
Network localization and
Pattern formation in some
Network topologies under

Discrete domain

Doctoral dissertation submitted by

Manash Kumar Kundu

for the award of the PhD degree of

Jadavpur University
Kolkata, India

Prof. Buddhadeb Sau

Department of Mathematics

Jadavpur University

Kolkata, India

January 2023

CERTIFICATE FROM THE SUPERVISOR

This is to certify that this thesis entitled "Network localization and Pattern for-
mation in some Network topologies under Discrete domain" submitted by Mr.
Manash Kumar Kundu who got his name registered on 29th January, 2016
for the award of Ph.D (Science) degree of Jadavpur University, is absolutely based
upon his own work under the supervision of Dr. Buddhadeb Sau, Professor,
Department of Mathematics, Jadavpur University, and that neither this
thesis nor any part of it has been submitted for either any degree/ diploma or
any other academic award anywhere before under my knowledge.

(Signature of the Supervisor with date and official seal)

l:i DR. BUDDHADEB SAU
Professor .

. Dept. of Maths., Jadavpur University .
, Kolkata - 700 032, INDIA

Dedicated To

my parents

v

Preface

This thesis is submitted at Jadavpur University, Kolkata 700032, India for the

degree “Doctor of Philosophy” in science. The research described herein is con-

ducted under the supervision of Prof. Buddhadeb Sau at the Department of

Mathematics, Jadavpur University, in the time period between January, 2016

and January, 2023.

This research work is original to the best of my knowledge except where the

references and acknowledgments are made to the previous works. Neither this

nor any substantially similar research work has been or is being submitted for

any other degree, diploma or other qualification at any other university.

Some parts of this work have been presented in the following publications:

� Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb

Sau. Arbitrary pattern formation by opaque fat robots on infinite

grid. International Journal of Parallel, Emergent and Distributed Systems,

Vol. 37, pages 542-570, 2022. https://doi.org/10.1080/17445760.2022.

2088750

� Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb

Sau. Optimal Gathering by Asynchronous Oblivious Robots in

Hypercubes. Algorithms for Sensor Systems. ALGOSENSORS 2018.

Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https:

//doi.org/10.1007/978-3-030-14094-6_7

� Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb

Sau. Distributed Localization of Wireless Sensor Network Using

CommunicationWheel.Information and Computation, 2022,104962,ISSN

0890-5401, https://doi.org/10.1016/j.ic.2022.104962.

An earlier version of the paper appeared in Algorithms for Sensor Systems.

ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503.

Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_2

https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1016/j.ic.2022.104962
https://doi.org/10.1007/978-3-030-62401-9_2

vi

• Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb
Sau. Arbitrary pattern formation by asynchronous opaque robots
on infinite grid. Arxiv e-prints, May. 2022. arXiv:2205.03053. https:
I /doi. org/10. 48550/arXi v. 2205. 03053 (Communicated)

Date: C)e (o-=t/~o~g
Manash Kumar Kundu

vii

Acknowledgment

First I would like to express my sincere gratitude to Prof. Buddhadeb Sau whom

I had the privilege to have as my supervisor. For the past five years or so, he has

been a fatherly figure in my life. I am immensely grateful to him for his support,

advice and encouragement. I will cherish the numerous insightful conversations

that I have had with him related to research and beyond.

I am grateful to all the teachers of Department of Mathematics, Jadavpur Uni-

versity who have taught me. I would also like to thank all the members and office

staffs of Jadavpur University for all their help.

Next I would like to thank Kaustav Bose, Ranendu Adhikary, Pritam Goswami

and Satakshi Ghosh, with whom I have coauthored several papers in the past few

years. I am extremely fortunate to have as labmates Sangita Patra, Ananya Saha,

Arpita Dey, Suvankar Barai, Debajyoti Biswas, Archak Das, Raja Das, Avisek

Sharma and Brati Mondal.

I would like to thank my family members, especially my parents and my sister

for their unconditional love, blessings and many sacrifices. Without them none

of this would have been possible.

Finally, I would like to acknowledge Jadavpur University, Kolkata for their assis-

tance and UGC, Government of India for their financial support in the form of

research fellowship to carry out this work.

viii

ix

Flowchart of the thesis

Input: 1. A set of sensors forming UDG.
2. A set of robots deployed in the discrete
domain and they are given a pattern.
Objective: 1. The sensors have to localize
themselves.
2. The robots have to form the given pattern.

Required
functionalties

Network
localization

Sensors are forming a
graph where two nodes
are adjacent if and only
if their distance is ≤ r

(Chapter 2)

Position of all
nodes except some

boundary and isolated
weakly interior nodes

Pattern
formation

Pattern formation
in hypercube
(Chapter 3)

Pattern
formation in
infinite grid

Dimension
of robots

Pattern
formation in
opaque model
(Chapter 4)

Pattern
formation in
opaque model
(Chapter 5)

Point
robots

Fat
robots

End.

x

Contents

1 Introduction 1

1.1 Theoretical Framework . 4

1.2 Related Works . 9

1.3 Overview of the Thesis . 15

2 Distributed Localization of Wireless Sensor Network Using Com-

munication Wheel 19

2.1 Basic Model and Assumptions . 22

2.2 Definitions and Notations . 23

2.3 Some Results from Graph Rigidity Theory 25

2.4 Construction of a Globally Rigid Subgraph Using Communication

Wheels . 26

2.5 The Localization Algorithm . 34

2.6 Overhead of the algorithm . 43

2.7 Discussion . 44

2.8 Concluding Remarks . 50

3 Gathering in Hypercubes by Asynchronous Oblivious Robots 51

3.1 The Model . 52

xi

xii

3.2 Theoretical Preliminaries . 53

3.3 The Algorithm . 62

3.4 Concluding Remarks . 68

4 Arbitrary Pattern Formation on Infinite Grid by Opaque Point

Robots 69

4.1 Problem description and our contribution 70

4.2 Model . 71

4.3 Notations and Definitions . 72

4.4 The Algorithm . 75

4.5 Conclusion . 97

5 Arbitrary Pattern Formation on Infinite Grid by Opaque Fat

Robots 99

5.1 Model and Definitions . 100

5.2 The Algorithm . 104

5.3 Concluding remarks . 137

6 Conclusion 139

Chapter 1

Introduction

A wireless sensor network (WSN) is a wireless network consisting of a large

number of small autonomous sensors spatially distributed in a region to moni-

tor physical or environmental parameters. The sensor nodes are low-cost, low-

power, autonomous, multi-functional devices equipped with sensing, processing,

and communication capabilities. The knowledge of the physical location of sensor

nodes is essential in many applications where the geographical information of the

sensed data is important, for example, event detection, environment and habitat

monitoring, target tracking, pervasive medical care, etc. The positional informa-

tion of the nodes also supports many fundamental location-aware protocols, like

geographic routing, topology control, coverage, etc. One method of determining

the location of the nodes is by equipping the sensor nodes with Global Positioning

System (GPS). However, the installation of GPS on each node of a large scale

WSN is expensive and the power consumption of GPS reduces the battery life of

the sensor nodes. Moreover, it is not suitable in dense forests, underground or

indoor environment where GPS signals are unavailable. Therefore, novel schemes

have been proposed to determine the positions of the nodes in a network where

only some special nodes called anchors are aware of their positions with respect

to some global coordinate system (e.g., [3, 7, 8, 19, 80, 93]). In these schemes,

the nodes can measure the distances to their neighboring nodes and then try

to determine their positions by using the distance information. This process of

computing the positions of the nodes is called range based network localization or

1

2

simply network localization. In centralized setting, there is a central unit or base

station involved. The inter-node distance information measured by the nodes is

transmitted to the central unit where the locations of the nodes are calculated.

In distributed setting, there is no central unit or base station. In this case, the

nodes are required to find their positions based on the local information obtained

from their neighbors.

The network localization problem can be abstracted as the following: given a

weighted graph with edge weights equal to the distances between the respec-

tive nodes and coordinates of some nodes, called anchors, with respect to some

coordinate system, we have to compute the coordinates of all other nodes in

that coordinate system. A network, with the given positions of anchors and

distances between adjacent nodes, is said to be uniquely localizable if all nodes

of the network have unique positions consistent with the given data, i.e., there

is a unique solution. Obviously, if the given instance corresponds to multiple

feasible solutions, the actual positions of the nodes cannot be determined. The

unique localizability of a network is completely determined by certain combina-

torial properties of the network graph and the number of anchors. Graph rigidity

theory [39, 55, 58] provides the following necessary and sufficient condition for

unique localizability [39]: a network is uniquely localizable if and only if it has

at least 3 anchors and the network graph is globally rigid (See Section 2.3 for

definition). However, unless a network is highly dense and regular, it is unlikely

that the network is globally rigid. But even if a network is not globally rigid as

a whole, a large portion of the network may be globally rigid. For the remain-

ing nodes, there are multiple feasible solutions and hence, their actual positions

cannot be determined. In the decision version of the problem, also known as

Graph Embedding or Graph Realization problem, given a weighted graph,

we have to determine whether there is an embedding of the graph in the plane so

that the distances between the adjacent vertices are equal to the edge weights.

This problem has been shown to be strongly NP-hard [94]. In [39], it is shown

that the problem remains NP-hard even when the graph is globally rigid. How-

ever, these results are for general graphs. In a sensor network, only nodes that

are within a certain communication range, say r, can measure their relative dis-

3

tances. Therefore, the network can be better modeled as a unit disk graph: two

nodes are adjacent if and only if their distance is ≤ r. In this version of the prob-

lem, apart from the coordinates of the anchors and the distances between the

adjacent nodes, we have a third type of information: the distances between the

non-adjacent nodes are > r. The decision version of this problem, also known as

Unit Disk Graph Reconstruction problem, is that given a weighted graph

with weights ≤ r, we have to determine whether there is an embedding of the

graph in the plane so that 1) the distances between the adjacent vertices are equal

to the edge weights, and 2) the distance between any pair of non-adjacent nodes

is > r. It is shown in [4] that Unit Disk Graph Reconstruction is NP-hard.

Therefore, there is no efficient algorithm that solves the localization problem in

the worst case unless P = NP. It is further shown in [4] that a similar result holds

even for instances that have unique reconstructions: there is no efficient random-

ized algorithm that solves the localization problem even for instances that have

unique reconstructions unless RP = NP. So we are interested in algorithms that

effciently localize the network partially.

Now if instead of autonomous sensors, they are autonomous mobile robots, then

the distributed system is called robot swarm where they collaboratively execute

some complex tasks. Swarms of low-cost, weak, simple robots are emerging as

a viable alternative to using a single powerful and expensive robot. Before the

study of swarm robotics, designing a robot to do a specific task was costly as it

would have needed many strong capabilities. But designing a swarm of robots is

cheaper than using such robot with many capabilities as the goal now become to

design the robots with minimal capabilities such that they can do the same task

autonomously. Among many applications of swarm robots military operations,

border surveillance, cleaning of a large surface, rescue operations, disaster man-

agement etc. are the ones that use the swarm robots vividly in present days. So,

it is evident why swarm robotics has gained such popularity in the industry and

among researchers in the current scenario.

Among many problems (eg. gathering, scattering, exploration) Arbitrary Pattern

Formation (APF) is a classical problem in the field of swarm robotics.

4

The problem is to design an algorithm which will be used by each autonomous

mobile robot of a robot swarm that will guide the robots to form any specific

pattern that is given to the robots initially as input. In this problem, the robots

are modeled as autonomous (there is no central control), anonymous (the robots

do not have any unique identifiers), homogeneous (all robots execute the same al-

gorithm) and identical (robots are indistinguishable by their appearance). All the

robots can freely move on the plane. Each robot has sensing capability by which

they can perceive the location of other robots on the plane. The robots do not

have any global coordinate system (each robot has its own local coordinate sys-

tem) and they operate in Look-Compute-Move (LCM) cycles. In the Look

phase, a robot takes a snapshot of its surroundings. In the Compute, phase a

robot process the information got from the Look phase and in the Move, phase

a robot moves to another position (a robot also might stay still in this phase)

depending on the output of the Compute phase. In any model, the robots can

be considered as transparent or opaque. In the case of transparent robots, a

robot can see another robot even if there are other robots between them. But in

the case of opaque robots, a robot can not see another robot if there are other

robots between them. There are many works where both these models have been

considered ([1, 6, 12–14, 16, 33, 47, 72]). Opaque robots can be considered to be

dimensionless (i.e point robots) ([1, 6, 13, 14, 27, 42, 47, 53, 75]) or they can have

some dimension (i.e fat robots) [12]. In the literature on APF , there are many

works which have considered the robots to be dimensionless (i.e point robots)

and opaque [1, 14].

1.1 Theoretical Framework

This section provides an overview of the theoretical framework under which the

computational and complexity issues related to distributed computing by robot

swarms are studied. The framework covers a large spectrum of settings. The

different sets of assumptions regarding the capabilities of the robots and the

environment in which they operate give rise to several variations of the framework.

5

1.1.1 Sensors

The mathematical model of wireless sensor network considered in this work is

described in the following:

� A set of n sensors is arbitrarily deployed in R2. Each sensor node has

computation and wireless communication capabilities.

� There is a constant r > 0, called the communication range, such that any

two sensor nodes can directly communicate with each other if and only if

the distance between them is ≤ r. This implies that the corresponding

communication network can be modeled as a unit disk graph (UDG): two

nodes are adjacent if and only if they are at most r distance apart. We

assume that this graph is connected. Note that if the graph is not connected,

then it is impossible to localize the entire network consistently.

� The distance between a pair of sensors can be measured directly and accu-

rately if and only if they are at most r distance apart. Hence, if a sensor

node can directly communicate with another node, then it also knows the

distance between them.

� The sensor nodes are assumed to be in general positions, i.e., no three nodes

are collinear. This is not a major assumption, as the nodes of a randomly

deployed network are almost always in general positions. This assumption

implies that if the distances of a node from any three other nodes in the

network with known coordinates (with respect to some coordinate system)

are known, then the coordinates of the former can also be computed.

1.1.2 The Robots

In robot swarm, a set of n mobile computational entities is called robots or agents.

The robots can perform local computations. They are oblivious (they have no

memory of past configurations and previous actions), autonomous (there is no

central control), homogeneous (they execute the same distributed algorithm),

6

anonymous (they have no unique identifiers) and identical (they are indistin-

guishable by their appearance). They can be point robots or fat robots. Point

robots are modelled as dimensionless points and fat robots are modelled as a disk

of some positive diameter.

1.1.3 Network Topologies under Discrete Domain

In this case, they operate in a network modeled as a graph. The examples of

some network topologies under discrete domain is given below:

Ring: A ring network is a network topology in which each node connects to

exactly two other nodes, forming a single continuous pathway for signals

through each node.

Tree: A tree is an undirected graph in which any two nodes are connected by

exactly one path, equivalently a connected acyclic undirected graph.

Grid: The infinite two-dimensional grid G is a weighted graph G = (V,E) such

that each node v ∈ V has four adjacent nodes v0, v1, v2 and v3 ∈ V and the

edges vvi (mod 4) ∈ E is perpendicular to the edge vvi+1 (mod 4) ∈ E. Also,

the weight of each edge e ∈ E is basically the length of the edge e.

Hypercube: The d-dimensional hypercube Qd is an undirected graph with ver-

tex set V (Qd) = Zd
2 = {0, 1}d, and two vertices are adjacent if and only if

the two binary strings differ in exactly one coordinate. An oriented hyper-

cube is an edge-labeled hypercube with the so-called dimensional labeling

λ : E(Qd) → {1, . . . , d} where λ(uv) = i, if u and v differ in the ith coor-

dinate. We shall denote an oriented hypercube by QO
d , and an unoriented

hypercube by simply Qd.

1.1.4 Multiplicity Detection Capability

Consider a set of robots placed on the vertices of a simple undirected connected

graph G = (V,E). Define a function f : V −→ N∪{0}, where f(v) is the number

7

of robots on the vertex v. The pair (G, f) is called a configuration of robots on G,

or simply a configuration. Given a configuration (G, f), we define the multiplicity

function f̃ in the following way:

Strong multiplicity detection capability: If the model assumes robots with

strong multiplicity detection capability, then f̃(v) = f(v) for all v ∈ V .

Week multiplicity detection capability: If the robots have weak multiplic-

ity detection capability, then f̃ : V −→ {0, 1, 2} is defined as,

f̃(v) =

0 if v is an empty vertex

1 if v is occupied by exactly one robot

2 if v is a multiplicity.

No multiplicity detection capability: If the robots have no multiplicity de-

tection capability, then f̃ : V −→ {0, 1} is defined as,

f̃(v) =

{
0 if v is an empty vertex

1 if v is occupied by at least one robot.

1.1.5 LOOK-COMPUTE-MOVE Cycle

The robots, when active, operate according to the so-called Look-Compute-

Move cycle. In each cycle, a previously idle or inactive robot wakes up and

executes the following steps. In the Look phase, the robot takes the snapshot of

the positions of all the robots, represented in its own coordinate system. Based

on the perceived configuration, the robot performs computations according to

a deterministic algorithm to decide whether to stay idle or to move. Based on

the outcome of the algorithm, the robot either remains stationary or makes an

instantaneous move.

1.1.6 Activation and Synchronization

Based on the activation and timing of action of the robots, there are three mod-

els: fully synchronous (FSYNC), semi-synchronous (SSYNC) and asynchronous

8

(ASYNC). In the fully synchronous setting (FSYNC), the activation phase of

all robots can be logically divided into global rounds, where all the robots are

activated in each round. The semi-synchronous (SSYNC) model coincides with

the FSYNC model with the only difference that not all robots are necessarily

activated in each round. The most general type of scheduler is the asynchronous

scheduler (ASYNC). In ASYNC, the robots are activated independently, and the

amount of time spent in Look, Compute, Move and inactive states are finite

but unbounded and unpredictable. As a result, the robots do not have a common

notion of time.

1.1.7 Visibility

There are three types of visibility models of the robots.

Full visibility: The most commonly used model is the full visibility model. In

this model, each robot is able to observe all robots in the team.

Limited visibility: In the limited visibility model, the visibility range of each

robot is limited. Formally, there is a finite distance d > 0 such that two

robots can see each other if and only if the distance between them is ≤ d.

Obstructed visibility: In the obstructed visibility or opaque robot model, the

visibility range of each robot is unlimited, but its visibility can be obstructed

by the presence of other robots. Formally, for point robots, two robots are

able to see each other if and only if no other robot lies on the line segment

joining them. And for fat robots, a robot ri can see another robot rj if and

only there is a point prj on the boundary of rj and pri on the boundary of ri

such that the line segment priprj does not intersect with any point occupied

by other robots in the configuration.

1.1.8 Local Coordinate Systems

The robots do not have access to any global coordinate system. However, the

local coordinate systems of the robots may have some consistency. There are four

9

main models based on the level of consistency:

Two axis agreement: The robots agree on the direction and orientation of both

axes.

One axis agreement: The robots agree on the direction and orientation of only

one axis.

Chirality: The robots agree on cyclic orientation i.e., clockwise and anticlock-

wise.

No agreement: There is no assumption on consistency among the local coordi-

nate systems.

1.1.9 Models regarding communication capabilities

There are mainly four models of robots depending upon their capabilities. These

models are OBLOT , FST A, FCOM and LUMI. In all of these models, robots

are considered to be autonomous, homogeneous, identical and anonymous (i.e the

robots do not have any unique identifiers). In the OBLOT model, the robots are

considered to be oblivious (i.e the robots do not have any persistent memory to

remember any previous state) and silent (i.e the robots do not have any means of

communication among themselves). In the FST A model, the robots are silent

but not oblivious. In the FCOM model, the robots are oblivious but not silent.

And in the LUMI model, the robots are neither silent nor oblivious. There

are many works of APF which has considered the OBLOT model in literature

[1, 12–14,47].

.

1.2 Related Works

There is a large body of work concerning network localization and pattern for-

mation. In this section, we give a brief survey of these results. The readers are

10

also referred to the surveys [20,74,78,110] for more details.

The localization algorithms can be classified with respect to various criteria, e.g.,

centralized vs distributed, range based vs range free, anchor based vs anchor free

etc. In centralized setting, there is a central unit or base station involved. The

data collected from the whole network is transmitted to the central unit where

the locations of the nodes are calculated. In distributed setting, the nodes are

required to find their positions based on the local information obtained from their

neighbors. In range based algorithms, the nodes have hardware capabilities that

allow them to measure their distances from neighboring nodes. Algorithms that

do not rely on distance information belong to the class of range free algorithms.

Anchor based algorithms assume that there are some special nodes in the network

that know their coordinates with respect to some global coordinate system (with

the help of GPS modules or by manual pre-programming at the time of deploy-

ment). Anchor free algorithms, on the other hand, do not require the existence

of any anchor nodes.

Range based localization: Perhaps the most widely used technique in the

range based settings is trilateration. In trilateration, a node calculates its posi-

tion from its distances from three nodes with known coordinates. The popularity

of trilateration is due to its simplicity and applicability in a wide range of sce-

narios. For example, trilateration can be implemented in both centralized and

distributed settings. It can be also implemented in the anchor free case where

some three mutually adjacent nodes of the network will play the role of virtual

anchors by fixing their coordinates (respecting their mutual distances) in some

virtual coordinate system. If the distance measurements are accurate, then the

position of a node can be accurately calculated from its distances from three

nodes with known coordinates by computing the point of intersection of three

circles. However, distance measurements, usually obtained through received sig-

nal strength (RSS) based methods or time-of-arrival (ToA) based methods, are

inaccurate. In this case, a more accurate estimation of location may be obtained

if distance estimations from more than three localized nodes can be used. In

11

other words, even if the distances from the localized nodes are not accurate, a

larger number of reference nodes should be able to reduce the influence of the

errors. This generalization of trilateration is called multilateration. Multilater-

ation estimates the location of the node by minimizing the differences between

the measured distances and estimated distances. This can be done by solving a

minimum mean square estimate (MMSE) [93] or using Taylor Series Expansion to

transform the non-linear least squares problem to a linear problem [49,106]. One

phenomenon that may occur due to the measurement errors while attempting

trilateration is flip ambiguity. In flip ambiguities, a sensor node having a set of

neighbors that are almost collinear, may lead to the possibility of the neighbors

forming a mirror through which the sensor node can be reflected, thereby causing

a large localization error [62]. As the algorithm progresses, its impact can propa-

gate in an avalanche fashion affecting the location estimates of a large portion of

the network. Techniques to resolve flip ambiguities have been studied extensively

in [62,81,98]. In order to handle flip ambiguity, trilateration or multilateration is

applied after choosing a subset of neighboring localized nodes based on different

robustness criteria proposed in these papers. Use of multilateration in case of

three dimensional sensor networks has also been studied in [3].

A network can be fully localized using trilateration iff it has a trilateration or-

dering, i.e., there exists an ordering of the nodes as v1, v2, . . . , vn so that v1, v2

and v3 induces K3 and each vj, j > 3 is adjacent to at least three nodes of

v1, v2, . . . , vj−1. A generalization of trilateration ordering is bilateration ordering,

i.e., an ordering of the nodes as v1, v2, . . . , vn so that v1, v2 and v3 induces K3

and each vj, j > 3 is adjacent to at least two nodes of v1, v2, . . . , vj−1. There

exist uniquely localizable networks that do not have trilateration ordering, but

have bilateration ordering. However, not all uniquely localizable networks have

a bilateration ordering. In [40], an algorithm called Sweeps was proposed that

localizes uniquely localizable networks having bilateration ordering. However, the

algorithm is centralized and takes exponential time in the worst case. An adap-

tation of the Sweeps algorithm for the case of inaccurate distance measurements

was presented in [41].

12

There are a large number of network localization heuristics based on multidi-

mensional scaling (MDS). MDS is a dimensionality reduction technique used for

exploring similarities or dissimilarities in data. In centralized MDS based algo-

rithms, the central unit collects the distance matrix of the network which contains

inter-node distance of each pair of nodes (with distances between non-neighboring

nodes estimated by their shortest path distances obtained by Dijkstra or Floyd

Warshall algorithm). Then MDS method is applied to the distance matrix to

obtain a relative global map of the network which is then transformed to an

absolute map based on the positions of anchor nodes. MDS can be also used in

range free setting (e.g., [96]), i.e., using only connectivity information, by estimat-

ing the distances between the pair of nodes based on shortest path hop-distances

between the nodes. Due to the high computational overhead in centralized MDS

based schemes, several semi-centralized or clustered MDS based schemes have

proposed (e.g., [95, 112]). In these schemes, the network is divided into clusters

in which local maps are built by cluster heads and then merged together to form

a global one by a central unit. In [28], a distributed MDS based strategy was

proposed where the non-anchor nodes have imperfect a-priori knowledge of their

locations which they update over time based on data obtained from neighboring

sensors. Readers are referred to [91] for a comprehensive survey on MDS based

localization techniques.

Another popular approach is to formulate the network localization problem as

an optimization problem and solve the problem using nonlinear optimization

techniques. In particular, the original non-convex problem can be relaxed to

a Quadratic Programming (QP) problem and then solve it by transforming it

into a standard Semi-Definite Programming (SDP) [7,9] or a Second-Order Cone

Programming (SOCP) [105] problem. Although these approaches are primar-

ily centralized, some distributed implementations have been suggested as well

(e.g., [8, 99]). The original nonlinear, non-convex optimization problem can also

be solved using popular randomized search heuristics such as Evolutionary Al-

gorithms (EA), Simulated Annealing (SA), Particle Swarm Optimization (PSO)

etc (c.f. [21, 63,84,109]).

13

Another class of localization techniques is based on angle of arrival (AoA) infor-

mation between neighbor nodes. Here, it is assumed that the nodes are capable of

detecting the angles of incoming signals. AoA is defined as the angle between the

propagation direction of an incoming signal and some reference direction. When

the information of the reference direction of a node is known with respect to some

global coordinate system, then location of the node can be found when it receives

signals from at least two localized nodes. When no information about the refer-

ence direction is available, signals from at least three localized nodes are needed

to localize the node. This basic technique is called triangulation. However, more

advanced techniques are required for localization from noisy AoA measurements.

Interested readers are referred to [71,82,83,89] more on AoA based localization.

There are also a number of studies [39, 52, 116] on testing network localizabil-

ity, i.e., checking if a network is uniquely localizable or not, or finding a uniquely

localizable portion of a network. Recall however that a uniquely localizable net-

work may not be efficiently localizable due to the hardness results. There is

also a considerable body of work on mobile anchor assisted localization schemes

(e.g., [56,59,67,73,85,97,100,113,113]). In these settings, there is a mobile robot

(or group of mobile robots) equipped with a GPS unit. The robot is required to

move through the sensor field and localize the sensor nodes or assist the sensor

nodes to localize themselves.

Pattern formation: The problem of Arbitrary Pattern Formation was first

introduced in [103] and after that this problem has been studied many times in

the literature ([11,15,17,18,22,23,34,37,43,48,50,76,108,114,115]). In a plane,

the robots can move freely in any direction. So collision can be avoided by the

robots by comparably easy techniques. So APF in specific network topologies

under discrete domain(eg. grid, ring, hypercube etc.) is quite interesting itself

where it is not so easy to avoid collisions. In [12], the authors have considered

this problem and produced an algorithm with robots having full visibility on an

infinite grid in OBLOT model.

14

Initially the pattern formation problem has been studied only assuming that the

robots do not have obstructed visibility. But in a more practical setting, when

more than two robots are in a straight line, a robot with camera sensors can

only see its adjacent robots (at most two robots). These robots are known as

opaque robots. In [15], APF has been solved considering opaque robots with

visible lights which can assume 6 persistent colors. They have also assumed one

axis agreement for each robots. This model of luminous robots has first been

introduced in [88] by Peleg et al. The visible lights can be used by robots as a

means of communication and persistent memory.

In most of these works, the basic assumption was that the robots are points

and they do not have obstructed visibility. But in a practical application-based

scenario designing a point robot is impossible because every physical object has

a certain dimension. So in [12], authors have considered a swarm of fat and

opaque robots and shown that this swarm can form any given pattern from any

asymmetric configuration without collision under the LUMI model using 10

colours in a plane. But again it has been studied in plane. In [13], an algorithm

for APF has been provided for a swarm of point robots on an infinite grid but

considering full and Unobstructed visibility. Now in [1], considering obstructed

visibility model the authors have shown that a circle can be formed on an infinite

grid from any initial configuration if the opaque point robots in the swarm have

one-axis agreement and 7 colours. Then, in [72] authors have presented another

algorithm where a swarm of opaque point robots on an infinite grid can form

the given pattern in finite time using one-axis agreement and 8 colours. But

none of these works considered fat robots on infinite grid and solve the problem

of APF . To the best of our knowledge, there is no work till now which has

considered fat robots on infinite grid and provided any algorithm for arbitrary

pattern formation on the grid. Since designing a collision-free algorithm in plane

is easier than handling collision in discrete domain, many researchers became

interested to study the problem of APF in discrete domain.

15

Gathering: The gathering (a specific pattern, namely point formation) prob-

lem has been extensively studied in continuous domain under various assump-

tions [2,24–26,29,46,86,90]. This problem has been studied in different network

topologies under discrete domain [5, 30, 35, 38, 44, 45, 64, 65, 68, 77, 79, 102]. The

problem of gathering two robots on an anonymous ring was studied in [36,69,79].

The problem for more than two robots was studied in [45]. In [45], the robots

had memory and used tokens to break symmetry. In [65], the problem was first

considered in a very minimal setting with identical, asynchronous, memoryless

robots without tokens or any kind of communication capability. They proved

that without multiplicity detection, gathering is impossible on rings for n ≥ 2

robots. With weak multiplicity detection capability, they solved the problem

for all configurations with an odd number of robots, and all the asymmetric

configurations with an even number of robots by different algorithms. In [64],

symmetric configurations with an even number of robots were studied, and the

problem was solved for more than 18 robots. Some of the remaining configura-

tions were solved in [31, 54, 66] in separate algorithms. In [32], a single unified

algorithm was proposed, that achieves gathering for all gatherable initial config-

urations except some potentially gatherable configurations with 4 robots. The

problem was studied with weak local multiplicity detection in [57, 60, 61]. A full

characterization of gatherable configurations for finite grids and trees with weak

multiplicity detection was provided in [30]. Gathering in finite grids in presence

of crash-faults was studied in [10]. Optimal gathering in infinite grid with strong

multiplicity detection was studied in [101].

1.3 Overview of the Thesis

The main focus of study of the thesis is network localization problem and pat-

tern formation problem in some network topologies under discrete domain. The

problems have been considered under the distributed environment.

In Chapter 2, we study the network localization problem, i.e., the problem of

determining node positions of a wireless sensor network modeled as a unit disk

16

graph. In an arbitrarily deployed network, positions of all nodes of the network

may not be uniquely determined. Computational complexity results suggest that

even if the network corresponds to a unique solution, a polynomial-time algorithm

is unlikely to exist. So we are interested in algorithms that efficiently localize the

network partially. A widely used technique that can efficiently localize a uniquely

localizable portion of the network is trilateration: starting from three anchors

(nodes with known positions), nodes having at least three localized neighbors are

sequentially localized. However, the performance of trilateration can substantially

differ for different choices of the initial three anchors. In this chapter, we proposed

a distributed localization scheme with a theoretical characterization of nodes that

are guaranteed to be localized. In particular, our proposed distributed algorithm

starts localization from a strongly interior node and provided that the subgraph

induced by the strongly interior nodes is connected, it localizes all nodes of the

network except some boundary nodes and isolated weakly interior nodes.

In Chapter 3, we consider the problem of gathering a set of autonomous, identical,

oblivious, asynchronous, mobile robots at a vertex of an anonymous hypercube.

The robots operate in Look-Compute-Move cycles. In each cycle, a robot takes a

snapshot of the current configuration (Look), then based on the perceived config-

uration, decides whether to stay idle or to move to an adjacent vertex (Compute),

and in the later case makes an instantaneous move accordingly (Move). We have

shown that the problem is unsolvable if the robots do not have multiplicity de-

tection capability. With weak multiplicity detection capability, the problem is

solvable in an oriented hypercube for any initial configuration of 2k + 1(k > 0)

number of robots. For 4k(k > 0) number of robots, the problem is solvable under

the same assumptions if and only if the group of automorphism of the configu-

ration is trivial. Our proposed algorithms are optimal with respect to the total

number of moves executed by the robots.

In Chapter 4, we are solving APF on infinite grid with asynchronous opaque

robots with lights. Arbitrary pattern formation (APF) by mobile robots is stud-

ied by many in literature under different conditions and environment. Recently

it has been studied on an infinite grid network but with full visibility. In opaque

17

robot model, circle formation on infinite grid has also been studied. In this chap-

ter, we considered arbitrary pattern formation on infinite grid in the same opaque

model. The robots do not share any global co-ordinate system. The main chal-

lenge in this problem is to elect a leader to agree upon a global co-ordinate where

the vision of the robots are obstructed by other robots. Since the robots are on a

grid, their movements are also restricted to avoid collisions. In this chapter, the

aforementioned hardness are overcome to produce an algorithm that solves the

problem.

In Chapter 5, we are solving APF on infinite grid with opaque fat robots with

lights. Many works regarding APF have been proposed on plane and infinite

grid by point robots. But in practical application, it is impossible to design point

robots. In [12], the robots are assumed opaque fat robots but the environment

is plane. To the best of our knowledge, no work till now ever considered the

APF problem assuming opaque fat robots on infinite grid where movements are

restricted. In this chapter, we have provided a collisionless distributed algorithm

and solved APF using 9 colors.

Finally in Chapter 6, we discuss some directions for future research.

18

Chapter 2

Distributed Localization of
Wireless Sensor Network Using
Communication Wheel

In this chapter1, we are interested in distributed, anchor free, range based lo-

calization schemes. Since a real life instance may not have unique solution and

even if it has, it is unlikely that there is an efficient algorithm that solves the

problem, we look for an efficient algorithm that partially localize the network. A

very popular technique is trilateration which efficiently localizes a globally rigid

subgraph of the network. It is based on the simple fact that the position of a

node can be determined from its distance from three non-collinear nodes with

known coordinates. The algorithm starts with at least three anchor nodes and

then nodes adjacent to at least three nodes with known coordinates are sequen-

tially localized. It is computationally efficient and very easy to implement in

distributed setting, thus widely used in practice. In this chapter, we are inter-

ested in anchor-free localization, i.e., there are no anchor nodes. Since at least

three anchor nodes are necessary for localization, in the anchor-free case, some

three mutually adjacent nodes of the network fix their coordinates (respecting

1Based on this chapter, the following paper has been published:
Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb Sau. Distributed
Localization of Wireless Sensor Network Using Communication Wheel. Information
and Computation, 2022, 104962, ISSN 0890-5401. https://doi.org/10.1016/j.ic.2022.

104962

19

https://doi.org/10.1016/j.ic.2022.104962
https://doi.org/10.1016/j.ic.2022.104962

20

their mutual distances) in some virtual coordinate system. These three nodes

play the role of anchors. However, in case of trilateration, the performance of the

algorithm can drastically differ for different choices of the initial three nodes.

The example in Fig. 2.1 shows how substantially the performance of trilateration

varies with different choices of the three anchor nodes. An even more extreme

situation is shown in Fig. 2.2 where there is a choice of anchors from which

(a) (b)

(c)

Figure 2.1: Trilateration is attempted from different initial triangles of anchor nodes.
The light blue nodes are successfully localized, and the black nodes are not localized.
a) In the best result, 137 nodes out of 180 are localized. b) In this case, only 41 nodes
out of 180 are localized. c) In the worst case, only 7 nodes out of 180 are localized.

21

(a) (b)

(c)

Figure 2.2: Trilateration is attempted from different initial triangles of anchor nodes.
The light blue nodes are successfully localized, and the black nodes are not localized. a)
In the best result, 142 nodes out of 160 are localized. b) In the worst case, trilateration
does not progress beyond the initial triangle. c) A closer view of (b), where the disks
centered at the nodes have radii equal to half of the communication range. Hence, two
nodes are adjacent in the network iff the corresponding disks intersect. One can see
that no node is adjacent to all three anchor nodes.

the algorithm does not progress at all. We address this issue in this chapter.

Of course, there is a brute-force method of overcoming this problem: all inter-

node distance information is sent to a leader node (elected by a leader election

protocol) which will act as a central unit, i.e., it will calculate the positions of

22

the nodes using trilateration. In particular, since it has the entire network graph,

it can try trilateration from different triangles and find one that performs best

or reasonably well. However, this creates a huge computational overhead at that

node. This makes the approach impractical since the sensor nodes usually have

limited computational resources (as compared to a powerful central unit in a

centralized system). So instead we propose a distributed anchor-free localization

scheme with a theoretical characterization of nodes that are guaranteed to be

localized. We define three types of nodes in the network: strongly interior nodes,

weakly interior nodes and boundary nodes. Intuitively, boundary nodes are on

the fringe of the network. The rest are called interior nodes. An interior node

is called a strongly interior node if all its neighbors are also interior nodes. A

weakly interior node is an interior node that has at least one boundary node

as neighbour. We first give an algorithm that allows a node to determine its

type. Provided that the strong interior (i.e., the subgraph induced by the set of

strongly interior nodes) is connected, one strongly interior node is then chosen

by a leader election protocol. Our localization algorithm then starts from that

strongly interior node. We prove that our algorithm is guaranteed to localize all

nodes in the network except some boundary nodes and isolated weakly interior

nodes (i.e., weakly interior nodes that are not adjacent to any strongly interior

node).

Organization In Section 2.1, 2.2 and 2.3, we describe the model and present

some definitions, notations and basic results. In Section 2.4, we introduce some

constructions and prove some results which are the main building blocks of our

algorithm. Then in Section 2.5, we present our main algorithm.

2.1 Basic Model and Assumptions

The mathematical model of wireless sensor network considered in this work is

described in the following:

� A set of n sensors is arbitrarily deployed in R2. Each sensor node has

23

computation and wireless communication capabilities.

� There is a constant r > 0, called the communication range, such that any

two sensor nodes can directly communicate with each other if and only if

the distance between them is ≤ r. This implies that the corresponding

communication network can be modeled as a unit disk graph (UDG): two

nodes are adjacent if and only if they are at most r distance apart. We

assume that this graph is connected. Note that if the graph is not connected,

then it is impossible to localize the entire network consistently.

� The euclidean distance between a pair of sensors can be measured directly

and accurately if and only if they are at most r distance apart. Hence,

if a sensor node can directly communicate with another node, then it also

knows the distance between them.

� The sensor nodes are assumed to be in general positions, i.e., no three points

are collinear. This is not a major assumption, as the nodes of a randomly

deployed network are almost always in general positions.

2.2 Definitions and Notations

Let V be the set of n sensors at distinct positions in R2. The corresponding

wireless sensor network can be modeled as an undirected edge-weighted graph

G = (V , E , w), where

� V = {v1, . . . , vn} is the set of sensors,

� (vi, vj) ∈ E , i.e., vi is adjacent to vj, if and only if d(vi, vj) ≤ r, where r is

the communication range of the sensors,

� the edge-weight w : E −→ R is given by w(vi, vj) = d(vi, vj).

We call G the underlying network graph of the wireless sensor network. As men-

tioned previously, we assume that the graph G is connected.

24

For any v ∈ V , Z(v) is the disk {x ∈ R2 | d(x, v) ≤ r
2
}. We shall say that a node

v ∈ V covers a point p ∈ R2, if p ∈ Z(v). For v ∈ V , its neighborhood is the

set N (v) = {v′ ∈ V \ {v} | d(v′, v) ≤ r} = {v′ ∈ V \ {v} | Z(v′) ∩ Z(v) ̸= ∅}.
If v, v′ ∈ V are adjacent to each other, then we shall refer to the intersections

of ∂(Z(v)) and ∂(Z(v′)) as their boundary intersections. We shall denote these

boundary intersections as CW (v, v′) and CCW (v, v′) according to the following

rule: if one traverses from CCW (v, v′) to CW (v, v′) along ∂(Z(v)) in clockwise

direction, it sweeps an angle < π about the center v. Given a node v, we define

a partial order relation ⪯v on N (v) as following: for u, u′ ∈ N (v), u ⪯v u
′ if and

only if Z(u)∩ ∂(Z(v)) ⊆ Z(u′)∩ ∂(Z(v)). See Fig. 2.3. A node u ∈ N (v) is said

to be a maximal neighbor of v if it is a maximal element in N (v) with respect to

⪯v, i.e., there is no u′ ∈ N (v) \ {u}, such that u ⪯v u
′.

v

u

u′

Figure 2.3: u is not a maximal neighbor of v as u ⪯v u′.

A sensor node v ∈ V is called an interior node if for every point z ∈ ∂(Z(v)),
where ∂(Z(v)) is the boundary of Z(v), we have z ∈ Z(v′) for some v′ ∈ V \ {v}.
If v ∈ V is not an interior node, then it is called a boundary node. An interior

node v ∈ V is said to be a strongly interior node if every node in N (v) is an

interior node. An interior node v ∈ V is said to be a weakly interior node if at

least one node in N (v) is a boundary node. A weakly interior node is said to be

isolated if it is not adjacent to any strongly interior node. The subgraph of G
induced by the set of all interior nodes is called the interior of G. Similarly, the

subgraph of G induced by the set of all strongly interior nodes is called the strong

25

interior of G.

2.3 Some Results from Graph Rigidity Theory

In this section, we present some basic definitions and results in graph rigidity.

For a detailed exposition on graph rigidity, the readers are referred to [58].

A d-dimensional framework is a pair (G, ρ), where G = (V,E) is a connected

simple graph and the realization ρ is a map ρ : V −→ Rd. Two frameworks

(G, ρ1) and (G, ρ2) are said to be equivalent if d(ρ1(u), ρ1(v)) = d(ρ2(u), ρ2(v)),

for all (u, v) ∈ E. Frameworks (G, ρ1) and (G, ρ2) are said to be congruent if

d(ρ1(u), ρ1(v)) = d(ρ2(u), ρ2(v)), for all u, v ∈ V . In other words, two frameworks

are said to be congruent if one can be obtained from another by an isometry of

Rd. A realization is generic if the vertex coordinates are algebraically indepen-

dent over rationals. The framework (G, ρ) is rigid if ∃ an ε > 0 such that if

(G, ρ′) is equivalent to (G, ρ) and d(ρ(u), ρ′(u)) < ε for all u ∈ V , then (G, ρ′)

is congruent to (G, ρ). Intuitively, it means that the framework cannot be con-

tinuously deformed. (G, ρ) is said to be globally rigid if every framework which

is equivalent to (G, ρ) is congruent to (G, ρ). It is known [111] that rigidity is a

generic property, that is, the rigidity of (G, ρ) depends only on the graph G, if

(G, ρ) is generic. The set of generic realizations is dense in the realization space

and thus almost all realizations of a graph are generic. So, we say that a graph

G is rigid in R2 if every generic realization of G in R2 is rigid.

Theorem 2.1. [58] A graph G is globally rigid in R2 if and only if either G is

a complete graph on at most three vertices or G is 3-connected, rigid and remains

rigid even after deleting an edge.

Theorem 2.2. [39] If a network has at least 3 anchors and the underlying

network graph is globally rigid, then it is uniquely localizable.

The condition of having at least 3 anchors is also necessary for unique localizabil-

ity in order to rule out the trivial transformations. Since we are considering the

case where there are no pre-existing anchors, some three mutually adjacent nodes

26

of the network will play the role anchors by fixing their coordinates (respecting

their mutual distances) in some virtual coordinate system. The remaining nodes

of the network have to find their position according to this coordinate system. It

should be noted here that for networks that do not satisfy the condition that two

nodes are adjacent if and only if they are within some fixed distance, the condi-

tion of having globally rigid underlying network graph is also necessary. In our

model, where two nodes are adjacent if and only if the distance between them is

at most r, the network can be uniquely localizable even if its underlying network

graph is not globally rigid.

2.4 Construction of a Globally Rigid Subgraph

Using Communication Wheels

In this section, we shall show that if the strong interior is connected, then the

network has a globally rigid subgraph containing all strongly interior nodes, and

all non-isolated weakly interior nodes. The proof is constructive and will lead to

our localization algorithm presented in Section 2.5.

We first present some results that will be frequently used in the chapter. Lemmas

2.2-2.5 follow from elementary geometric arguments.

Lemma 2.1. Let v1 be an interior node and v2 ∈ N (v1). Then

1. CCW (v1, v2) ∈ Z(v3) for some v3 ∈ N (v1)\{v2}, such that CCW (v1, v3) /∈
Z(v2),

2. CW (v1, v2) ∈ Z(v4) for some v4 ∈ N (v1) \ {v2}, such that CW (v1, v4) /∈
Z(v2)

Proof. It is sufficient to prove only the first part. We shall prove by contradiction.

So, assume that there is no such node in N (v1) \ {v2}. Let P = CCW (v1, v2).

Let us partition the set of neighbors of v1 into two sets as: A = {v ∈ N (v1) | P ∈
Z(v)} and B = {v ∈ N (v1) | P /∈ Z(v)}. A ̸= ∅, since v2 ∈ A. B ̸= ∅, because

27

the diametrically opposite point of P on ∂(Z(v1)) must be covered by some node

which does not cover P .

Fix the ray
−−→
v1P as a reference axis. Now for each v ∈ N (v1), shoot rays from

v1 passing through CCW (v1, v) for v ∈ A and CW (v1, v) for v ∈ B. For each

v ∈ N (v1), let θv be the angle formed by the corresponding ray measured coun-

terclockwise from the reference axis
−−→
v1P . Let θ = min{θv | v ∈ B}. We must

have θ > 0, since for any v ∈ B, θv > 0. Also, it implies from our hypothesis

that max{θv | v ∈ A} = 0. Then clearly any point on ∂(Z(v1)) making an angle

in between (0, θ) with the ray
−−→
v1P is not covered by any neighbor of v1 (See Fig.

2.4). This contradicts the fact that v1 is an interior node.

P

v1

θ

v2

Figure 2.4: Illustration of the constructions in the proof of Lemma 2.1. The purple
and the orange circles correspond to Z() of the nodes in the set A and B respectively.

Lemma 2.2. If u and u′ are two distinct neighbors of v ∈ V such that u ⪯v u′,

then d(u, v) > d(u′, v).

Proof. It follows from the fact that the length of the intercepted arcs of two

intersecting circles increases if the distance between their centers decreases.

28

Lemma 2.3. For distinct v, u, u′ ∈ V, u ⪯v u
′ ⇔ v ⪯u u′ .

Proof. Suppose that ∂(Z(u)) and ∂(Z(v)) intersect each other at points A and

B. Then u ⪯v u
′ ⇔ A,B ∈ Z(u′) ⇔ v ⪯u u′.

Lemma 2.4. For distinct v, u ∈ V, u is a maximal neighbor of v if and only if v

is a maximal neighbor of u.

Proof. u is a maximal neighbor of v ⇔ there is no node u′ such that u ⪯v u′ ⇔
there is no node u′ such that v ⪯u u′ (by Lemma 2.3)⇔ v is a maximal neighbor

of u.

Lemma 2.5. For distinct v, u, u′ ∈ V, u ⪯v u
′ ⇒ u ⪯̸u′ v .

Proof. Suppose that ∂(Z(u)), ∂(Z(v)) intersect each other at points A and B,

and ∂(Z(u)), ∂(Z(u′)) intersect each other at points C and D. Since u ⪯v u′,

we have A,B ∈ Z(u′). For the sake of contradiction, assume that u ⪯u′ v. Then

by Lemma 2.3, u′ ⪯u v. So, on ∂(Z(u)), the arc between C, D is contained

by the arc between A, B. But this implies that A,B /∈ Z(u′). So we have a

contradiction.

A wheel graph [107] of order n or simply an n-wheel, n ≥ 3, is a simple graph

which consists of cycle of order n and another vertex called the hub such that

every vertex of the cycle is connected to the hub. The vertices on the cycle are

called the rim vertices. An edge joining a rim vertex and the hub is called a

spoke, and an edge joining two consecutive rim vertices is called a rim edge. By

Theorem 2.1, it follows that a wheel is globally rigid.

The most crucial part of our algorithm is the construction of a special structure

called the communication wheel. The definition of communication wheel closely

resembles to that of sensing wheel used in [92], where the authors devised a wheel

based centralized sequential localization algorithm for a restricted class of sensing

covered networks over a convex region.

Communication wheel: For any interior node v ∈ V , we define a communica-

tion wheel of v (see Fig. 2.5) as a subgraph W of G such that

29

1. W is a wheel graph with v as the hub and the rim nodes {v1, . . . , vm} being
maximal neighbors of v

2. CCW (v, vi) ∈ Z(vi+1) and CW (v, vi) ∈ Z(vi−1), for i = 1, . . . ,m, where

vm+1 means v1 and v0 means vm.

For a rim node v′ of a communication wheel W of v, we can denote the two

neighboring rim nodes of v′ as CCWW (v′) and CWW (v′) so that CCW (v, v′) ∈
Z(CCWW (v′)) and CW (v, v′) ∈ Z(CWW (v′)).

v

v1

v2

v3
v4

v5

v7

v6

Figure 2.5: A communication wheel of v with rim nodes v1, v2, v3, v4, v5, v6 and v7.
The nodes v5 and v7 are also but adjacent, but the edge is not shown here.

Lemma 2.6. If W is a communication wheel of v, then ∂(Z(v)) ⊂ ⋃
u∈V(W)\{v}

Z(u).

Proof. Follows immediately from the definition of communication wheel.

Theorem 2.3. If v ∈ V is an interior node and v1 a maximal neighbor of v, then

v has a communication wheel W having v1 as a rim node.

30

Proof. First observe that for any maximal neighbor v′ of v, |∂(Z(v))∩∂(Z(v′))| =
2, i.e., CW (v, v′) and CCW (v, v′) are distinct points. If not, then suppose that

v′ is a maximal neighbor of v such that ∂(Z(v)) and ∂(Z(v′)) intersect at a single

point, say P . Then by Lemma 2.1, there is another neighbor of v, say v′′, such

that P ∈ Z(v′′). Hence we have v′′ ̸= v′, such that ∂(Z(v)) ∩ Z(v′) = {P} ⊂
∂(Z(v)) ∩ Z(v′′). This contradicts the fact that v′ is a maximal neighbor of v.

Now take any maximal neighbor v1 of v. By Lemma 2.1, choose a maximal

v2 ∈ N (v) \ {v1}, such that CCW (v, v1) ∈ Z(v2) and CCW (v, v2) /∈ Z(v1).
Notice that CW (v, v1) /∈ Z(v2), because otherwise v1 ⪯v v2. Since CCW (v, v2) /∈
Z(v1), by again invoking Lemma 2.1, we can choose a maximal v3 ∈ N (v) \
{v1, v2}, such that CCW (v, v2) ∈ Z(v3) and CCW (v, v3) /∈ Z(v2). Continuing in

this manner, after some m steps we shall find vm ∈ N (v) \ {v1, . . . , vm−1}, such
that CCW (v, vm−1) ∈ Z(vm) and CW (v, v1) ∈ Z(vm). It is easy to see that a

communication wheel of v can be formed with {v1, . . . , vm} as rim nodes.

Corollary 2.3.1. v ∈ V is an interior node if and only if it has a communication

wheel.

Lemma 2.7. Let v ∈ V be an interior node and W be a communication wheel of

v. If u ∈ V is a neighbor of v, then u is either a rim node of W or adjacent to

some rim node of W .

Proof. If u is a rim node of W , then we are done. Otherwise, take a point

P ∈ ∂(Z(v)) ∩ Z(u). Now there is some rim node w of W such that P ∈ Z(w).
Hence Z(u) ∩ Z(w) ̸= ∅, which means that u and w are adjacent.

Lemma 2.8. Let v ∈ V be an interior node and W be a communication wheel of

v. If u ∈ V is a neighbor of v, which is adjacent to exactly one rim node of W ,

say u′, then u ⪯v u
′.

Proof. If u itself is a rim node of W , then it is adjacent to two other rim nodes

of W . But u is adjacent to exactly one rim node of W . So, we can conclude that

u is not a rim node of W . Assume for the sake of contradiction that u ⪯̸v u
′. So

there is a point P ∈ ∂(Z(v)) such that P ∈ Z(u) ∩ Z(u′)c. Now there is some

31

rim node w (̸= u′) of W such that P ∈ Z(w). Hence Z(u) ∩ Z(w) ̸= ∅, which
means that u and w are adjacent. This contradicts the fact that u is adjacent to

exactly one rim node of W . So we have u ⪯v u
′.

Lemma 2.9. Let v ∈ V be a strongly interior node and u a neighbor of v. If

W1 is a communication wheel of v, then there is a globally rigid subgraph of G
containing v, u and W1.

Proof. If u is a rim node of W1, then we are done, since a wheel graph is globally

rigid. So, suppose that u is not a rim node of W1.

Then by Lemma 2.7, u is adjacent to a rim node of W1, say vi. If u is adjacent

to another rim node, then u can be added to W1 to form a globally rigid graph.

Hence, we assume that u is adjacent to only one rim node of W1, i.e., vi. Then

by Lemma 2.8, we have u ⪯v vi.

Since v is a strongly interior node and vi is a neighbor of v, vi must be an interior

node. Also, since vi is a maximal neighbor of v, v is also a maximal neighbor of

vi, by Lemma 2.4. Hence, by Theorem 2.3, vi has a communication wheel W2

having v as a rim node.

See Fig. 2.6a. Let vi−1 = CWW1(vi) and vi+1 = CCWW1(vi). Also, let v′i+1 =

CWW2(v) and v′i−1 = CCWW2(v). Now let A = CCW (v, vi) = CW (vi, v) and

B = CW (v, vi) = CCW (vi, v). So we must have A ∈ Z(vi+1) ∩ Z(v′i+1) and

B ∈ Z(vi−1)∩Z(v′i−1). This implies that vi−1, v
′
i−1 and vi+1, v

′
i+1 are adjacent. So

vi−1 and vi+1 can be added to the list of rim nodes of W2 and construct a wheel

W3 with hub vi and having vi−1, v, vi+1 as rim nodes. Then the two globally rigid

graphs W1 and W3 have at least three nodes common. In fact, they have at least

four common nodes, namely v, vi−1, vi and vi+1. Hence W1 ∪W3 is globally rigid.

See Fig. 2.6b.

Now it is sufficient to prove that u is adjacent to at least three nodes of W1∪W3.

Let Rim(W3) = V(W3)\{vi} be the set of rim nodes of W3. We have ∂(Z(vi)) ⊂⋃
w∈Rim(W3)

Z(w). Since u ⪯v vi, we have u ⪯̸vi v, by Lemma 2.5. In other

words, ∂(Z(vi))∩Z(u) ⊈ ∂(Z(vi))∩Z(v). Therefore, we have ∂(Z(vi))∩Z(u) ⊂

32

v

v′i+1

vi+1 A

B

vi−1

v′i−1

vi

(a)

vi+1

v

vi−1

v′i−1

v′i+1

vi

(b)

Figure 2.6: Illustrations supporting the proof of Lemma 2.9.

∂(Z(vi)) ⊂
⋃

w∈Rim(W3)

Z(w)⇒ (∂(Z(vi))∩Z(u))
⋂
(

⋃
w∈Rim(W3)\{v}

Z(w)) ̸= ∅. This

implies that u is adjacent to some rim node of W3 other than v. We already have

assumed that u is adjacent to v and vi. Hence, u is adjacent to at least three

nodes of W1 ∪W3.

We also have the following two observations from the proof of Lemma 2.9.

Lemma 2.10. Let v ∈ V be a strongly interior node and W1 a communication

wheel of v. If vi, vi+1 be two neighboring rim nodes of W1 and W2 be a communi-

cation wheel of vi having v as rim node, then vi+1 is in W2 or adjacent to at least

three nodes of W2.

Proof. Follows from the proof of Lemma 2.9.

Lemma 2.11. Let v ∈ V be a strongly interior node and W1 a communication

wheel of v. Suppose that u is a neighbor of v which is adjacent to only one rim

node vi of W1. If W2 is a communication wheel of vi having v as rim node, then

u is in W2 or adjacent to at least three nodes of W2.

Proof. Follows from the proof of Lemma 2.9.

33

Theorem 2.4. If v ∈ V is a strongly interior node, then there is a subgraph Hv

of G containing v such that 1) Hv contains all neighbors of v, 2) Hv is globally

rigid.

Proof. Let W1 be a communication wheel of v. Then by Lemma 2.9, for each

neighbor of v not in W1, we obtain a globally rigid subgraph of G containing

the neighbor, v and W1. So any two of these globally rigid subgraphs have at

least three nodes in common. Hence, these graphs constitute to form the desired

globally rigid graph.

Theorem 2.5. If the strong interior of G is connected, then G has a globally

rigid subgraph R which contains 1) all strongly interior nodes, 2) all non-isolated

weakly interior nodes.

Proof. Choose any strongly interior node v. Denote the subgraph of G consisting

of only the node v as R0. Since the strong interior of G is connected, every

strongly interior node of G is connected to v by a path consisting strongly interior

nodes. The distance of a strongly interior node from v is defined as the smallest

length of such a path. Let m be the maximum distance of a strongly interior

node from v. We shall prove the theorem by inductively constructing globally

rigid subgraphs R0,R1, . . . ,Rm, where Rj contains all strongly interior nodes at

a distance at most j from v. R0 is globally rigid as it is only a singleton node. R1

is constructed using Theorem 2.4. Suppose that R0,R1, . . . ,Rj, 1 ≤ j < m, are

already constructed. Now consider a strongly interior node v′ at a distance j + 1

from v. In a smallest path from v to v′, let v′ be adjacent to v′′. Clearly v′′ is inRj.

Since Rj is globally rigid, v′′ is adjacent to at least three nodes v1, v2, v3 in Rj (Rj

has at least four nodes as it contains the communication wheel of v). By Theorem

2.4, there is a globally rigid graph containing v′′ and its neighbors v′, v1, v2, v3.

Union of this graph and Rj is globally rigid as there are at least three nodes in

common, namely v′′, v1, v2, v3, etc. Similarly for each strongly interior node at a

distance j + 1 from v, we extend the subgraph Rj preserving global rigidity to

eventually obtain a globally rigid graph Rj+1 containing all the strongly interior

nodes at a distance at most j + 1 from v. The inductive argument leads to the

34

globally rigid subgraph Rm which contains all strongly interior nodes in G. Each
non-isolated weakly interior node v′′′ is adjacent to some strongly interior node

in Rm. For each such v′′′, again by the same construction, we can extend Rm

preserving global rigidity to include v′′′, if it is not already in Rm. The resulting

graph is the desired globally rigid subgraph R.

2.5 The Localization Algorithm

In the beginning, each node messages its neighbor list along their distances from

itself to all its neighbors. Therefore, every node u ∈ V knows the neighbors of all

its neighbors and also if v is a neighbor of u and w is a neighbor of v, then u knows

d(v, w) as well. The three main stages of our algorithm are 1) construction of

communication wheel, 2) leader election, and 3) propagation. They are discussed

in detail in the following subsections.

2.5.1 Construction of Communication Wheel

Each sensor node v starts off computations by executing the Communication-

Wheel algorithm. The algorithm finds if the node is interior or boundary, and

also constructs a communication wheel if it is interior. A pseudocode description

of the procedure is presented in Algorithm 1. The algorithm Communication-

Wheel is similar to the constructions used in the proof of the Theorem 2.3. To

construct a communication wheel of a node v, if it exists, we first need to find a

maximal neighbor. In view of Lemma 2.2, the closest neighbor of a node is

35

Algorithm 1: CommunicationWheel

1 {The node v constructs a communication wheel. If it successfully constructs a
communication wheel, it declares itself as an interior node, or otherwise a
boundary node.}

2 Procedure CommunicationWheel(v)
3 w = [] ;
4 v.position ←− origin;
5 w0 ←− closest neighbor of v ;
6 w0.position ←− on the X-axis according to the distance between v and w0;
7 w1 ←− the common neighbor of v and w0 closest to v that covers a

boundary-intersection of v and w0, such that w1 ⪯̸v w0 ;
8 if (no such w1 is found) then
9 v.type ←− boundary ;

10 break;

11 else
12 w1.position ←− one of the two possible positions preserving the

distances from v and w0 such that w1 has positive Y -coordinate;
13 CCW (v, w0) ←− the boundary-intersection of v and w0 covered w1

14 i = 1 ;
15 do
16 i←− i+ 1 ;
17 NextRim(v,wi−1,wi−2);

18 while (wi is found & wi does not cover CW (v, w0));
19 if (no such wi is found) then
20 v.type ←− boundary ;
21 else
22 v.type ←− interior ;
23 end

24 end

guaranteed to be a maximal neighbor. After finding the closest neighbor, call it

w0, v assigns its position on the X-axis and itself at the origin. Then it searches

for a common neighbor of v and w0 that covers a boundary-intersection of v and

w0. If no such node is found, then v is a boundary node. If more than one of

such nodes are found, the one closest to v is to be taken. Let us call this node w1.

Now the distance of w1 from v and w0 is known. From this data, there are two

possible coordinates for w1, one with positive Y -coordinate and one with negative

Y -coordinate. Choose the position for w1 so that its Y -coordinate is positive. In

other words, v sets its local coordinate system in such a way that w1 gets positive

Y -coordinate. See Fig. 2.7a and 2.7b.

36

Algorithm 2: NextRim

1 {Given two consecutive rim nodes wi−1 and wi−2, the node v searches for the
next rim node.}

2 Function NextRim(v,wi−1,wi−2)
3 D ←− r ;
4 for (u ∈ N (wi−1) ∩N (v)) do
5 if (distance between u and v ≤ D) then
6 if (u is adjacent to wi−2) then
7 Find the unique position of u using its distances from v, wi−1

and wi−2;
8 if (u covers CCW (v, wi−1) and CCW (v, u) is not covered by

wi−1) then
9 wi ←− u;

10 wi.position←− the unique position of u determined using
its distances from v, wi−1 and wi−2;

11 D ←− the distance between u and v;

12 else
13 Find two possible positions of u using its distances from v and

wi−1;
14 if (for any of the two possible positions, u covers

CCW (v, wi−1) and CCW (v, u) is not covered by wi−1) then
15 wi ←− u;
16 wi.position←− the one of the two possible positions of u

for which it covers CCW (v, wi−1);
17 D ←− the distance between u and v;

Also set the boundary-intersection of v and w0 that is covered by w1 as CCW (v, w0).

In other words v sets ‘counterclockwise’ to be the direction in which if one ro-

tates a ray, from the origin towards the positive direction of the X-axis, by π
2
,

it coincides with the positive direction of the Y -axis. While discussing Algo-

rithm 1, ‘counterclockwise’ and ‘clockwise’ will always be with respect to the

local coordinate system of node executing the algorithm. Note that since w0 is

a maximal neighbor of v, CW (v, w0) is not covered by w1. After fixing the posi-

tions of w0 and w1, the subroutineNextRim (pseudocode presented in Algorithm

2) is recursively called to find the subsequent rim nodes of the communication

wheel. Given two consecutive rim nodes wi−1 and wi−2, having positions fixed,

NextRim(v,wi−1,wi−2) finds the next rim node wi. The program terminates

37

when either NextRim reports a failure or returns a node that covers CW (v, w0).

X

Y
w0

w1

CCW

v

(a)

Y

X

w0

w1

CCW

v

(b)

Figure 2.7: A node v executing Algorithm 1 sets its local coordinate system in such
a way that w1 gets positive Y -coordinate.

Theorem 2.6. The algorithm CommunicationWheel is correct, i.e., if v is

an interior node then CommunicationWheel(v) constructs a communication

wheel of v and declares it as an interior node; and otherwise declares it as a

boundary node.

Proof. The algorithm replicates the proof of Theorem 2.3. The algorithm starts

off with fixing a maximal neighbor of v as the first rim node w0. Then it recur-

sively finds the rim nodes wi such that wi covers CCW (v, wi−1) and CCW (v, wi)

is not covered by wi−1. The algorithm terminates when there is no such wi or

when wi covers CW (v, w0). Thus in view of the proof of Theorem 2.3, we only

need to show that these steps are correctly executed.

Initialization: The closest neighbor of v is set as w0. Hence, w0 is a maximal

neighbor of v by Lemma 2.2. Note that in order to compute the communication

wheel of v, if it exists, first we need to fix the positions of (i.e., assign virtual

coordinates to) at least three nodes of the communication wheel, preserving their

38

mutual distances. So, first v is assigned with virtual coordinates (0, 0). If the

distance between v and w0 is d, then the coordinates of w0 are set as (d, 0).

Now we have to check if there is a common neighbor w of v and w0 that covers

a boundary intersection of v and w0, and such that w ⪯̸v w0. For any common

neighbor w of v and w0, this can be easily checked from d(v, w0), d(v, w) and

d(w,w0). If no such w is found, then v is obviously a boundary node. Otherwise

one such node that is closest to v is set as the next rim node w1. From d(v, w1)

and d(w0, w1), two possible coordinates of w1 can be found, one with positive Y -

coordinate and one with negative Y -coordinate. Then v sets its local coordinate

system in such a way that w1 gets positive Y -coordinate, and hence w1 covers

CCW (v, w0). Recall that here counterclockwise and clockwise is defined with

respect to the local coordinate system of v as described in Section 2.5.1.

Recursion: After w0 and w1 are fixed, the algorithm will recursively call

NextRim(v,wi−1,wi−2) to find the next rim node wi, if it exists. In the for

loop (line 2 in Algorithm 2), the common neighbors of v and wi−1 are scanned

through to find nodes u ∈ N (wi−1)∩N (v) such that u covers CCW (v, wi−1) and

CCW (v, u) is not covered by wi−1. Among these nodes, the one closest to v is

set as the next rim node wi. If no such node is found, then v is a boundary node.

Notice that in order to check whether u covers CCW (v, wi−1) or not, the exact

position of u needs to be known. As we scan through N (wi−1) ∩N (v), there are

two cases to consider:

Case 1. Suppose that u is adjacent to wi−2. Now the positions of v, wi−1 and

wi−2 are known. Hence the position of u can ascertained from its distances from

v, wi−1 and wi−2. Once the position of u is found, it can be checked whether it

covers CCW (v, wi−1) and also whether wi−1 covers CCW (v, u).

Case 2. Suppose that u is not adjacent to wi−2. Two possible positions of u

can be found from its distance from v and wi−1. Call these two possible positions

U1 and U2. U1 and U2 are mirror images of each other with respect to the line

joining v and wi−1. CCW (v, wi−1) and CW (v, wi−1) are also mirror images of

each other with respect to the line joining v and wi−1. Hence if a node at U1

39

covers CCW (v, wi−1), then a node at U2 covers CW (v, wi−1) as well. Similarly

if a node at U1 covers neither CCW (v, wi−1) nor CW (v, wi−1), then the same is

true for a node at U2. So consider the following three possibilities:

Case 2a. If for both positions U1 and U2, no boundary intersection between v

and wi−1 is covered, then u does not meet the desired criteria that it is to cover

CCW (v, wi−1).

Case 2b. Suppose that for both positions U1 and U2, both of the boundary

intersections between v and wi−1 are covered. This cannot happen as this would

imply that wi−i ⪯v u and hence is adjacent to wi−2, contradicting our assumption.

Case 2c. Suppose that u, if situated at U1, covers CCW (v, wi−1) (and not

CW (v, wi−1)). Hence u, if it is at U2, would cover CW (v, wi−1) and would not

cover CCW (v, wi−1). In this case, the algorithm determines the position of u to

be U1. We shall prove that U1 is indeed the correct position of u. Suppose on the

contrary that the actual position of u is U2. First observe that CW (v, wi−1) ∈
Z(wi−2) ∩ ∂(Z(v)). Otherwise, it implies that wi−2 ⪯v wi−1. We argue that this

is impossible. For i = 2, it is obvious since w0 ⪯̸v w1. Recall that w0 is the

closest neighbor, and hence is a maximal neighbor, of v. For i > 2, we assume

as induction hypothesis that rim nodes wi−1, . . . , w1, w0 are successfully found by

the algorithm. Also each wj, for j = 1, . . . , i − 1, must satisfy the two criteria:

1) wj covers CCW (v, wj−1) and 2) CCW (v, wj) is not covered by wj−1. In fact,

as mentioned earlier, the algorithm chooses as wj the closest among the nodes

that satisfy these two criteria. So in particular, wi−2 is the closest neighbor of

v such that 1) wi−2 covers CCW (v, wi−3) and 2) CCW (v, wi−2) is not covered

by wi−3. Clearly if wi−2 ⪯v wi−1, wi−1 also satisfies the two aforesaid conditions.

But by Lemma 2.2, wi−1 is closer to v than wi−2. This contradicts the fact

that wi−2 is the closest node satisfying the two aforesaid conditions. So we have

CW (v, wi−1) ∈ Z(wi−2). Also CW (v, wi−1) ∈ Z(u) as u is assumed to be at

U2. Hence Z(wi−2) ∩ Z(u) ̸= ∅. This is a contradiction as u and wi−2 are not

adjacent.

40

Termination: If v is a boundary node, then the algorithm will terminate when

NextRim will fail to find the next rim node. If v is an interior node, then the

algorithm will terminate as eventually NextRim will find a rim node that covers

CCW (v, w0).

2.5.2 Leader Election

Once a node identifies itself as interior or boundary, it announces the result to all

its neighbors. Hence, every node can determine if it is a strongly interior node

or not. Since the strong interior is connected and the nodes have unique id’s,

the strongly interior nodes can elect a leader among themselves. For this, each

strongly interior node will collect the id’s of all strongly interior nodes in the

network using convergecast (see [87], Chapter 3 for details). Then the one with

the largest id will elect itself as the leader.

2.5.3 Propagation

Starting from the leader, different nodes will gradually get localized via message

passing. The correctness of the process will follow from the discussions in this

subsection and the proofs of Theorem 2.4 and 2.5. There are five types of messages

that a sensor node can send to another node:

1. “I am at . . .”

2. “Y ou are at . . .”

3. “Construct wheel with me at . . . and v at . . .”

4. “Construct wheel with me at . . . , you at . . . , v at . . . and find u”

5. “u is at . . .”.

The nodes of the network will be localized in the local coordinate system of the

leader vl set during its execution of Algorithm 1. Henceforth, this coordinate

41

system will be referred to as the global coordinate system. So the leader first

localizes itself by setting its coordinates to (0, 0). Any non-leader node u is

localized by either receiving a “Y ou are at . . .” message or receiving at least

three “I am at . . .” messages. In the first case, some node has calculated the

coordinates of u and has sent it to u. In the second case, u receives the coordinates

of at least three neighbors and therefore, can calculate its own coordinates. When

a node is localized, it announces its coordinates to all its neighbors. After setting

its coordinates to (0, 0), vl initiates the localization of Hvl (See Theorem 2.4). It

first announces its coordinates to all its neighbors via the message “I am at (0, 0)”.

During the construction of its communication wheel, vl had assigned coordinates

to the rim nodes. So vl sends these coordinates to the corresponding rim nodes

via the message “Y ou are at . . .”. Let us denote the communication wheel of vl

as W(vl) and the set of all rim nodes as Rim(vl). When a rim node receives this

message, it sets its coordinates accordingly and announces it to all its neighbors

via the message “I am at . . .”. Now if a neighbor of vl is adjacent to at least two

nodes of Rim(vl), then it can localize itself, since it will receive “I am at . . .”

messages from at least three nodes, i.e., one from vl and at least two fromRim(vl).

But if a neighbor of vl is adjacent to only one vertex from Rim(vl), then it

may not be localized. To resolve this, vl computes |N (u) ∩ Rim(vl)| for all

u ∈ N (vl). If it finds a u ∈ N (vl) with N (u) ∩ Rim(vl) = {vi}, it sends the

message “Construct wheel with me at . . . and vi+1 at . . .” to vi, where vi+1 is

a neighboring rim node of vi in W(vl). When vi receives this message from vl,

it does the following. Since vl is a strongly interior node, vi must be an interior

node. Therefore, vi has already computed the communication wheel W(vi) and

coordinates of each of its nodes with respect to its local coordinate system. Since

vl is a maximal neighbor of vi (by Lemma 2.4), it is adjacent to at least two

nodes of Rim(vi) (by Lemma 2.8). Hence, vi can compute the coordinates of vl

with respect to its local coordinate system. Let W ′ be the globally rigid graph

vl ∪ W(vi). W ′ contains as subgraph a communication wheel of vi with vl as a

rim node. Hence from the Lemma 2.10, it is known that vi+1 is adjacent to at

least three nodes of W ′. Hence, vi can also compute the coordinates of vi+1 with

respect to its local coordinate system. So, vi has the coordinates of all nodes of

42

W ′′ = vi+1∪W ′ with respect to its local coordinate system. Now, vi will compute

the positions of all nodes of W ′′ with respect to the global coordinate system set

by vl. Let us call them the true positions of the nodes. Note that vi knows

the true positions of at least three nodes of W ′′, namely, itself, vl, and vi+1.

With this information, vi can determine the formula that transforms its local

coordinate system to the global coordinate system. Hence, vi computes the true

positions of all nodes in W ′′ and informs them via “Y ou are at . . . ” messages.

Hence, all nodes in W ′′ will be localized and will announce their locations to

all their neighbors. Since u is adjacent to at least three nodes in W ′′ (from the

Lemma 2.11), it will also get localized. Therefore, we see that every neighbor of

vl eventually gets localized.

The localization propagates as each strongly interior node localizes its neighbors.

However, a strongly interior node v can compute the positions of its neighbors

only with respect to its local coordinate system. Hence, in order to compute the

true positions (i.e., to perform coordinate transformation), it needs to know its

true position and that of at least two neighbors. Hence, when a localized strongly

interior node v receives at least two “I am at . . . ” messages, it starts to localize

its neighbors in the following way. Let u be a neighbor of v. If u is adjacent at

least two nodes of Rim(v), then v can compute the position of u in terms of its

local coordinate system. Otherwise, if N (u) ∩ Rim(v) = {vi}, then v sends the

message “Construct wheel with me at . . . , you at . . . , vi+1 at . . . and find

u” to vi, where vi+1 is a neighboring rim node to vi in W(v), and positions

mentioned in the message are given in local coordinates of v. Again, as vi is a

maximal neighbor of v, by Lemma 2.4 and 2.8, v is either inW(vi) or adjacent to

at least three nodes in W(vi). Also, vi+1 is either in W ′ =W(vi) ∪ v or adjacent

to at least three nodes in W ′ (from the Lemma 2.10). Hence, from the message

received from v, vi knows the positions of three nodes (i.e., v, vi and vi+1) of

the globally rigid graph W ′′ = W ′ ∪ vi+1 in terms of the local coordinates of v.

Hence, vi can compute the positions of all the nodes in W ′′ in terms of the local

coordinates of v. Now, u is either in W ′′ or adjacent to at least three nodes in

W ′′ (from Lemma 2.11). So vi can compute the position of u in terms of the local

coordinate system of v, and then sends the information back to v via the message

43

“u is at . . .”. Hence, v computes the positions of all its neighbors in its local

coordinate system. So, v now knows the positions of three nodes (namely, itself

and the two nodes from which it has received “I am at . . . ” message) with respect

to both its local coordinate system and the global coordinate system set by the

leader. Hence, v can find the formula that transformations its local coordinate

system to the global coordinate system. Hence, v computes the true positions of

all its neighbors and then informs them via “Y ou are at . . . ” messages. However,

it still remains to prove that every non-leader localized strongly interior node v

always receives at least two “I am at . . . ” messages, that triggers the propagation.

Since v is localized, either it has received three “I am at . . . ” messages or one

“Y ou are at . . . ” message. If it is the first case, then we are done. In the later

case, v receives the “Y ou are at . . . ” message from a localized interior node, say

v′. Then by Lemma 2.7, v is either in the communication wheel of v′, or adjacent

to at least one of its rim nodes. Observe that v′ is localized and has also localized

all its rim nodes. So, v will get least two “I am at . . . ” messages, as all localized

nodes announce their positions. Therefore, all strongly interior nodes and their

neighbors, i.e., all non-isolated weakly interior nodes, get localized. Also, if a

localized weakly interior node receives “I am at . . . ” messages from at least two

nodes, it can localize all the rim nodes of its wheel and also neighbors that are

adjacent to at least two rim nodes. However, some boundary nodes and some

isolated weakly interior nodes may not get localized. Hence, we have the following

main result of this chapter.

Theorem 2.7. If the strong interior of the network is connected then there is a

distributed anchor-free localization algorithm that localizes all nodes of the network

except some boundary nodes and isolated weakly interior nodes.

2.6 Overhead of the algorithm

It is shown in [4] that Unit Disk Graph Reconstruction is NP-hard. Therefore,

there is no efficient algorithm that solves the localization problem in the worst

case unless P = NP. So we are interested in algorithms that efficiently localize the

44

network partially. We considered the problem when exact range measurements

are available. Localization when the distance measurements are imprecise, is NP-

complete. In our algorithm the range measurements are exact and the algorithm

solves the localization problem in polynomial time. Now in our work, each node

send messages to all its neighbours. The number of messages require to solves

the localization problem is total O(kD) in the worst case, where k is the number

of robots and D is the diameter of the network.

2.7 Discussion

In this work, we studied the distributed range based localization problem of wire-

less sensor networks in the anchor-less setting. The performance of the popular

trilateration algorithm substantially varies for different choices of the initial tri-

angle as exhibited in Fig. 2.1 and 2.2. This motivates us to seek an algorithm

with some theoretical guarantee. We define three types of nodes in the network:

strongly interior nodes, weakly interior nodes and boundary nodes. Intuitively,

boundary nodes are on the fringe of the network and the weakly interior nodes

make up a layer next to the boundary (see Fig. 2.8a). Provided that the subgraph

induced by the set of strongly interior nodes is connected, one strongly interior

node is then chosen by a leader election protocol. Our localization algorithm then

starts from that strongly interior node and is guaranteed to localize all nodes in

the network except some boundary nodes and isolated weakly interior nodes (i.e.,

weakly interior nodes that are not adjacent to any strongly interior node). In

Fig. 2.8 we show an instance where our algorithm is able to localize all nodes in

the network.

In Fig. 2.9, we show the performance of our algorithm in the relatively sparse

and irregular shaped networks from Fig. 2.1 and 2.2. In both these instances,

most nodes of the networks are isolated weakly interior nodes and boundary

nodes. Yet our algorithm manages to localize 137 out of 180 nodes and 142

out of 160 nodes respectively. Notice that the performance of our algorithm in

both instances match the best performance by trilateration (see Fig. 2.1 and

45

(a) (b)

Figure 2.8: a) A random network of 350 sensor nodes. The red, green and deep blue
nodes are respectively boundary, weakly interior and strongly interior nodes. Disks
of radii r

2 around each node is shown in pale blue. b) All 350 nodes are successfully
localized by our algorithm.

2.2). Notice that in our algorithm, a node is localized whenever at least three

of its neighbors are localized. This is because whenever a node is localized, it

announces its coordinates to all its neighbors using “I am at . . . ” messages, and

a node localizes itself if it receives “I am at . . . ” messages from at least three

neighbors. Hence, in some sense, our algorithm uses trilateration as a subroutine.

The fact that the performance of our algorithm in Fig. 2.9 matches exactly with

the best performance by trilateration is not surprising as a large number of nodes

may be localized by the ‘trilateration subroutine’ of our algorithm. Since our

algorithm uses a ‘trilateration subroutine’, it may be seen as a strengthening of

the plain trilateration and a question that naturally arises is whether it is true

that our algorithm always performs at least as good as the plain trilateration.

However, this is not true as we can see in this interesting instance shown in Fig.

2.10. When trilateration starts from the upper-right portion of the network, it is

not able to progress to the upper-left portion of the network. As a result, only 69

out of 150 nodes are localized. On the other hand, when trilateration starts from

the upper-left portion of the network, it is able to progress to the upper-right

portion of the network and as a result, it is able to localize 106 out of 150 nodes.

46

(a) (b)

(c) (d)

Figure 2.9: a)-b) The network from Fig. 2.1. In 137 nodes out of 180 are localized
by our algorithm. c)-d) The network from Fig. 2.2. 142 nodes out of 160 are localized
by our algorithm.

To understand why this happens, see in Fig 2.11 the links between the left and

right part of the network. Our localization starts from the upper-right portion of

the network and also localizes only 69 nodes.

Notice that in the ‘irregular shaped’ networks of Fig. 2.9 and 2.10, there are

only a few strongly interior and non-isolated weakly interior nodes. Hence, the

theoretical guarantee of our algorithm in such instances is not very impressive.

In nicer instances such as in Fig. 2.8, strongly interior and non-isolated weakly

47

interior nodes constitute a large portion of the network. The theoretical guarantee

of our algorithm is particularly appealing is such networks. However, one may

think that trilateration might also perform well in such ‘nice’ networks if the

initial triangle is carefully chosen. In particular, one may think that in case of

such networks with large number of strongly interior nodes, trilateration might

also perform well if the initial triangle is chosen from the strong interior. In other

words, it may appear that a good heuristic could be to first apply Algorithm 1 to

(a) (b)

(c) (d)

Figure 2.10: a)-b) 69 nodes out of 150 are localized by our algorithm. c)-d) 69 and 106
nodes out of 150 are localized respectively by trilateration from two different choices of
the initial triangle.

48

(a) (b)

Figure 2.11: There is no node in the left part that is adjacent to at least three nodes of
the right part. Therefore, trilateration does not propagate from right to left. However,
there are nodes in the right part that are adjacent to at least three nodes of the left
part. Hence, trilateration will propagate from left to right.

characterize the node types and then start trilateration from a triangle consisting

of strongly interior nodes. However, it is not difficult to see that the situation

shown in Fig. 2.2c can also occur in the strong interior of a network. In fact,

we can use this idea to construct a class of networks as shown in Fig. 2.12 in

which trilateration does not progress beyond the base step for any choice of the

initial triangle, but our algorithm always localizes all the nodes from any initial

strongly interior node.

49

Figure 2.12: The red, green and blue nodes are respectively boundary, weakly interior
and strongly interior nodes. It is easy to see that trilateration does not progress beyond
the base step for any choice of the initial triangle. However, our algorithm always
localizes all the nodes of the network from any initial strongly interior node. This
structure can be extended to arbitrarily large sizes. Hence, for any n ∈ N, we have a
network of size ≥ n, such that 1) it is always entirely localized by our algorithm, 2) but
trilateration fails to localize more than 3 nodes for any choice of the initial triangle.

The sensor network model adopted in this work has some idealistic assumptions.

We assumed that neighboring nodes can accurately measure the distance be-

tween them. Distance measurement techniques such as Received Signal Strength

Indication (RSSI), Time of Arrival (ToA), etc do not give accurate results. It

would be interesting to study the impact of noisy distance measurement on our

algorithm. Our algorithm also works under the strong assumption of uniform

communication range. Another important direction of future research would be

to see if our approach can be extend to networks with sensors having irregular

communication range, e.g., quasi unit disk networks [70].

50

2.8 Concluding Remarks

Our algorithm works under the condition that the strong interior of the network

is connected. Relaxing this condition, it would be interesting to characterize

the conditions under which localization starting from different components of the

strong interior can be stitched together. It would be also interesting to study

impact noisy distance measurement on our algorithm. Our algorithm also works

under the strong assumption of uniform communication range. An important

direction of future research would be to see if our approach can be extend to

networks with sensors having irregular communication range, e.g., quasi unit

disk networks. Another problem is to compare the class of networks that are

fully localized by our algorithm to those that are fully localized by trilateration.

Chapter 3

Gathering in Hypercubes by
Asynchronous Oblivious Robots

The gathering problem requires a set of n mobile computational entities, usually

called robots or agents, initially situated at different locations in a spatial universe,

to gather at some unspecified location within finite time. When only two robots

are involved, the problem is usually referred to as the rendezvous problem. In

distributed computing, gathering has been extensively studied both in continuous

and in discrete domains. In the continuous setting, the robots operate in the two-

dimensional Euclidean space and in the discrete case, they operate in a network

modeled as a graph. In the discrete setting, the problem has been previously

studied in different graph topologies, e.g. rings [32, 54, 64, 65], grids [30, 101],

trees [30] etc. The problem is particularly difficult in graphs that are highly

symmetric and is solvable only in very limited cases. Hence, for characterization

of gatherability, it is important to investigate the problem in highly symmetric

graphs. In this chapter1, we investigate the problem in a hypercube graph.

1Based on this thesis, the following paper has been published:
Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb Sau. Optimal
Gathering by Asynchronous Oblivious Robots in Hypercubes. Algorithms for Sensor
Systems. ALGOSENSORS 2018. Lecture Notes in Computer Science(), vol 11410. Springer,
Cham. https://doi.org/10.1007/978-3-030-14094-6_7

51

https://doi.org/10.1007/978-3-030-14094-6_7

52

3.1 The Model

A set of autonomous mobile robots is randomly deployed on the vertices of a

d-dimensional hypercube network. The d-dimensional hypercube Qd is an undi-

rected graph with vertex set V (Qd) = Zd
2 = {0, 1}d, and two vertices are adjacent

if and only if the two binary strings differ in exactly one coordinate. An oriented

hypercube is an edge-labeled hypercube with the so-called dimensional labeling

λ : E(Qd) → {1, . . . , d} where λ(uv) = i, if u and v differ in the ith coordinate.

We shall denote an oriented hypercube by QO
d , and an unoriented hypercube by

simply Qd. The binary string labels of the vertices are for descriptive purposes,

and are not known to the robots. However, in an oriented hypercube, the edge-

labels are known to the robots. It is traditionally assumed that the robots can

only perceive the labels of the edges adjacent to the vertex on which it resides.

But since the labels of edges adjacent to a single vertex determine the dimen-

sional labels of all the edges in a hypercube (See Theorem 3.1 in [104]), we assume

without loss of generality that the robots know the labels of all the edges.

The robots are oblivious (they have no memory of past configurations and previ-

ous actions), autonomous (there is no central control), homogeneous (they execute

the same distributed algorithm), anonymous (they have no unique identifiers)

and identical (they are indistinguishable by their appearance). The robots have

global visibility, i.e., they are able to perceive the entire graph. The robots do

not agree on any global coordinate system. Furthermore, there are no means of

communication between the robots.

The robots, when active, operate according to the so-called Look-Compute-

Move cycle. In each cycle, a previously idle or inactive robot wakes up and

executes the following steps. In the Look phase, the robot takes the snapshot of

the positions of all the robots, represented in its own coordinate system. Based

on the perceived configuration, the robot performs computations according to a

deterministic algorithm to decide whether to stay idle or to move to an adjacent

vertex. Based on the outcome of the algorithm, the robot either remains station-

ary or makes an instantaneous move to an adjacent vertex. Since the moves are

53

instantaneous, it implies that the robots are always seen on vertices, not on edges.

In the fully synchronous setting (FSYNC), the activation phase of all robots can

be logically divided into global rounds, where all the robots are activated in each

round. The semi-synchronous (SSYNC) model coincides with the FSYNC model

with the only difference that not all robots are necessarily activated in each round.

The most general type of scheduler is the asynchronous scheduler (ASYNC). In

ASYNC, the robots are activated independently, and the amount of time spent

in Look, Compute, Move and inactive states are finite but unbounded and

unpredictable. As a result, the robots do not have a common notion of time. In

this chapter, we considered the asynchronous scheduler (ASYNC).

An important capability associated to the robots is multiplicity detection. During

the Look phase, a robot may perceive a vertex occupied by more than one robot

in different ways. In strong multiplicity detection, the robots perceive the actual

number of robots in each vertex. In weak multiplicity detection, the robots are

only able to detect whether a vertex is occupied by more than one robot, but not

the exact number. If the robots have no multiplicity detection capability, they

can only decide if a vertex is occupied or empty. In our model, robots have weak

multiplicity detection capability.

3.2 Theoretical Preliminaries

In this section, we present some definitions, notations and explain some important

results. Automorphisms, feasibility of gathering, weber points and leading weber

points are described in the subsections 3.2.1-3.2.4.

3.2.1 Group of Automorphisms

An automorphism of a graph G = (V,E) is a bijection φ : V −→ V such that for

all u, v ∈ V , u, v are adjacent if and only if φ(u), φ(v) are adjacent. The set of

all automorphisms of G forms a group, called the automorphism group of G and

is denoted by Aut(G).

54

The automorphism group of a hypercube is generated by two types of automor-

phisms, namely translation and rotation.

Translation: For a ∈ Zd
2, the map τa : V (Qd) −→ V (Qd) given by u 7→ u⊕ a is

called translation by a. Here, u⊕ a is the vertex obtained by adding the binary

strings u and a componentwise. The set T = {τa | a ∈ Zd
2} of all translations

forms a subgroup of Aut(Qd).

Rotation: For σ ∈ Sd, the map rσ : V (Qd) −→ V (Qd) given by u 7→ σ(u) is

called rotation by σ, where σ(u) is the vertex obtained by permuting the binary

string u by σ : {1, . . . , d} −→ {1, . . . , d}. The set R = {rσ | σ ∈ Sd} of all

rotations forms a subgroup of Aut(Qd).

Theorem 3.1. [51] Aut(Qd) = TR.

Hence, for any automorphism φ ∈ Aut(Qd), ∃ a unique pair (a, σ) ∈ (Zd
2, Sd),

such that φ : V −→ V can be written as u 7→ σ(u)⊕ a.

It is easy to see that |T | = 2d and |R| = d!. Since T ∩ R is trivial, |TR|
= |T ||R|/|T ∩R| = 2dd!. Therefore, we have the following corollary.

Corollary 3.1.1. [51] |Aut(Qd)| = 2dd!.

The definition of automorphism of graphs can be extended to edge-labeled graphs

in a natural way. Given an edge-labeled graph G = (V,E, λ) with edge-labeling

λ : E −→ N, an automorphism of G is a bijection φ : V −→ V such that for all

u, v ∈ V , φ(u)φ(v) ∈ E if and only if 1) uv ∈ E and 2) λ(φ(u)φ(v)) = λ(uv).

In view of this definition, it is easy to see that the dimensional labeling of a

hypercube kills all rotational automorphisms. Thus the automorphism group of

an oriented hypercube consists of only translations.

Theorem 3.2. Aut(QO
d) = T .

3.2.2 Feasibility of Gathering

Consider a set of robots placed on the vertices of a simple undirected connected

graph G = (V,E). Define a function f : V −→ N∪{0}, where f(v) is the number

55

of robots on the vertex v. The pair (G, f) is called a configuration of robots

on G, or simply a configuration. If all the robots in a configuration reside on a

single vertex, then it is called final configuration; otherwise it is called a non-final

configuration. Given a configuration (G, f), we define the multiplicity function

f̃ in the following way. If the model assumes robots with strong multiplicity

detection capability, then f̃(v) = f(v) for all v ∈ V . If the robots have weak

multiplicity detection capability, then f̃ : V −→ {0, 1, 2} is defined as,

f̃(v) =

0 if v is an empty vertex

1 if v is occupied by exactly one robot

2 if v is a multiplicity.

If the robots have no multiplicity detection capability, then f̃ : V −→ {0, 1} is

defined as,

f̃(v) =

{
0 if v is an empty vertex

1 if v is occupied by at least one robot.

Given a configuration (G, f), the pair (G, f̃) is called the perceived configuration.

An automorphism of a perceived configuration (G, f̃) is a graph automorphism

φ ∈ Aut(G) such that f̃(v) = f̃(φ(v)) for all v ∈ V . The set of all automorphisms

of (G, f̃) also forms a group that will be denoted by Aut(G, f̃). If |Aut(G, f̃)| = 1,

we say that (G, f̃) is asymmetric, otherwise it is said to be symmetric.

For an automorphism φ ∈ Aut(G, f̃), let < φ >⊆ Aut(G, f̃) be the cyclic sub-

group generated by φ. Elements of this group are {φ0, φ1, φ2, . . . , φp−1}, where
φ0 is the identity, φk = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸

k times

and p is the order of φ.

For any subgroup H of Aut(G, f̃), define the equivalence relation on V given by:

x ∼ y if and only if x = φ(y) for some φ ∈ H. This equivalence relation induces

a partition on V . The orbit of a vertex v ∈ V under the action of H is the set

Hv= {σ(v)|σ ∈ H}, which is the corresponding equivalence class containing v.

Partitive automorphism: Let C = ((V,E), f̃) be a perceived configuration. A

non-trivial automorphism φ ∈ Aut(C) is said to be partitive on V if |Hv| = p for

all v ∈ V , where p > 1 is the order of φ and H =< φ >.

56

Lemma 3.1. In Qd, any non-trivial translation is partitive.

Theorem 2 in [102], stated for configurations of robots with strong multiplicity

detection capability can be easily generalized to the following theorem.

Theorem 3.3. Let C = ((V,E), f̃) be a non-final perceived configuration. If there

exists a φ ∈ Aut(C) partitive on V , then C is not gatherable.

Theorem 3.4. Without multiplicity detection capability, gathering in (both ori-

ented and unoriented) hypercubes is not deterministically solvable in SSYNC.

Proof. Assume that there exists a correct gathering algorithm A. In the SSYNC

model, time can be logically divided into discrete global rounds. So, starting

from some non-final initial configuration, consider a synchronous execution of

algorithm A, in which gathering is achieved in round t.

Case 1: Suppose that in round t − 1, exactly two vertices in Qd are occupied.

Hence, the perceived configuration in round t−1 is (Qd, f̃) where f̃(v) = f̃(w) = 1

for two distinct vertices v, w ∈ V (Qd), and f̃(u) = 0 ∀u ∈ V (Qd) \ {v, w}. But,

then the perceived configuration (Qd, f̃) admits a partitive automorphism given

by x 7→ x⊕ v⊕w. Hence by Theorem 3.3, gathering can not be deterministically

achieved from this configuration.

Case 2: Assume that at least three vertices in Qd are occupied in round t −
1. Then algorithm A brings all the robots to a common vertex, say u, in one

step. But the adversary can choose to activate all the robots except one that

is not placed at u. Then all but one robot will reach u. This will create a

configuration with exactly two vertices occupied. Since this configuration admits

a partitive automorphism, gathering can not be deterministically achieved from

here by Theorem 3.3.

Corollary 3.4.1. Without multiplicity detection capability, gathering in (both

oriented and unoriented) hypercubes is not deterministically solvable in ASYNC.

57

3.2.3 Weber Point

Given a configuration (G, f), with G = (V,E), the centrality of v ∈ V is defined

as cG,f (v) =
∑
u∈V

d(u, v) · f(u). When there is no ambiguity, we shall write cf (v),

or simply c(v).

Weber point: Given a configuration C = (G = (V,E), f), a vertex v ∈ V is a

Weber point of C, if c(v) = min{c(u)|u ∈ V }.

By definition, a Weber point is a vertex with minimum centrality. In other words,

a vertex w ∈ V is a Weber point if the sum of the lengths of the shortest paths

from all robots to w is minimum. Therefore, an algorithm that gathers all the

robots at a Weber point via the shortest paths is optimal with respect to the

total number of moves performed by the robots. However, a configuration may

have more than one Weber point. Given a configuration (G, f), we shall denote

the set of Weber points byWG,f , or simplyWf orW when there is no ambiguity.

Theorem 3.5. [102] Let (G, f) be a configuration with Weber points Wf . If

a robot moves towards a Weber point w ∈ Wf , resulting in a new configuration

(G, f ′), then

1. cf ′(v) = cf (v)− 1 for each v ∈ Wf ′

2. w ∈ Wf ′

3. Wf ′ ⊆ Wf .

We shall now discuss about the Weber points of configurations on a hypercube.

Consider a set of n robots {r1, r2, . . . , rn} on a d-dimensional hypercube Qd.

Suppose that the robots r1, r2, . . . , rn are placed on the vertices v1, v2, . . . , vn

respectively. For i = 1, 2, . . . , n, let the binary string representation of vi be

bi1bi2 . . . bid, where bij ∈ {0, 1}. For j = 1, 2, . . . , d, let us define sets [b]j ⊆ {0, 1}
in the following way.

58

[b]j =

{0}, if the number of 0’s in the multiset {b1j, b2j, . . . , bnj} is more than

the number of 1’s
{1}, if the number of 1’s in the multiset {b1j, b2j, . . . , bnj} is more than

the number of 0’s
{0, 1}, if the multiset {b1j, b2j, . . . , bnj} has equal number of 0’s and 1’s .

In Theorem 3.6, we show that the set of Weber points of the configuration is

W = [b]1 × [b]2 × . . .× [b]d.

For instance, consider a configuration of a set of 8 robots {r1, r2, . . . , r8} on a

4-dimensional hypercube Q4. Suppose that the robots are positioned on the

following vertices respectively: 0110, 0111, 1000, 1110, 0000, 0001, 1110, 1101.

Then the set of Weber points of this configuration is given by

W = {0, 1} × {1} × {0, 1} × {0}
= {0100, 0110, 1100, 1110}.

Theorem 3.6. Let {ri}ni=1 be a set of robots placed on the vertices of Qd with

binary string representations {bi1bi2 . . . bid}ni=1 respectively. Then the set of Weber

points of the configuration is W = [b]1 × [b]2 × . . .× [b]d.

Proof. The distance between any two vertices in Qd is the number of positions in

which their binary string representations differ. Then it can be easily seen that

1) the centrality of all w ∈ [b]1 × [b]2 × . . . × [b]d are equal, 2) the centrality of

any v ∈ V (Qd) \ [b]1 × [b]2 × . . . × [b]d is strictly greater than the centrality of

w ∈ [b]1 × [b]2 × . . .× [b]d.

Corollary 3.6.1. The subgraph induced by the set of Weber points W of a con-

figuration on a hypercube Qd is also a hypercube.

Corollary 3.6.2. The number of Weber points of a configuration on a hypercube

Qd is 2k, where 0 ≤ k ≤ d.

59

3.2.4 Leading Weber Point

A configuration of robots on a hypercube can have more than one Weber point.

We want to devise an algorithm that gathers all the robots at one of the We-

ber points via the shortest paths. Our proposed algorithm requires to solve a

subproblem called LeadingWeberPoint. Let us formally define the problem

LeadingWeberPoint. Consider a configuration in which no vertex contains

more than one robot, and that has no partitive automorphism. Let W be the set

of Weber points of this configuration. The problem LeadingWeberPoint asks

to devise an algorithm so that every robot that perceives this configuration in its

local view, deterministically elects a unique Weber point wℓ ∈ W . We shall call

the vertex wℓ the leading Weber point.

Since we have assumed that the robots are positioned at distinct vertices, there

is no distinction between the configuration and the perceived configuration. In

other words, given such a configuration (G, f), we have f̃ = f . A vertex v ∈ V

is called a fixed vertex if φ(v) = v, ∀φ ∈ Aut(G, f).

Theorem 3.7. LeadingWeberPoint can be deterministically solved only ifW
has at least one fixed vertex.

Proof. Consider a configuration (Qd, f) that has no partitive automorphism.

Since we have assumed that the robots are positioned at distinct vertices, there

is no distinction between the configuration and the perceived configuration. In

other words, we have f̃ = f . Assume that the configuration has no fixed Weber

point. Let us assume that there is an algorithm A that deterministically solves

LeadingWeberPoint. Let w1 ∈ W be the leading Weber point elected by the

robots. Since w1 is not a fixed vertex, there is a w2 ̸= w1 such that φ(w1) = w2,

for some φ ∈ Aut(G, f).

Each robot observes the positions of other robots in its local coordinate system.

A local coordinate system of a robot is just an assignment Ψ : V (Qd) −→ {0, 1}d,
respecting the rule that u, v ∈ V (Qd) are adjacent if and only if Ψ(u), Ψ(v) differ in

precisely one bit. Since there is no global agreement, the local coordinate system

of each robot is arbitrary, and is chosen by the adversary. Let us formally define

60

the view of a robot. The view of a robot is given by the triplet VΨ = (Ψ, f̃ ,me),

where Ψ : V (Qd) −→ {0, 1}d is the local coordinate system, f̃ : {0, 1}d −→
{0, 1} is the multiplicity function defined on the set of vertices expressed in local

coordinates, and me ∈ {0, 1}d is the coordinates of the vertex on which the robot

resides. The view VΨ is the input for algorithm A. The output A(VΨ) ∈ {0, 1}d
is the coordinates of the required leading Weber point, i.e., the returned leading

Weber point is the vertex Ψ−1(A(VΨ)).

Consider a robot r1 in the configuration residing at vertex v1. The robot r1, using

a local coordinate system Ψ1 : V (Qd) −→ {0, 1}d, elects w1 as the leading Weber

point. That is, given the input in the coordinate system Ψ1, the output of A is

Ψ1(w1). Now consider the following cases.

Case 1: Suppose that φ(v1) = v1. Consider the local coordinate system Ψ2 =

Ψ1 ◦ φ−1. Note that the view of r1 in coordinate systems Ψ1 and Ψ2 are exactly

the same, i.e., VΨ1 = VΨ2 . Since A is a deterministic algorithm, A(VΨ1) = A(VΨ2).

Since the elected leading Weber point in local coordinate system Ψ1 is w1, we

have A(VΨ1) = Ψ1(w1). So we have,

A(VΨ2) = A(VΨ1) = Ψ1(w1)

⇒ Ψ−1
2 (A(VΨ2)) = Ψ−1

2 (Ψ1(w1)) = φ ◦ Ψ−1
1 ◦ Ψ1(w1) = φ(w1) = w2

Hence, we see that in local coordinate system Ψ1 the robot r1 elects w1 as the

leading Weber point, while in Ψ2 it elects w2. This is a contradiction.

Case 2: Now assume that φ(v1) = v2 ̸= v1. Then there must be a robot

r2 in v2. Suppose that the adversary sets the local coordinate system of r2 as

Ψ2 = Ψ1 ◦φ−1. Then the view of r1 and r2 will be identical, i.e., VΨ1 = VΨ2 . Again

we have, A(VΨ2) = A(VΨ1) = Ψ1(w1) and hence, Ψ−1
2 (A(VΨ2)) = w2. Therefore,

r2 will elect w2, while r1 elects w1 as the leading Weber point. This is again a

contradiction.

Theorem 3.8. LeadingWeberPoint may not be deterministically solvable in

an unoriented hypercube.

Proof. Consider a configuration (Q5, f) of a set of 14 robots on the 5-dimensional

61

unoriented hypercube Q5. The robots are placed on the following vertices: 00100,

00001, 11000, 10010, 01100, 01010, 00101, 00011, 11010, 10110, 11001, 10101,

01111, 11111. It is easy to see thatWf = V (Q5). It can be shown that Aut(Q5, f)

= {e, φ1, φ2, φ3}, with each φi given by u 7→ σi(u) ⊕ ai, where ai ∈ Z5
2, σi ∈ S5

are the following: a1 = 00000, σ1 = (1)(24)(35), a2 = 10000, σ2 = (1)(2543),

a3 = 10000, σ3 = (1)(2345). Then it can be easily verified that 1) there is no

partitive automorphism in Aut(Q5, f), 2) there is no fixed vertex inWf = V (Q5).

So by Theorem 3.7, LeadingWeberPoint is deterministically unsolvable.

Now we show that LeadingWeberPoint can be deterministically solved in an

oriented hypercube.

Lemma 3.2. Given a vertex u0 in an oriented hypercube QO
d , ∃ exactly one

coordinate assignment (bijection) Ψ : V (QO
d) −→ {0, 1}d such that

1. Ψ(u0) = 00 . . . 0 ∈ {0, 1}d

2. u, v are adjacent if and only if Ψ(u), Ψ(v) differ in exactly one bit

3. for uv ∈ E(QO
d), λ(uv) = i if and only if Ψ(u), Ψ(v) differ in the ith

position.

Proof. The coordinates given to u0 are 00 . . . 0. Then by rule 2) and 3), the

coordinates of all its neighbors are uniquely determined. If the coordinates of

all vertices at distance i(< d) from u0 are uniquely determined, then again by

rule 2) and 3), the coordinates of all vertices at distance i+1 can be determined

uniquely. Hence by induction, the coordinates assigned to all the vertices are

unique.

Now for any w ∈ V (QO
d), we define a binary string ζ(w) of length 2d in the

following the way:

1. First, give QO
d the unique coordinate assignment Ψ : V (QO

d) −→ {0, 1}d
with Ψ(w) = 00 . . . 0.

62

2. Now we define a total ordering ≺ on V (QO
d) as: u ≺ v

u ≺ v ⇔

d(u,w) < d(v, w)

Or,

d(u,w) = d(v, w), and Ψ(u) is lexicographically larger that Ψ(v),

where d(u,w) is the distance of u from w. For example, when d = 4,

the assigned coordinates of the vertices written in increasing order will be:

0000︸︷︷︸
distance 0

, 1000, 0100, 0010, 0001︸ ︷︷ ︸
distance 1

, 1100, 1010, 1001, 0110, 0101, 0011︸ ︷︷ ︸
distance 2

,

1110, 1101, 1011, 0111︸ ︷︷ ︸
distance 3

, 1111︸︷︷︸
distance 4

.

3. Finally, scan the vertices of the hypercube according to the above ordering.

For each vertex, put a 0 if it is empty, or 1 if it is occupied by a robot. Recall

that any vertex can be occupied by at most one robot. The string of length

2d thus obtained is ζ(w). In the previous example, if the occupied vertices

are 0000, 1000, 0010, 1001, 0011, 1011, 1111, then ζ(w) = 1101000100100101.

Lemma 3.3. For any two distinct vertices u, v ∈ V (QO
d), if ζ(u) = ζ(v), then

the configuration has a partitive automorphism.

Proof. It can be easily seen that if ζ(u) = ζ(v), then the configuration has the

automorphism (translation) given by x 7→ x⊕ u⊕ v.

Theorem 3.9. LeadingWeberPoint is solvable in an oriented hypercube.

Proof. Since the configuration has no partitive automorphism, ζ(w1) ̸= ζ(w2) for

any distinct w1, w2 ∈ W . Hence the robots can unanimously elect w ∈ W with

the lexicographically (strictly) largest ζ(w) as the leading Weber point.

3.3 The Algorithm

Our plan is to solve the problem in two stages. In stage 1, we create a multiplicity

at a Weber point and then in stage 2, we sequentially bring the remaining robots

to that vertex. Before describing the algorithm, we first give two definitions.

63

Anchor: Let (QO
d , f̃) be a non-final perceived configuration on an oriented hyper-

cube with at most one multiplicity and no partitive automorphism. The anchor

of (QO
d , f̃) is a vertex α ∈ V (QO

d) defined as the following. If (QO
d , f̃) has no

multiplicity, then α is the leading Weber point; otherwise α is the unique vertex

with multiplicity. Note that all the robots observing the configuration (QO
d , f̃)

agree on which vertex is the anchor.

Leader: Since all the robots observing the configuration (QO
d , f̃) agree on the

anchor α, they also agree on a common coordinate system, which is the unique

coordinate system Ψ described in Lemma 3.2 with Ψ(α) = 00 . . . 0. This also

allows the robots to order the vertices of the hypercube as described in the pre-

vious section. In this ordering, the first robot appearing on a non-anchor vertex

will be called the leader.

Depending on number of robots of the configuration, algorithm is described in

the following subsections 3.3.1 and 3.3.2.

3.3.1 2k +1 Robots

Theorem 3.10. Any configuration on a hypercube with odd number of robots has

exactly one Weber point.

Proof. Using the same notations as in Theorem 3.6, the set of Weber points is

given by W = [b]1 × [b]2 × . . . × [b]d. Since there are odd number of robots, the

multiset {b1j, b2j, . . . , bnj} can never have equal number of 0’s and 1’s. Hence,

[b]j = {0} or {1}, ∀j ∈ {1, . . . , d}. Thus |W| = 1.

Theorem 3.11. Gathering in QO
d is optimally solvable in ASYNC with weak

multiplicity detection for any configuration of odd number of robots.

Proof. We simply ask only the leader to move towards the anchor. The anchor

α is the unique Weber point of the configuration. As the leader moves towards

it, the Weber point remains invariant by Theorem 3.5. After one or two robots

64

reach α, a multiplicity is created at α. Throughout stage 2, α remains the unique

multiplicity in the configuration, since only the leader moves. Thus, all the re-

maining robots will sequentially reach α. The algorithm is clearly optimal with

respect to the total number of moves executed by the robots.

3.3.2 4k Robots

In view of Theorem 3.2, Theorem 3.3 and Lemma 3.1, any configuration with non-

trivial automorphism group is ungatherable. We show that for all the remaining

configurations, gathering can be optimally solved. Again our strategy is to move

the leader towards the anchor. However, in this case the leader has to judiciously

choose the edge via which it should approach the anchor. Unlike the previous

case, the anchor may change after a move.

Consider the first stage of the algorithm, when there is no multiplicity in the

configuration. Then the anchor is the leading Weber point wℓ. We classify all

the non-anchor vertices into two types: type 1 and type 2. If the configuration

has 2m (0 ≤ m ≤ d) Weber points, then among the d neighbors of wℓ, m are also

Weber points. This is because of Lemma 3.6.1. Let us call these Weber points

w1, . . . , wm. Since the coordinates assigned to wℓ are 0 . . . 0, the coordinates of

each wi ∈ {w1, . . . , wm} have exactly one 1. For each wi, assume that its assigned

coordinates have the 1 at the pith place, which implies that the edge joining wi

and wℓ has label pi. Also, the set of Weber points, in the assigned coordinates,

is given by W = [b]1× [b]2× . . .× [b]d, where [b]l is {0, 1} if l ∈ {p1, . . . , pm}, and
{0} otherwise.

Type 1 vertex: A non-anchor vertex v will be called a type 1 vertex if the

following holds: there is at least one pi ∈ {p1 . . . pm} such that the assigned

coordinates of v have 1 at pith place. Also the edge incident to v with label pi

will be called a type 1 edge.

Type 2 vertex: If a non-anchor vertex v is not type 1, then it will be called a type

2 vertex. This implies that the p1th, . . . pmth terms of the assigned coordinates

65

Algorithm 3: Gathering for 4k (k > 0) robots

1 Procedure Gather()
2 α← anchor
3 if α is a multiplicity then
4 if I am leader then
5 Move towards α

6 else
7 if I am leader then
8 if I am on a Type 1 vertex then
9 Move towards α via a Type 1 edge

10 else if I am on a Type 2 vertex then
11 Move towards α

of v are 0. Note that if the configuration has only one Weber point, i.e., m = 0,

then all non-anchor vertices are vacuously type 2.

Theorem 3.12. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no

multiplicities and no partitive automorphisms. Let wℓ be the leading Weber point,

and hence the anchor. Assume that the leader r is placed at a type 1 vertex u.

Suppose that it moves via a type 1 edge with label pi to an empty vertex v, and

gives rise to configuration (QO
d , f

′). Then the following holds.

1. wℓ ∈ Wf ′

2. If |Wf | = 2m(m > 0), then |Wf ′ | = 2m−1

3. (QO
d , f

′) has no partitive automorphism.

Proof. 1) Assume that r moves via a type 1 edge with label pi. Then the assigned

coordinates of u and v differ in exactly one bit at the pith position. At the pith

place, u has 1, while v has 0. Then v has less 1’s than u, and hence v is closer to

wℓ than u, i.e., r has moved towards wℓ. Hence, by Lemma 3.5, wℓ ∈ Wf ′ .

2) It is easy to see that, as r moves from u to v, i) its distance from all Weber

points whose coordinates have 1 at pith place (there are 2m−1 of them), increases

by one, and ii) its distance from all Weber points whose coordinates have 0 at

66

pith place, decreases by one. Hence the move reduces the set of Weber points by

half.

3) If possible, assume that (QO
d , f

′) admits a partitive automorphism, i.e., a non-

trivial translation τ . Assume that the translation, in the assigned coordinate

system, is given by x 7→ x ⊕ a, for some a ∈ {0, 1}d. Let R and R′ be the

set of vertices occupied by robots in (QO
d , f) and (QO

d , f
′) respectively. Since τ

maps any vertex of R′ to another vertex of R′, the group < τ > induces an

equivalence relation on R′, partitioning it into 2k disjoint sets of cardinality 2:

R′ =
2k⋃
j=1

{xj, τ(xj)}. Let Rpi and R′
pi be the multiset containing the pith terms

of the assigned coordinates of vertices of R and R′ respectively. Clearly Rpi

contains 2k number of 0’s and 2k number of 1’s. In R′
pi
, we have 2k + 1 number

of 0’s and 2k − 1 number of 1’s.

Case 1: Let the pith term of a be 0. Hence, if pith term of x is b ∈ {0, 1}, then
the pith term of τ(x) = x ⊕ a is also b. This implies that R′

pi has even number

of 0’s and 1’s. This is a contradiction, as we have shown that number of 0’s and

1’s in R′
pi is 2k + 1 and 2k − 1 respectively.

Case 2: Let the pith term of a be 1. So, if pith term of x is b ∈ {0, 1}, then the

pith term of τ(x) = x ⊕ a is b. This implies that R′
pi has equal number of 0’s

and 1’s. This is again a contradiction.

Theorem 3.13. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no

multiplicities and no partitive automorphisms. Let wℓ be the leading Weber point,

and hence the anchor. Suppose that the leader r is placed at a type 2 vertex u. If

it moves towards wℓ to an empty vertex, then

1. the new configuration (QO
d , f

′) has no partitive automorphism

2. Wf =Wf ′

3. wℓ is the leading Weber point of (QO
d , f

′)

4. r is the leader in (QO
d , f

′).

67

Proof. We use the same notations as in the proof of the previous theorem. For

each w ∈ Wf \ {wℓ} the following holds: i) among the p1th, . . . , pmth terms

of the assigned coordinates, there is at least one 1, ii) all the terms except the

p1th, . . . , pmth ones are 0. Exactly the opposite is true for the type 2 vertex

u. It implies that the distance of r from wℓ is strictly less than its distance

from any other Weber point in Wf \ {wℓ}. Also, after the move, its distances

from all Weber points reduce by exactly 1. Hence, after the move, ζ(wℓ) remains

lexicographically strictly largest among {ζ(w) | w ∈ Wf ′}. All the statements of

the theorem easily follow from these observations.

Lemma 3.4. Let G = (V,E) be an arbitrary graph. Let P = v0e0v1e1v2 . . . vl−1el−1vl

be a path from v0 to vl. Suppose that for any ej, a move through it by a robot

from vj to vj+1 reduces its distance from vl by 1. Then P is a shortest path from

v0 to vl in G.

Lemma 3.5. Suppose that a robot moves from a vertex u to an adjacent vertex v

in a hypercube Qd. Then for any w ∈ V (Qd), either its distance from w reduces

by 1 or increases by 1, i.e., its distance from w does not remain unchanged.

Theorem 3.14. Algorithm 3 achieves optimal gathering in ASYNC, for all asym-

metric configurations of 4k (k > 0) robots with weak multiplicity detection.

Proof. By Theorem 3.12 and 3.13, no move in the first stage creates a partitive

automorphism. Since at any time, only the leader is allowed to move, multiplicity

can only be created at the anchor. Since throughout stage 2, there is a unique

multiplicity, a configuration with a partitive automorphism is never created. No-

tice that in both stages, an anchor is always a Weber point. Hence, the robots

always move towards some Weber point. So, after each move, the centrality of the

surviving set of Weber points is reduced by 1. Therefore, eventually the centrality

of one Weber point becomes 0, which implies that gathering is accomplished.

It remains to prove that Algorithm 3 is optimal with respect to total number

of moves executed by the robots. Suppose that the algorithm gathers all the

robots at w, which was a Weber point of the initial configuration. In view of

Lemma 3.12, it is sufficient to show that every movement executed by any robot

68

is towards w. Since every movement executed by a robot is towards some Weber

point, according to Theorem 3.5, the set of Weber points of the configurations

starting from the initial to the final configuration form the following nested series:

W0 ⊇ W1 ⊇ . . . ⊇ Wfinal = {w}. In other words, w remains a Weber point

throughout the progress of the algorithm. If at some step, a move by a robot is

not towards w, then by Lemma 3.13, it moves away from w. Then the centrality

of w is increased by 1, while the centrality of some other Weber point is decreases

by 1. This means that w does not remain a Weber point after the move. This is

a contradiction.

3.4 Concluding Remarks

This is the first chapter that investigates the gathering problem on a hypercube

graph. We have provided a complete characterization of all gatherable configura-

tions in ASYNC for 2k+1 and 4k (k > 0) number of robots with weak multiplicity

detection in an oriented hypercube. This leaves unsettled only the configurations

with 4k + 2 (k > 0) number of robots. Note that our strategy for 4k robots does

not work for 4k+2 robots. To see this, consider a configuration in Q9 of 10 robots

placed on the following vertices: 000000000, 110111000, 101111000, 011111000,

000111000, 001000111, 010000111, 100000111, 111000111, 111000000. Here, the

anchor, i.e., the leading Weber point is 000000000 and the leader is 111000000.

It can be seen that a move by the leader towards the anchor via any edge creates

a configuration with a partitive automorphism. Another challenging direction of

future research would be to study the problem with limited visibility. It would

also be interesting to consider randomized algorithms to bypass the impossibility

results.

Chapter 4

Arbitrary Pattern Formation on
Infinite Grid by Opaque Point
Robots

Arbitrary Pattern Formation (APF) Problem is a classical problem in swarm

robotics which deals with fundamental coordination problem of multi-robot sys-

tems. The problem is to design an algorithm which will be used by each au-

tonomous mobile robot of a robot swarm that will guide the robots to form any

specific pattern that is given to the robots initially as input. In this problem,1

the robots are modeled as autonomous (there is no central control), anonymous

(the robots do not have any unique identifiers), homogeneous (all robots execute

the same algorithm) and identical (robots are indistinguishable by their appear-

ance). All the robots can freely move on the plane. Each robot has sensing

capability by which they can perceive the location of other robots on the plane.

The robots do not have any global coordinate system (each robot has its own

local coordinate system) and they operate in Look-Compute-Move (LCM)

cycles. In the Look phase, a robot takes a snapshot of its surroundings. In the

Compute, phase a robot process the information got from the Look phase and

1Based on this chapter, the following paper has been published:
Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb Sau. Arbitrary
pattern formation by asynchronous opaque robots on infinite grid. Arxiv e-prints,
May. 2022. arXiv:2205.03053. https://doi.org/10.48550/arXiv.2205.03053

69

https://doi.org/10.48550/arXiv.2205.03053

70

in the Move, phase a robot moves to another position (a robot also might stay

still in this phase) depending on the output of the Compute phase.

4.1 Problem description and our contribution

This chapter deals with the arbitrary pattern formation problem on an infinite

grid using opaque luminous robots with 8 colors. The robots operate in LCM

cycles under an adversarial asynchronous scheduler. The robots are autonomous,

anonymous, identical and homogeneous. They move only through the edges of

the grids and the movement is instantaneous for each robot (i.e a robot can

only be seen on a grid point). Initially the robots are placed arbitrarily on the

grid. From this configuration, they need to move to a target configuration or,

Pattern (a set of target coordinates) without collision. The robots have one axis

agreement and does not have agreement on global coordinate (each robot has its

own local coordinate).

The main difficulty of the problem is visibility. As APF is closely related to

the Leader Election problem, without seeing the whole configuration it is

quite hard to elect a leader and thus design an algorithm to solve the problem.

Depending on the local view of each robot, the algorithm is need to be designed.

In this chapter, the described algorithm does so. Also another difficulty was to

avoid collision between robots while they are moving. We removed this difficulty

by using a technique where the robots will move sequentially.

The problem described in this chapter is also very practical in nature. The

restricted movement and also the obstructed visibility, these practical scenarios

are considered here. The algorithm described in this chapter solves the above

mentioned APF problem in total O(kD) moves in the worst case, where k is the

number of robots on the grid and D is max{m,n,M,N, k} (m, n are the height

and width of smallest enclosing rectangle of the initial configuration; M , N are

the same of for the target configuration).

71

4.2 Model

Robots: Robots are autonomous, anonymous, homogeneous and identical.

They are deployed on a two-dimensional infinite grid where each of them is ini-

tially positioned on distinct grid points. They do not have a common notion of

direction. The robots have an agreement over the positive direction of X-axis

i.e, all the robots have an agreement over left and right. They do not have any

agreement over the Y-axis. Here the robots do not have access to any global

coordinate system other than the agreement over the positive direction of X-axis.

The total number of robots is not known to them. The robots are assumed to be

dimensionless and modeled as points.

Look-Compute-Move cycles: The robot, when active, operates according to

the Look-Compute-Move cycle. In the Look phase, a robot takes the snap-

shot of the positions of all the robots represented in its own local co-ordinate

system. Then the robot performs computation and compute the next position

and a light according to a deterministic algorithm i.e., the Compute phase. In

the Move phase, it will either move unit length to the desired location along a

straight line or make a null move.

Scheduler: We assume that the robots are controlled by an asynchronous adver-

sarial scheduler. This implies that the amount of time spent in Look, Compute,

Move, and inactive states by different robots is finite but unbounded and un-

predictable. As a result, the robots do not have a common notion of time, and

the configuration perceived by a robot during the Look phase may significantly

change before it actually makes a move.

Movement: The movement of robots are restricted only along grid lines from

one grid point to one of its four neighboring grid points. Robots’ movements

are assumed to be instantaneous in discrete domains. Here we assume that the

movements are instantaneous. The robots are always seen on grid points, not on

edges.

Visibility: The robots visibility is unlimited but by the presence of other robots

it can be obstructed. A robot ri can see another robot rj if and only if there are

72

no robots on the straight line segment rirj.

Lights: Each robot is equipped with an externally visible light, which can assume

a O(1) number of predefined colours. The robots communicate with each other

using these colours. The colours of the light are not deleted at the end of a cycle,

but otherwise, the robots are oblivious. The colours used in our algorithm are

{off, terminal1, symmetric, decider, call, leader1, leader, done}.

4.3 Notations and Definitions

We have used some notations throughout the chapter. A list of these notations

along with their definitions are mentioned in the following table.

L1 First vertical line on left that contains at least one robot.
LV (r) The vertical line on which the robot r is located.
LH(r) The horizontal line on which the robot r is located.

LI(r)
The left immediate vertical line of robot r which has at
least one robot on it.

RI(r)
The right immediate vertical line of robot r which has
at least one robot on it.

HO
L (r) Left open half for the robot r.

HC
L (r) Left closed half for the robot r (i.e HO

L (r) ∪ LV (r)).
HO

B (r) Bottom open half for the robot r.
HC

B (r) Bottom closed half for the robot r (i.e HO
B (r) ∪ LH(r)).

HO
U (r) Upper open half for the robot r.

HC
U (r) Upper closed half for the robot r (i.e HO

U (r) ∪ LH(r)).
Ltj−1 The horizontal line below the target position tj.

K
The horizontal line passing through the middle point of
the line segment between two robots with light decider
or terminal1 on the same vertical line.

LH1
The immediate horizontal line above the robot with light
leader.

Some additional definitions are needed to be explained which will be useful later.

Configuration: Let us consider a team of robots placed on an simple undirected

connected graph G = (V,E). Let us define a function f : V → {0} ∪ N , where

73

f(v) is the number of robots placed on vertex v. The graph G together with the

function f is called a configuration which is denoted by C = (G, f). For ant time

T , C(T) will denote the configuration of the robots at time T .

For a graph G = (V,E), ϕ : V → V is an automorphism if ϕ is a bijection and

ϕ(u)ϕ(v) is adjacent iff u and v are adjacent ∀u, v ∈ V . All the automorphisms

of G form a group denoted by Aut(G). Similarly we can define an automorphism

ϕ for a configuration (G, f) where ϕ ∈ Aut(G) and f(u) = f(ϕ(u)),∀u ∈ V . All

automorphisms on (G, f) form a group denoted by Aut(G, f).

Symmetric configuration: For any configuration C = (G, f), we can define

the group Aut(C). ϕ(v) = v,∀v ∈ V is called a trivial symmetry. Every non

trivial ϕ ∈ Aut(C) is called a symmetry of C. Note that all symmetric configura-

tions of a configuration C is basically generated by some translations, rotations

and reflections. Translation shifts all the vertices by the same amount. Since the

number of robots in the configuration C is finite it is easy to see that there is no

translation in Aut(C). Reflections are defined by some axis or line of reflection.

It can be vertical, horizontal or diagonal. The angle of rotation can be 90◦ or

180◦. The center of rotation can be a vertex of the grid, center of an unit square

or a center of an edge.

Stable Configuration: A configuration C is called a stable configuration if the

following conditions are satisfied in C.

1. There are two robots with light decider on same vertical line and all other

robots in C have light off.

2. The vertical and horizontal line on which the robots with light decider are

located don’t have any other robots.

3. The robots with light decider have no robots on left open half and also

their upper closed half or bottom closed half have no other robots.

Leader Configuration: A configuration C is called a leader configuration if

the following conditions are satisfied in C.

74

1. There are exactly one robot with light leader and all other robots have

light off.

2. The vertical line and the horizontal line on which the robot with light

leader is located do not have other robots.

3. The robots with light leader has no robots on left open half and also upper

open half or bottom open half is empty .

Compact Line: A line is called compact if there is no unoccupied grid position

between any two robots on that line.

Terminal Robot: A robot r is called a terminal robot if LV (r) ∩H is empty,

where H ∈ {HO
B (r), H

O
U (r)}.

Symmetry of a vertical line L w.r.t K: Let L be a vertical line of the grid

and λ be a binary sequence defined on L such that j-th term of λ is defined as

follows:

λ(j) =

{
1 if ∃ a robot on the j-th grid point from K ∩ L on the line L.

0 otherwise.

By definition of λ, it follows that there are two such values of λ, say λ1 and

λ2. We say that the line L is symmetric with respect to K if λ1 = λ2. For

future, whenever symmetry of a line is mentioned, it is assumed that it means

the symmetry of the line with respect to K.

Dominant half: A robot r is said to be on the dominant half if the following

conditions are satisfied:

1. RI(r) is not symmetric with respect to K.

2. If lexicographically λ1 > λ2 on RI(r), then r and the portion of RI(r)

corresponding to λ1 lie on same half plane delimited by K.

75

4.4 The Algorithm

The main result of the chapter is Theorem 1. The proof of the ‘only if’ part is

the same as in case for point robots, proved in [15]. The ‘if’ part will follow from

the algorithm presented in this section.

Theorem 4.1. For a set of opaque luminous robots having one axis agreement,

APF is deterministically solvable if and only if the initial configuration is not

symmetric with respect to a line K such that 1) K is parallel to the agreed axis

and 2) K is not passing through any robot.

For the rest of the chapter, we shall assume that the initial configuration C(0)
does not admit the unsolvable symmetry stated in Theorem 4.1. Our algorithm

works in two stages namely leader election and the pattern formation. The stages

are described in details in 4.4.1 and 4.4.2.

4.4.1 Leader Election

In the first stage, Leader Election, the robots will agree on a leader. Since there

are no common agreement on a global coordinate system, the robots will not be

able to agree on the embedding of the pattern on the grid. Thus leader election is

necessary for robots to agree on a global coordinate. This stage is further divided

in two phases namely Phase 1 and Phase 2. This phases are described in details

in 4.4.1.1 and 4.4.1.2.

4.4.1.1 Phase 1

The procedure Phase 1 starts from the initial configuration with the aim of

forming a stable configuration or achieving a configuration with a robot with

light leader1. Initially all the robots are located on an infinite grid with light

off. On waking, each robot r will check if the robot is terminal and if their open

left half has no other robots and no robot leader1 in RI(r). Note that there will

be at most two and at least one such robot. These robots will change their lights

to terminal1 and move left (Figure 4.1).

76

Algorithm 4: Phase 1

1 Procedure Phase1()
2 r ← myself
3 if r.light = off then
4 if r is terminal and there is no robot in HO

L (r) and no robot leader1
in RI(r) then

5 r.light← terminal1

6 Move left

7 else if there are exactly two robots in LI(r) having light terminal1
and r is on K then

8 r.light← leader1

9 else if r.light =terminal1 then
10 if there is a robot with light terminal1 on LV (r) then
11 if no robots on K ∩RI(r) then
12 if RI(r) is symmetric with respect to K then
13 r.light← symmetric

14 else
15 if r is in dominant half then
16 r.light← leader1

17 else if there is a robot on K ∩RI(r) with light leader1 then
18 r.light← off

19 else if there is a robot with light symmetric on LV (r) then
20 r.light← symmetric

21 else if there is a robot with light leader1 or off on LV (r) then
22 r.light← off

23 else if r is singleton on LV (r) and all robots in RI(r) are off then
24 r.light← leader1

25 else if r.light =symmetric then
26 if there is a robot r′ with light symmetric or decider on LV (r) then
27 if there is other robot both in HC

U (r) and HC
B (r) then

28 move vertically opposite to r′

29 else
30 r.light← decider

If there is only one robot (say, r) with light terminal1 on L1 and light of all

robots on RI(r) are off, then r will change its light to leader1 (Figure 4.2,

4.3). This might also happen due to asynchrony of the system that there are two

77

Figure 4.1: Terminal robots on the line L1 change lights to terminal1 and move left.

robots with terminal1 light but one (say, r1) in L1 and the other one (say, r2)

is still in RI(r1). In this case, the robot on L1 will see that all robots on RI(r1)

do not have lights off and will wait for r2 to reach L1.

If there are two robots (say, r1 and r2) on L1 with terminal1 light, then observe

that both the robots r1 and r2 and all the robots on RI(r1) (= RI(r2)) can

recognise the line K. Now, if there exists a robot (say rl) occupying the grid

point RI(r1) ∩K, then rl changes its light to leader1 and the robots with light

terminal1 changes their light to off after seeing the robot rl with light leader1

(Figure 4.4, 4.5). If the grid point RI(r1) ∩K is empty, then the robots r1 and

r2 check the symmetry of the line RI(r1) (= RI(r2)). If RI(r1) is not symmetric,

then the robot ri(i = 1 or, 2), which is on the dominant half changes its light

to leader1 (Figure 4.6, 4.7). On the other hand if RI(r1) is symmetric, then

both the robots r1 and r2 change their lights from terminal1 to symmetric

(Figure 4.8, 4.9). Note that, due to asynchrony it might happen that one robot,

let’s say r1 changes its light to symmetric before r2. Then r1 does not move

until it sees another robot (r2) on LV (r1) with light symmetric. This technique

prevents the configuration from getting symmetric in this phase. Now after seeing

another robot (r2) on LV (r1) with symmetric light, r1 moves vertically opposite

of r2 until the closed upper half or the closed bottom half of r1 has no other

robots (similar argument can be given for r2) (Figure 4.10). After reaching their

78

designated positions both the robots r1 and r2 change their light from symmetric

to decider, achieving a stable configuration (Figure 4.11). Note that, due to

asynchrony it might happen that one robot, let’s say r1 reaches to its designated

position and changes its light to decider before r2.

The following Lemmas 4.1, 4.2 and 4.3 and Theorem 4 justify the correctness of

the Algorithm 4.

Lemma 4.1. If the initial Configuration C(0) has exactly one robot on L1, then

∃ T1 > 0 such that there will be exactly one robot with light leader1 in C(T1).

Proof. Let us assume the initial configuration C(0) has exactly one robot (say,

r) on L1. According to the Algorithm 4, when r wakes it will see that it is a

terminal robot, the open left half is empty and no leader1 in RI(r). Then it

changes the light to terminal1 and moves left. Note that, after r moves left, L1

now denotes the new vertical line where r is located. Now on waking again, r

sees that it is the only robot on L1 with light terminal1 and all other robots on

RI(r) having light off. In this case, r changes the light to leader1. Note that

all the other robots in this case have the light off throughout the Algorithm 4.

So during the execution of Algorithm 4, if this case occurs, there will be exactly

one robot with light leader1 (Figure 4.2, 4.3).

Figure 4.2: Single robot on L1 with
light terminal1.

Figure 4.3: The single robot with
light terminal1 changes its light to
leader1.

79

Lemma 4.2. If the initial configuration C(0) has exactly two robots on L1, then

∃ T ′ > 0 such that C(T ′) is either a stable configuration or there is exactly one

robot with light leader1 in C(T ′).

Proof. Let r1 and r2 be two robots on L1 in the initial configuration C(0). In

this case, both the robots change their lights to terminal1 and move left. Note

that after moving left, L1 now denotes the vertical line on which the robots are

located now. Due to asynchrony of the system, two cases may occur:

Case 1: Both the robots r1 and r2 reaches L1 before waking again. In this case,

r1 and r2 can see each other and can calculate the line K. Now if there is another

robot (say rl) on the intersection of K and RI(r1) (RI(r1) = RI(r2)), then rl

changes the light to leader1. Note that rl can see both r1 and r2, so it can

calculate the line K itself. After seeing rl with light leader1, the robots with

light terminal1 change their lights to off (Figure 4.4, 4.5).

Figure 4.4: Both the robots with light
terminal1 see a robot on the right next
occupied vertical line and on the lineK.

Figure 4.5: The robot on K changes
its light to leader1 and next the
terminal1 robots see robot leader1

and change their lights to off.

On the other hand, if there is no robot on the intersection of K and RI(r1), then

r1 and r2 both check the symmetry of RI(r1) with respect to the line K. If RI(r1)

is asymmetric with respect to K, then the robot in the dominant half (r1 or r2)

will change it’s light to leader1 (Figure 4.6, 4.7).

80

Figure 4.6: The robots with light
terminal1 see that the right next oc-
cupied vertical line is not symmetric.

Figure 4.7: The robot with light
terminal1 on the dominant half
changes the light to leader1.

Figure 4.8: The terminal1 robots
see that the right next occupied verti-
cal line is symmetric.

Figure 4.9: Robots with light
terminal1 change their lights to
symmetry.

Otherwise if RI(r1) is symmetric with respect to K, then r1 and r2 change their

light to symmetric (Figure 4.8, 4.9). Note that due to asynchrony, it may happen

that one robot (say ,r1) changes light to symmetric while r2 still has the light

terminal1. In this case, r1 will not move until r2 wakes and changes it’s light

to symmetric, after seeing the symmetric light of r1. After both the robots r1

and r2 changed their lights to symmetric, they move vertically in the opposite

direction of each other until one of the region HU
C or, HB

C has no other robots

(Figure 4.10). After this step, both r1 and r2 change their lights from symmetric

81

Figure 4.10: The robots with light
symmetry move opposite of each other
until they find either bottom or upper
closed half has no other robots.

Figure 4.11: After reaching desig-
nated positions where upper closed or
bottom closed half has no other robots,
the robots with light symmetry change
lights to decider to reach a stable con-
figuration.

to decider, thus reaching a stable configuration (Figure 4.11). Note that the

robots will not check the symmetry of RI(r1)(= RI(r2)) if the light of robots are

symmetric.

Case 2: Lets assume r1 is on L1 and awake before another robot r2 with

terminal1 light is yet to reach on L1. In this case, r1 checks RI(r1) and finds out

all the robots except one (r2 with light terminal1) have light off. In this case,

r1 waits until r2 reaches L1 and then by similar argument like in case 1, either

reaches a configuration with a robot having light leader1 or reaches a stable

configuration.

So after the execution of Algorithm 4, the configuration is either stable or has

exactly one robot with light leader1.

Lemma 4.3. If the initial configuration C(0) has more than two robots on L1,

then ∃ T
′′
> 0 such that C(T ′′

) is either a stable configuration or there is exactly

one robot with light leader1 in C(T ′′
).

Proof. Let us assume there are h robots on the line L1, denoted by {ri : i ∈
[1, h] ∩ N and h > 2}. Suppose r1 and r2 are the two terminal robots. Since r1

82

and r2 can identify themselves as terminal robots and can see there is no robot in

HO
L (r) and no robot leader1 in RI(r), they will change their light to terminal1

and move left. Note that after r1 or r2 move left, L1 now denotes the vertical line

on which the robots are located now.

Now, with the same argument as in both the cases of Lemma 4.2, we can easily

say that after the execution of Algorithm 4, the configuration is either stable or

has exactly one robot with light leader1.

Theorem 4.2. For any initial configuration C(0), ∃ T > 0 such that either C(T)
is a stable configuration or has exactly one robot with light leader1.

Proof. This follows directly from Lemma 4.1, Lemma 4.2 and Lemma 4.3.

4.4.1.2 Phase 2

After completion of Phase 1, two configurations may occur. In the first possible

configuration, there exists exactly one robot with light leader1 and other robots

with light off. The other possible configuration is a stable configuration. After

completion of Phase 2, these configurations transforms into a leader configuration.

First, let us assume that after Phase 1, the configuration transforms into the sta-

ble configuration. In this configuration, there are two robots with light decider

such that their HC
U ∩HC

L or HC
B ∩HC

L have no other robots. All the other robots

have light off. In Phase 2, a robot with light off (say, r) checks whether it

can see two robots with light decider on LI(r). If r can see two such robots

on LI(r) and r is on K ∩ LV (r), then r changes its light to leader1. Note that

r can calculate the line K as it can see both the robots having light decider.

On the other hand, if r is not on K ∩ LV (r), then it checks the symmetry of

RI(r) with respect to K. If RI(r) is not symmetric, then the terminal robot on

LV (r) on the dominant half changes its light to leader1. Otherwise, if RI(r) is

symmetric with respect to K, the robot closest to K and on LV (r) changes its

light to call. Note that a robot with light off also changes its light to call

when it sees another robot with light call on the same vertical line. In this way,

83

if r is not on K ∩LV (r) and RI(r) is symmetric with respect to K, all the robots

on LV (r) will eventually change their lights to call (Figure 4.12, 4.13).

Now let rd1 be a robot with light decider. It checks whether there is a robot

on K ∩ RI(rd1). Observe that in the beginning of Phase 2, rd1 can see another

robot with light decider (say rd2) on LV (rd1), thus can calculate the line K. If

there is no robot on RI(rd1) ∩ K and RI(rd1) is not symmetric with respect to

K, then if rd1 was in dominant half, it changes its light to leader1 (Figure 4.14).

In this case, since there are two robots with light decider and both are terminal,

one will always be in the dominant half. Now if there is no robot on RI(rd1)∩K
and the line RI(r) (where, r ∈ RI(rd1)) is symmetric with respect to K, after a

certain time all the robots on RI(rd1) will have light call.

84

Algorithm 5: Phase 2

1 Procedure Phase2()
2 r ← myself
3 if r.light = decider then
4 execute FuncDecider()
5 else if r.light = off then
6 if there are two robots with light decider in LI(r) then
7 if r is on K ∩ LV (r) then
8 r.light← leader1
9 else

10 if RI(r) is symmetric with respect to K then
11 if r is closest to K or there is a robot with light call on

LV (r) then
12 r.light← call

13 else
14 if r is terminal on LV (r) and in dominant half then
15 r.light← leader1

16 else if r.light = call then
17 if there is a robot with light leader1 in RI(r) or LI(r) then
18 r.light← off

19 else if r.light = leader1 then
20 if (all robots in LI(r) are off) or (HO

L (r) is empty and all robots in
RI(r) are off) then

21 if there is no other robot in HC
U (r) or HC

B (r) then
22 if there is other robot in HC

L (r) then
23 move left
24 else
25 r.light← leader

26 else
27 if r is not terminal on LV (r) then
28 move left
29 else if r is terminal on LV (r) and there is another robot r′ on

LV (r) then
30 move vertically opposite to r′

31 else if r is singleton on LV (r) then
32 move vertically according to its positive y − axis.

33 else if there is a robot with light leader1 in LI(r) then
34 r.light← off

85

Algorithm 6: FuncDecider

1 Procedure FuncDecider()
2 r ← myself
3 if there is a robot with light leader1 on RI(r) or LV (r) then
4 r.light← off
5 else
6 if there is a robot with light decider on LV (r) and no robots on

K ∩RI(r) then
7 if RI(r) is symmetric with respect to K then
8 if all robots in RI(r) are call then
9 move right

10 else
11 if r is in dominant half then
12 r.light← leader1

13 else if there is a robot with light decider in RI(r) then
14 move right
15 else if there is a robot with light call in LV (r) and no robot with light

decider in LI(r) then
16 if all robots in RI(r) are call then
17 move right

Figure 4.12: Robot r (closest of K) sees
two decider robot on LI(r) and RI(r) is
symmetric, so it changes light to call.

Figure 4.13: The robots on LV (r),
when see a robot with light call on the
same vertical line, change their light to
call. After all robots on LV (r) have
call light, the decider robots move
right.

Then if RI(rd1) (= RI(rd2)) is symmetric, both the robots rd1 and rd2 move right.

In case, due to asynchrony if one robot (say, rd1) moves right and wakes before

rd2 moves, then even if rd1 sees all robots on RI(rd1) with light call, it will not

move right until it sees there is no robot with light decider on LI(rd1) and sees

86

a robot with light call or rd2 on LV (rd1). Note that rd1 will see rd2 on LI(rd1)

until rd2 moves right. On the other hand, rd2 sees rd1 on RI(rd2) and then it

moves right.

Figure 4.14: The robot r with light decider changes its light to leader1 with HC
L (r)

has no other robots.

On a lighter note, in this algorithm a robot r with light off basically calculates

the line K by seeing the robots with light decider on LI(r) and checks the

symmetry of RI(r) with respect to the line K and checks if it is on K. Note that,

the robots with light decider also can calculate K when they see each other on

the same vertical line and check the symmetry of the next vertical line having

robots and also do search for robots on K. As the configuration is solvable and

movement of robots with light decider do not actually make the configuration

unsolvable, after a certain time there will be some robot r0 with light leader1.

Note that a robot r with light call changes the light to off if it sees any robot

with light leader1 on RI(r) or LI(r).

Now, let us consider the case where there is a robot with light leader1 (say, r0).

It first checks whether all robots on the line LI(r0) have light off or if its left

open half is empty. If one of the cases becomes true and all robots on RI(r0)

have light off, then r0 checks whether one of HC
U (r0) or HC

B (r0)) has no other

robots. If so and also there is other robots on the left closed half (HC
L (r0)) of

87

r0, then it moves left until HC
L (r0) has no other robots. Then it changes its light

to leader. On the other hand, if both HC
U (r0) and HC

B (r0) have other robots,

then r0 checks whether it is a terminal robot on LV (r0). Let us assume r0 is

terminal on LV (r0). Now, if r0 is singleton on LV (r0), then it moves according to

its positive y-axis until either HC
U (r0) or H

C
B (r0) has no other robots. If r0 is not

singleton but terminal on LV (r0), then there exists a robot (say, r′) on LV (r0).

In this case, r0 moves vertically in the opposite direction of r′ until HC
U (r0) or

HC
B (r0) has no other robots. If r0 was not terminal on LV (r0), then it moves left.

Note that using such movements, r0 always reaches a grid point such that either

HC
U (r0) ∩ HC

L (r0) or HC
B (r0) ∩ HC

L (r0) has no other robots where it changes its

light to leader. Also, it might happen that a robot with light leader1 already

sees another robot with light leader1. In this case, the robot with light leader1,

who sees the other robot with light leader1 on its left, changes light to off. Also

if a robot with light decider (say, r) finds a robot with light leader1 on RI(r),

then it changes its light to off. Thus after a certain time, there is exactly one

robot with light leader and others have light off.

So, after completion of Phase 2, the configuration transforms into a leader con-

figuration. The following Lemmas 4.4, 4.5, 4.6 and 4.7 justify the correctness of

the Algorithm 5.

Lemma 4.4. In Phase 2, a robot r with light decider changes its light to

leader1 only if HC
L (r) has no other robots.

Proof. Let r and r′ be two robots with light decider at some time T > 0 in

Phase 2 on the same vertical line. Without loss of generality, let us assume that

r be the robot which changes its light at time T1 > T to leader1 while it was

still on the same vertical line at time T . Note that by Algorithm 5, this only

happens if RI(r) is not symmetric with respect to K and r is on the dominant

half at T1. We will denote the vertical line on which a robot r situated at any

time t by Lt
V (r).

Let us assume that HC
L (r) has other robots. Now note that a robot r with light

decider moves right if it sees all the robots on RI(r) have light call or sees

88

another robot with light decider on RI(r). Also in the beginning of Phase 2,

HC
L (r) (= HC

L (r
′)) has no other robots. So, at the time T , HC

L (r) has other robots

and still has light decider, implies r and r′ moved right at least once and did

not see any robot with light leader1 on RI(r) till that time. Let us assume that

at a time (0 <)T2 < T , r and r′ were on LT2
V (r) which is actually LI(r) at time

T . Now r and r′ moves to LT
V (r) from LT2

V (r) only when all robots on LT
V (r) have

light call. That is only possible if at time T , the robots on RI(r) are symmetric

with respect to K. Thus it is impossible for r to change its light to leader1 while

still on the same line LT
V (r) at time T1. So our assumption that HC

L (r) has other

robots at time T , is wrong. Hence the result follows (Figure 4.14).

Lemma 4.5. If after a certain time T > 0 in Phase 2, the configuration C(T)
has two robots r and r′ both with light leader1, then ∃ 0 < T1, T2 < T such that

r (or r′) changed its light to leader1 from decider at T1 and r′ (or, r) changed

its light to leader1 from off at T2.

Proof. First, we will show that both the robots r and r′ can not have changed

their lights to leader1 from light decider at T1 and T2. From the Algorithm 5,

it is clear that a robot r with light decider changes its light to leader1 only if

RI(r) is not symmetric, K ∩RI(r) is empty and r is in dominant half. Now both

the robots with light decider can not be on the dominant half. So, both r and

r′ can not have change their lights to leader1 from decider at T1 and T2.

Secondly, it has to be shown that both r and r′ can not have changed their lights

to leader1 from light off at T1 and T2. From Algorithm 5, it is obvious that a

robot r0 with light off can only change its light to leader1 if it sees two decider

robots rd1 and rd2 on LI(r0). So if at a time T ′ < T1, T2 both r and r′ had light

off, then r and r′ was on the same vertical line LV (r) (= LV (r
′)). Now we will

show by contradiction that it is not possible for both r and r′ to change their

lights to leader1. Let us assume RI(r) (= RI(r
′)) is symmetric with respect to

K. Then r or r′ will only change their lights to leader1 if both are on the grid

position K ∩RI(rd1). Which is not possible. So, let us now assume RI(r) is not

89

symmetric with respect toK and also let one of r or, r′ is onK∩RI(rd1). Without

loss of generality, let r is on K ∩ RI(rd1). Then according to the Algorithm 5,

r changes its light to leader1 but no other robot on LV (r) changes their lights

as they are not closest to K or sees no robot with light call on LV (r). Hence

in this case, there can be only one robot on LV (r) who will change its light to

leader1, arriving at a contradiction again. So let RI(r) is not symmetric and

there is no robot on the grid point K ∩ RI(rd1). Then only the terminal robot

of LV (r) who is in the dominant half changes its color to leader1. So again a

contradiction that both r and r′ on LV (r) change their light to leader1. Hence

our assumption was wrong.

Hence one of r or r′ will change its light to leader1 from light decider at a time

T1 < T and the other robot will change its light to leader1 from light off at

time T2 < T (Figure 4.15, 4.16).

Figure 4.15: The robot rd1 with light
decider and r with light off both are
on the dominant half.

Figure 4.16: The robot rd1 with light
decider and r with light off change
their lights to leader1.

Lemma 4.6. If in Phase 2, there exists a configuration C(T) at a time T > 0

such that ∃ a robot r′ with light leader1 which sees another robot r with light

leader1 on LI(r
′) in C, then r′ will not move and change its light to off.

Proof. Since at time T , there are two robots with light leader1 in the configu-

ration during Phase 2, robot r must have changed its light to leader1 from light

90

decider and the other robot r′ must have changed the light to leader1 from off

(by Lemma 4.5). Now from Lemma 4.4, HC
L (r) has no other robots. Also r′ is on

RI(r) (as r
′ can only change its light to leader1 if it has seen two robots with

light decider on LI(r
′)). Thus it can be seen that if the configuration has two

robots with light leader1 at any time T , the two robots will be on two consec-

utive occupied vertical line. So by Algorithm 5, r′ will see r on LI(r
′) with light

leader1 and change its light to off without moving (Figure 4.17, 4.18).

Figure 4.17: There are two robots
with light leader1 in the configuration.

Figure 4.18: The robot r changes
its light to off after seeing another
leader1 robot on LI(r).

Lemma 4.7. If a robot r with light leader1 is not terminal on LV (r) and does

not see any robot with light leader1 on LI(r), then HO
L (r) ∩ LH(r) does not

contain any robot.

Proof. Let r is not terminal on LV (r) with light leader1. Then by Algorithm 5,

r is on K ∩ RI(rd1) (RI(rd1) = RI(rd2)), where rd1 and rd2 be two robots with

light decider. If possible let, there is a robot r′ on HO
L (r) ∩ LH(r). Then ∃

T > 0 such that rd1 and rd2 are on LI(r
′). Now observe that at time T , r′ is on

K ∩RI(rd1), which implies r′ will change its light to leader1. Then both rd1 and

rd2 change their lights to off seeing r′ on RI(rd1) with light leader1. Hence rd1

and rd2 never reach LI(r). Thus r can never change its light to leader1.

91

So we can conclude that our primary assumption was wrong. Hence the result

follows (Figure 4.19).

Figure 4.19: The robot with light leader1 has its horizontal line empty on the left.

4.4.2 Pattern formation from leader configuration

In this phase, initially the configuration is a leader configuration. Note that the

robots can agree on a global co-ordinate system based on the position of the robot

r0 with light leader. We denote the position of r0 with the co-ordinate (0,−1).
Also all robots with light off lie on one of the open half planes delimited by the

horizontal line LH(r0). This half plane will correspond to positive direction of

Y -axis (Figure 4.20).

Therefore an agreement on a global co ordinate system can happen between the

robots who see r0 at (0,−1). After completion of this phase, the robots achieve

the target configuration (Figure 4.21). The robots first form a compact line and

from that line the robots then move to their designated target positions. The

difficulty of this phase is to differentiate between two configurations where a

robot is going to form a compact line and where the robot is going to its target

position which are described in subsections 4.4.2.1 and 4.4.2.2.

92

Figure 4.20: A leader configuration
where robot r0 is the robot with light
leader at (0,−1) in the agreed coordi-
nate system.

Figure 4.21: The pattern embedded
in the coordinate system.

4.4.2.1 Compact line formation

Observe that according to the Algorithm 7, a robot with light leader will not

move during the formation of line. Also at the beginning of Phase 3, there are no

other robots on the line LH(r0). A robot r with light off will first check if it can

see r0 and if it is the leftmost robot on the line LH(r) and also if there are any

robots onHO
B (r)∩HU

O (r0). If all the conditions are true, (i.e r is the leftmost robot

in its horizontal line and there are no other robots in between horizontal lines of

r and r0) r counts the number of robots on LH(r0). Lets assume if there are no

robots on LH(r0) except r0. In this case, r checks for other robots with light done

on the grid. Note that a robot changes its light to done only if it has reached

its target position. So, clearly while forming the line, r finds that there are no

robots with light done on the grid and moves to the position (1,−1) following the

procedure Linemove(1). On the other hand if there are i robots except r0 who

are already in the line LH(r0) occupying the positions (1,−1), (2,−1)...(i,−1),
then r simply move to (i+ 1,−1) following the procedure Linemove(i+ 1).

93

Algorithm 7: Pattern Formation from Leader Configuration

Input
:

The configuration of robots visible to me.

1 Procedure PatternFormationFromLeaderConfiguration()
2 r ← myself
3 r0 ← the robot with light leader
4 if r.light = off then
5 if (r0 ∈ HO

B (r)) and (r is leftmost on LH(r)) and (there is no robot in
HO

B (r) ∩HO
U (r0)) then

6 if there are no robots on LH(r0) other than r0 then
7 if there is a robot with light done then
8 if r is at tn−2 then
9 r.light← done

10 else
11 TargetMove(n− 2)

12 else
13 LineMove(1)

14 3 else if there are i robots on LH(r0) other than r0 at
(1,−1), . . . , (i,−1) then

15 LineMove(i+ 1)
16 else if there are i robots on LH(r0) other than r0 at

(n− i,−1), . . . , (n− 1,−1) then
17 if r is at tn−i−2 then
18 r.light← done
19 else
20 TargetMove(n− i− 2)

21 else if r0 ∈ LH(r) and HO
U (r) has no robots with light off then

22 if r is at (i,−1) then
23 Move to (i, 0)

24 else if r.light = leader then
25 if there are no robots with light off then
26 if r is at tn−1 then
27 r.light← done
28 else
29 TargetMove(n− 1)

Algorithm 8: LineMove

1 Procedure LineMove(j)
2 r ← myself
3 if r is on LH1 then
4 if r is at (j, 0) then
5 Move to (j,−1)
6 else
7 Move horizontally towards (j, 0)

8 else
9 Move vertically towards LH1

94

Algorithm 9: TargetMove

1 Procedure TargetMove(j)
2 r ← myself
3 if r is on Ltj−1 then
4 if r is at (tj(x), tj(y)− 1) then
5 Move to (tj(x), tj(y))
6 else
7 Move horizontally towards (tj(x), tj(y)− 1)

8 else
9 Move vertically towards Ltj−1

During the procedure Linemove(j), a robot (say, r) can recognize if it is on the

line LH1, where LH1 is the immediate horizontal line above LH(r0). If it is not

on LH1, it moves vertically downwards until it reaches LH1. Otherwise, if r is

already on LH1, it checks if it is on the co-ordinate (j, 0). If it is not on (j, 0), it

moves horizontally to (j, 0). Observe that during this horizontal movement, there

will be no collision as r will be the only robot on LH1 due to the fact that the

robots in Algorithm 7 move sequentially. Now, if r is on the co-ordinate (j, 0), it

moves vertically to the co-ordinate (j,−1) (Figure 4.22, 4.23). Note that since the
robots move sequentially, no robot will change there light to done before forming

the compact line.

Figure 4.22: Movement of r5 to
LH(r0).

Figure 4.23: All robots forms an com-
pact line on LH(r0).

95

4.4.2.2 Target Pattern Formation

After formation of the compact line, the robots now will move to the target co-

ordinates. Note that the target co-ordinates are unique for each robot who can see

the robot r0 with light leader as there is a agreement on global co-ordinate. The

target co-ordinates are denoted as ti, where i ∈ {0, 1, 2, ...n− 1}. Also observe

that if ti and tj are in the same horizontal line where i < j, then ti is on the right

of tj. And if ti and tj are not on the same horizontal line, then ti will be above

of tj.

If a robot sees r0 on the same horizontal line, it vertically moves to LH1 with

y-coordinate 0. Now observe that after moving to LH1 with y-coordinate 0, it

can see all the robots on the line including the robot r0.

From this information about the number of robots on the line except r0, it can

calculate the target position it need to reach and follow the procedure Target-

Move() to reach that position. Note that the robot changes its light to done

only after reaching its designated target position and in the mean time, no other

robot moves from the line while they see robots with light off above them. This

technique, of moving the robots sequentially and the ordering of the target co-

ordinates, avoid collision in our algorithm. Thus all robots except r0 and rn−1

reach their designated target co-ordinates. Now while rn−1 moves above from

(n− 1,−1) to (n− 1, 0), it sees there is no other robot on the line LH(r0) except

r0 and moves to tn−2. And finally the robot with light leader moves to the only

remaining vacant target position tn−1.

If a robot (say, r) executes the procedure TargetMove(j), that means that the

target position of r is tj with co-ordinate (tj(x), tj(y)). Observe that, r executes

this procedure when it is on LH1. Now during this procedure, if r is not on Ltj−1,

then it moves vertically upwards until it reaches Ltj−1. Now, when r is at Ltj−1,

it checks if the co-ordinate of its current position is (tj(x), tj(y)− 1). If not, then

it moves horizontally to reach the point with the co-ordinate (tj(x), tj(y) − 1).

After that it moves vertically upwards to the point with co-ordinate (tj(x), tj(y)),

which is the target position of r (Figure 4.24, 4.25, 4.26). Note that during the

96

Figure 4.24: Movement of r3 to t2. Figure 4.25: Movement of r0 to t10.

Figure 4.26: Target formation
achieved.

movement of r, there will be no collision as the closed half delimited by Ltj−1 and

LH(r) does not contain any other robot.

Hence from the above discussions, we can conclude the following theorem.

Theorem 4.3. If C(T1) is a leader configuration, then ∃ T2 > T1 such that C(T2)

is the target configuration.

97

4.5 Conclusion

Arbitrary pattern formation (APF) has been a very active topic in the field of

swarm robotics. It has been thoroughly researched in many different settings. For

example, it has been studied when the robots are on a plane or on an infinite grid.

Considering obstructed visibility model for robots on a plane, it has been shown

that for certain initial configurations, APF is solvable with opaque robots having

one axis agreement and 6 lights under asynchronous scheduler([15]). In [11],

APF has been solved even with opaque fat robots with light on plane. Comparing

to how thoroughly APF has been studied with robots on plane with obstructed

visibility model, it remains quite far behind when it comes to robots on infinite

grid with obstructed visibility model. This chapter is a stepping stone towards

the goal of removing this gap of research regarding APF between opaque robots

on the plane and robots on infinite grid.

In this chapter, we have provided a deterministic algorithm for APF for all

solvable initial configurations with one axis agreement and 8 lights under the

asynchronous scheduler. For the immediate course of future research, one can

think of solving this problem with less numbers of lights. Another interesting

way of extending this problem would be to allow multiplicities in the pattern.

98

Chapter 5

Arbitrary Pattern Formation on
Infinite Grid by Opaque Fat
Robots

This chapter 1 deals with the problem of arbitrary pattern formation on an infi-

nite grid using luminous opaque fat robots with 9 colours. The robots are con-

sidered to be a disk having a fixed radius ‘rad’, which is less or equal to 1
2
. The

robots manoeuvre in a Look-Compute-Move (LCM) cycle under an adversar-

ial asynchronous scheduler. The robots are autonomous, anonymous, identical

and homogeneous. The robots only move to one of its four adjacent grid points

and their movement is considered to be instantaneous (i.e a robot can only be

seen on a grid point). The robots have one-axis agreement. Here, it is assumed

that the robots do not agree upon any global coordinate though all robots agree

on the direction and orientation of the x-axis . Initially, the centre of each robot

is on a grid point of the infinite grid and a target pattern is provided to each of

them. The robots are needed to agree on a global coordinate system and embed

the target pattern according to the global coordinate and then move to the target

locations to form the target pattern.

1Based on this chapter, the following paper has been published:
Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb Sau. Arbitrary
pattern formation by opaque fat robots on infinite grid. International Journal of
Parallel, Emergent and Distributed Systems, Vol. 37, pages 542-570, 2022. https://doi.org/
10.1080/17445760.2022.2088750

99

https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1080/17445760.2022.2088750

100

The main difficulty of APF lies in the problem of Leader Election problem. For

that, the initial configuration is assumed to be asymmetric or there is at least

one robot on some line of symmetry. Even with this assumption, it is quite

hard to elect a leader as the vision of the robots becomes obstructed since the

robots are opaque and fat. So, the main challenge of this problem is to elect

a leader depending on the local view of each robot. The algorithm described

in this chapter does so. Another massive challenge of this problem is to avoid

collision during the movement of robots on the grid. Our algorithm handles this

by providing sequential movement of the robots and for this purpose LUMI
model has been used.

The problem, we have considered in this chapter, is very practical in nature.

Restricted movement, robots with dimension and obstructed visibility all these

assumptions are very much practical in terms of designing robots. The algorithm

presented in this chapter solves the APF on infinite grid with a swarm of lu-

minous, opaque and fat robots with finite time. A comparison table is provided

below which will help readers to compare our work to the previous such works.

Paper Environment Visibilty
Robot
Type

#Colours

[13] Grid Unobstructed Point 0
[14] Plane Opaque Point 6
[72] Grid Opaque Point 8
[12] Plane Opaque Fat 10
This
chapter

Grid Opaque Fat 9

5.1 Model and Definitions

In this section, we present the model, some definitions and notations.

101

5.1.1 Model

Grid: The infinite two-dimensional grid G is a weighted graph G = (V,E)

such that each node v ∈ V has four adjacent nodes v0, v1, v2 and v3 ∈ V and the

edges vvi (mod 4) ∈ E is perpendicular to the edge vvi+1 (mod 4) ∈ E. Also, the

weight of each edge e ∈ E is basically the length of the edge e which is considered

to be 1 unit in this work.

Robots: In this work, a set of n robots R = {r0, r1, . . . , rn−1} are considered

to be autonomous, anonymous, homogeneous and identical. This means that the

robots do not have any central control, they do not have any unique identifiers

such as IDs and they are indistinguishable by their physical appearance. The

robots are also considered to have some dimension i.e. the robots are considered

to be a disk of radius ‘rad’(rad ≤ 1
2
) rather than points. The robots are deployed

on a two-dimensional infinite grid G, where each of them is initially positioned

in such a way that their centre is on distinct grid points of G. The robots are

considered to have an agreement over the direction and orientation of x-axis i.e,

all the robots have an agreement over left and right but the robots do not have

any agreement over the y-axis. Also, they do not have knowledge of any global

coordinate system other than their agreement over the direction of x-axis. Here

in this chapter, we have considered the robots to have light. A light of any robot

can have O(1) distinct colours. A robot r ∈ R can see the colour of its own light

and the colour of the lights of other robots that are visible to r. In this work, we

have assumed that the light of each robot has nine distinct colours namely off,

terminal1, candidate, call, moving1, reached, leader1, leader and done.

Look-Compute-Move cycles: A robot r ∈ R, when active, operates according

to the Look-Compute-Move (LCM) cycle. In the Look phase, a robot takes

the snapshot of the configuration to get the positions represented in its own local

coordinate system and the colours of the light of all other robots visible to it.

Then, r performs the computation phase where it decides the position of the

adjacent grid point where it will move next and changes the colour of its light

if necessary depending on the input it got from the Look phase. In the Move

phase, r moves to the decided grid point or makes a null move. The movements

102

of robots are restricted only along grid lines from one grid point to one of its four

adjacent grid points. The movements of robots are assumed to be instantaneous

in discrete domain. Here, we assume that the movements are instantaneous i.e.,

they are always seen on grid points, not on edges.

Scheduler: We assume that the robots are controlled by an asynchronous adver-

sarial scheduler. That implies the duration of the three phases Look, Compute

and Move are finite but unbounded. So, there is no common notion of round for

this asynchronous scheduler.

Visibility: The visibility of robots is unlimited but by the presence of other

robots it can be obstructed. A robot ri can see another robot rj if and only there

is a point prj on the boundary of rj and pri on the boundary of ri such that the

line segment priprj does not intersect with any point occupied by other robots in

the configuration. Now, it follows from the definition that ri can see rj implies

rj can see ri.

103

5.1.2 Notations and Definitions

We have used some notations throughout the chapter. A list of these notations

is mentioned in the following table.

L1 First vertical line on left that contains at least one robot.
LV (r) The vertical line on which the robot r is located.
LH(r) The horizontal line on which the robot r is located.

LI(r)
The left immediate vertical line of robot r which has at
least one robot on it.

RI(r)
The right immediate vertical line of robot r which has
at least one robot on it.

HO
L (r) Left open half for the robot r.

HC
L (r) Left closed half for the robot r (i.e HO

L (r) ∪ LV (r)).
HO

B (r) Bottom open half for the robot r.
HC

B (r) Bottom closed half for the robot r (i.e HO
B (r) ∪ LH(r)).

HO
U (r) Upper open half for the robot r.

HC
U (r) Upper closed half for the robot r (i.e HO

U (r) ∪ LH(r)).

K
The horizontal line passing through the middle point
of the line segment between two robots with light
candidate or call or reached on the same vertical line.

lnext(r) The next vertical line on the right of LV (r).

Hlast
The lowest horizontal line having a robot with colour
done.

Configuration: We assume that the robots are placed on the infinite two-

dimensional grid G. Next we define a function f : V → {0, 1}, where f(v) is the

number of robots placed on a grid point v. Then G together with the function f

is called a configuration which is denoted by C = (G, f). For any time T , C(T)
will denote the configuration of the robots at T .

Terminal Robot: A robot r is called a terminal robot if there is no robot below

or above r on LV (r).

Symmetry of a vertical line L w.r.t K: Let λ be a binary sequence defined

on a vertical line L such that i-th term of λ is defined as follows:

λ(i) =

{
1 if ∃ a robot on the i-th grid point from K ∩ L on the line L.

0 otherwise.

104

Since there are two i-th grid points from K∩L on the line L (above K and below

K), there are two such values of λ, say λ1 and λ2. If λ1 = λ2, then L is said to be

symmetric with respect to K. Otherwise, it is said to be asymmetric with respect

to K. Henceforth, whenever the symmetry of a line is mentioned, it means the

symmetry of the line with respect to K.

Dominant half: A robot r is said to be in the dominant half if for λ1 > λ2

(lexicographically) on RI(r), r and the portion of RI(r) corresponding to λ1 lie

on same half-plane delimited by K.

5.2 The Algorithm

The main result of the chapter is Theorem 5.1. The proof of the ‘only if’ part is

the same as in the case for point robots, proved in [14]. The ‘if’ part will follow

from the algorithm presented in this section.

Theorem 5.1. For a set of opaque fat robots having one-axis agreement, APF is

deterministically solvable if and only if the initial configuration is not symmetric

with respect to a line K such that 1) K is parallel to the agreed axis and 2) K is

not passing through any robot.

For the rest of the chapter, we shall assume that the initial configuration C(0)
does not admit the unsolvable symmetry stated in Theorem 5.1. Our Algorithm

executes in two phases. In the first phase, a leader is elected and in the second

phase, the robots form the target pattern embedded on the grid using the location

of the leader as an agreement to the origin of a global coordinate system. The

phases are described in detail in the following subsections 5.2.1 and 5.2.2.

5.2.1 Phase 1

In the Phase 1, the robots will agree on a leader. Since there are no common

agreement on a global coordinate system, the robots will not be able to agree on

105

Algorithm 10: ApfFatGrid: Phase 1

1 Procedure Phase1()
2 r ← myself
3 if r.light = off then
4 execute FuncOff()
5 else if r.light = terminal1 then
6 if there is no robot in HO

L (r) then
7 r.light← candidate

8 move left

9 else if there is a robot with light candidate in LI(r) then
10 r.light = off

11 else if r.light = candidate then
12 execute FuncCandidate()
13 else if r.light = moving1 then
14 execute FuncMoving1()
15 else if r.light = call then
16 if there is a robot with light moving1 or, reached on LV (r) and all robots in

RI(r) are off then
17 r.light = reached

18 else if there is a robot with light leader1 in RI(r) then
19 r.light = off

20 else if r.light = reached then
21 if there is a robot with light reached or candidate on LV (r), r is terminal

on LV (r) and all robots in RI(r) are off then
22 r.light = candidate

23 else if r.light = leader1 then
24 if there is other robot in HC

L (r) or lnext(r), no robot with light call in LI(r)
and no robot with light candidate on LV (r) then

25 move left
26 else
27 if there is other robot both in HC

U (r) and HC
B (r) then

28 move vertically according to its positive y−axis
29 else
30 r.light = leader

106

Algorithm 11: FuncOff

1 Procedure FuncOff()
2 r ← myself

3 if there is no robot in HO
L (r), no robot with light leader1 in RI(r) ∪ LV (r) and r

is terminal on LV (r) then
4 r.light← terminal1

5 else if there are exactly two robots in LI(r) and their lights are call and r is
closest to K then

6 if r is on K then
7 r.light = leader1

8 else
9 r.light = moving1

10 else if there is a robot with light moving1 in LV (r) then
11 r.light = moving1

Algorithm 12: FuncCandidate

1 Procedure FuncCandidate()
2 r ← myself

3 if r is singleton in HC
L (r) and all robots in RI(r) are off then

4 r.light← leader1

5 else if there is a robot with light candidate or call on LV (r), r is terminal on
LV (r) and all robots in RI(r) are off then

6 if RI(r) is symmetric with respect to K then
7 r.light = call

8 else
9 if r is in the dominant half then

10 r.light = leader1

11 else if there is a robot with light leader1 on LV (r) then
12 r.light = off

107

Algorithm 13: FuncMoving1

1 Procedure FuncMoving1()
2 r ← myself
3 if there is at least one robot with light call and no robot with light reached in

LI(r) and r is terminal on LV (r) then
4 if there is other robot both in HC

U (r) ∩ LI(r) and HC
B (r) ∩ LI(r) then

5 if there is a robot r′ on LV (r) then
6 move opposite to r′

7 else
8 move according to its positive y−axis
9 else

10 move left

11 else if there is a robot with light reached on LV (r) and all robots in RI(r) are
off then

12 move left
13 else if there is at least one robot with light reached or candidate in LI(r) then
14 r.light = off

the embedding of the pattern on the grid. Thus leader election is necessary for

robots to agree on a global coordinate.

Initially, at C(0) all the robots are on the grid G with colour off. Note that in

C(0), there are at least one and at most two terminal robots on L1. These robots

change their colours to terminal1. A robot with colour terminal1 changes its

colour to candidate and moves if it sees it has its left open half empty. Also, if

a robot r with colour candidate is a singleton in HC
L (r) and all robots in RI(r)

are off, it changes its colour to leader1. Note that due to the asynchronous

scheduler, it might happen that r is a singleton in HC
L (r) with colour candidate

and there is another robot r′ on RI(r) with colour terminal1. In this case, if

r awakes, it does not change its colour to leader1 as it does not see all robots

on RI(r) have colour off. Also if r′ awakes, it sees r with colour candidate

in LI(r
′) and turns its colour to off. In this scenario, r becomes singleton in

HC
L (r) and sees all robots on RI(r) have colour off. So, r changes its colour to

leader1. Now consider that both r and r′ are on the same vertical line LV (r)

with colour candidate such that there is no robot between LH(r) and LH(r
′).

Note that in this configuration, all robots on RI(r) (i.e. RI(r
′)) have colour off.

In this case, both r and r′ check the symmetry of RI(r) with respect to the line

108

K (i.e the horizontal line which is equidistant from both r and r′). If RI(r) is not

symmetric with respect to K, then one of r or r′ whichever is on the dominant

half changes the colour to leader1. On the other hand, if RI(r) is symmetric,

both the robots r and r′ change their colours to call from candidate. Now all

the robots on RI(r) have colour off and all of them can see exactly two robots

with colour call on their left immediate line. Note that since all the robots on

RI(r) can see both r and r′, all of them also know the line K. Now if there

is any robot on K, it changes its colour to leader1. Otherwise, the robots on

RI(r) (at least one and at most two robots) which are closest to K change the

colours to moving1. A robot with colour off on RI(r) which is not closest to K,

changes its colour to moving1 when it sees another robot with colour moving1

on the same vertical line. Note that after a finite time, at least all robots either

above or below K which are on RI(r) change their colours to moving1 if RI(r)

is symmetric with respect to K. Now suppose a robot with colour moving1 say

r1, is terminal on RI(r). Also, note that r1 can see at least one of r and r′ on

LI(r1). Now, if r1 sees another robot r2 on LV (r1) and no robot with colour

reached on LI(r1), it moves vertically opposite to r2. Otherwise, if it is singleton

on LV (r1) and sees no robot with colour reached on LI(r1), it moves vertically

according to its positive y−axis until there is no robot either in HC
U (r1) ∩ LI(r1)

or in HC
B (r1) ∩ LI(r1) and then towards left until it reaches LV (r). Now when r

or r′ with colour call sees all robots on RI(r) have colour off and sees a robot

with colour moving1 or reached on the same vertical line, then it changes its

colour to reached. Due to the asynchronous environment, it might happen that

one of r or r′ does not see a robot with colour moving1 on the same vertical line,

but it is guaranteed that it will see a robot with colour reached on the same

vertical line after a finite time. So, r or r′ can change their colours to reached

if all robots on RI(r) have colour off and there is a robot on LV (r) with colour

reached. So in finite time, both the robots with colour call change their colours

to reached (when there was no robot on K ∩ RI(r)). Now a robot say r3 with

colour moving1 on LV (r) moves to the left if all robots on RI(r3) are with colour

off and it can see a robot with colour reached on LV (r3). Due to asynchrony,

it may happen that r and r′ changed their colours to reached and after that a

109

robot say r4, on RI(r) changes its colour to moving1. Observe that in this case,

the robot r4 changes its colour to off whenever it sees at least one robot with

colour reached on LI(r4), otherwise the robots with colour moving1 on LV (r)

will not move left. So, after a finite time, all robots with colour moving1 on LV (r)

move to L1 and at this moment r and r′ will be the only two robots with colour

reached on LV (r) that are terminal also. In this situation, r and r′ change their

colours to candidate. Now for asynchrony, it may happen that r and r′ changed

their colours to candidate and after that a robot say r5, on RI(r) changes its

colour to moving1. In this case, the robot r5 changes its colour to off whenever

it sees at least one robot with colour candidate on LI(r5). Therefore, then r

and r′ are with colours candidate and all robots on RI(r) have colour off. So,

they again check the symmetry of the new RI(r) repeating the whole process.

Thus after a finite time, a robot with colour off or a robot r or r′ with colour

candidate whoever is on dominant half changes its colour to leader1. A robot

say rl with colour leader1 always moves to the left when it sees other robot in

HC
L (rl) or lnext(rl), no robot with colour call on LI(rl) and no robot with colour

candidate on LV (rl).

Note that, a robot with colour call changes its colour to off if it sees a robot with

colour leader1 on its right immediate line. Also, a robot with colour candidate

changes the colour to off when it sees a robot with colour leader1 on the same

vertical line. rl moves to the left until it becomes the singleton robot on the

leftmost line of the configuration and there is no robot on lnext(rl) and then

moves according to its positive y−axis until either one of HC
U (rl) and HC

B (rl) has

no other robot. Note that it may happen due to the asynchronous environment

that another robot with colour candidate moves to lnext(rl) while rl is on L1.

In this case, when rl activates again it finds out it has non-empty lnext(rl) and

moves left again even it was moving vertically in the previous activation. In this

situation, when rl reaches a point where either one of HC
U (rl) and HC

B (rl) has no

other robot, it changes its colour to leader and Phase 1 ends.

The following Theorem 5.2 and Lemmas 5.1−5.13 justify the correctness of the

Algorithm 1.

110

Theorem 5.2. For any initial configuration C(0), ∃ T > 0 such that C(T) have

exactly two robots with light candidate or exactly one robot with light leader1

in L1.

Proof. Observe that there can be at least one and at most two robots in C(0)
such that they have their left open half empty and are terminal on L1. Let there

is only one robot r1, who has HO
L (r1) empty and is terminal on L1 (Figure 5.1).

This implies r1 is singleton on L1. In this case, r1 changes its colour to terminal1

at some time T ′ > 0 and eventually changes to leader1 at a time T > T ′.

Figure 5.1: r1 is singleton robot on L1.

Now let us consider the case where there are two robots r1 and r2 such that

both r1 and r2 are terminal on L1 in C(0). Now if any one of r1 or r2 awakes,

it changes its colour to terminal1. A robot with colour terminal1 moves left

after changing its colour to candidate if it has its left open half empty. Due to

asynchronous environment, the following cases may occur.

Case-I: Let us consider the case where r1 already changed its colour to candidate

from terminal1 and moved to L1 at a time T1 > 0 and r2 wakes after T1 (Figure

5.2). Then r2 remains with colour off as it sees it is not on L1 anymore. Then r1

during the next activation sees it is singleton on HC
L (r1) and all robots on RI(r1)

have colour off. So, it changes its colour to leader1.

111

Case-II: Let us consider the case where r1 already changed its colour to candidate

from terminal1 and moved to L1 at a time T1 > 0 and r2 wakes before T1 and

changes its colour to terminal1 at a time T2 ≥ T1 (Figure 5.3). Now if again

r1 wakes between the times T1 and T2 (in this scenario T1 > T2), then it sees all

robots onRI(r1) have colour off and r1 is singleton on HC
L (r1). So, r1 changes its

colour to leader1 and r2 does not change its colour as HC
L (r2) has other robots.

Now if r1 wakes at a time T3 where T3 > T2 and r2 has not woke again, then

it does not change its colour to leader1 as it sees r2 with colour terminal1 on

RI(r1). Now when r2 wakes again at a time T4 > T2, it changes its colour to off

as it sees r1 with colour candidate on LI(r2). Now when r1 wakes after T4 again,

it sees it is singleton on HC
L (r1) and have all robots with colour off on RI(r1)

and so changes its colour to leader1.

Figure 5.2: r1 changes its colour to
candidate and moves to L1 at time T1

and r2 wakes after time T1.

Figure 5.3: r1 changed its colour to
candidate and moves to L1 at time T1

and r2 changes its colour to terminal1

at time T2 ≥ T1.

Case-III: Let us consider the case where r1 already changed its colour to candidate

from terminal1 and moved to L1 at a time T1 > 0 and r2 wakes before T1 and

changes its colour to terminal1 at a time T2 < T1. Now, let r2 wakes again at a

time T3.

Case-III(a): Now if T3 > T1, then even if r1 wakes again between T3 and T1,

it sees r2 with colour terminal1 on RI(r1). So, it does not change its colour to

112

leader1. Now r2 at time T3 wakes and sees r1 with colour candidate on LI(r2)

and so changes its colour to off. Now ∃ T4 such that r1 wakes at T4 > T3 and

sees it is singleton on HC
L (r1) and have all robots on RI(r1) with colour off. So,

r1 changes its colour to leader1.

Case-III(b):

Now if T3 = T1, then both r1 and r2 changes its colour to candidate and moves

to L1. In this case, there will be two robots with colour candidate on L1 (Figure

5.4).

Figure 5.4: r2 is with colour terminal1 and r1 changes its colour to terminal1 and
both r1 and r2 move to L1 changing their colour to candidate at the same time.

Case-III(c): Now when T3 < T1, it is similar as case-III(a).

Note that above all cases are exhaustive and in each case there is a time T > 0

such that in C(T), there is either one robot with colour leader1 or two robots

with colour candidate on L1.

Lemma 5.1. Any robot r with colour candidate or, call or, reached always

can see all robots with colour off in RI(r) (if exist) and vice versa.

Proof. Let us consider that there is exactly one robot r and no other robot is on

LV (r). In this case, it is obvious that r can see all robots including the robots

with colour off on RI(r) and vice versa.

Now let us consider that there are at least two robots r and r′ on LV (r) where

113

colour of r and r′ can be any one of candidate, call or, reached and r is above

r′. Now there are two cases (Figure 5.5 and Figure 5.6).

Case-I: There are other empty vertical lines between LV (r) and RI(r). In this

case, let us take the common tangent line1 of all robots on RI(r) which is parallel

to the line RI(r) and nearest to LV (r) and similarly take the common tangent

line2 of the robots on line LV (r) parallel to LV (r) and nearest to RI(r). Let us

denote the points where line1 touches the terminal robots on RI(r) as p1 and

p2 respectively (p1 is above p2) and the points where line2 touches r′ and r as

p3 and p4 respectively. Now let us draw a line segment say line3 = p4p1 and

line4 = p3p2 . Observe that the area bounded by the lines line1, line2, line3 and

line4 is a trapezoid which is a convex set containing no other robot (Figure 5.5).

Let r1 be any robot with colour off on RI(r). Let line1 touches the robot r1 at

a point say P . Then the line segments Pp3 and Pp4 contains no robot on them.

So, each of r and r′ can see r1. Thus r and r′ can see all robots with colour off

on RI(r) and all robots with colour off can see both of r and r′.

Figure 5.5: Area bounded by the
quadrilateral p1p2p3p4 is convex.

Figure 5.6: Area bounded by the
quadrilateral p1p2p3p4 is convex.

Case-II: Next let there is no other vertical line between LV (r) and RI(r). Note

that all robots with colour off must be between the lines LH(r) and LH(r
′). In

this scenario, let us draw the common tangent line1 of the robots on RI(r) which

is parallel to RI(r) and nearest to LV (r). Let us denote the points where line1

114

touches the terminal robots on RI(r) as p1 and p2 (p1 is above p2). Let us now

denote the points where boundary of r and r′ intersect the line LV (r) which is

nearest to r′ and r respectively as p4 and p3. Let us call the line segment p3p4 as

line2, p4p1 as line3 and p3p2 as line4. Then the area bounded by these four lines

is convex and there is no robot inside this area. 0For any robot r1 on RI(r) with

colour off, let us denote the point where line1 touches r1 as P . Then both the

line segment Pp3 and Pp4 do not contain any other robot (Figure 5.6). So, both

r and r′ can see r1 and similarly r1 sees both r and r′. Thus r and r′ can see all

robots with colour off on RI(r) and all robots with colour off can see both of

r and r′.

So, we can conclude the lemma.

Lemma 5.2. If r1 and r2 be two robots with colour call or reached or candidate

on the same vertical line, then any terminal robot r with colour moving1 onRI(r1)

(= RI(r2)) always can see at least one of r1 and r2.

Proof. Without loss of generality, let us assume that r1 is above r2 and r is above

K (i.e the horizontal line which is equidistant from both LH(r1) and LH(r2)).

Also, let there is no other vertical line between LI(r) and LV (r), otherwise with

the same argument as Lemma 5.1 we can say that r can see both r1 and r2. Now

there are three cases.

Case-I: r is below LH(r1). In this case, by similar argument in Case-II of Lemma

5.1, we can conclude that r can see both r1 and r2.

Case-II: r is on LH(r1). Let us draw the tangents of r, line1 parallel to LV (r)

and nearest to LI(r) and tangent of r1, line2 parallel to LV (r1) and nearest to

RI(r1). Now let line1 touches r at point p1 and line2 touches r1 at point p2

(Figure 5.7). Since p1p2 does not contain any other robot, r can see r1. Note that

line1 and line2 can be same if the robots are of radius 1
2
. Now let line1 touches

both r and r1 at a point p. Hence r can see r1.

Case-III: r is above LH(r1). In this case, we claim that if there is any other

robot with colour moving1 on LV (r), it must be below LH(r1). If possible let,

there is another robot r′ on LV (r) which is above LH(r1) but below LH(r) with

115

colour moving1. Since a robot turns its colour to moving1 from off, there exists

a time T when r′ had colour off. So, in C(T), r′ must be located below LH(r1).

Now, r is already located on LV (r
′) and above r′. So, if r′ is terminal, it moves

opposite to r and never reaches above LH(r1). And if r′ is not terminal, then

it never moves until r moves left. So, if r is above LH(r1) with colour moving1

and is terminal, then there is no other robot on the grid points on LV (r) between

LH(r) and LH(r1). Let the tangent of r which is parallel to LV (r) and nearest

to LI(r) touches r at point p1 and intersects LH(r1) at p3. Also, boundary of r1

touches the line LH(r1) at a point nearest to LV (r) (say p2) (Figure 5.8). Since

p1, p2 and p3 form a triangle and the area bounded by the triangle is a convex

set containing no other robot, r can see r1.

Figure 5.7: r is on LH(r1). Figure 5.8: r is above LH(r1).

Lemma 5.3. A robot changes its colour to leader1 only from light candidate

or off.

Proof. From Algorithm 10, it follows directly that a robot can change its colour

to leader1 only if it was either with colour candidate or with colour off.

Lemma 5.4. A robot with light leader1 always has empty grid point in its left.

116

Proof. If at some tome T > 0, there is only one robot say r, on L1 with colour

candidate and no robot with colour other than off on RI(r), then r changes its

colour to leader1. Observe that since r is on L1, it will have its left grid point

empty.

Now, consider there are two robots r and r′ with colour candidate on LV (r) (i.e.

LV (r
′)). Now by Lemma 5.3, it is evident that a robot with colour candidate or

off can only change its colour to leader1. So, let us consider these cases (Figure

5.9 and Figure 5.10).

Case-I: Let a robot r1 with colour off changes its colour to leader1. That

implies only r and r′ is on LI(r1) having colour call and r1 is on K ∩ RI(r).

Note that if r and r′ are adjacent on LV (r), then K can not be a horizontal line

of the grid G. So, r and r′ are not adjacent on LV (r) (Figure 5.9). Now note that

even if there are robots other than r and r′ on LV (r) or, LI(r), they are not on

or between the line LH(r) and LH(r
′). So, LH(r1) lies between LH(r) and LH(r

′)

and r1 is on RI(r). So, we can say that LH(r1) ∩HO
L (r1) is always empty. As r1

moves only on left until it becomes singleton on L1 and has lnext(r1) empty, r1,

the robot with light leader1 always has its left grid point empty.

Figure 5.9: r1 has colour leader1 and
has LH(r1) ∩HO

L (r1) empty.
Figure 5.10: r is on L2 with colour
leader1 and has LH(r)∩HO

L (r) empty.

Case-II: Without loss of generality, let r be the robot with colour candidate

that changes the colour to leader1. Note that, either r is on L1 or it is on L2. If

117

r is on L1 then it finds its left grid point is empty and moves to left and become

singleton on L1. So, left grid point of r is empty . Now if r was on L2 (Figure

5.10). Then L1 ∩ LH(r) is empty as there are no robots between the line LH(r)

and LH(r
′) on LI(r). So, r can move left and become singleton on L1. Hence r

always has its left grid point empty.

Lemma 5.5. If a robot r with colour call does not see another robot with colour

leader1 on RI(r), then there is a time T when LV (r) will always have a robot

with colour moving1 and two robots with colour call in C(T).

Proof. r is a robot with colour call on LV (r). This implies RI(r) is symmetric

with respect to K, where K is known because there is another robot say r′ on

LV (r) with colour call or candidate. Note that if r′ has colour candidate, it

changes the colour to call after a finite time. In this situation, if there is a robot

say r1 on K ∩RI(r), then r1 changes its colour to leader1 from off. And also,

r sees r1 on RI(r). Since it is assumed that r is not seeing any robot with colour

leader1 on RI(r), it is evident that there is no robot on K ∩ RI(r). In this

scenario, the robots on RI(r) see that there are exactly two robots r and r′ with

colour call on left immediate vertical line. So, the robots on RI(r), which are

closest to K change their colours to moving1 upon activation and all the robots

who can see a robot with colour moving1 on their vertical line eventually change

their colours to moving1. Observe that in this way, after a finite time there will

be at least one robot onRI(r) which has colour moving1 and also will be terminal

on RI(r). Let r2 be that robot. Now r2 will move vertically in one fixed direction

until at least one of HC
U (r) ∩ LI(r) and HC

B (r) ∩ LI(r) has no other robot and

then it moves left to LV (r) (Figure 5.11). Also, note that r and r′ do not change

their colours until r2 reaches LV (r). So, after a finite time say T , there will be a

robot r2 with colour moving1 and two robots r and r′ with colour call on LV (r)

in C(T) (Figure 5.12).

Lemma 5.6. During movement of robots with colour moving1 in Phase 1, no

118

Figure 5.11: Terminal robot onRI(r)
see r with colour call and move ac-
cording to the path shown by the ar-
row.

Figure 5.12: The robot with colour
moving1 reaches above r. In this mo-
ment, LV (r) has two robots r and r′

with colour call and one robot with
colour moving1.

collision occurs.

Proof. A robot r with colour moving1 can have two type of moves, horizontal to

the left and vertical. r moves vertically on LV (r) only when it sees at least one

robot with colour call on LI(r). Note that during vertical movement of r, no

other robot on LV (r) moves vertically in the same direction as r. This is because

if another robot say r′ moves on LV (r), it must be terminal on LV (r) and has

colour moving1. But since r is already on LV (r), r
′ moves opposite of r. So,

as long as r moves vertically on LV (r) no collision occurs. Note that r moves

vertically in such a way such that at least one of HC
U (r)∩LI(r) or H

C
B (r)∩LI(r)

has no other robot and then it moves left towards LI(r) (i.e the same vertical

line were the robot with colour call is located). Now let there is a non-terminal

robot r1 which is nearest to r and below r on LV (r) with colour moving1. Now

observe that r1 only moves when r reaches the vertical line of the robot with

colour call. In this scenario, r1 moves vertically in such a way such that it has

either HC
U (r1)∩LI(r1) or H

C
B (r1)∩LI(r1) has no other robot and then moves left

to the empty grid point. So, during horizontal or vertical movement of robots

with colour moving1, no collision occurs. Hence the result.

119

Lemma 5.7. If at time T , two robots r and r′ have colour call on the same

vertical line and there is no robot on K ∩ RI(r), then there exist T ′ > T such

that both r and r′ are with colour reached at C(T ′).

Proof. Let r and r′ be two robots with colour call at time T on same vertical

line LV (r) (i.e. LV (r
′)). Then RI(r) must be symmetric with respect to K. Also,

there is no robot on K ∩ RI(r). So, no robot with colour off on RI(r) changes

its colour to leader1. Now in this scenario, the robots which are closest to K on

RI(r) change their colours to moving1. Note that a robot with colour off also

can change its colour to moving1 if it sees another robot with colour moving1

on the same vertical line. Also, no robot with colour moving1 moves unless it is

terminal on the same vertical line. Hence we can say that at least all robots of

above or below K on RI(r) change their colours to moving1. Now by Algorithm

10, the terminal robots with colour moving1 move to LV (r). Then next robot

becomes terminal and do the same. So, after a finite time say T1 > T , all robots

with colour moving1 on RI(r) move to LV (r). In this moment, all robots of

RI(r) have colour off. Note that in this scenario, at least one of r or r′ must see

a robot with colour moving1 on the same vertical line upon activation. Without

loss of generality, let r sees a robot with light moving1 on LV (r) and all robots

on RI(r) have colour off (Figure 5.13). Then r changes its colour to reached at

time say T2 ≥ T1 ≥ T (Figure 5.14). Now when r′ activates, it sees r with colour

reached on LV (r
′) and changes its colour to reached at a time T3 ≥ T2 (here

T ′ = T3) (Figure 5.15). Now it may be possible due to asynchronous environment

that after r changes its colour to reached at time T2, a robot say r1, on RI(r)

changes its colour to moving1 . Then r′ will not change its colour to reached

now, even after seeing r with colour reached as all robots on RI(r
′) now do not

have colour off. Now when r1 wakes again at a time say T4(≥ T2), it sees r with

colour reached on LI(r) and changes its colour to off. Now when r′ wakes again

at some time T ′ ≥ T4 ≥ T2 ≥ T1 > T , it changes its colour to reached. Note

that r does not change its colour from reached to candidate before r′ wakes

and changes its colour to reached as it will not see any other robot with colour

reached or candidate on LV (r) before r′ wakes. So, we can conclude that ∃

120

T ′ > T when both r and r′ have colour reached.

Figure 5.13: r sees a robot with
colour moving1 on LV (r) and sees all
robots on RI(r) with colour off. r′

does not see any robot with colour
moving1 or reached on LV (r′).

Figure 5.14: r changes its colour to
reached.

Figure 5.15: Now r′ sees r with colour reached on LV (r′) and all robots on RI(r
′)

with colour off. So, r′ changes its colour to reached.

Lemma 5.8. If a robot r changed its colour to reached at some time T > 0,

then ∃ T ′ ≥ T such that all robot in RI(r) in C(T ′) have colour off.

121

Proof. During the look phase, r must have seen robots on RI(r) have colour off.

Now if no robot on RI(r) change its colour to moving1 in between the completion

of look phase of r and time T , then T ′ = T . Now if a robot, say r1 changes its

colour to moving1 in between completion of look phase of r and time T , then

there exists T ′ > T when r1 sees a robot with colour reached on LI(r1) and so

changes its colour to off. Note that before r1 changes its colour to off, r does

not change its colour as it sees r1 with colour moving1 on RI(r). So, we can

conclude ∃ T ′ ≥ T such that all robots on RI(r) have colour off in C(T ′).

Lemma 5.9. If at time T , a robot changes its colour to leader1 from off, then

C(T ′) has no robot with colour candidate or terminal1, where T ′ ≥ T .

Proof. If r changes its colour to leader1 from off at some time T , then it must

have seen exactly two robots say r1 and r2 with colour call on LI(r) at a time

T1 where T1 < T (Figure 5.16). Note that a robot can only have colour call at

some time T2 if it had colour candidate at some time T3 < T2. Also, a robot

can change its colour to candidate from terminal1 only if it sees there is no

other robot on its left open half. Also, a robot with colour off changes to colour

terminal1 only if its left open half empty, there is no robot with colour leader1

on RI(r1) or on LV (r1) and it is terminal on LV (r). Since during the whole

execution of Phase 1, no other robot having colour off except r1 and r2 can see

its left open half empty and find themselves to be terminal, no other robot except

r1 and r2 can change their colours to terminal1. Now upon activation again at

any time T4 > T , both r1 and r2 sees r on RI(r1) with colour leader1 and

change their colours to off (Figure 5.17). Observe that after time T4, r1 and r2

can never change their colour to terminal1 and hence to candidate as they will

see r with colour leader1 on RI(r1) or on LV (r1) or r1 and r2 would have its left

open half non-empty. So, we can conclude the lemma.

Lemma 5.10. If at a time T , a robot r changed its colour to leader1, then there

will be no robot with colour reached in C(T ′), where T ′ ≥ T .

Proof. Note that a robot can only change its colour to reached at a time T if ∃

122

Figure 5.16: r1 and r2 with colour
call both see r with colour leader1

on RI(r1) ∩K.

Figure 5.17: Both r1 and r2 change
their colours to off after seeing r.

T1 < T such that the robot had colour candidate in C(T1). Now if r changed its

colour to leader1 from candidate, then even if there is another robot say r′ with

colour candidate on LV (r) (Figure 5.18), r′ will change its colour to off upon

first activation at a time T2 > T . So, the configuration now has no robot with

colour candidate or reached (as both r and r′ with colour candidate who could

have changed their colour to reached changed it to leader1 and off) (Figure

5.19). Also, note that during the period between T and T2, the configuration does

not have colour reached as in this time r has colour leader1 and r′ has colour

candidate. Also, no other robot with colour off will ever change its colour to

candidate after time T2 as a robot say r1 with colour off or terminal1 either

sees r with colour leader1 on LV (r1) or on RI(r1) or it has its left open half

non-empty. And since a robot can only change its colour to reached when it had

colour candidate before, there will be no robot with colour reached in C(T ′),

where (T ′ ≥ T).

Now, if r has changed its colour to leader1 from off at time T , then r must have

seen two robots say, r1 and r2 on LI(r) with colour call at some time T1 < T .

Now upon activation after time T , both r1 and r2 see r on RI(r1) and turn their

colours to off. Now for r1 and r2 to ever have the colour reached again must have

123

Figure 5.18: r′ with colour
candidate sees r with colour leader1
on LV (r′).

Figure 5.19: r′ changes its colour
to off. Now, no other robot changes
colour to terminal1 and hence to
candidate and hence to reached.

colour candidate first. But by Lemma 5.9, after r changes its colour to leader1,

the configuration can never have a robot with colour candidate. Hence, C(T ′)

(T ′ ≥ T) has no robot with colour reached if r changed its colour to leader1 at

time T .

Lemma 5.11. At any time T , there can be at most one robot with colour leader1

and at most one robot with colour leader in the configuration.

Proof. Note that by Lemma 5.3, a robot can change its colour to leader1 only

from the colour off or candidate. Let us consider the following cases:

Case-I: Consider the case where a robot changes its colour to leader1 from the

colour candidate. Now from Theorem 5.2, for any initial configuration C(0),
there exist a time T such that C(T) has either one robot with colour leader1

who has changed its colour to leader1 from candidate or two robots with colour

candidate on the same vertical line.

Case-I(a): Let r is a robot with colour leader1 in C(T) who has changed its

colour from candidate. We claim that in C(T ′) where T ′ ≥ T , there is no

other robot who changes its colour to leader1. For this, we first show that

no other robot with colour terminal1 ever change their colour to candidate.

124

This is because no other robot with colour terminal1 will find its left open half

empty (as the robot with colour leader1 is there) (Figure 5.20). So C(T ′), where

T ′ ≥ T , will not have any robot with colour candidate who can change further

to leader1. Also observe that after at T ′ ≥ T , no other robot with colour off

changes its colour to leader1 as they will not see any robot with colour call

on their left immediate occupied vertical line. This is also for the reason that

C(T ′) where T ′ ≥ T will not have any other robot with colour candidate who

can change its colour to call further. So, there will be exactly one robot with

colour leader1 which eventually changes its colour to leader.

Figure 5.20: r′ with colour terminal1 sees r with colour leader1 on LI(r′). So, r′

does not change its colour as it does not have its left open half empty.

Case-I(b): Let us now assume the case where there are two robots r1 and r2

with colour candidate both on the same vertical line LV (r1)(i.e. LV (r2)). In

this case, we will first show that both r1 and r2 can not change their colour to

leader1. Then we will show if one of r1 or r2 changes its colours to leader1,

then no other robot with colour off changes its colour to leader1.

In this case, r1 and r2 check the symmetry of the line RI(r1)(i.e RI(r2)). If RI(r)

is asymmetric, then the robot (r1 or, r2) whichever is on the dominant half changes

its colour to leader1. Without loss of generality. let at some time T1, r1 changes

its colour to leader1 from candidate. Then r2 must have colour candidate in

C(T1) (Figure 5.21). Now when r2 wakes again at a time say T2 > T1, it sees r1

125

with colour leader1 on LV (r2) and changes its colour to off (Figure 5.22). Note

that between time T1 and T2 even if r1 awakes again, it does not move as it sees r2

with colour candidate on LV (r1). Now even if r2 is terminal with colour off and

has left open half empty, it would not change its colour to terminal1 and then

to candidate again as it sees r1 with colour leader1 on the same vertical line.

So, between two robots with colour candidate only one can change its colour to

leader1.

Figure 5.21: r2 with colour
candidate sees r with colour leader1
on LV (r2). No robot with colour call
in the configuration.

Figure 5.22: r2 changes its colour to
off. No robot with colour call in
the configuration and no other robot
with colour off changes colour to
terminal1 and hence to candidate

and hence to leader1 or call .

Now a robot say r with colour off can never change its colour to leader1 as it

would not see exactly two robots with colour call on LI(r). This is because a

robot can only change its colour to call from colour candidate and no other

robot with colour off will ever change its colour to terminal1 and then to

candidate as in this case even if a robot with colour off has its left open half

empty and is terminal on its vertical line, it will see r1 with colour leader1 on the

same vertical line (Figure 5.22). So, it would not change its colour to terminal1.

So, if a robot changes its colour to leader1 from candidate, then no other robot

will change its colour to leader1.

126

Case-II: Next we show that if a robot say r has changed its colour to leader1

from off, then no other robot with colour candidate or off ever changes its

colour to leader1.

Let r changed its colour to leader1 from colour off at some time T2. This

implies r must have seen exactly two robots say r1 and r2 with colour call on

LI(r) and r is on K ∩ LV (r). Also C(T2) has no robot with colour candidate

(Figure 5.23). We will now show that no robot will ever change its colour to

candidate again. Now when r1 and r2 wake again (lets say at time T ′
2 > T2), it

sees r with colour leader1 on RI(r1) and so change their colours to off (Figure

5.24).

Figure 5.23: r1 and r2 with colour
call see r with colour leader1

on RI(r1). No robot with colour
candidate in the configuration.

Figure 5.24: r1 and r2 change their
colour to off. No robot with colour
reached or terminal1 or candidate or
call in the configuration and no other
robot with colour off changes colour
to terminal1 and hence to candidate

and hence to leader1 or call or di-
rectly to leader1.

Observe that, in this scenario there is no robot with colour reached and terminal1

in the configuration C(T ′
2) and no robot with colour off will ever change its colour

to terminal1 and then to candidate eventually. This is because even if a robot

with colour off finds its left open half empty and it is terminal on its vertical

line, it sees r with colour leader1 on its right immediate vertical line or on its

127

own vertical line. So after time T ′
2, the configuration has no robot with colour

candidate, so no robot with colour call or reached. Thus if r changed its colour

to leader1, no other robot can change its colour to leader1 from candidate.

Again this scenario, all robots with colour off are either on HC
R (r) or on LI(r).

Note that all robots with colour off that are on LI(r), never change their colours

as they either see r on their right immediate vertical line or on the same vertical

line or they find their left open half is non-empty. Similarly, the robots with colour

off on HC
R (r) never change their colours again as they find their left open half

non-empty, never see exactly two robots with colour call on their left immediate

vertical line and never sees a robot with colour moving1 on their same vertical

line. So, we have proved if a robot has changed its colour to leader1 from colour

off, no other robot ever changes its colour to leader1 again.

So, from all the cases, it is evident that in Phase 1 any configuration can have

at most one robot with colour leader1 and since a robot changes its colour to

leader from leader1 only, there can be at most one robot with colour leader

in any configuration during Phase 1.

Lemma 5.12. If a robot r changes its colour to leader1 at a time T and no

robot with colour terminal1 changes its colour to candidate at T ′ where T ′ ≥ T ,

then robots on RI(r) in C(T) never move in Phase 1.

Proof. Let r changes its colour to leader1 from colour off at a time T . Observe

that in this case, r must have seen two robots say r1 and r2 with colour call at

some time T1 < T and it is on K ∩ RI(r1). Note that in this case, all robots on

RI(r) have colour off, so they do not move. Now upon activation after time T ,

both r1 and r2 change their colours to off and never change their colours again

as they see r with colour leader1 on LV (r1) or on RI(r1) or other robots on

their left open half throughout completion of Phase 1. So, robots on RI(r)(at

T) never see any robot with colour call and also, they do not see their left open

half empty after time T . Thus robots on RI(r) at time T never change their

colours and never move until completion of Phase 1.

128

Now if r changes its colour from candidate to leader1 at time T and no robot

with colour terminal1 changes its colour to candidate at some time T ′ where

T ′ ≥ T , then all robots which are on RI(r) in C(T) can have colour either

moving1 or off or, terminal1. Note that the robots with colour moving1 will

not move as it does not see any robot with colour call on its left immediate

vertical line or, robot with colour reached on its same vertical line and on its

left immediate vertical line. Similarly robots with colour off on RI(r) does not

change its colour if it wakes after T as it finds out that it has its left open half

non-empty and there is no robot with colour call on its left immediate vertical

line. Note that a robot with colour terminal1 may change its colour to off but

after that this robot with colour off will not move by similar argument above.

So, no robot on RI(r) ever moves after time T until Phase 1 is complete.

Lemma 5.13. If a robot r changes its colour to leader1 from candidate at

some time T and another robot r′ changes its colour to candidate at a time T ′

where T ′ ≥ T , then no collision occurs even if both r and r′ move.

Proof. Let r changes its colour to leader1 from candidate at a time T and

r′ changes its colour to candidate from colour terminal1 at a time T ′ ≥ T .

Note that at time T , r must be singleton on LV (r). This implies there is a time

T1 < T when r had colour off and was terminal on L1 in C(T1). Now when r

wakes at a time say T2, where T1 ≤ T2 < T , it changes its colour to terminal1

and there exist a time T3 > T2 ≥ T1 and T3 < T such that r changes its colour

to candidate and moves left and become singleton on LV (r). We claim that r′

changes its colour to candidate only if r′ was on LV (r) in C(T2) and it was also

terminal on LV (r) (i.e LV (r
′)) as otherwise r′ can not see its left open half empty.

Now, let r′ wakes before time T2 and decide to changes its colour to candidate

but it changes its colour at a time T ′ ≥ T and has a pending move. Then observe

that now r and r′ are on two different vertical lines and r′ has a pending move

to the left. So, if there are other vertical lines in between LV (r) and LV (r
′), then

even if both of them move, no collision occurs as r can only move either vertically

or on left and they are on different horizontal line. So, let us consider r′ is on

lnext(r). Then r can not move vertically as lnext(r) is non-empty. Hence, both

129

r and r′ move left and no collision occurs as r and r′ are on different horizontal

lines.

Now, from the above lemmas and the discussions, we can conclude the following

theorem.

Theorem 5.3. For any initial configuration C(0), there exists a T > 0 such that

C(T) has exactly one robot with colour leader and it’s left closed half and one

of upper and bottom closed half have no other robots.

5.2.2 Phase 2

In this phase, initially the configuration is a leader configuration and the robots

form the target pattern embedded on the grid using the location of the leader as

an agreement to the origin of a global coordinate system.

After completion of Phase 1, the configuration has exactly one robot r0 with

colour leader such that r0 is singleton on HC
L (r0) and also singleton on LH(r0)

and there is no other robot on either below or above LH(r0). Note that in this

configuration, all the robots who can see r0 can agree on a global coordinate.

Let r1 be a robot which can see r0. Then it assumes the position of r0 as the

coordinate (0,−1). Now since all robots agree on the direction and orientation

of the x-axis (i.e the horizontal lines), r1 can think of the horizontal line let’s

say H which is just above r0 as the x-axis where right half of the line of LV (r0)

correspond to the positive direction of x−axis. Now r1 agrees on the the vertical

line LV (r0) as y-axis. Note that r1 can also know the orientation of y-axis by

assuming its own y − coordinate to be greater or equals to the y − coordinate

of r0 (i.e if HC
U (r0) has robots, then the direction of LV (r0) from r0 towards

HC
U (r0) ∩ LV (r0) is the direction of positive y − axis and similar for the case if

HC
B (r0) has robots) (Figure 5.25). In this phase, robots first form a line and then

from that line move to their corresponding target positions which are embedded

in the grid assuming the global coordinate which has been agreed upon by robots

after seeing r0. Thus the pattern formation is done. We provided a detailed

description of the algorithm for Phase 2.

130

Figure 5.25: r0 with colour leader is at (0,−1). Any robot that sees r0 can agree
on a global coordinate system as shown in this diagram.

5.2.2.1 Line Formation

In the beginning of Phase 2, if a robot r sees r0 with colour leader1, it agrees on a

global coordinate as mentioned above and find that r0 is on HO
B (r). Now, if r sees

there is no robot in HO
B (r)∩HO

U (r0) (i.e there is no horizontal line containing any

robot between LH(r0) and LH(r)) and r is leftmost on LH(r) and also if it finds

there are i other robots on (1,−1), (2,−1), . . . , (i,−1) and no robot with colour

done, then it changes its colour to off (if r has colour off, it would not change

the colour) and moves to (i + 1,−1) by a method Gotoline(). The method

Gotoline() is described as follows. In this method, if r is above the horizontal

line where y = 0, then it moves vertically downwards until it reaches the line

where y = 0. Note that no collision occurs during this vertical movement as there

are no robots between LH(r) and LH(r0) and no other robot will move until it

reaches at (i+1,−1). This is because other robots even if gets activated before r

reaches (i+1,−1), sees r between its horizontal line and LH(r0). Now, when r is

at the horizontal line where y = 0, it moves horizontally to the position (i+1, 0).

Note that the horizontal line y = 0 may not be initially empty at the beginning

of Phase 2. Also, initially all robots on line y = 0 have x− coordinate > 0. Now

let at some time T , the robot r which is leftmost on the line y = 0 sees robots on

(1,−1), (2,−1), . . . (i,−1). Now if there is no other robot except r on line y = 0

131

and r is not on (i + 1, 0), then r can simply move horizontally without collision

to reach (i + 1, 0). Note that during this movement, no other robot from above

moves as they see r in HO
B (r) ∩ HO

U (r0). Now if there are other robots on the

line y = 0 other than r, then this implies r has x − coordinate > i. This is

because the i robots say r1, r2, . . . , ri must have reached their current position at

(1,−1), (2,−1), . . . (i,−1) from the line y = 0 and all robots on line y = 0 have

x − coordinate > 0. Now since r has x − coordinate > i, r will move to its left

until it reaches (i+ 1, 0). Note that during this movement, no collision occurs as

r is leftmost robot on LH(r) and no other robot on LH(r) moves as they are not

leftmost on LH(r). Next after r reaches the position (i+1, 0), it moves vertically

downward to (i+1,−1) (Figure 5.26). So after a finite time, all robots will reach

on the line y = −1 in such a way that there is no empty grid point between two

robots on the line y = −1 (Figure 5.27). From the above discussion, we have the

following Lemmas 5.14 and 5.15.

Figure 5.26: Movement of r3 to
LH(r0) by executing the method Go-
ToLine().

Figure 5.27: All robots formed a line
on LV (r0). There is no empty grid
point between any two robots on the
line.

132

Algorithm 14: ApfFatGrid: Phase 2

1 r ← myself
2 r0 ← the robot with light leader
3 if r.light = moving1 or candidate or terminal1 then
4 execute LineWithLeader()
5 else if r.light = off then
6 if (r0 ∈ HO

B (r)) and (r is leftmost on LH(r)) and (there is no robot in

HO
B (r) ∩HO

U (r0)) then
7 if there are no robots on LH(r0) other than r0 then
8 if there is a robot with light done then
9 if r is at tn−2 then

10 r.light← done

11 else
12 move to an empty grid point towards tn−2 by GotoTarget

13 else
14 move to (1,−1) by GotoLine

15 else if there are i robots on LH(r0) other than r0 at (1,−1), . . . , (i,−1) then
16 move to a empty grid point towards (i+ 1,−1) by GotoLine
17 else if there are i robots on LH(r0) other than r0 at

(n− i,−1), . . . , (n− 1,−1) then
18 if r is at tn−i−2 then
19 r.light← done

20 else
21 move to an empty grid point towards tn−i−2 by GotoTarget

22 else if r0 ∈ LH(r) and HO
U (r) has no robots with light off then

23 if r is at (i,−1) then
24 move to (i, 0)

25 else if r.light = leader then
26 if all robots, which are visible to r, have light done then
27 if r is at tn−1 then
28 r.light← done

29 else
30 move to an empty grid point towards tn−1 by LeaderMove

Lemma 5.14. During movement of a robot r, that is executing the method Go-

toline() in Phase 2, r does not collide with any other robot in the configuration.

Lemma 5.15. There exists a T > 0 such that C(T) has one robot with light

leader and all other robots with light off in same horizontal line.

Lemma 5.16. The leftmost robot r of a horizontal line can always see all the

robots on the horizontal line y = −1 if there is no robot in HO
B (r)∩HO

U (r0), where

r0 is the robot with colour leader on the line y = −1.

133

Algorithm 15: LineWithLeader

1 Procedure LineWithLeader()
2 r ← myself
3 r0 ← the robot with light leader

4 if (r0 ∈ HO
B (r)) and (r is leftmost on LH(r)) and (there is no robot in

HO
B (r) ∩HO

U (r0)) then
5 if there are i robots on LH(r0) other than r0 at (1,−1), . . . , (i,−1) then
6 r.light← off

7 move to an empty grid point towards (i+ 1,−1) by GotoLine

Proof. Let r be the leftmost robot on a horizontal line y = s where s > 0. Then

it is obvious that r will see all robots on y = −1. Now if r is on y = 0 and is

singleton, then also it is obvious that r can see all robots on y = −1. Now if

r is not singleton on y = 0. Then from the discussions above, it is clear that

x − coordinate of r > x − coordinate of rightmost robot on y = −1. So, r can

see all robots on y = −1.

5.2.2.2 Target Pattern Formation

After the line is formed, all the robots except r0 with colour leader on (0,−1)
have colour off and they are all placed on the horizontal line y = −1 in such

a way that r0 is the leftmost robot on y = −1 and any two robots do not have

any unoccupied grid points between them. Now, the target pattern is embedded

on the grid (based on the global coordinate system described above) such that

x − coordinate, y − coordinate of any target position say, ti is greater than 0.

Also, the target position of robot with colour leader, tn−1 is on line y = 1. And

for any two other robots, let there be two target positions ti and tj. If both ti

and tj are on the same horizontal line and i < j, then ti is at the right of tj. Also,

if ti and tj are on two different horizontal lines and i < j, then ti is on the above

horizontal line (Figure 5.28).

Note that a robot say r who can see the robot r0 with colour leader can agree

on the global coordinate system as described earlier. So, r can agree on its target

position which is embedded target positions on the grid. Now a robot r, who can

134

Figure 5.28: The target pattern embedded in the coordinate system.

see r0 and has coordinate (s,−1) on LH(r) and sees HO
U (r) has no robot with

colour off, moves to position (s, 0) (Figure 5.29). Now, r can see all robots on

LH(r0) as r is singleton on y = 0. Now, if r finds out that there are i robots on

LH(r0) other than r0 at the positions (n− i,−1), (n− i− 1,−1), . . . (n− 1,−1),
then r moves to tn−i−2 by a method GotoTarget() (Figure 5.30) and changes

its colour to done. The method GotoTarget() is described as follows. When

executing the method GoToTarget(), a robot r first moves vertically to the

horizontal line that is just below the horizontal line of its target location say tr.

Note that during this movement, no other robot on LH(r0) moves even if they

see r0 as they see r with colour off on their upper open half. Now, let coordinate

of tr be (xtr , ytr). Note that after the vertical movement, r is now singleton on

the line y = ytr − 1. Now, if r is not already on the position (xtr , ytr − 1), it

moves horizontally to the position (xtr , ytr − 1). Note that since r is singleton

on y = ytr − 1 and no robot from LH(r0) has started its vertical movement

(this is because they still see r with colour off on their upper open half), no

collision occurs during this movement by r. Now when r reaches the position

(xtr , ytr − 1), it moves above once and reaches the designated target position tr

of r. Observe that the last robot say rn−1 on (n− 1,−1) (i.e on LH(r0)) sees no

other robot except r0 on LH(r0) after it starts moving vertically above. Now, the

problem is if it can distinguish whether rn−1 is meant to execute GoToLine()

135

or GoToTarget() when it is above the line LH(r0) . Note that rn−1 will see at

least one robot having colour done above it or on the same line while it is meant

to execute GoToTarget() as n > 2 =⇒ n − 1 > 1 which implies LH(r0)

had at least one other robot rn−2 between r0 and rn−1 which already executed

GoToTarget() and changed its colour to done before rn−1 started executing

GoToTarget(). So in this case, rn−1 sees at least one robot with colour done

and moves to its designated target location trn−1 = tn−2. So, we can conclude

that after a finite time, all robots except the robot r0 with colour leader move

to their designated target locations embedded on the grid as described earlier.

Figure 5.29: r1 and r2 already moved
to their target position and changed
their colour to done. r3 sees r0 with
colour leader and moves to line y = 0
by moving vertically.

Figure 5.30: From (3, 0), r3 can see
3 robots on (4,−1), (5,−1), (6,−1) and
moves to t2 by executing the method
GoToTarget().

From the above discussion, we can conclude the following lemma.

Lemma 5.17. During the execution of the method GoToTarget(), a robot r

never collides with another robot in the configuration.

Now the robot r0 with colour leader sees that all the visible robots have colour

done. So, it now moves to its designated target location tn−1 by a method Lea-

derMove(). The method LeaderMove() is described as follows. In this

method, r0 first moves to (0, 0). Now, let the lowest horizontal line be Hlast

having a robot with colour done. Now, note that r0 can always see the leftmost

136

robot rn−1 on the horizontal line Hlast. So, r0 can always know its own position

on the global coordinate as it knows the target position of rn−1 from the input

even if it is not at (0,−1). Now the target was embedded in such a way that the

target position tn−1 of r0 is on line y = 1. Let (xt0 , 1) be the target position of

r0. Now from (0, 0), r0 moves horizontally to the location (xt0 , 0) and then moves

vertically once to tn−1 = (xt0 , 1) and changes the colour to done. Note that below

y = 1, there is no other robot while r0 starts moving (Figure 5.31).

Figure 5.31: When all other robots except r0 with colour leader reach their corre-
sponding target positions, r0 moves to t6 executing the method LeaderMove().

So, we can conclude the following lemma.

Lemma 5.18. While executing the method LeaderMove(), a robot r never

collides with other robots in the configuration.

So, from Lemmas 5.14, 5.17 and 5.18, we can directly conclude the following

result.

Lemma 5.19. During movement of robots in Phase 2, no collision occurs.

Now from the above lemmas and the discussions, we can now finally conclude the

following theorem.

Theorem 5.4. There exists a T > 0 such that C(T) is a final configuration

similar to the given pattern and has all robots with light done (Figure 5.32).

137

Figure 5.32: After r0 reaches t6, it changes its colour done and the target pattern
has been formed.

5.3 Concluding remarks

The problem of arbitrary pattern formation (APF) is a widely studied area

of research in the field of swarm robotics. It has been studied under various

assumptions on plane and discrete domain (eg. infinite regular tessellation grid).

With obstructed visibility model, this problem has been considered on plane and

infinite grid using luminous opaque robots. But using fat robots (i.e. robots with

certain dimensions), it is only done in plane. In this chapter, we have taken care

of this. We have shown that with a swarm of luminous opaque fat robots having

one-axis agreement on an infinite grid, any arbitrary pattern can be formed from

an initial configuration which is either asymmetric or has at least one robot on the

line of symmetry using one light having 9 distinct colours which are less than the

number of colours used to form an arbitrary pattern on plane using opaque and

fat robots with one-axis agreement. For future courses of research, it would be

interesting to see if the same problem can be solved using less number of colours

under the same assumptions.

138

Chapter 6

Conclusion

In this chapter, we conclude the thesis by subsuming all the technical results from

the previous chapters and also highlight some interesting directions for future

research.

In Chapter 2, we study the network localization problem, i.e., the problem of

determining node positions of a wireless sensor network modeled as a unit disk

graph. In this chapter, we propose a distributed localization scheme with a

theoretical characterization of nodes that are guaranteed to be localized. However

we considered the wireless sensor network modeled as a unit disk graph where two

nodes are adjacent if and only if their distance is ≤ r (communication range= r).

But more general network model is the quasi unit disk graph (QUDG) model.

Open Problem 1. A distributed localization scheme with a theoretical charac-

terization of nodes of a wireless sensor network modeled as a quasi unit disk

graph.

In Chapter 3, we consider the problem of gathering a set of autonomous, identical,

oblivious, asynchronous, mobile robots at a vertex of an anonymous hypercube.

We have shown that the problem is unsolvable if the robots do not have multi-

plicity detection capability. With weak multiplicity detection capability, we have

provided a complete characterization of all gatherable configurations in ASYNC

for 2k+1 and 4k (k > 0) number of robots. However our strategy does not work

for 4k + 2 robots.

139

140

Open Problem 2. Gathering in Hypercubes for 4k+2 (k > 0) number of robots.

Also we considered that the visibility range of each robot is unlimited. The

immediate open problem is to consider this problem with limited visibility.

Open Problem 3. Gathering in Hypercubes with limited visibility.

In Chapter 4, we studied APF on infinite grid with asynchronous opaque robots

with lights. The robots do not share any global co-ordinate system, however

they have an agreement over left and right. It would be interesting to study this

problem without the agreement on the co-ordinate system.

Open Problem 4. APF on infinite grid with asynchronous opaque robots with-

out axis agreement.

Again LUMI model has been considered in which the visible lights can be used

by robots as a means of communication and persistent memory. In the OBLOT
model, the robots are considered to be oblivious (i.e the robots do not have any

persistent memory to remember any previous state). So the immediate open

problem is to consider this problem in OBLOT model.

Open Problem 5. Can Arbitrary Pattern Formation on infinite grid

with asynchronous opaque robots be solved in OBLOT +ASYNC model?

In Chapter 5, we considered the APF problem assuming opaque fat robots on

infinite grid. As in the Chapter 4, it has been assumed that the robots have an

agreement over left and right and used model is LUMI. So we have the following
open problems:

Open Problem 6. APF on infinite grid with asynchronous opaque fat robots

without axis agreement.

Open Problem 7. Can Arbitrary Pattern Formation on infinite grid by

opaque fat robots be solved in OBLOT +ASYNC model?

141

Also in Chapter 4 and Chapter 5, we considered that even if the robots have ob-

structed visibility, the visibility range of each robot is unlimited. The immediate

open problem is to consider the APF with limited visibility.

Open Problem 8. Arbitrary Pattern Formation on infinite grid by opaque

point and fat robots with limited visibility.

142

Bibliography

[1] Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Circle

formation by asynchronous opaque robots on infinite grid. Comput. Sci.,

22(1), 2021. doi:10.7494/csci.2021.22.1.3840.

[2] Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronico-

las. A distributed algorithm for gathering many fat mobile robots in the

plane. In ACM Symposium on Principles of Distributed Computing, PODC

’13, Montreal, QC, Canada, July 22-24, 2013, pages 250–259, 2013. doi:

10.1145/2484239.2484266.

[3] J. Albowicz, Alvin Chen, and Lixia Zhang. Recursive position estimation

in sensor networks. In 9th International Conference on Network Protocols

(ICNP 2001), 11-14 November 2001, Riverside, CA, USA, pages 35–43.

IEEE Computer Society, 2001. doi:10.1109/ICNP.2001.992758.

[4] James Aspnes, David Kiyoshi Goldenberg, and Yang Richard Yang. On

the computational complexity of sensor network localization. In Algorith-

mic Aspects of Wireless Sensor Networks: First International Workshop,

ALGOSENSORS 2004, Turku, Finland, July 16, 2004. Proceedings, volume

3121 of Lecture Notes in Computer Science, pages 32–44. Springer, 2004.

doi:10.1007/978-3-540-27820-7_5.

[5] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Ren-

dezvous and election of mobile agents: Impact of sense of direction. Theory

Comput. Syst., 40(2):143–162, 2007. doi: 10.1007/s00224-005-1223-5.

143

https://doi.org/10.7494/csci.2021.22.1.3840
10.1145/2484239.2484266
https://doi.org/10.1109/ICNP.2001.992758
https://doi.org/10.1007/978-3-540-27820-7_5
10.1007/s00224-005-1223-5

144

[6] Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya.

Gathering of opaque robots in 3d space. In Paolo Bellavista and Vi-

jay K. Garg, editors, Proceedings of the 19th International Conference on

Distributed Computing and Networking, ICDCN 2018, Varanasi, India,

January 4-7, 2018, pages 2:1–2:10. ACM, 2018. doi:10.1145/3154273.

3154322.

[7] Pratik Biswas, Tzu-Chen Liang, Ta-Chung Wang, and Yinyu Ye. Semidef-

inite programming based algorithms for sensor network localization. ACM

Trans. Sens. Networks, 2(2):188–220, 2006. doi:10.1145/1149283.

1149286.

[8] Pratik Biswas, Kim-Chuan Toh, and Yinyu Ye. A distributed SDP ap-

proach for large-scale noisy anchor-free graph realization with applications

to molecular conformation. SIAM J. Sci. Comput., 30(3):1251–1277, 2008.

doi:10.1137/05062754X.

[9] Pratik Biswas and Yinyu Ye. Semidefinite programming for ad hoc wireless

sensor network localization. In Kannan Ramchandran, Janos Sztipanovits,

Jennifer C. Hou, and Thrasyvoulos N. Pappas, editors, Proceedings of the

Third International Symposium on Information Processing in Sensor Net-

works, IPSN 2004, Berkeley, California, USA, April 26-27, 2004, pages

46–54. ACM, 2004. doi:10.1145/984622.984630.

[10] Kaustav Bose, Ranendu Adhikary, Sruti Gan Chaudhuri, and Buddhadeb

Sau. Crash tolerant gathering on grid by asynchronous oblivious robots.

CoRR, abs/1709.00877, 2017. URL: http://arxiv.org/abs/1709.00877,

arXiv:1709.00877.

[11] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb

Sau. Arbitrary pattern formation by opaque fat robots with lights. CoRR,

abs/1910.02706, 2019. URL: http://arxiv.org/abs/1910.02706, arXiv:

1910.02706.

https://doi.org/10.1145/3154273.3154322
https://doi.org/10.1145/3154273.3154322
https://doi.org/10.1145/1149283.1149286
https://doi.org/10.1145/1149283.1149286
https://doi.org/10.1137/05062754X
https://doi.org/10.1145/984622.984630
http://arxiv.org/abs/1709.00877
http://arxiv.org/abs/1709.00877
http://arxiv.org/abs/1910.02706
http://arxiv.org/abs/1910.02706
http://arxiv.org/abs/1910.02706

145

[12] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb

Sau. Arbitrary pattern formation on infinite grid by asynchronous oblivious

robots. Theor. Comput. Sci., 815:213–227, 2020. doi:10.1016/j.tcs.

2020.02.016.

[13] Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb

Sau. Arbitrary pattern formation on infinite grid by asynchronous oblivious

robots. Theor. Comput. Sci., 815:213–227, 2020. doi:10.1016/j.tcs.

2020.02.016.

[14] Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb

Sau. Arbitrary pattern formation by asynchronous opaque robots with

lights. Theor. Comput. Sci., 849:138–158, 2021. doi:10.1016/j.tcs.

2020.10.015.

[15] Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb

Sau. Arbitrary pattern formation by asynchronous opaque robots with

lights. Theor. Comput. Sci., 849:138–158, 2021. doi:10.1016/j.tcs.

2020.10.015.

[16] Quentin Bramas and Sébastien Tixeuil. Probabilistic asynchronous arbi-

trary pattern formation (short paper). In Stabilization, Safety, and Se-

curity of Distributed Systems - 18th International Symposium, SSS 2016,

Lyon, France, November 7-10, 2016, Proceedings, pages 88–93, 2016. doi:

10.1007/978-3-319-49259-9_7.

[17] Quentin Bramas and Sébastien Tixeuil. Probabilistic asynchronous arbi-

trary pattern formation (short paper). In Borzoo Bonakdarpour and Franck

Petit, editors, Stabilization, Safety, and Security of Distributed Systems -

18th International Symposium, SSS 2016, Lyon, France, November 7-10,

2016, Proceedings, volume 10083 of Lecture Notes in Computer Science,

pages 88–93, 2016. doi:10.1007/978-3-319-49259-9_7.

[18] Quentin Bramas and Sébastien Tixeuil. Arbitrary pattern formation with

four robots. In Taisuke Izumi and Petr Kuznetsov, editors, Stabilization,

https://doi.org/10.1016/j.tcs.2020.02.016
https://doi.org/10.1016/j.tcs.2020.02.016
https://doi.org/10.1016/j.tcs.2020.02.016
https://doi.org/10.1016/j.tcs.2020.02.016
https://doi.org/10.1016/j.tcs.2020.10.015
https://doi.org/10.1016/j.tcs.2020.10.015
https://doi.org/10.1016/j.tcs.2020.10.015
https://doi.org/10.1016/j.tcs.2020.10.015
10.1007/978-3-319-49259-9_7
https://doi.org/10.1007/978-3-319-49259-9_7

146

Safety, and Security of Distributed Systems - 20th International Sympo-

sium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings, volume

11201 of Lecture Notes in Computer Science, pages 333–348. Springer, 2018.

doi:10.1007/978-3-030-03232-6_22.

[19] Nirupama Bulusu, John S. Heidemann, and Deborah Estrin. Gps-less low-

cost outdoor localization for very small devices. IEEE Wirel. Commun.,

7(5):28–34, 2000. doi:10.1109/98.878533.

[20] Tashnim J. S. Chowdhury, Colin Elkin, Vijay Devabhaktuni, Danda B.

Rawat, and Jared Oluoch. Advances on localization techniques for wireless

sensor networks: A survey. Comput. Networks, 110:284–305, 2016. doi:

10.1016/j.comnet.2016.10.006.

[21] Po-Jen Chuang and Cheng-Pei Wu. An effective pso-based node localization

scheme for wireless sensor networks. In Ninth International Conference on

Parallel and Distributed Computing, Applications and Technologies, PD-

CAT 2008, Dunedin, Otago, New Zealand, 1-4 December 2008, pages 187–

194. IEEE Computer Society, 2008. doi:10.1109/PDCAT.2008.73.

[22] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous

arbitrary pattern formation: the effects of a rigorous approach. Distributed

Comput., 32(2):91–132, 2019. doi:10.1007/s00446-018-0325-7.

[23] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Embedded

pattern formation by asynchronous robots without chirality. Distributed

Comput., 32(4):291–315, 2019. doi:10.1007/s00446-018-0333-7.

[24] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro.

Solving the robots gathering problem. In Automata, Languages and Pro-

gramming, 30th International Colloquium, ICALP 2003, Eindhoven, The

Netherlands, June 30 - July 4, 2003. Proceedings, pages 1181–1196, 2003.

doi: 10.1007/3-540-45061-0_90.

https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.1109/98.878533
https://doi.org/10.1016/j.comnet.2016.10.006
https://doi.org/10.1016/j.comnet.2016.10.006
https://doi.org/10.1109/PDCAT.2008.73
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/s00446-018-0333-7
10.1007/3-540-45061-0_90

147

[25] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro.

Distributed computing by mobile robots: Gathering. SIAM J. Comput.,

41(4):829–879, 2012. doi: 10.1137/100796534.

[26] Reuven Cohen and David Peleg. Convergence properties of the gravitational

algorithm in asynchronous robot systems. SIAM J. Comput., 34(6):1516–

1528, 2005. doi: 10.1137/S0097539704446475.

[27] Reuven Cohen and David Peleg. Convergence of autonomous mobile robots

with inaccurate sensors and movements. SIAM J. Comput., 38(1):276–302,

2008. doi:10.1137/060665257.

[28] Jose A. Costa, Neal Patwari, and Alfred O. Hero III. Distributed weighted-

multidimensional scaling for node localization in sensor networks. ACM

Trans. Sens. Networks, 2(1):39–64, 2006. doi:10.1145/1138127.1138129.

[29] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat

mobile robots in the plane. Theor. Comput. Sci., 410(6-7):481–499, 2009.

doi: 10.1016/j.tcs.2008.10.005.

[30] Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo

Navarra. Gathering of robots on anonymous grids and trees without

multiplicity detection. Theor. Comput. Sci., 610:158–168, 2016. doi:

10.1016/j.tcs.2014.06.045.

[31] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gath-

ering of six robots on anonymous symmetric rings. In Structural Infor-

mation and Communication Complexity - 18th International Colloquium,

SIROCCO 2011, Gdansk, Poland, June 26-29, 2011. Proceedings, pages

174–185, 2011. doi: 10.1007/978-3-642-22212-2_16.

[32] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gather-

ing on rings under the look-compute-move model. Distributed Computing,

27(4):255–285, 2014. doi: 10.1007/s00446-014-0212-9.

10.1137/100796534
10.1137/S0097539704446475
https://doi.org/10.1137/060665257
https://doi.org/10.1145/1138127.1138129
10.1016/j.tcs.2008.10.005
10.1016/j.tcs.2014.06.045
10.1007/978-3-642-22212-2_16
10.1007/s00446-014-0212-9

148

[33] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Ya-

mashita. Forming sequences of geometric patterns with oblivious mo-

bile robots. Distributed Comput., 28(2):131–145, 2015. doi:10.1007/

s00446-014-0220-9.

[34] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Ya-

mashita. Forming sequences of geometric patterns with oblivious mo-

bile robots. Distributed Comput., 28(2):131–145, 2015. doi:10.1007/

s00446-014-0220-9.

[35] Shantanu Das, Matús Mihalák, Rastislav Srámek, Elias Vicari, and Peter

Widmayer. Rendezvous of mobile agents when tokens fail anytime. In

Principles of Distributed Systems, 12th International Conference, OPODIS

2008, Luxor, Egypt, December 15-18, 2008. Proceedings, pages 463–480,

2008. doi: 10.1007/978-3-540-92221-6_29.

[36] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej

Pelc. Deterministic rendezvous in graphs. Algorithmica, 46(1):69–96, 2006.

doi: 10.1007/s00453-006-0074-2.

[37] Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election prob-

lem versus pattern formation problem. In Nancy A. Lynch and Alexander A.

Shvartsman, editors, Distributed Computing, 24th International Sympo-

sium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010. Proceed-

ings, volume 6343 of Lecture Notes in Computer Science, pages 267–281.

Springer, 2010. doi:10.1007/978-3-642-15763-9_26.

[38] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro.

Multiple agents rendezvous in a ring in spite of a black hole. In Principles

of Distributed Systems, 7th International Conference, OPODIS 2003 La

Martinique, French West Indies, December 10-13, 2003 Revised Selected

Papers, pages 34–46, 2003. doi: 10.1007/978-3-540-27860-3_6.

[39] Tolga Eren, David Kiyoshi Goldenberg, Walter Whiteley, Yang Richard

Yang, A. Stephen Morse, Brian D. O. Anderson, and Peter N. Belhumeur.

https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.1007/s00446-014-0220-9
10.1007/978-3-540-92221-6_29
10.1007/s00453-006-0074-2
https://doi.org/10.1007/978-3-642-15763-9_26
10.1007/978-3-540-27860-3_6

149

Rigidity, computation, and randomization in network localization. In Pro-

ceedings IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the

IEEE Computer and Communications Societies, Hong Kong, China, March

7-11, 2004, pages 2673–2684. IEEE, 2004. doi:10.1109/INFCOM.2004.

1354686.

[40] Jia Fang, Ming Cao, A. Stephen Morse, and Brian D. O. Anderson. Sequen-

tial localization of sensor networks. SIAM J. Control. Optim., 48(1):321–

350, 2009. doi:10.1137/070679144.

[41] Jia Fang, D. Duncan, and A. Stephen Morse. Sequential localization with

inaccurate measurements. In American Control Conference, ACC 2009.

St. Louis, Missouri, USA, June 10-12, 2009, pages 1970–1975. IEEE, 2009.

doi:10.1109/ACC.2009.5160383.

[42] Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle

formation for swarms of opaque robots with lights. In Stabilization, Safety,

and Security of Distributed Systems - 20th International Symposium, SSS

2018, Tokyo, Japan, November 4-7, 2018, Proceedings, pages 317–332, 2018.

doi:10.1007/978-3-030-03232-6_21.

[43] Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle for-

mation for swarms of opaque robots with lights. In Taisuke Izumi and Petr

Kuznetsov, editors, Stabilization, Safety, and Security of Distributed Sys-

tems - 20th International Symposium, SSS 2018, Tokyo, Japan, November

4-7, 2018, Proceedings, volume 11201 of Lecture Notes in Computer Science,

pages 317–332. Springer, 2018. doi:10.1007/978-3-030-03232-6_21.

[44] Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luc-

cio, Nicola Santoro, and Cindy Sawchuk. Mobile agents rendezvous

when tokens fail. In Structural Information and Communication Com-

plexity, 11th International Colloquium , SIROCCO 2004, Smolenice Cas-

tle, Slowakia, June 21-23, 2004, Proceedings, pages 161–172, 2004. doi:

10.1007/978-3-540-27796-5_15.

https://doi.org/10.1109/INFCOM.2004.1354686
https://doi.org/10.1109/INFCOM.2004.1354686
https://doi.org/10.1137/070679144
https://doi.org/10.1109/ACC.2009.5160383
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.1007/978-3-030-03232-6_21
10.1007/978-3-540-27796-5_15

150

[45] Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Nicola Santoro, and

Cindy Sawchuk. Multiple mobile agent rendezvous in a ring. In LATIN

2004: Theoretical Informatics, 6th Latin American Symposium, Buenos

Aires, Argentina, April 5-8, 2004, Proceedings, pages 599–608, 2004. doi:

10.1007/978-3-540-24698-5_62.

[46] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.

Gathering of asynchronous robots with limited visibility. Theor. Comput.

Sci., 337(1-3):147–168, 2005. doi: 10.1016/j.tcs.2005.01.001.

[47] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.

Arbitrary pattern formation by asynchronous, anonymous, oblivious robots.

Theor. Comput. Sci., 407(1-3):412–447, 2008. doi:10.1016/j.tcs.2008.

07.026.

[48] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.

Arbitrary pattern formation by asynchronous, anonymous, oblivious robots.

Theor. Comput. Sci., 407(1-3):412–447, 2008. doi:10.1016/j.tcs.2008.

07.026.

[49] Wade H Foy. Position-location solutions by taylor-series estimation. IEEE

transactions on aerospace and electronic systems, (2):187–194, 1976.

[50] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masa-

fumi Yamashita. Pattern formation by oblivious asynchronous mobile

robots. SIAM J. Comput., 44(3):740–785, 2015. doi:10.1137/140958682.

[51] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207.

Springer Science & Business Media, 2013.

[52] David Kiyoshi Goldenberg, Arvind Krishnamurthy, Wesley C. Maness,

Yang Richard Yang, Anthony Young, A. Stephen Morse, Andreas Savvides,

and Brian D. O. Anderson. Network localization in partially localizable

networks. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, 13-17 March 2005, Miami, FL,

USA, pages 313–326. IEEE, 2005. doi:10.1109/INFCOM.2005.1497902.

10.1007/978-3-540-24698-5_62
10.1016/j.tcs.2005.01.001
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1137/140958682
https://doi.org/10.1109/INFCOM.2005.1497902

151

[53] Pritam Goswami, Satakshi Ghosh, Avisek Sharma, and Buddhadeb Sau.

Gathering on an infinite triangular grid with limited visibility under asyn-

chronous scheduler. CoRR, abs/2204.14042, 2022. arXiv:2204.14042,

doi:10.48550/arXiv.2204.14042.

[54] K Haba, T Izumi, Y Katayama, N Inuzuka, and K Wada. On gathering

problem in a ring for 2n autonomous mobile robots. In Proceedings of

the 10th International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS), poster, 2008.

[55] Bruce Hendrickson. Conditions for unique graph realizations. SIAM J.

Comput., 21(1):65–84, 1992. doi:10.1137/0221008.

[56] Rui Huang and Gergely V. Záruba. Static path planning for mobile beacons

to localize sensor networks. In Fifth Annual IEEE International Confer-

ence on Pervasive Computing and Communications - Workshops (PerCom

Workshops 2007), 19-23 March 2007, White Plains, New York, USA, pages

323–330. IEEE Computer Society, 2007. doi:10.1109/PERCOMW.2007.109.

[57] Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and Fukuhito Ooshita. Mo-

bile robots gathering algorithm with local weak multiplicity in rings. In

Structural Information and Communication Complexity, 17th International

Colloquium, SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceed-

ings, pages 101–113, 2010. doi: 10.1007/978-3-642-13284-1_9.

[58] Bill Jackson and Tibor Jordán. Connected rigidity matroids and unique

realizations of graphs. J. Comb. Theory, Ser. B, 94(1):1–29, 2005. doi:

10.1016/j.jctb.2004.11.002.

[59] Jinfang Jiang, Guangjie Han, Huihui Xu, Lei Shu, and Mohsen Guizani.

LMAT: localization with a mobile anchor node based on trilateration in

wireless sensor networks. In Proceedings of the Global Communications

Conference, GLOBECOM 2011, 5-9 December 2011, Houston, Texas, USA,

pages 1–6. IEEE, 2011. doi:10.1109/GLOCOM.2011.6133668.

http://arxiv.org/abs/2204.14042
https://doi.org/10.48550/arXiv.2204.14042
https://doi.org/10.1137/0221008
https://doi.org/10.1109/PERCOMW.2007.109
10.1007/978-3-642-13284-1_9
https://doi.org/10.1016/j.jctb.2004.11.002
https://doi.org/10.1016/j.jctb.2004.11.002
https://doi.org/10.1109/GLOCOM.2011.6133668

152

[60] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil.

Asynchronous mobile robot gathering from symmetric configurations with-

out global multiplicity detection. In Structural Information and Com-

munication Complexity - 18th International Colloquium, SIROCCO 2011,

Gdansk, Poland, June 26-29, 2011. Proceedings, pages 150–161, 2011. doi:

10.1007/978-3-642-22212-2_14.

[61] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sébastien Tixeuil.

Gathering an even number of robots in an odd ring without global mul-

tiplicity detection. In Mathematical Foundations of Computer Science

2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia,

August 27-31, 2012. Proceedings, pages 542–553, 2012. doi: 10.1007/

978-3-642-32589-2_48.

[62] Anushiya A. Kannan, Baris Fidan, and Guoqiang Mao. Analysis of flip am-

biguities for robust sensor network localization. IEEE Trans. Veh. Technol.,

59(4):2057–2070, 2010. doi:10.1109/TVT.2010.2040850.

[63] Anushiya A. Kannan, Guoqiang Mao, and Branka Vucetic. Simulated

annealing based localization in wireless sensor network. In 30th Annual

IEEE Conference on Local Computer Networks (LCN 2005), 15-17 Novem-

ber 2005, Sydney, Australia, Proceedings, pages 513–514. IEEE Computer

Society, 2005. doi:10.1109/LCN.2005.125.

[64] Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. Taking advantage of

symmetries: Gathering of many asynchronous oblivious robots on a ring.

Theor. Comput. Sci., 411(34-36):3235–3246, 2010. doi: 10.1016/j.tcs.

2010.05.020.

[65] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous

oblivious mobile robots in a ring. Theor. Comput. Sci., 390(1):27–39, 2008.

doi: 10.1016/j.tcs.2007.09.032.

10.1007/978-3-642-22212-2_14
10.1007/978-3-642-32589-2_48
10.1007/978-3-642-32589-2_48
https://doi.org/10.1109/TVT.2010.2040850
https://doi.org/10.1109/LCN.2005.125
10.1016/j.tcs.2010.05.020
10.1016/j.tcs.2010.05.020
10.1016/j.tcs.2007.09.032

153

[66] Martyna Koreń. Gathering small number of mobile asynchronous robots on

ring. Zeszyty Naukowe Wydzia lu ETI Politechniki Gdańskiej. Technologie

Informacyjne, 18:325–331, 2010.

[67] Dimitrios Koutsonikolas, Saumitra M. Das, and Y. Charlie Hu. Path plan-

ning of mobile landmarks for localization in wireless sensor networks. Com-

put. Commun., 30(13):2577–2592, 2007. doi:10.1016/j.comcom.2007.

05.048.

[68] Evangelos Kranakis, Danny Krizanc, and Euripides Markou. Deterministic

symmetric rendezvous with tokens in a synchronous torus. Discrete Applied

Mathematics, 159(9):896–923, 2011. doi: 10.1016/j.dam.2011.01.020.

[69] Evangelos Kranakis, Nicola Santoro, Cindy Sawchuk, and Danny Krizanc.

Mobile agent rendezvous in a ring. In 23rd International Conference on Dis-

tributed Computing Systems (ICDCS 2003), 19-22 May 2003, Providence,

RI, USA, pages 592–599, 2003. doi: 10.1109/ICDCS.2003.1203510.

[70] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad hoc networks

beyond unit disk graphs. Wirel. Networks, 14(5):715–729, 2008. doi:10.

1007/s11276-007-0045-6.

[71] Pawel Kulakowski, Javier Vales-Alonso, Esteban Egea-López, Wieslaw Lud-

win, and Joan Garćıa-Haro. Angle-of-arrival localization based on antenna

arrays for wireless sensor networks. Comput. Electr. Eng., 36(6):1181–1186,

2010. doi:10.1016/j.compeleceng.2010.03.007.

[72] Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh, and Buddhadeb

Sau. Arbitrary pattern formation by asynchronous opaque robots on infinite

grid. CoRR, abs/2205.03053, 2022. arXiv:2205.03053, doi:10.48550/

arXiv.2205.03053.

[73] Sangho Lee, Eunchan Kim, Chungsan Kim, and Kiseon Kim. Localization

with a mobile beacon based on geometric constraints in wireless sensor

networks. IEEE Trans. Wirel. Commun., 8(12):5801–5805, 2009. doi:

10.1109/TWC.2009.12.090319.

https://doi.org/10.1016/j.comcom.2007.05.048
https://doi.org/10.1016/j.comcom.2007.05.048
10.1016/j.dam.2011.01.020
10.1109/ICDCS.2003.1203510
https://doi.org/10.1007/s11276-007-0045-6
https://doi.org/10.1007/s11276-007-0045-6
https://doi.org/10.1016/j.compeleceng.2010.03.007
http://arxiv.org/abs/2205.03053
https://doi.org/10.48550/arXiv.2205.03053
https://doi.org/10.48550/arXiv.2205.03053
https://doi.org/10.1109/TWC.2009.12.090319
https://doi.org/10.1109/TWC.2009.12.090319

154

[74] Yunhao Liu, Zheng Yang, Xiaoping Wang, and Lirong Jian. Location,

localization, and localizability. J. Comput. Sci. Technol., 25(2):274–297,

2010. doi:10.1007/s11390-010-9324-2.

[75] Tamás Lukovszki and Friedhelm Meyer auf der Heide. Fast collision-

less pattern formation by anonymous, position-aware robots. In Mar-

cos K. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Prin-

ciples of Distributed Systems - 18th International Conference, OPODIS

2014, Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings, vol-

ume 8878 of Lecture Notes in Computer Science, pages 248–262. Springer,

2014. doi:10.1007/978-3-319-14472-6_17.

[76] Tamás Lukovszki and Friedhelm Meyer auf der Heide. Fast collision-

less pattern formation by anonymous, position-aware robots. In Mar-

cos K. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Prin-

ciples of Distributed Systems - 18th International Conference, OPODIS

2014, Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings, vol-

ume 8878 of Lecture Notes in Computer Science, pages 248–262. Springer,

2014. doi:10.1007/978-3-319-14472-6_17.

[77] Giuseppe Antonio Di Luna, Paola Flocchini, Linda Pagli, Giuseppe

Prencipe, Nicola Santoro, and Giovanni Viglietta. Gathering in dy-

namic rings. In Structural Information and Communication Complexity

- 24th International Colloquium, SIROCCO 2017, Porquerolles, France,

June 19-22, 2017, Revised Selected Papers, pages 339–355, 2017. doi:

10.1007/978-3-319-72050-0_20.

[78] Guoqiang Mao, Baris Fidan, and Brian D. O. Anderson. Wireless sen-

sor network localization techniques. Comput. Networks, 51(10):2529–2553,

2007. doi:10.1016/j.comnet.2006.11.018.

[79] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc,

Andrzej Pelc, and Ugo Vaccaro. Asynchronous deterministic rendezvous in

graphs. Theor. Comput. Sci., 355(3):315–326, 2006. doi: 10.1016/j.tcs.

2005.12.016.

https://doi.org/10.1007/s11390-010-9324-2
https://doi.org/10.1007/978-3-319-14472-6_17
https://doi.org/10.1007/978-3-319-14472-6_17
10.1007/978-3-319-72050-0_20
https://doi.org/10.1016/j.comnet.2006.11.018
10.1016/j.tcs.2005.12.016
10.1016/j.tcs.2005.12.016

155

[80] David C. Moore, John J. Leonard, Daniela Rus, and Seth J. Teller. Ro-

bust distributed network localization with noisy range measurements. In

John A. Stankovic, Anish Arora, and Ramesh Govindan, editors, Proceed-

ings of the 2nd International Conference on Embedded Networked Sensor

Systems, SenSys 2004, Baltimore, MD, USA, November 3-5, 2004, pages

50–61. ACM, 2004. doi:10.1145/1031495.1031502.

[81] David C. Moore, John J. Leonard, Daniela Rus, and Seth J. Teller. Ro-

bust distributed network localization with noisy range measurements. In

John A. Stankovic, Anish Arora, and Ramesh Govindan, editors, Proceed-

ings of the 2nd International Conference on Embedded Networked Sensor

Systems, SenSys 2004, Baltimore, MD, USA, November 3-5, 2004, pages

50–61. ACM, 2004. doi:10.1145/1031495.1031502.

[82] Asis Nasipuri and Kai Li. A directionality based location discovery scheme

for wireless sensor networks. In Cauligi S. Raghavendra and Krishna M.

Sivalingam, editors, Proceedings of the First ACM International Work-

shop on Wireless Sensor Networks and Applications, WSNA 2002, At-

lanta, Georgia, USA, September 28, 2002, pages 105–111. ACM, 2002.

doi:10.1145/570738.570754.

[83] Dragos Niculescu and B. R. Badrinath. Ad hoc positioning system (APS)

using AOA. In Proceedings IEEE INFOCOM 2003, The 22nd Annual

Joint Conference of the IEEE Computer and Communications Societies,

San Franciso, CA, USA, March 30 - April 3, 2003, pages 1734–1743. IEEE

Computer Society, 2003. doi:10.1109/INFCOM.2003.1209196.

[84] Ewa Niewiadomska-Szynkiewicz and Michal Marks. Optimization schemes

for wireless sensor network localization. Int. J. Appl. Math. Comput. Sci.,

19(2):291–302, 2009. doi:10.2478/v10006-009-0025-3.

[85] Chia-Ho Ou and Kuo-Feng Ssu. Sensor position determination with flying

anchors in three-dimensional wireless sensor networks. IEEE Trans. Mob.

Comput., 7(9):1084–1097, 2008. doi:10.1109/TMC.2008.39.

https://doi.org/10.1145/1031495.1031502
https://doi.org/10.1145/1031495.1031502
https://doi.org/10.1145/570738.570754
https://doi.org/10.1109/INFCOM.2003.1209196
https://doi.org/10.2478/v10006-009-0025-3
https://doi.org/10.1109/TMC.2008.39

156

[86] Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close with-

out touching: near-gathering for autonomous mobile robots. Distributed

Computing, 28(5):333–349, 2015. doi: 10.1007/s00446-015-0248-5.

[87] David Peleg. Distributed computing: a locality-sensitive approach. SIAM,

2000.

[88] David Peleg. Distributed coordination algorithms for mobile robot swarms:

New directions and challenges. In Ajit Pal, Ajay D. Kshemkalyani, Ra-

jeev Kumar, and Arobinda Gupta, editors, Distributed Computing - IWDC

2005, 7th International Workshop, Kharagpur, India, December 27-30,

2005, Proceedings, volume 3741 of Lecture Notes in Computer Science,

pages 1–12. Springer, 2005. doi:10.1007/11603771_1.

[89] Rong Peng and Mihail L. Sichitiu. Angle of arrival localization for wireless

sensor networks. In Proceedings of the Third Annual IEEE Communications

Society on Sensor and Ad Hoc Communications and Networks, SECON

2006, September 25-28, 2006, Reston, VA, USA, pages 374–382. IEEE,

2006. doi:10.1109/SAHCN.2006.288442.

[90] Giuseppe Prencipe. Impossibility of gathering by a set of autonomous mo-

bile robots. Theor. Comput. Sci., 384(2-3):222–231, 2007. doi: 10.1016/

j.tcs.2007.04.023.

[91] Nasir Saeed, Haewoon Nam, Tareq Y. Al-Naffouri, and Mohamed-Slim

Alouini. A state-of-the-art survey on multidimensional scaling-based lo-

calization techniques. IEEE Commun. Surv. Tutorials, 21(4):3565–3583,

2019. doi:10.1109/COMST.2019.2921972.

[92] B. Sau and K. Mukhopadhyaya. Length-based anchor-free localization in a

fully covered sensor network. In 2009 First International Communication

Systems and Networks and Workshops, pages 1–10, Jan 2009. doi:10.

1109/COMSNETS.2009.4808851.

[93] Andreas Savvides, Chih-Chieh Han, and Mani B. Srivastava. Dynamic fine-

grained localization in ad-hoc networks of sensors. In Christopher Rose,

10.1007/s00446-015-0248-5
https://doi.org/10.1007/11603771_1
https://doi.org/10.1109/SAHCN.2006.288442
10.1016/j.tcs.2007.04.023
10.1016/j.tcs.2007.04.023
https://doi.org/10.1109/COMST.2019.2921972
https://doi.org/10.1109/COMSNETS.2009.4808851
https://doi.org/10.1109/COMSNETS.2009.4808851

157

editor, MOBICOM 2001, Proceedings of the seventh annual international

conference on Mobile computing and networking, Rome, Italy, July 16-21,

2001, pages 166–179. ACM, 2001. doi:10.1145/381677.381693.

[94] James B Saxe. Embeddability of weighted graphs in k-space is strongly

np-hard. In Proc. of 17th Allerton Conference in Communications, Control

and Computing, Monticello, IL, pages 480–489, 1979.

[95] Yi Shang and Wheeler Ruml. Improved mds-based localization. In Proceed-

ings IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies, Hong Kong, China, March 7-11,

2004, pages 2640–2651. IEEE, 2004. doi:10.1109/INFCOM.2004.1354683.

[96] Yi Shang, Wheeler Ruml, Ying Zhang, and Markus P. J. Fromherz. Local-

ization from mere connectivity. In Proceedings of the 4th ACM Interational

Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2003,

Annapolis, Maryland, USA, June 1-3, 2003, pages 201–212. ACM, 2003.

doi:10.1145/778415.778439.

[97] Francesco Betti Sorbelli, Cristina M. Pinotti, and Vlady Ravelomanana.

Range-free localization algorithm using a customary drone: Towards a re-

alistic scenario. Pervasive Mob. Comput., 54:1–15, 2019. doi:10.1016/j.

pmcj.2019.01.005.

[98] Francesco Sottile and Maurizio A. Spirito. Robust localization for wireless

sensor networks. In Proceedings of the Fifth Annual IEEE Communica-

tions Society Conference on Sensor, Mesh and Ad Hoc Communications

and Networks, SECON 2008, June 16-20, 2008, Crowne Plaza, San Fran-

cisco International Airport, California, USA, pages 46–54. IEEE, 2008.

doi:10.1109/SAHCN.2008.16.

[99] Seshan Srirangarajan, Ahmed H. Tewfik, and Zhi-Quan Luo. Distributed

sensor network localization using SOCP relaxation. IEEE Trans. Wirel.

Commun., 7(12-1):4886–4895, 2008. doi:10.1109/T-WC.2008.070241.

https://doi.org/10.1145/381677.381693
https://doi.org/10.1109/INFCOM.2004.1354683
https://doi.org/10.1145/778415.778439
https://doi.org/10.1016/j.pmcj.2019.01.005
https://doi.org/10.1016/j.pmcj.2019.01.005
https://doi.org/10.1109/SAHCN.2008.16
https://doi.org/10.1109/T-WC.2008.070241

158

[100] Kuo-Feng Ssu, Chia-Ho Ou, and Hewijin Christine Jiau. Localization with

mobile anchor points in wireless sensor networks. IEEE Trans. Veh. Tech-

nol., 54(3):1187–1197, 2005. doi:10.1109/TVT.2005.844642.

[101] Gabriele Di Stefano and Alfredo Navarra. Gathering of oblivious robots on

infinite grids with minimum traveled distance. Inf. Comput., 254:377–391,

2017. doi: 10.1016/j.ic.2016.09.004.

[102] Gabriele Di Stefano and Alfredo Navarra. Optimal gathering of oblivious

robots in anonymous graphs and its application on trees and rings. Dis-

tributed Computing, 30(2):75–86, 2017. doi: 10.1007/s00446-016-0278-7.

[103] Ichiro Suzuki and Masafurni Yarnashita. Distributed anonymous mobile

robots - formation and agreement problems. In Problems, in the Proceed-

ings of the 3rd International Colloquium on Structural Information and

Communication Complexity (SIROCCO ’96, pages 1347–1363, 1996.

[104] Gerard Tel. Network orientation. Int. J. Found. Comput. Sci., 5(1):23–57,

1994. doi: 10.1142/S0129054194000037.

[105] Paul Tseng. Second-order cone programming relaxation of sensor net-

work localization. SIAM J. Optim., 18(1):156–185, 2007. doi:10.1137/

050640308.

[106] George L Turin, William S Jewell, and Tom L Johnston. Simulation of

urban vehicle-monitoring systems. IEEE Transactions on Vehicular Tech-

nology, 21(1):9–16, 1972.

[107] W.T. Tutte. Graph Theory. Cambridge Mathematical Library. Cambridge

University Press, 2001.

[108] Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry Trahan. On

fast pattern formation by autonomous robots. Information and Com-

putation, page 104699, 2021. URL: https://www.sciencedirect.com/

science/article/pii/S0890540121000146, doi:https://doi.org/10.

1016/j.ic.2021.104699.

https://doi.org/10.1109/TVT.2005.844642
10.1016/j.ic.2016.09.004
10.1007/s00446-016-0278-7
10.1142/S0129054194000037
https://doi.org/10.1137/050640308
https://doi.org/10.1137/050640308
https://www.sciencedirect.com/science/article/pii/S0890540121000146
https://www.sciencedirect.com/science/article/pii/S0890540121000146
https://doi.org/https://doi.org/10.1016/j.ic.2021.104699
https://doi.org/https://doi.org/10.1016/j.ic.2021.104699

159

[109] Massimo Vecchio, Roberto López-Valcarce, and Francesco Marcelloni.

A two-objective evolutionary approach based on topological constraints

for node localization in wireless sensor networks. Appl. Soft Comput.,

12(7):1891–1901, 2012. doi:10.1016/j.asoc.2011.03.012.

[110] Jing Wang, Ratan K Ghosh, and Sajal K Das. A survey on sensor local-

ization. Journal of Control Theory and Applications, 8(1):2–11, 2010. doi:

10.1007/s11768-010-9187-7.

[111] Walter Whiteley. Some matroids from discrete applied geometry. Contem-

porary Mathematics, 197:171–312, 1996.

[112] Hongyuan Zha Xiang Ji. Sensor positioning in wireless ad-hoc sensor net-

works with multidimensional scaling. In Proceedings IEEE INFOCOM

2004, The 23rd Annual Joint Conference of the IEEE Computer and Com-

munications Societies, Hong Kong, China, March 7-11, 2004, pages 2652–

2661. IEEE, 2004. doi:10.1109/INFCOM.2004.1354684.

[113] Bin Xiao, Hekang Chen, and Shuigeng Zhou. Distributed localization us-

ing a moving beacon in wireless sensor networks. IEEE Trans. Parallel

Distributed Syst., 19(5):587–600, 2008. doi:10.1109/TPDS.2007.70773.

[114] Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns

formable by oblivious anonymous mobile robots. Theoretical Computer Sci-

ence, 411(26):2433–2453, 2010. URL: https://www.sciencedirect.com/

science/article/pii/S0304397510000745, doi:https://doi.org/10.

1016/j.tcs.2010.01.037.

[115] Yukiko Yamauchi and Masafumi Yamashita. Pattern formation by mobile

robots with limited visibility. 07 2013. doi:10.1007/978-3-319-03578-9_

17.

[116] Zheng Yang, Yunhao Liu, and Xiang-Yang Li. Beyond trilateration: On

the localizability of wireless ad hoc networks. IEEE/ACM Trans. Netw.,

18(6):1806–1814, 2010. doi:10.1109/TNET.2010.2049578.

https://doi.org/10.1016/j.asoc.2011.03.012
10.1007/s11768-010-9187-7
https://doi.org/10.1109/INFCOM.2004.1354684
https://doi.org/10.1109/TPDS.2007.70773
https://www.sciencedirect.com/science/article/pii/S0304397510000745
https://www.sciencedirect.com/science/article/pii/S0304397510000745
https://doi.org/https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1109/TNET.2010.2049578

160

161

List of Publications

Based on this thesis, the following papers have been published and communicated:

� Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb

Sau. Arbitrary pattern formation by opaque fat robots on infinite

grid. International Journal of Parallel, Emergent and Distributed Systems,

Vol. 37, pages 542-570, 2022. https://doi.org/10.1080/17445760.2022.

2088750

� Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb

Sau. Optimal Gathering by Asynchronous Oblivious Robots in

Hypercubes. Algorithms for Sensor Systems. ALGOSENSORS 2018.

Lecture Notes in Computer Science(), vol 11410. Springer, Cham. https:

//doi.org/10.1007/978-3-030-14094-6_7

� Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary and Buddhadeb

Sau. Distributed Localization of Wireless Sensor Network Using

CommunicationWheel.Information and Computation, 2022,104962,ISSN

0890-5401, https://doi.org/10.1016/j.ic.2022.104962.

An earlier version of the paper appeared in Algorithms for Sensor Systems.

ALGOSENSORS 2020. Lecture Notes in Computer Science(), vol 12503.

Springer, Cham. https://doi.org/10.1007/978-3-030-62401-9_2

� Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh and Buddhadeb

Sau. Arbitrary pattern formation by asynchronous opaque robots

on infinite grid. Arxiv e-prints, May. 2022. arXiv:2205.03053. https:

//doi.org/10.48550/arXiv.2205.03053 (Communicated)

https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1007/978-3-030-14094-6_7
https://doi.org/10.1016/j.ic.2022.104962
https://doi.org/10.1007/978-3-030-62401-9_2
https://doi.org/10.48550/arXiv.2205.03053
https://doi.org/10.48550/arXiv.2205.03053

162

Index

ASYNC, 8
FCOM, 9

FST A, 9
FSYNC, 7
LUMI, 9
OBLOT , 9
SSYNC, 7

anonymous, 52

autonomous, 52

boundary node, 24

chirality, 9

Communication wheel, 28

full visibility, 8

gathering, 51

Grid, 6

homogeneous, 52

Hypercube, 6

identical, 52

interior node, 24

limited visibility, 8

LOOK-COMPUTE-MOVE Cycle, 7

163

164

maximal neighbor, 24

oblivious, 52

obstructed visibility, 8

one axis agreement, 9

opaque robot, 8

Ring, 6

strong interior, 24

strongly interior node, 24

Tree, 6

trilateration, 10

two axis agreement, 9

weakly interior node, 24

Weber Point, 56

	235c5320f235b7d1af79bdf707ac4ee79758789dce31ad218db149f120548fa4.pdf
	66b71d9b0517e43e0bc6b498eee8397044f6652c5673cb6107f6d82000748c3e.pdf
	235c5320f235b7d1af79bdf707ac4ee79758789dce31ad218db149f120548fa4.pdf
	0b2fa8e56053c090e4042cf17d6b939dcbb9af56c97e42cbee353b70d40d5c77.pdf
	235c5320f235b7d1af79bdf707ac4ee79758789dce31ad218db149f120548fa4.pdf
	Introduction
	Theoretical Framework
	Related Works
	Overview of the Thesis

	Distributed Localization of Wireless Sensor Network Using Communication Wheel
	Basic Model and Assumptions
	Definitions and Notations
	Some Results from Graph Rigidity Theory
	Construction of a Globally Rigid Subgraph Using Communication Wheels
	The Localization Algorithm
	Overhead of the algorithm
	Discussion
	Concluding Remarks

	Gathering in Hypercubes by Asynchronous Oblivious Robots
	The Model
	Theoretical Preliminaries
	The Algorithm
	Concluding Remarks

	Arbitrary Pattern Formation on Infinite Grid by Opaque Point Robots
	Problem description and our contribution
	Model
	Notations and Definitions
	The Algorithm
	Conclusion

	Arbitrary Pattern Formation on Infinite Grid by Opaque Fat Robots
	Model and Definitions
	The Algorithm
	Concluding remarks

	Conclusion

