked orthotropic layer with two rigid
discs bonded between the layer and half-spaces under axially symmetric torsion. Hankel
transform is used to obtain the solution of mixed boundary value problem to a set of dual
integral equaton. Further, the set of dual integral equations has been converted into a pair
of the second kind integral equations of Fredholm type by virtue of Abel’s transforms and
appropriate integral formula. Finally, to unfold the impact of layer depth and normalized
disc size on SIFs, numerical implementations have been carried out using a quadrature rule
and expressed through the graphical presentation.

It has been observed that the SIFs diminish with the increase of layer depth i.e. the
distance between crack and disc. Also, the curve of SIFs shows a wave-like nature and
decreases as the ratio disc radius to crack radius increases and gradually tends to a static
value. So, we can conclude that the numerical values of SIFs at the vicinity of crack and disc
can be arrested in a certain range varying the geometric parameters (layer depth, disc size
and crack size). The technology of layered composites has experienced a significant devel-
opment in the field of structural design, process engineering, macromechanics, material
characterization, and optimization. The influence of torsional waves can not be avoided to
prevent damage to solids by an earthquake and many more real situations. So the present
study confirms the importance of stress analysis of orthotropic composites under a tor-
sional wave. The proposed model can provide an analytical approach of characterizing
structural behavior, stress analysis, non-destructive evaluation of material integrity, and
comparing the resistanceof composite anisotropic bodieswith cracks and inclusion against
crack growth.
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