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Abstract

In the era of high throughput approaches, cell signalling research has made significant advances

in interdisciplinary fields. However, treatment approaches that target important molecules have

yet to perform up to their expected promises for most common malignancies. Incomplete un-

derstanding brought on by single-pathway targeted techniques is one of the main challenges.

Signal transduction is not linear, and they involve molecular cross-talks. To address these

cross-talks, we must consider the system as a complicated network of interconnecting compo-

nents. This shift from the conventional paradigm of focusing on a specific pathway to a broader

strategy will help develop innovative treatments.

The current thesis combined a systems biology approach with mathematical modelling

(based on ordinary and stochastic differential equations) to comprehend the intricate mecha-

nisms underlying cell signalling networks globally. The presence of densely coupled modules

controlling cellular processes makes signalling networks complicated. These signalling sys-

tems must be sensitive enough to capture the variations in the input stimuli. At the same

time, they must be robust enough to execute their cellular activities. The inclusion of inherent

noise adds more complicity to these input-output relations and is much more challenging to

comprehend. We have considered the more compact functional subunits known as network

motifs to help uncover this complexity. The motif organisation affects the network’s sensi-

tivity, robustness, and trade-off in a signalling network. This thesis focused on developing

new mathematical models and tools. With the help of mathematical models, we have created

analytical formulas that can classify and rank motifs according to their sensitivity to random
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perturbations.

Bistability, the simultaneous existence of two outputs for a single input, emerged from a

pilot study of two frequently observed two-node motifs. The inherent randomness of the sig-

nalling network disrupts emerged bistability. These complex phenomenons are extremely im-

portant to explain the intricate cellular signalling systems of cancer, diabetes and autoimmunity.

The emergence of bistability and the effect of randomness on it demands an in-depth study of

the association of network motifs and the input-output relation under random perturbation. To

get a global view of the association, we have considered all possible two-node network motifs

that can construct any biological network. The study reveals the significance of network motifs

in maintaining cell signalling in a noisy environment and provides a methodology for screen-

ing potential drug targets. The dependency of the input-output relation on motif structure was

applied to design a quantitative scoring formula to identify critical nodes in a protein-protein

interaction network. Potential drug targets from cancer networks were identified using the tool

and were validated by existing databases. The study reveals that potential drug targets also

can be identified using a mathematical tool based on the emergence of bistability in the motif

structures. Through hysteretic switching, signalling systems maintain robust signals in noisy

conditions, which can also be used to identify drug targets. Existing techniques to identify drug

targets are dependent on the data structure. They are mainly based on centrality and differentia.

Differential networks compare different networks to identify therapeutic targets that heavily

rely on data, whereas centrality-based methods identify targets using centrality measures. Tar-

geting these central positions helps to disintegrate the networks but has detrimental side effects.

Our study overcomes these drawbacks by proposing methods to identify prospective drug tar-

gets independent of the data and network structure.

The significance of bistability and randomness was further explored through two biologi-

cal processes. The emergence of bistability was observed in the tumour necrosis factor (TNF)

signalling network in T regulatory cells that helps in the decision-making processes. The com-

plex behaviour of cell survival and death of T regulatory cells was explained through bistable

switching. The model demonstrates that the primary contributor to cell death is the elevated

TNF concentration and increased c-Jun N-terminal kinase (JNK) phosphorylation. The results
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suggest that cell death can be controlled by reducing the TNF concentration. The bistable

region can be reduced by intrinsic randomness, thus affecting the cell’s normal functioning.

Calcium signalling in diabetic cardiomyocytes was studied to investigate the significance of

randomness in the complex case of diabetic cardiomyopathy. Altered calcium oscillation is

a major contributor to the insulin-resistant cardiomyocytes that mimic the diabetes condition.

The study proposed several strategies to restore the physiological calcium oscillations, which

signify normal functioning. Early oscillation was observed when we incorporated the random

translocation of the GLUT4 into the plasma membrane that controls glucose uptake, facilitating

the restoration mechanisms.

Overall, the early part of the thesis was devoted to developing novel methods and tools to

identify regulatory points of complex biological networks based on the association of network

motifs and signal-noise relationships. Mathematical tools were constructed by exploring the

emergence of bistability and the presence of intrinsic randomness in the system. Unlike existing

methods, these methods are independent of data and network structures that can be used to

identify potential drug targets. In the later part, we further explore the significance of noise

in various biological processes through mathematical models. The significance of bistability

in decision-making processes was captured by studying a small-scale kinetic model of TNF

signalling. The random translocation of GLUT4 in diabetic cardiomyocytes was studied to

comprehend the importance of randomness in the cell signalling system. The study reveals that

randomness facilitates the restoration mechanism of physiological calcium oscillations.
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1
Introduction

1.1 Biological networks

Biology, the science of life and living things, is derived from the Greek words "bios", which

means life, and "logos", meaning study [1]. The processes necessary for an organism to survive

and interact with its surroundings are referred to as biological processes. These consist of the

biochemical reactions, or the events involved in the persistence and evolution of living forms

[2]. Body homeostasis, structural organisation, metabolism, growth, reproduction, response to

stimuli etc., are some of the fundamental biological processes. A biological network is a way of

expressing systems as intricate webs of binary relationships or interactions between different

biological elements. In general, relationships between entities or objects are represented by

networks or graphs [3]. A graph typically consists of a collection of nodes connected by edges.

1
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In the case of biological networks, the nodes consist of biological entities, and the relations

between them define the edges.

The basis of graph theory was laid by Leonhard Euler’s analysis of the Seven Bridges of

Königsberg in 1736. The subject of random graphs was established between 1930 and 1950. It

was found in the middle of the 1990s that many distinct kinds of "real" networks have struc-

tural characteristics very dissimilar from random networks [4]. Scale-free and small-world

networks started influencing the development of systems biology, network biology, and net-

work medicine in the late 2000s [4]. In order to simulate the complex mechanism of a cell,

different forms of information might be displayed as networks. When analysing a network rep-

resentation, it is important to remember that the significance of the nodes and edges depends

on the type of data used to create the network. In terms of connection, complexity, and struc-

ture, different data types will also result in networks with varied edges and nodes capable of

carrying information across several levels. Fig. 1.1 gives a general network illustrating various

biological interactions.

Figure 1.1: General biological network. The figure depicts the network representations for
several kinds of biological interactions.
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1.2 Types of biological networks

When the biological entities used to construct the networks are at the population level, some of

the most common biological networks can be categorised are:

• Food webs: Feeding interactions bind all living things together. A complex food web

of interactions between predators and prey connects species when one consumes or is

consumed by another.

• Inter-species interaction networks: Ecological networks involving several species con-

structs these inter-species interaction networks. Plant-pollinator interactions are advan-

tageous to both species and frequently involve a wide variety of plant and pollinator

species. The success of plant reproduction depends on these interactions.

• Intra-species interaction networks: Social network is a kind of intra-species interaction

network consisting of only one species. The study of social networks can also highlight

significant variations in animal behaviour in changing environments.

Based on the data used to construct the network of the cell, biological networks can be

categorised into several popular categories, including:

• Protein-protein interaction (PPI) networks: PPI networks represent the physical or func-

tional relationship between the proteins. Proteins are represented as the nodes that are

linked by directed or undirected edges representing their relationship. Practically every

process occurring inside the cell depends on PPIs.

• Metabolic networks: Metabolic networks represent the biochemical processes that en-

able an organism to develop, reproduce, adapt to its surroundings, and preserve its struc-

tural integrity. In metabolic networks, enzymes and metabolites operate as nodes, and the

reactions that describe their transformations are shown as directed edges. The direction

of metabolic flow or the regulatory effects of a particular reaction also can be represented

by edges.
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• Genetic interaction networks: The phenotype that results from simultaneous mutations

in two or more genes is markedly different from the phenotype that would follow from

summing the effects of the individual mutations. This type of interaction is a syner-

gistic phenomenon known as genetic interaction. Genetic interaction networks show a

functional rather than a physical relationship between several genes. Nodes represent

genes, while the connections between them are shown as edges. Based on the interaction

evidence, the edges’ directionality can be determined.

• Gene / transcriptional regulatory networks: Gene regulatory networks can model gene

expression control. Genes and transcription factors are shown as nodes, and various kinds

of directional edges show how they are related to one another. For instance, the directed

edge between genes A and B shows that A controls the expression of B. Therefore, these

directional edges represent the activation and the inhibition of gene regulation.

• Cell signalling networks: Signals are transduced within or between cells, forming in-

tricate signalling networks crucial to the tissue’s structure. Signalling pathways simulate

the flow of information within the cell and depict the sequential order of occurrences.

Gene regulatory networks are a subtype of cell signalling networks that concentrate on a

particular signalling event that is frequently the last stage of a signalling cascade. Gene

regulatory, metabolic, and protein-protein interaction networks are commonly incorpo-

rated into the signalling networks [5].

The cell signalling network represents the cell signalling processes and pathways, which

is an essential aspect of all cellular life in both prokaryotes and eukaryotes. Every cellular

activity is coordinated through cell signalling networks, and since it involves other interaction

networks, the current thesis is mainly focused on cell signalling networks.

1.3 Cell signalling

The ability of a cell to receive, process, and transmit messages with its surroundings and with

itself is known as cell signalling or cell communication in biology. Cell signalling is an intricate
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process that coordinates the proper cellular response by transmitting diverse cellular inputs to

effector molecules through a signalling cascade. Critical cellular decisions like development,

cell growth and division, differentiation, migration, and apoptosis are influenced by cell sig-

nalling. Homeostasis is preserved through the coordinated control of these cellular processes.

In all cases, the cell responds to chemical, mechanical or electrical signals, including hormones,

neurotransmitters, mechanical stretch, shear and ion currents. Cell signalling also provides the

coordination needed for multicellular creatures to function. Development, tissue repair, immu-

nity, and normal tissue homeostasis are based on cells’ capacity to recognise and appropriately

respond to their micro-environment [6–8]. Numerous disorders, such as cancer, autoimmunity,

and diabetes, are caused by errors in cellular information processing [9, 10]. Therefore cell

signalling becomes the most extensively studied area in the case of human diseases. The relay

information to effectors that alter sub-cellular processes is activated by signalling pathways.

Typically, there are three components of a cell signalling process, signal reception, signal

transduction, and response. When a ligand binds to the cell’s receptor, it sends the signal to

the cell’s interior, where the chemical messengers send the signal to the cell’s nucleus, which

accordingly responds. In the multicellular system, cell signalling produces signals that serve

as inputs for the other cells. Figure 1.2 illustrates a schematic diagram of the cell signalling

process. Every component of a cell’s signalling pathways works together to form a compli-

cated network. Network analysis enables us to comprehend the fundamental design of cell

signalling networks and the potential effects of alterations to these networks on information

transmission and flow. According to their organisation, networks can display various emer-

gent traits, such as bistability and ultrasensitivity [11–14]. According to a review of signalling

pathways in mammalian systems by Eungdamrong and Iyengar [11], cellular signals do not

necessarily propagate linearly. Instead, cellular signalling networks are composed of densely

coupled modules that can be utilised to control various functions in a context-dependent way

[15]. Thus, mathematical models must be created to comprehend the overall behaviour of sig-

nalling networks and to forecast higher-order functions [11]. Additionally, as the combination

of inputs often affects the behaviour of the output in a non-linear way, dynamical models of

these signalling networks in the form of differential equations are commonly employed to sup-
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plement experimental studies [16]. There are numerous publications where researchers used

a system of ordinary differential equations to examine the network’s structural topologies and

their relationships to the signalling process [17, 18].

Figure 1.2: Cell signalling. The figure depicts the schematic representation of the simple steps
involved in the cell signalling processes.

1.4 Types of cell signalling

Mechanical signals and biochemical signals are the two broad classifications of cell signalling.

Cells can sense and react to mechanical signals, which are only the forces that are applied to and

produced by the cell [19]. Signals produced by biological substances, including proteins, lipids,

and ions, are referred to as biochemical signals. These signals can be classified as signalling

within, between, or among the cells depending on the distance between the signalling and

responder cells or between two signalling molecules. Here are some examples of classified

signalling:

• Intracrine signalling: In this situation, the target cell generates signals that are internal

to the target cell. It is possible to classify steroid hormones as intracrine since they have

an effect on intracellular receptors. Example: Parathyroid hormone-related protein

• Autocrine signalling: Here, the target cell generates and secretes signals that interact with

receptors on the target cell to affect it directly. Example: cytokine interleukin-1.
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• Juxtacrine signalling: These signals can influence either the emitting cell or cells next

to it because they are transferred along cell membranes via protein or lipid components

that are essential to the membrane. It is essential for the growth of the brain and cardiac

function in particular. Example: Signaling through Gap Junctions.

• Paracrine signalling: Paracrine signalling, which modifies the behaviour or differenti-

ation of surrounding cells, is the mechanism used by cells to communicate with one

another. Example: Neurotransmitters signalling.

• Endocrine signalling: Endocrine signalling is the phenomenon whereby biochemical

processes work to control distant tissues by secreting substances right into the circulatory

system. Hormones produced by endocrine cells circulate throughout the body via the

blood. Example: beta cells insulin secretions.

Cells can communicate with each other by making physical contact or by releasing a sig-

nalling molecule that is subsequently received by another cell. For example, direct cell-to-cell

contact is necessary for the functioning of the heart. Heart cells use gap junctions to connect

their cytoplasm to the cytoplasm of neighbouring cells [20]. They combine two cells’ cyto-

plasms directly, allowing different chemicals, ions, and electrical impulses to travel through

a controlled gate between cells. Gap junctions between neighbouring cells in cardiac muscle

enable action potentials to travel from the heart’s cardiac pacemaker region and stimulate the

heart’s contraction [21]. Cell-to-cell communication via signalling molecules plays an essential

role in the body’s immune response. For example, signalling molecules like cytokines, a group

of small proteins, are crucial in controlling the growth and activity of other immune system

cells and blood cells. Cytokines produced by one cell can affect the growth and development

of other immune and non-immune cells that helps in the body’s immune and inflammatory re-

sponses. Cytokines support the body’s natural ability to fight cancer by transmitting signals

that can cause abnormal cells to die and normal cells to live longer [22, 23].
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1.5 Cell signalling defects and diseases

Defects in signalling pathways are the root cause of many disorders. These malformations

come in various types, and their reasons are also very diverse. Some of these defects can be

brought on by pathogenic organisms and viruses, which can interfere with signalling events.

For example, numerous viruses and pathogenic microorganisms alter the signalling mecha-

nisms, causing defects in the signalling system and leading to different diseases [10]. Like,

Shigella flexneri, a gram-negative bacteria can interfere with PtdIns4,5P2 regulation of actin re-

modelling, causing bacillary dysentery. Cholera, caused by Vibrio cholerae, secrets the cholera

toxin, which activates the cyclic AMP signalling pathway and causes severe water loss, vomit-

ing and muscle cramps [10]. Other diseases, such as tuberculosis, listeriosis, peptic ulcers, etc.,

are also caused by pathogens that alter the signalling system [10].

Deficiencies in the operation of cell signalling pathways are responsible for a number of

other illnesses. The majority of the significant illnesses that affect people, including high blood

pressure, heart disease, diabetes, and many types of mental illness, appear to be caused by

minute phenotypic changes in signalling pathways. Such phenotypic remodelling modifies cell

behaviour and subverts normal cellular processes, resulting in disease [10]. Cancer, one of the

most dreaded illnesses affecting people, is a multi-step process developed by multiple muta-

tions in various signalling components. Firstly, the unbounded growth caused by oncogenes

can alter the signalling pathways related to proliferation, making them constitutively active

and causing cells to divide repeatedly. Secondly, the tumour suppressors’ mutations can re-

duce inhibitory effects on cell proliferation. Thirdly, the mutations in the signalling system

can identify aberrant cells and eliminate them by causing senescence or apoptosis. Therefore,

numerous combinations of oncogene activation, tumour suppressor gene inactivation, and the

emergence of various anti-apoptotic pathways might result in cancer development [10]. Several

autoimmune diseases are also caused due to defective signal processing. Like, in the case of

Inflammatory Bowel Disease (IBD), chronic intestinal inflammation is brought on by releas-

ing inflammatory mediators such as tumour necrosis factor (TNF), IL-6, IL-8, and MCP-1. In

the case of Multiple sclerosis (MS), an inflammatory response is initiated in the central ner-

vous system (CNS) due to the recognition of oligodendrocytes as foreign cells by T cells [10].
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Several other prevalent diseases, like insulin resistance and diabetes, are also caused due to

alterations in the signal processing or the defects in the cell signalling system [10]. The enor-

mous redundancy built into cell signalling pathways creates a wide range of opportunities for

creating fresh approaches to treating numerous diseases.

1.6 Presence of noise in cell signalling

Random fluctuations of a signal are defined as noise. In the case of cell biology, cellular noise

is the random fluctuations in quantities of biological entities (e.g. gene, protein etc.) [24]. Cell

signalling noise can be categorised into two types, intrinsic and extrinsic noise. Intrinsic noise

describes the fluctuation in identically-regulated genes within a single cell. In comparison,

extrinsic noise defines the variability of identically-regulated genes between different cells [25].

For instance, even within the same tissue, genetically identical cells are frequently found to

have variable sizes, shapes, and amounts of protein expression [25–27]. Elowitz el al. [25]

showed that the presence of intrinsic noise in Escherichia coli exhibits phenotypic variations

in the bacteria population. These seemingly arbitrary changes may have significant biological

and physiological repercussions.

Cells use biochemical networks of interacting genes and proteins to sense and process infor-

mation, which involves a sequence of molecular processes [28]. The whole process is carried

out through a network of proteins known as the protein-protein interaction (PPI) network. PPI

network is the mathematical representation of the physical contacts between proteins in the

cell [29]. These physical contacts are specific, have a particular biological meaning, and serve

a specific biological function. The intrinsic promiscuity of PPI introduces noise in signalling

networks [30]. Randomness at the intracellular level is caused due to low copy numbers of

chemical reactants and their heterogeneous distribution inside the cell [31]. Chemical reac-

tions, diffusion, homologous recombination, gene expression, and many other fundamental

biological processes are regulated to a large extent by the inherently stochastic interactions of

molecules [32].

There are biological circuits where the input signal governs the flow of information, and ran-
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dom fluctuations [33]. So the response-specificity is subjected to the input signal and stochastic

perturbation, causing a change in the steady-state output value. This change in steady-state level

could influence many biological processes, including adaptation, immunological memory, de-

velopment, and cell differentiation[30, 31]. In the presence of molecular signalling noise, the

signal transmission becomes a probabilistic rather than a linear view [30]. Multiple outputs

are produced due to the sensitivity of the intracellular system. These variations are induced by

the extracellular noise, or random perturbation of the intracellular components [8, 34–39]. The

noise caused by stochastic fluctuations plays a significant role in cell function and phenotypic

behaviour[30]. These fluctuations in biological systems can either improve the sensitivity of

the biological process or decrease its accuracy. The presence of noise alters central regulatory

switches of cellular processes. Thus, noise may have a role in human diseases [30].

1.7 Regulatory points in a biological network

Complex biological systems can be modelled as networks in the real world to understand the

relationships between biological entities. A subset of the nodes that can significantly affect or

regulate the outcome and function of the whole network can be called regulatory nodes. Identi-

fying and ranking these regulatory points in a complex network, such as a biological network,

is one of the most important and fundamental problems in network research [40–44]. Studying

regulatory nodes in complex networks has important theoretical and practical implications for

the structure, transmission, and synchronisation of complex networks. Based on the datasets

used to construct the network, the identification of the key regulatory nodes can significantly

help us to stop network attacks [45], to prevent the transmission of computer viruses across net-

works [46], to prevent the spread of misleading information throughout society [47], to guard

against an outbreak of infectious diseases in the population [48], to highlight the key genes that

might influence the phenotypes of diseases [42] and so on. Accurate estimation and evaluation

of the importance of the node are relevant to enhance the robustness and design principle of

the system structure. On the one hand, these crucial nodes can increase the network’s overall

dependability and resilience. On the other hand, the entire network can also be destroyed by
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purposefully targeting these essential nodes. [40].

A common trait shared by all species is the ability to adapt to ongoing environmental

changes. Numerous routes that receive and process signals from various parts of the cell and

the external environment are used to interact with the environment [15]. The signals that reg-

ulate specific cell functions are transmitted via distinct signalling pathways. These cellular

signalling pathways do not work independently but are part of a more extensive complex sys-

tem. To understand the integrated cellular functions, we need to recognise and investigate the

characteristics of the functional organisations of these complex cell signalling networks [15].

Cell signalling governs the cell’s activities and coordination of multiple cell actions. Cell sig-

nalling regulates most of the cellular responses in our body [7, 8]. Defects in the signalling

system may lead to complicated diseases such as autoimmunity, cancer and diabetes [9, 10].

The present thesis focused on identifying the regulatory points that potentially led to disease

phenotypes in the cell signalling systems.

1.8 Methods to find the regulatory points: Modelling cell sig-

nalling networks

It is crucial to comprehend the statistical and mathematical techniques used to find the regula-

tory points from a complex biological network, such as a cell signalling network. Techniques

that reveal the associations, communities, and centrality of the nodes can be used to deter-

mine the relationships. The development of these techniques straddles disciplinary borders and

strongly incorporates ideas from Bioinformatics, Computer Science, and Mathematics. Some

of the most common principles used to find the regulatory points are discussed below:

• Association: When analysing a network, there are numerous techniques to determine

the association between nodes. The method to find the association between the nodes

is chosen based on our interests. One of the most common methods used to find the

association between nodes is to find the correlation between the nodes. The correlation

coefficient is the numerical metric used to measure the correlation between two entities.

It gives a statistical relationship between the two variables.
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• Centrality: The most frequently used centrality measures are degree centrality, closeness

centrality, betweenness centrality, and Katz centrality. But these centrality measures are

heavily dependent on the topology of the network. Every kind of centrality technique

has the potential to reveal significant features about the nodes in a specific network. Still,

they all have one thing in common: they aim to quantify a node’s importance inside a

network. In a study by Joy et al. [49], they used centrality measures to find the impor-

tant proteins from a yeast protein interaction network. Proteins with high betweenness

centrality measures were more crucial and translated closely to the evolutionary age of a

particular protein.

• Communities: A network is considered to have a community structure if its nodes can

be easily categorised into (sometimes overlapping) sets of nodes, with each set being

densely connected to the others. In real networks, community structures are fairly preva-

lent. Social networks are made up of community groups that share a common location,

common hobbies, common occupations, etc. In the case of protein interaction networks,

communities may correspond to a group of proteins in a cell with comparable function-

ality.

The biological systems do not work individually, but they operate in unison. Thus, de-

veloping efficient treatment methods necessitates a system-level knowledge of the molecules

affected by disease and their complicated relationships. The systems biology approach is the

best way to gather system-level knowledge of complex biological systems. The cell signalling

system is based on hierarchy: the proteins on the edges (cell membrane) and the proteins in

the core (nucleus) differ in their characteristics and functions. The linkages connect these hier-

archical structures. Systems biology uses a holistic approach that incorporates the knowledge

of the structures and their linkages. In other words, systems biology can recognise every com-

ponent of a biological system and aims to create a complete system model by quantifying its

components and their relationships. Network analysis and mathematical modelling are two fun-

damental elements of systems biology. Network analysis is mainly based on statistical tools,

thus unable to capture the dynamics of the system’s components. However, we need a dynamic

approach to capture the effect of intrinsic noise on the system components. So, in this thesis,
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we have opted for a systems biology approach based on mathematical modelling to identify the

regulatory points accurately and efficiently under perturbation.

1.9 Mathematical modelling of cell signalling systems

Cell signalling systems are very complex in nature. This complexity arises due to the existence

of hierarchy in the system. Each hierarchy adds different dynamics to the signalling system.

The class of proteins that reside on the cell membrane (periphery) have different kinetics than

the proteins/genes in the nucleus (core) of the cells. Although they may follow some regular

dynamical patterns, the inherent stochasticity may change the dynamics abruptly. These sudden

change in dynamics is hard to capture in experimental studies. Even if they can capture the

outcome of the stochastic processes, it is hard to track the underlying mechanism. For example,

by doing a knock-out study of a gene, biologists try to predict the functionality of the gene [50].

But these experiments may overemphasise the functionality of the single gene over a pool of

numerous genes that are highly connected to a very complex system. Mathematical models, on

the other hand, can portray these complexities abstractly. These models have the audacity to

identify crucial parameters deriving the outcome of the system. However, the hypotheses from

the mathematical studies need to be validated experimentally.

Mathematical models have the perfect balance between simplicity and complexity. They

are composed of a well-defined set of equations capable of producing the complex dynamical

properties of the signalling system. At the same time, they are simple enough to demonstrate

the underlying mechanisms. In the disciplines of drug discovery and pharmacokinetics, mathe-

matical models have been frequently constructed to investigate receptor-ligand interactions and

pharmacokinetics [51, 52]. Metabolic networks have also been studied for a long time to as-

sess the flow of metabolites in vast networks with several regulatory loops using sophisticated

mathematical methods [53, 54]. Mathematical network analysis can enrich our knowledge of

signalling pathways in three ways [11]. First, modelling reveals information about how distinct

operational pathways operate in relation to one another. Second, modelling makes it possible

to estimate variables that are currently technologically impractical to measure experimentally,
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and it frequently confirms the validity of suggested molecular mechanisms. Third, modelling

helps find potential targets for the pharmacological treatment of disorders by identifying the

main regulatory hubs of signalling networks. That way, the mathematical model also reduces

the time and saves ample resources required for the study.

1.9.1 Mathematical models based on ordinary differential equations

Mathematical models based on differential equations are frequently used to portray complex

cell signalling systems. Chemical kinetics models based on ordinary differential equations

(ODEs) are the most widely used modelling frameworks among the diverse models available

to analyse cell signalling processes. This method’s fundamental presumption is that the cell

functions as a well-stirred reactor and that the governing equation describing the dynamics of

a signalling component has the following structure:

dxi

dt
= production/activation− consumption/deactivation/degradation. (1.1)

The above equation indicates that the rate at which every molecule’s concentration (xi) changes

is equal to the rate at which it is produced and/or consumed/degraded. This equation is merely

the mathematical representation of the actual biological phenomenon. The production or degra-

dation terms can be constants, first order, or non-linear based on the biological phenomenon

the equations are representing [55]. One of the significant drawbacks of the ODE-based model

is that it assumes that the cell is a well-stirred reactor. Although this assumption may be true

for some cases, it will be incompetent in case of biochemical reactions which are spatially

restricted or where factors like noise are involved in the system.

1.9.2 Mathematical models based on stochastic differential equations

ODE-based models translate the kinetics of biological entities into a system of differential

equations. But this is deterministic, which is unable to capture the effect of random fluctuation

inherently present in the cell signalling systems. Adding stochastic effect or noise to such sys-

tems is one method of modelling them. Stochastic models must be used to accurately depict
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the various types of variability needed for the realistic modelling of cell signalling systems.

However, these stochastic models are much more computationally demanding than determinis-

tic models and challenging to fit into experimental data. We can represent the general form of

a stochastic differential equation (SDE) as

dyt = f (t,yt)dt +G(t,yt)dwt ,

or with the equivalent integral form

yt = yt0 +
∫ t

t0
f (s,ys)ds +

∫ t

t0
G(s,ys)dws,

with an initial value, yt0 . Here, f : [t0, t]× Rn → Rn,G : [t0, t]∏Rn → Rn×m and {wt}t∈[t0,t]

denote an m-dimensional Wiener process (Brownian motion). Rn and Rn×m are n-dimensional

and n×m-dimensional Euclidean space, respectively.

1.10 Emergence of complex qualitative properties: ultrasen-

sitivity, bistability and oscillation

Information relays to the effectors through signal transduction, which alters the sub-cellular

processes. The information processing system must detect the input signal’s amplitude and

duration to generate an output signal of proper strength and duration. This relation is called the

input-output (I/O) relation in the cell signalling network. Numerous studies demonstrated that

multiple outputs are produced at the level of changes in gene expression and cellular activities

[8, 34–39]. These provide strong evidence that intracellular signalling systems are sensitive

to input stimuli changes like mutations, protein turnover rates, etc. However, for these in-

appropriate and non-specific responses, the system has its safeguards. In complex biological

processes like adaptation, immunological memory, development, and cell differentiation, the

changes in steady-state levels determine the outcome [13, 56, 57]. The complexity in the bio-

logical systems comes due to the presence of non-linear interactions between the cell signalling

components [16], which arises from the presence of feedbacks [58]. Autoregulation is the most
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basic form of positive feedback and is one of the most prevalent architectural components in

signalling networks [59]. Also, the gene networks frequently use both positive and negative

feedback as a control mechanism [60]. Prokaryotic gene circuits primarily use negative feed-

back to maintain homeostasis [61, 62]. Eukaryotic transcriptional activators frequently control

their expression through positive and negative feedback [63]. The presence of non-linearity and

the feedbacks make ideal ingredients for the emergence of complex qualitative properties like

ultrasensitivity, bistability, and oscillations [14, 64–68].

The term ultrasensitivity refers to the stimulus/response curve that is steeper than the hyper-

bolic Michaelis-Menten curve. Cooperativity is the most common mechanism to generate ul-

trasensitive responses. For positively cooperative entities, we get sigmoidal stimulus/response

curves. They require significantly less stimulus to drive from a very low response to a high

response. But, when the stimulus is low, the ultrasensitive curve is less steep than Michaelis-

Menten. Thus, this ultrasensitive curve moves towards all-or-none, switch-like responses [64].

One such ultrasensitive curve is shown in Fig. 1.3 (c). The all-or-none switch-like responses

may be particularly well suited for mediating processes like mitogenesis, cell fate induction,

and oocyte maturation when a cell flips from one discrete state to another due to the form of

the MAPK stimulus/response curve [64]. Similar responses were reported by Bagowski et al.

[12, 69] that the JNK’s reactions to sorbitol and progesterone are virtually all or none. They ob-

served that JNK activity was either extremely high or extremely low in each individual oocyte.

Another crucial part of the I/O relation is the existence of bistability, where the output signal

can attain any of the two alternative stable-activity states that persist under identical paramet-

ric/experimental conditions [70]. Highly ultrasensitive responses become bistable when the

feedback strength increases beyond some threshold value [71]. One of the hallmarks of bista-

bility is that they often exhibit a kind of memory known as hysteresis [71, 72]. Hysteresis is the

phenomenon where bistable switching is observed for different stimulus-response [71, 73, 74].

The two response curves representing two discrete stable steady states form a loop known

as the hysteresis loop [75]. Thus the I/O relation becomes a loop rather than a curve. This

hysteretic switching can be categorised into two types, reversible and irreversible [75]. In re-

versible hysteresis, the system can return to its previous steady state only by changing the input
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stimulus, whereas in irreversible hysteresis, it can not. Whether a system will have reversible

or irreversible hysteresis depends on the strength of the feedback parameter. By increasing

the strength of the feedback parameter, a reversible hysteresis can be transformed into an irre-

versible one [71].

Figure 1.3: Response curve modification due to varying feedback strength. The figure
depicts the emergence of ultrasensitivity, bistability and hysteresis (reversible & irreversible)
upon changing the feedback strength (F). The response is a smooth curve when the feedback
strength is low (F = 0.04). It becomes sigmoidal (ultrasensitive) when F is increased slowly to
0.06 (but still monostable). Upon further increasing, the response curve splits into two curves
and becomes bistable at F = 0.07. It shows reversible hysteresis for F = 0.07 & 0.08. Eventually,
the curve shows irreversible hysteresis when F is 0.09. The blue lines (response with F = 0.04)
are included for comparison. The unit-free figure is adopted from [95] only used for depiction.

Fig. 1.3 depicts different stimulus/response curves showing various stages of ultrasensitiv-

ity and bistability. With a low feedback strength (F = 0.04), the response is a smooth curve,

Fig. 1.3 (a). When F is gradually increased to 0.06, it becomes sigmoidal (ultrasensitive) but

still monostable (see Fig. 1.3 (c)). Upon further increasing the feedback strength to 0.07, the
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response splits into two curves and becomes bistable (see Fig. 1.3 (d)). And the system shows

reversible hysteresis for F = 0.07 & 0.08 (see Fig. 1.3 (d-e)). Eventually, when the feedback

becomes too large (F = 0.09), the response shows irreversible hysteresis (see Fig. 1.3 (f)). Even

when the input concentration varies, the system can retain its current state through this hystere-

sis. Hence, these hystereses make the system robust against fluctuations in the input stimuli

[75].

It is well recognised that ultrasensitivity and bistability play a crucial role in biological

systems, particularly in cell signalling and functioning [71, 76–80], differentiation [71, 76, 77]

and cell cycle progression [79–81]. By conserving the cellular memory of previous stimuli,

it can improve adaptability in various organisms, including bacteria and humans [82, 83]. In

positive feedback networks, where the input to the MAPK cascade is positively regulated by

the activated MAPK, Ferrell and colleagues demonstrated that bistability might be driven by

ultra-sensitivity [71, 77, 78]. Kholodenko et al. [84] establishes the possibility of bistability at

the level of a single stage of the MAPK cascade. Bistability also plays a vital role in diseases

like cancer and prion disease [85]. In cancer, bistability is mainly involved in the loss of cellular

homeostasis associated with the beginning of the disease. The self-perpetuated activation of a

signalling circuit is a declaration of its bistability. Alam et al. [86] have demonstrated the

existence of self-perpetuated activation mechanisms for ERK1/2 in bronchial epithelial cells.

ERK1/2 bistability arises from repetitive stimulation of the cell. They have hypothesised that

this self-perpetuated ERK1/2 signal plays an important role in the pathogenesis of asthma.

Kheir Gouda et al. [87] used a mathematical model on bistability to understand evolutionary

reversibility.

Oscillation is another qualitative behaviour generated by the non-linearity in the signalling

system. These oscillations are common in biological systems. Circadian rhythm is a well-

known example of oscillation. Feedback appears to be essential for generating oscillations in

gene networks [88]. Negative feedback is well-acknowledged as crucial for preserving oscil-

lations in the rate of gene transcription. A negative feedback loop develops if a gene product

inhibits the transcription of its own gene either directly or indirectly. Negative feedback loop

systems frequently enter a steady state that can be either stable or unstable. If it is stable, the
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result is generally a damped oscillation, tending towards the stable state; if it is unstable, the

result is a sustained oscillation [89]. Circadian rhythmicity models frequently rely on cyclic

inhibition of their own transcription by one or more genes (e.g., per and tim in Drosophila, or

freq in Neurospora) [88].

Various systems showing circadian rhythms have been modelled using negative feedback

of genes involved in circadian rhythm. They are as diverse as the fungus Neurospora [90],

the plant Arabidopsis thaliana [91], and the fruit fly Drosophila [92]. In general, oscillation

cannot be produced by positive feedback alone. Positive feedback allows the system to reach

an upper steady state, but there is no counterbalancing negative feedback process to reduce the

concentration. The addition of a limiting rate can cause oscillations to be produced by posi-

tive feedback [88]. Gene network models that include both positive and negative feedback can

easily oscillate. The cardiomyocytes are another system where oscillation is significant. Car-

diomyocytes’ cytoplasmic calcium oscillations are fuelled by calcium ion exchange between

the cytoplasm, extracellular environment, and sarcoplasmic reticulum (SR). This ion exchange

is accomplished by several ionic channels and pumps embedded into the extracellular mem-

brane, and the SR [93]. Oscillations can also emerge from single-stage bistability. The neces-

sary condition for the oscillatory behaviour at the cascade level is single-stage bistability was

studied computationally by Qiao et al. [94].

1.11 Effect of stochasticity on ultrasensitivity, bistability and

oscillation

A highly complex signalling network usually displays extensive dynamic control in response

to disturbances. Furthermore, it is well established that stochastic fluctuations or randomness

are inherently present in the signalling network [96]. Numerous intriguing effects of random

fluctuations have recently been theorised and experimentally verified [25, 97–99]. Stochasticity

can alter the emergence of complex behaviours like bistability and oscillations, some of which

are mentioned here. Artyomov et al. [100] observed that the deterministic system has a single

steady state for all parameter values, but the stochastic response is bimodal. Arkun et al. [101]
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investigated the emergence of bistability and oscillation by the presence of positive and negative

feedback loops in the ERK signalling pathway. They have also shown how negative feedback

combats uncertainty that arises from extracellular fluctuations and internal perturbations. Sim-

ilar results for negative feedback were obtained in other studies also [102, 103]. Another study

reported the interplay of negative and positive feedback in TCR signalling results in bistability.

Bistability combined with stochastic fluctuations allows for switch-like responses to signals

[104]. It is known that an increase in stochastic perturbation may affect the cellular signalling

memory. In other words, it can switch the system from one steady state to another steady state

[99, 105–107]. In the case of oscillations in biological networks, it is well known that intrinsic

noise can have an impact on the frequency and amplitude of sustained oscillations [108]. It

has been seen that biological oscillators can utilise stochastic noise by channelling it into os-

cillatory power [102]. Marchena et al. [109] observed that adding a small amount of noise to

the RyR behaviour increases the oscillatory regime of calcium oscillations. Wang et al. [110]

demonstrated how the self-repressing Hes1 gene exploits the stochastic oscillations induced by

the intrinsic fluctuations to generate robust oscillations. Thus, in the case of bistability, stochas-

ticity may play a dual role; however, oscillatory systems benefit from the inherent stochasticity

of biological systems.

1.12 Different tools used to study mathematical models

This section discusses several fundamental definitions and theorems that are used to study

mathematical models.

1.12.1 Mathematical tools to study deterministic models

Definition 1.12.1. (Autonomous system) Let us consider a system of differential equations of

the following form
dy
dt

= ẏ = g(y) (1.2)
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where y ∈ Rn, g = (g1,g2, .....,gn)
T and gi = gi(y1,y2, .....,yn). The initial value problem

ẏ = g(y)

with

y(0) = y0

will have a unique solution if the partial derivatives of g1,g2, .....,gn are C1 functions. Since

the function g does not contain t explicitly, the system (1.2) is called an autonomous system.

Otherwise, it is called a non-autonomous system.

Definition 1.12.2. (Equilibrium point) If the following equality holds true for a point ŷ =

(ŷ1, ŷ2, ...., ŷn),

ẏ = f (ŷ) = 0,

then the point ŷ is said to be the equilibrium point of the system (1.2).

Definition 1.12.3. (Local stability) An equilibrium point ŷ of (1.2) is said to be locally stable

if for each ε > 0 there exists a δ > 0 such that every solution y(t) of (1.2) with initial condition

y(t0) = y0, ||y0− ŷ||< δ ⇒ ||y(t)− ŷ||< ε for all t ≥ t0, where ||.|| is the Euclidean norm.

Definition 1.12.4. (Local asymptotic stability) An equilibrium point ŷ of (1.2) is said to be

locally asymptotically stable if it is locally stable and if there exists a ζ > 0 such that ||y0− ŷ||<

ζ ⇒ limt→∞ ||y(t)− ŷ||= 0.

Definition 1.12.5. (Global asymptotic stability) An equilibrium solution ŷ of (1.2) is said to

be globally asymptotically stable if it is locally asymptotically stable and if ||y0− ŷ|| < ∞ ⇒

limt→∞ ||y(t)− ŷ||= 0.

Definition 1.12.6. (Instability) If the equilibrium point ŷ of (1.2) is not stable, then it is called

unstable.

Theorem 1.12.1. (Hopf bifurcation theorem) Let us consider an autonomous system of ordi-

nary differential equations

ẏ = h(y,µ), y ∈ Rn, µ ∈ R, (1.3)
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where h is continuously differentiable. Suppose, the system (1.3) has an equilibrium ŷ(µ).

Moreover, the Jacobian matrix evaluated at ŷ(µ) has one pair of complex eigenvalues

ξ1,2(µ) = A(µ)± iB(µ)

such that for some µ = µ∗ it becomes purely imaginary, i.e.,

A(µ∗) = 0 and B(µ∗) 6= 0.

Then the eigenvalues will cross the imaginary axis with nonzero speed if (transversality condi-

tion)
dA(µ)

dµ

∣∣∣∣
µ=µ∗

6= 0.

Then the system of differential equations (1.3) will undergo a Hopf bifurcation around ŷ(µ) for

µ = µ∗ and will possess a periodic solution with approximate period T = 2π

B(µ∗) as µ crosses µ∗.

The parameter µ is called the bifurcation parameter, and the value µ∗ is called the bifurcation

point.

1.12.2 Mathematical tools to study stochastic models

Let us consider a general stochastic differential equation

dyt = f (t,yt)dt +G(t,yt)dξt . (1.4)

The equivalent integral form is given by

yt = yt0 +
∫ t

t0
f (s,ys)ds +

∫ t

t0
G(s,ys)dξs,

with an initial value, yt0 . Here, f : [t0, t]× Rn → Rn,G : [t0, t]∏Rn → Rn×m and {ξt}t∈[t0,t]

denote an m-dimensional Wiener process (Brownian motion). Rn and Rn×m are n-dimensional

and n×m-dimensional Euclidean space, respectively. Here, the stochastic perturbations of

the state variables around their steady-state values Ê = (ŷ1, ŷ2, ..., ŷn) are Gaussian white noise
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that is proportional to the distances of y1,y2, ...,yn from their steady-state values ŷ1, ŷ2, ..., ŷn

respectively.

Stochastic stability of interior equilibrium

The stochastic differential system (1.4) can be centred at its positive equilibrium points Ê =

(ŷ1, ŷ2, ..., ŷn) by introducing the variables u1 = y1− ŷ1,u2 = y2− ŷ2, ...,un = yn− ŷn. The

linearised version of (1.4) around Ê is given by

du(t) = f (u(t))dt +G(u(t))dξ (t) , (1.5)

where

u(t) = (u1,u2, ...,un),

G(u(t)) =



σ1u1 0 ... 0

0 σ2u2 ... 0

. . ... .

0 0 ... σnun


,

f (u(t)) =



(
∂ f1
∂y1

)
u1 +

(
∂ f1
∂y2

)
u2 + ...+

(
∂ f1
∂yn

)
un

(
∂ f2
∂y1

)
u1 +

(
∂ f2
∂y2

)
u2 + ...+

(
∂ f2
∂yn

)
un

...........................................

(
∂ fn
∂y1

)
u1 +

(
∂ fn
∂y2

)
u2 + ...+

(
∂ fn
∂yn

)
un



, (1.6)

and σi, i = 1,2, ...,n are real constants and known as the intensity of the fluctuations. Note

that, in (1.5) the positive equilibrium Ê corresponds to the trivial solution (u1,u2, ...,un) =
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(0,0, ...,0). Let Ω be the set defined by Ω = [(t > t0)×Rn, t0 ∈ R+]. To define stability follow-

ing theorem [111] can be used,

Theorem 1.12.2. Suppose there exist a differentiable function V (u, t) ∈ Cn(Ω) satisfying the

inequalities

K1|u|α ≤V (u, t)≤ K2|u|α (1.7)

LV (u, t)≤−K3|u|α , Ki > 0, i = 1,2,3, α > 0 . (1.8)

Then the trivial solution of (1.5) is exponentially α stable for all time t ≥ 0.

Note that, if in (1.7), (1.8), α = 2, then the trivial solution of (1.5) is exponentially mean

square stable. Furthermore, the trivial solution of (1.5) is globally asymptotically stable in

probability.

Here, following (1.5),

LV (t,u) =
∂V (t,u(t))

∂ t
+ f T (u(t))

∂V (t,u)
∂u

+
1
2

Tr
[

GT (u(t))
∂ 2V (t,u)

∂u2 G(u(t))
]

(1.9)

where
∂V
∂u

=

(
∂V
∂u1

∂V
∂u2

... ∂V
∂un

)T

,
∂ 2V (t,u)

∂u2 =

(
∂ 2V

∂u j∂ui

)
i, j=1,2,...,n

and T means transposition.

1.13 Statistical tools

1.13.1 Curve fitting

Curve fitting is the process of developing a mathematical function or curve that best fits a

set of data points. It is required when we need a specific mathematical function to describe

a set of data or to estimate the value of a particular parameter from a mathematical function

when the values of the other parameters are known. In statistics, there are two well-known

varieties of curve fitting: linear or first-order polynomial curve fitting and parabolic or non-

linear polynomial curve fitting. When fitting data linearly, we consider first-order polynomials
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of the form

y = ax+b,

which is a line with a slope of a. The polynomial of the form

y =
n

∑
i=1

aixi +b

is considered for the non-linear curve fitting, where n is the degree of the polynomial and

should be smaller than the number of data points. Several methods are used to evaluate the

approximations required for curve fitting. One of the most used methods is the least square

method. The polynomial coefficients can currently be calculated using a number of software

programmes, such as Matlab, Mathematica, Gnuplot, etc., to give us the best-fit curve.

1.13.2 Sensitivity analysis

Sensitivity analysis (SA) is a technique for quantifying uncertainties in complex mathematical

models. SA mainly helps to find the critical inputs, including the model parameters and the

initial conditions and helps quantify the impact of input uncertainty on the model outcome(s).

A limited number of parameters usually govern the output behaviour of high-dimensional sys-

tems, and SA provides a mechanism for identifying these parameters. SA can be applied locally

and globally. The first strategy is the simplest and requires changing each parameter separately

while keeping the others constant. The drawback of this approach is that it cannot analyse the

impact of all parameters simultaneously. These techniques are useful when there is little to no

uncertainty in the model inputs or when there are few interactions between the inputs [112].

Global sensitivity analysis (GSA) techniques capture the variations in model outputs when in-

put parameters are allowed to change simultaneously within predetermined ranges [113]. De-

spite being computationally demanding, these techniques offer more information than the local

SA. Partial rank correlation coefficient (PRCC) is a frequently used GSA technique.
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1.13.3 Latin Hypercube Sampling (LHS)

Latin hypercube sampling (LHS) is a sampling method introduced by McKay et al. [114]

and belongs to the Monte Carlo class of sampling methods. This method has the advantage

of using fewer samples than simple random sampling to attain the same accuracy while still

allowing an unbiased estimate of the average model output [114]. This approach samples N

equal probability intervals that have been partitioned into N random parameter distributions,

where N is the sample size. The value of this number N should be more than or equal to k+1,

where k is the number of varied parameters, and bigger values of N should be used to assure

accuracy [114, 115]. For a wide range of variation for a parameter to avoid under-sampling at

the outer ranges of the interval where the parameter assumes very small values, the sampling

might be calculated on a log scale.

1.13.4 Partial Rank Correlation Coefficient (PRCC)

In statistics, correlation is a statistical method used to assess how closely a model’s input and

output measurements are related. Partial correlation describes the linear relationship between

the LHS parameters and the outcome measure using the residuals acquired from the regression

technique after discounting the linear effects of the LHS parameters (inputs) x j on the outcome

measure (outputs) y [113]. As long as there is little to no correlation between the inputs, PRCC

is a reliable sensitivity measure for non-linear but monotonic relationships between x j and y.

[113]. A correlation coefficient (CC) between x j and y is calculated as follows:

rx jy =
Cov(x j,y)√

Var(x j),Var(y)
=

∑
N
i=1(xi j− x̄)(yi− ȳ)√

∑
N
i=1(xi j− x̄)2 ∑

N
i=1(yi− ȳ)2

, j = 1,2, ...k,

which varies between -1 and +1 [113]. In the above expression, Cov(x j,y) is the covariance

between x j and y, Var(x j) and Var(y) are, respectively the variance of x j and y with x̄ and ȳ as

the respective sample means and N is the sample size. We may evaluate the model’s sensitivity

to parameter variation using the combination of uncertainty analysis and PRCC [113].
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1.14 Overview

Therapeutic strategies that target key molecules have yet to fulfil expected promises for most

common malignancies. Major difficulties include the incomplete understanding and validation

of these targets in patients due to single-pathway targeted approaches. A departure from the

traditional paradigm of studying a single pathway to a more global approach will help to over-

come the shortcomings of the existing therapeutic strategies. Recent research has emerged with

substantial progress in systems biology with emerging high throughput techniques for detect-

ing protein-protein interactions. This vast data leads to the emergence of network modelling

to understand the mechanisms underlying a biological process. These networks are composed

of smaller functional subunits known as network motifs of defined topology. The networks

become more complex in the presence of inherent noise that might arise because of a low copy

number of mRNA molecules, slight differences in protein turnover rates etc. Due to the com-

plexity of the networks, it becomes necessary to develop new mathematical models and tools.

As biological systems are inherently noisy, there is a trade-off between network sensitivity and

robustness influenced by the motif organization. The system has to be robust enough for the

proper execution of its cellular activities. It also needs to be sensitive to variations in input

stimuli leading to changes in gene expression and cellular activities. This thesis focused on de-

veloping analytical formulas using mathematical models (consisting of ordinary and stochastic

differential equations) to dissect the network and understand the importance of motif struc-

ture in determining the cellular function in the presence of noise and their distribution in a

signalling network. Mathematical tools helped us quantitatively measure the sensitivity of a

motif in the signalling network under noise and allowed us to capture sensitive nodes in that

network. Eventually, that knowledge was used to identify potential drug targets. Complex

qualitative behaviours of the non-linear interactions between the cell signalling systems were

used to understand complicated disease mechanisms. The effect of inherent stochasticity was

also evaluated in these studies. The whole thesis is divided into seven chapters. The first chap-

ter covers the background and importance of the thesis. The middle chapters elaborate on the

mathematical tools and techniques developed in the study. The thesis ends with the conclusions

from the study and possible future possibilities.
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In Chapter 2, we considered two frequently observed two-node motif structures. These

motifs consisted of two nodes, the input node, which receives the signal and affects the other

node, the output node. Both structures are based on negative feedback, where the negative effect

is supplemented with positive autoregulation. Bistability was observed for arbitrary parameter

sets for both motifs. Depending upon the initial conditions, the outcome can take any of the two

steady-state values. We analysed the signal-noise relation for both of them. We observed that

the output signal range depends on the structure, but the parameter’s sensitivity is independent

of the structure. In both structures, the downstream node is more sensitive to the outcome of

the output signal. We also observed that under random perturbation with high noise intensity,

the system loses its stability, and the bistable points are scattered, leading to an unwanted

output signal. Further, we found that bistability may be disrupted due to the introduction of

randomness to the bistable system. This chapter describes a pilot study focusing on only two

specific structures, but it shows the importance of the structure and the noise in the signalling

mechanism. So, to study the emergence of bistability and the effect of randomness on the

motif structures, a detailed analysis was done containing all possible two-node motifs in the

consequent chapters.

A system-level understanding of the molecules involved in disease and their complex inter-

actions are necessary to create effective treatment techniques. Understanding the relationship

between noise and network motifs has been a point of contention for many years. It is widely

recognised that noise can change the central regulatory processes of cellular processes. All

the existing network-based methods to identify regulatory points are mainly data-dependent or

based on centrality and differentia. Targeting these central positions helps to disintegrate the

network. However, identifying the targets using the disintegration methods leads to serious

side effects. So, Chapter 3 presents a study that introduced a methodology independent of data

and network structure that could be used to identify potential drug targets. This chapter aims to

apply the dependency of the I/O relation on motif structure in designing a quantitative scoring

formula that will help to identify critical nodes in a PPI network. Here we tried to understand

the importance of motif structures in determining cellular function in the presence of noise. To

capture the noise tolerance of network motifs, we developed a stochastic differential equation
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(SDE) based mathematical model for different two-node motif structures. We studied the asso-

ciation between motif structure and input-noise relation. The vulnerability of a node to noise

could be a significant factor in causing signalling error and need to be controlled. We classified

and ranked these motifs according to their sensitivity toward noise and signal. The ranks of

the motifs were used to develop a tool that identifies sensitive nodes in a network, which we

hypothesised as potential targets. The significance of the tool was validated through cancer

networks and drug bank databases.

The association between the motif structures in the existence of bistability in a signalling

network using theoretical models is captured in Chapter 4. Bistability is a crucial character-

istic of dynamical systems applied in various all-or-nothing decision-making processes. It is

a phenomenon where two distinct stable steady states coexist in a given set of experimental

conditions. An essential factor in the I/O relationship is the presence of bistability in a sig-

nalling network. Here, we have examined the circumstances in which bistability occurs using

a theoretical model. We investigated the relationship between network motifs and the occur-

rence of bistability in a signalling network. With a focus on bistability, we looked at how the

choice of motif structure affects the I/O relationship between two nodes. We systematically

explored parameter space for several two-node motifs to understand their role in preserving

bistability. We also studied bistable switching through hysteresis. The findings were used to

identify potential drug targets and validate them with the existing data. It is also well known

that the signalling network contains noise inherently. Stochastic differential equations were

used to study the system to probe the issue of maintenance of bistability.

In Chapter 5, we tried to capture the disease mechanism of autoimmunity using bistabil-

ity in TNFR2 signalling. T-regulatory cells (Tregs) regulate the body’s immune responses to

maintain homeostasis and self-tolerance and are crucial for preventing illnesses like cancer

and autoimmunity. However, different autoimmune disorders show varied patterns of Treg fre-

quency. Defects in TNFR2 signalling also characterise numerous autoimmune diseases. We

investigated the TNFR2 signalling pathway in Treg cells due to the prevalence of TNFR2 sig-

nalling defects and the variety of patterns associated with Treg frequency seen in autoimmune

disorders. TNF-mediated apoptosis is a complex and precisely regulated cellular process in-
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duced by activating both pro- and anti-apoptotic signalling pathways. So, to facilitate targeted

disease treatment, we want to understand the mechanism driving Treg cell survival and death.

An ordinary differential equation (ODE) based model was constructed and analysed to capture

the process of cell survival and death in Treg cells via TNFR2 signalling. The system exhibits

bistability and strives to adapt to changing stimuli through hysteretic switching. We com-

pute bifurcation diagrams and construct cell fate maps to examine how stimulus and feedback

strength affect cell survival and death. The study revealed that increased JNK phosphorylation

and raised TNF levels are the key factors that lead to Treg mortality. The system was then ex-

amined under stochastic perturbation to determine the effect of inherent noise on the system’s

dynamics. Bistability was disrupted by noise which reduced the system’s bistable zone, and

thus noise may impact the system’s normal functioning.

The calcium oscillations are studied in Chapter 6 to understand the complex aetiology of

diabetic cardiomyopathy (DCM). One of the factors contributing to the contractile dysfunction

associated with DCM is defective excitation-contraction coupling (ECC). The primary cause

of this ECC is the dysregulation of calcium (Ca2+) oscillations in cardiomyocytes due to pro-

longed elevated blood glucose levels. For the normal functioning of the heart, cytosolic calcium

([Ca2+]c) of cardiomyocytes should oscillate in the physiological range (PO) (frequency: 40 to

180 bpm (beats per minute) & amplitude: ≥ 0.4 µM) and avoid NPO (non-physiological oscil-

lations) & stability. This [Ca2+]c oscillation is driven by the exchange of calcium ions (Ca2+)

between the extracellular region, cytoplasm and sarcoplasmic reticulum (SR), which is accom-

plished through a variety of ionic channels and pumps implanted in the extracellular membrane

and the SR. Variations in free cytosolic calcium impact cardiac functioning. Glucose concen-

tration in cardiac cells is vital in altering calcium oscillations in DCM. To gain insight into the

complexities of metabolic insulin signalling pathways in cardiac cells, we develop a mathemat-

ical model in the current study that explicitly represents many of the known signalling elements

mediating translocation of the insulin-responsive glucose transporter type 4 (GLUT4). We ex-

plored the conditions at which the system moves from a stable state to an oscillatory state.

Here, we were interested in observing the impact of GLUT4’s random translocation on cal-

cium oscillation. We captured the calcium oscillations in PO and NPO circumstances through
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mathematical modelling. System parameters were perturbed to induce insulin resistance (IR)

in cardiomyocytes to mimic diabetic conditions. We suggested various potential restoration

procedures to restore the PO of [Ca2+]c. When we added randomization to the system, we

noticed an early bifurcation. The randomness facilitates the restoration mechanisms.

Finally, the thesis concludes in Chapter 7 by summarising the research done in this study.

It also covers the contribution of the research to the field of identification of regulatory points

and potential future opportunities.





2
Unravelling the sensitivity of two frequently

observed motif structures under random

perturbations1

2.1 Introduction

Cell signalling network is built from frequently occurring patterns, called network motifs

[116, 117]. These network motifs embedded in the network define the dynamical properties

of signalling networks [118–120]. The regulatory characteristics of a network are described

by an analysis of the network using motifs formed from its components and modules. These

1The bulk of this chapter has been published in Trends in Biomathematics: Modeling, Optimization and Com-
putational Problems, 2018, pp.245-263.
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Chapter 2. Unravelling the sensitivity of two frequently observed motif structures under

random perturbations

network motifs play an essential role in the propagation of signals in a network. Different mo-

tif structures are identified to date, collectively constituting the building blocks of biological

networks [121–123]. A very frequently observed motif is the feedback loop. The negative

feedback loop can give rise to adaptation and desensitization, while the positive feedback loop

can lead to emergent network properties such as ultrasensitivity and bistability [12–14]. The

pattern of motif organization defines the information processing capabilities of the signalling

network, influencing the specificity and plasticity of input-output (I/O) relationships [56, 121].

The motif organization can affect the sensitivity, robustness, and trade-off between the I/O

relation in a signalling network [56, 121].

Numerous studies demonstrated that multiple outputs produced at the level of changes in

gene expression and cellular activities [8, 34–39]. These are clear evidence of the sensitivity of

the intracellular signalling systems to input stimuli variations, which may be induced through

extracellular noise or intracellular stochastic perturbations of the intracellular components (e.g.

mutations, alterations in protein turn-over rates etc.). However, the system has its safeguards for

these inappropriate and non-specific responses, which still need further investigation. Ghosh et

al. [96] were amongst the first to study the noise characteristics of the motif with feed-forward

loops. Guantes et al. [124] considered a simple detection process (a signal acting on a two-

component module in a genetic circuit) to analyse how the performance of these circuits is

affected by molecular noise. They showed that the presence of a feedback interaction in the

motif imposes a trade-off on amplitude and frequency detection, whose intensity depends on

feedback strength. Molecular noise restricts the ability of an individual cell to resolve input

signals of different strengths and gather information about the external environment [125].

Jesan et al. [126] demonstrated long-range communication through retrograde propagation

between branches of signalling pathways whose molecules do not directly interact. Despite

such studies on motifs, more work is needed on motif structures in deciding the I/O signal

relation, especially in the presence of noise.

The present study aims to capture the I/O relation in the structure and how they are in-

fluenced by parameter variation, especially under random perturbation. To probe the issue

of maintenance of response-specificity, we selected a condition wherein cells were subjected
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to varying levels of stochastic perturbations and evaluated the consequent steady-state value,

rather than the kinetic features, of the output attained [34, 56, 118, 127]. The change in steady-

state levels has been shown to govern the outcome in complex biological processes such as

adaptability, immune memory, development, and cell differentiation [13, 56, 57]. So, in an ex-

tensive signalling network, we seek steady state I/O relation in the presence of random pertur-

bation to capture the cell mechanism that prevents any damage due to inappropriate signalling.

The I/O relation becomes more important when a structure shows bistability (simultaneous

existence of two stable equilibrium points) as they play a vital role in cell signalling and func-

tioning. Depending on the initial value of nodes, the output signal can attain any of the two

bistable values for the identical parameter set value. It is key for understanding basic phe-

nomena of cellular functioning, such as decision-making processes in cell cycle progression,

cellular differentiation [128] and apoptosis [129]. It also plays an important role in diseases

like cancer and prion disease [85]. In cancer, bistability is mainly involved in the loss of cellu-

lar homeostasis associated with the beginning of the disease. A positive feedback loop with an

ultrasensitive regulatory step can generate bistability. The positive feedback loop is an essential

regulatory motif in cellular signal transduction [130]. It is known that positive feedback is nec-

essary for the existence of bistability [131]. In the case of negative feedback, the inactivation

can be supplemented with a positive term defining a positive feedback (self) loop [132].

In this chapter, we have considered two frequently observed two-node motif structures (see

Fig. 2.1). Schematic diagrams of two-node motifs are given in Fig. (2.1), where node A re-

ceives the input signal, which then influences the output of node B. Both structures consist of

negative feedback loops. In structure 1, node A is activating node B, and node B is inhibiting

node A, while in structure 2, it is the opposite. The difference between the first and second

structures is in the self-activation and inhibition for node A and node B. In structure 1, node A

is a self-activator and node B is a self-inhibitor, while in structure 2, it is the opposite. These

motifs consist of negative feedback loops, and the inhibition of a node by the other node is

supplemented by the positive feedback (self) loop, thus satisfying the necessary conditions for

the existence of bistability. We have analysed these two motifs for the emergence of bistability

and examined the signal-noise relation between them. Here, kA and kB are the self-regulating



36
Chapter 2. Unravelling the sensitivity of two frequently observed motif structures under

random perturbations

rate constants for node A and node B, respectively. Parameters k1 and k2 are regulatory con-

stants of node A on B and node B on A, respectively. The input signal I affects input node A

(representing protein A) at a rate kI . So, the input signal is ultimately the steady state of node

A, denoted by A∗. Finally output signal is the steady state of node B (representing protein B)

denoted by B∗.

Figure 2.1: Schematic diagram of two frequently observed two-node motifs. Fig. (a) depicts
structure 1, and Fig. (b) depicts structure 2. Here, node A is the input node, and node B
is the output node. The arrows represent activation, while the hammerhead arrows represent
inhibition.

2.2 Construction of the deterministic models

An ordinary differential equation (ODE) model is constructed based on the pathway map shown

in Fig. 2.1. The first model (for structure 1) consists of coupled-differential equations. The

nodes represent the proteins present in a cell. Equations of the model describe the rates of loss

and creation of particular labelled forms of proteins (nodes) in the system. Our model is based

on ODEs and consists of the activated form of node A (denoted by A) and node B (denoted

by B), where node A receives the input signal that affects the output node B and the output

of the system is defined by the steady state values achieved by the output node (i.e. node B).

Biologically, the total concentration of protein (active and inactive forms) within the system

is constant and, for simplicity, assumed to be one as taken in previous models [56]. Thus,

the concentrations of the inactivated portions of protein A and B can be given by (1−A) and

(1−B), respectively. The rates of loss and creation of node A and B are modelled following

the Michaelis-Menten form of kinetics as described in literature [56]. We considered I as the

input to node A, which activates the inactive form of node A at a rate kI . The inactive form of
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A lies in the portion (1−A). So the change in the concentration of A due to the input signal

I is represented by the enzymatic reaction kII(1−A)
kmI+(1−A) following the Michaelis-Menten form.

Here kmI is the corresponding half-saturation constant. The self activation of protein A is given

by the term kAA(1−A)
kmA+(1−A) , where kA is the self-activation rate of A and kmA is the half-saturation

constant. The last term of the first equation k2BA
km2+A represents the inhibition of protein A due to

protein B, where k2 is the inhibition rate and km2 is the corresponding half-saturation constant.

Following similar logic for the second equation, we have added k1A(1−B)
km1+(1−B) to the equation of B

when A activates protein B with the rate k1 and deducted the amount kBB2

kmB+B with rate kB from the

equation of B, when B inhibits itself. Here, km1 and kmB are the corresponding half-saturation

constants. Based on these assumptions, the proposed model is written as follows:

dA
dt

=
kII(1−A)

kmI +(1−A)
+

kAA(1−A)
kmA +(1−A)

− k2BA
km2 +A

,

dB
dt

=
k1A(1−B)

km1 +(1−B)
− kBB2

kmB +B
. (2.1)

By similar assumptions as of structure 1 (with the same parameters), an ordinary differential

equation model is constructed for structure 2, which is as follows:

dA
dt

=
kII(1−A)

kmI +(1−A)
+

k2B(1−A)
km2 +(1−A)

− kAA2

kmA +A
,

dB
dt

=
kBB(1−B)

kmB +(1−B)
− k1AB

km1 +B
. (2.2)
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2.2.1 Analytical results

2.2.1.1 Positive invariance and boundedness

Let us put the system of Eq. (2.1) in a vector form by setting X =

 A

B

 ∈ R2.

F(X) =

 F1(X)

F2(X)

=


kII(1−A)

kmI+(1−A) +
kAA(1−A)

kmA+(1−A) −
k2BA

km2+A

k1A(1−B)
km1+(1−B) −

kBB2

kmB+B

 , (2.3)

where F : C+→ R2. Then Eq. (2.1) becomes

Ẋ = F(X), (2.4)

with X(0) = X0 ∈ R+
2. It is easy to check in Eq. (2.3) that whenever choosing X(0) ∈ R+

2

such that Xi = 0, then Fi(X)|Xi=0 ≥ 0, (i=1,2). Due to lemma [133], any solution of Eq. (2.4)

with X(0) ∈ R+
2, say X(t) = X(t;X0), is such that X(t) ∈ R+

2 for all t > 0.

Since the total concentration of protein/node within the system is constant and equal to 1,

the maximum value that A, B can take is 1. Hence by model assumption, both are bounded.

Similarly, for structure 2, again setting X =

 A

B

 ∈ R2 and

F̂(X) =

 F̂1(X)

F̂2(X)

=


kII(1−A)

kmI+(1−A) +
k2B(1−A)

km2+(1−A) −
kAA2

kmA+A

kBB(1−B)
kmB+(1−B) −

k1AB
km1+B

 . (2.5)

By similar arguments as in the case of structure 1, we can prove the positive invariance and

boundedness of structure 2.



2.2. Construction of the deterministic models 39

2.2.1.2 Equilibrium points of the system (2.1) and their stability properties

Here we are interested in studying the I/O relation, so we look for only the interior equilibrium

point. The interior equilibrium point is denoted by E∗ ≡ (A∗,B∗), where

A∗ =
kBB∗2 [km1 +(1−B∗)]
k1(kmB +B∗)(1−B∗)

(2.6)

and B∗ satisfies the equation

kII
(

1−
(

kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

))
kmI +

(
1−
(

kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)) − k2B∗
(

kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)
km2 +

(
kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)
+

kA

(
kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)(
1−
(

kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

))
kmA +

(
1−
(

kBB∗2[km1+(1−B∗)]
k1(kmB+B∗)(1−B∗)

)) = 0 . (2.7)

The corresponding Jacobian matrix (J) evaluated at E∗ = (A∗,B∗) is denoted by J(A∗,B∗)

and given by

J(A∗,B∗) =

 a11 −a12

a21 a22

 (2.8)

with

a11 =
kA(1−A∗)

kmA +(1−A∗)
− kIkmII

(kmI +(1−A∗))2 −
kAkmAA∗

(kmA +(1−A∗))2 −
k2km2B∗

(km2 +A∗)2 ,

a12 =
k2A∗

km2 +A∗
,

a21 =
k1(1−B∗)

km1 +(1−B∗)
,

a22 = − k1km1A∗

(km1 +(1−B∗))2 −
kBB∗(2kmB +B∗)

(kmB +B∗)2 .

The characteristic equation is given by

λ
2− trace(J)λ +determinant(J) = 0 . (2.9)
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The interior equilibrium point is stable if

trace(J)< 0

determinant(J)> 0. (2.10)

So, the interior equilibrium point is stable if

a11 +a22 < 0 , (2.11)

a11a22 +a12a21 > 0 . (2.12)

2.2.1.3 Equilibrium points of the system (2.2) and their stability properties

The system (2.2) has an axial equilibrium point Ê ≡ (Â,0),where Â satisfies the following

equation

kAÂ3−{kII + kA(kmI +1)} Â2 +(1− kmA)kIIÂ+ kIIkmA = 0 . (2.13)

It has also an interior equilibrium E∗ ≡ (A∗,B∗), where

A∗ =
kBB∗(1−B∗)(km1 +B∗)
[kmB +(1−B∗)]k1B∗

(2.14)

and B∗ satisfies the equation

kII
(

1−
(

kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

))
kmI +

(
1−
(

kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

)) +
k2B∗

(
1−
(

kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

))
km2 +

(
1−
(

kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

))
−

kA

(
kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

)2

kmA +
(

kBB∗(1−B∗)(km1+B∗)
[kmB+(1−B∗)]k1B∗

) = 0 (2.15)

Following the Jacobian matrix and stability definition (as given in (2.9) and (2.10)), the

interior equilibrium point is stable if
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b11 +b22 < 0 (2.16)

b11b22 +b12b21 > 0 (2.17)

where

b11 = − kIkmII
[kmI +(1−A∗)]2

− k2km2B∗

[km2 +(1−A∗)]2
− kAA∗(2kmA +A∗)

(kmA +A∗)2

b12 =
k2(1−A∗)

km2 +(1−A∗)

b21 =
k1B∗

km1 +B∗

b22 =
kB(1−B∗)

kmB +(1−B∗)
− kBkmBB∗

[kmB +(1−B∗)]2
− k1km1A∗

(km1 +B∗)2

2.2.2 Simulation results

2.2.2.1 Numerical analysis for the system (2.1)

We solved the system of differential equations (2.1) analytically in MATLAB with parame-

ter values as in Table 2.1 and obtained two stable steady states E1 = (0.2728,0.4443) and

E2 = (0.7187,0.6855). Thus bistability is observed in the system. To verify the observed

bistability numerically, we plotted the phase portrait of the system for the same parameter set

with different initial conditions. We observed that all the trajectories converged towards either

of E1 = (0.2728,0.4443) or E2 = (0.7187,0.6855), see Figure 2.2. We then varied each pa-

rameter ten folds up and down from their base value (given in Table 2.1). The range of each

parameter for which bi- or mono-stability was observed has been plotted in Figure 2.3. Bista-

bility was observed around the base value, and mono stability was observed as we moved away

from the base value.
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Figure 2.2: Bistability in structure 1. Phase portrait showing bistability of the system (2.1).
Parameters are as in Table 2.1. Here E1 and E2 denote two stable equilibrium points.

Table 2.1: Parameters description and the initial values for structure 1.

Parameters Description Default values

I Initial input 0.097

kI Activation rate of I on node A 1

k1 Activation rate of node A on node B 1

k2 Deactivation rate of node B on node A 1

kA Self activation rate of node A 1

kB Self deactivation rate of node B 1

kmI Half saturation constant respect to kI 0.1

km1 Half saturation constant respect to k1 0.4

km2 Half saturation constant respect to k2 0.1

kmA Half saturation constant respect to kA 0.1

kmB Half saturation constant respect to kB 0.8
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Figure 2.3: Robustness analysis for structure 1. The figure shows the robustness of the pa-
rameters towards the maintenance of bistability. Each bar in this diagram indicates a parameter
range in fold change from its basal values where the system is bistable. Beyond this bistable
range, the system is monostable or unstable. The basal values of the parameters are given in
Table 2.1.

Global sensitivity analysis

The global sensitivity analysis (GSA) helps to identify model parameters that could be particu-

larly important. We used the Partially Ranked Correlation Coefficients (PRCC) [115] technique

for the GSA and their associated p-values to identify the most sensitive parameters. To calcu-

late PRCCs, we used Latin Hypercube Sampling (LHS) method to randomly select vectors

of parameter values used for each run of PRCCs calculations. Over 1,000 simulations were

performed to calculate PRCCs. In each simulation, the system was solved up to hundred-time

steps, as it was observed from the time series solutions that the system behaves uniformly much

before the hundred-time steps. Figure 2.4 depicts the sensitivity of each parameter for the vari-

able B. We used a cut-off of±0.4 to define the sensitive parameters, i.e. if the PRCC value of a

particular parameter lies beyond ±0.4, then that parameter will be called a sensitive parameter.

The GSA analysis suggests that the most sensitive parameters in structure 1 are k1, kB, km1 and

kmB. These parameters primarily affect the output signal of Node B and are associated with

node B.
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Figure 2.4: Global sensitivity analysis for structure 1. In this figure, corresponding to every
parameter, two different colour bars represent two state variables (node A and B). And the
sensitivity of each parameter is measured by the length of the bars.

Figure 2.5: Bistability in structure 2. Phase portrait showing bistability of the system (2.2).
Parameters as in Table 2.2. Here E1 and E2 denote two stable equilibrium points.

2.2.2.2 Numerical analysis for the system (2.2)

We solved the system of differential equations (2.2) analytically in MATLAB with parameter

values as in Table 2.2 and obtained two stable steady states E1 = (0.6367,0.0041) and E2 =

(0.9998,0.8001). Thus bistability is also observed in this system. To verify the observed

bistability numerically, we plotted the phase portrait of the system for the same parameter

set with different initial conditions. We observed that all the trajectories converged towards
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either of E1 = (0.6367,0.0041) or E2 = (0.9998,0.8001), see Figure 2.5. We then varied each

parameter ten folds up and down from their base value (given in Table 2.2), divided them into

equal partitions, and calculated the number of stable equilibrium points. We observed that

structure 2 shows bistability for a wider range compared to structure 1 (see Figure 2.6). In

the case of structure 2, we also observed a region for the non-existence of a stable equilibrium

point, which was not there in structure 1.

Figure 2.6: Robustness analysis for structure 2. The figure shows the robustness of the pa-
rameters towards the maintenance of bistability. Each bar in this diagram indicates a parameter
range in fold change from its basal values where the system is bistable. Beyond this bistable
range, the system is monostable or unstable. The basal values of the parameters are given in
Table 2.2.
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Table 2.2: Parameters description and the initial values for structure 2.

Parameters Description Default values

I Initial input 0.3

kI Activation rate of I on node A 0.001

k1 Deactivation rate of node A on node B 1

k2 Activation rate of node B on node A 1

kA Self deactivation rate of node A 0.001

kB Self activation rate of node B 1

kmI Half saturation constant respect to kI 0.1

km1 Half saturation constant respect to k1 0.7

km2 Half saturation constant respect to k2 0.1

kmA Half saturation constant respect to kA 0.1

kmB Half saturation constant respect to kB 0.1

Global sensitivity analysis

The global sensitivity analysis (GSA) of the system (2.2) was done using Partially Ranked

Correlation Coefficients (PRCC) [115] technique similar to the system (2.1). Figure 2.7 depicts

the sensitivity of each parameter for each variable. We used a cut-off of ±0.4 to define the

sensitive parameters, i.e., if the PRCC value of a particular parameter lies beyond ±0.4, then

that parameter will be called a sensitive parameter. The GSA analysis suggests that the most

sensitive parameters in structure 2 are k1, kB, km1 and kmB. So, here also, most of the sensitive

parameters affecting the output signal are of Node B.
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Figure 2.7: Global sensitivity analysis for structure 2. In this figure, corresponding to every
parameter, two different colour bars represent two state variables (nodes A and B). And the
sensitivity of each parameter is measured by the length of the bars.

2.3 Construction of the stochastic models

In previous sections, we observed that depending on the motif structure and the parameter

value, the nature of the output signal may vary from mono-stability to bi-stability. Next, we

want to see how these rich dynamics behave under random perturbation, which will help us

to understand the I/O relationship for the two motifs in the presence of noise. These random

perturbations may arise through mutations and alterations in turnover rates. Random pertur-

bation may also appear due to improper network signalling. To explore this, we incorporated

a dispersed stochastic perturbation in our model that could influence any of the components

of the motif independent of the signal input. The use of dispersed perturbation was justi-

fied by the existence of numerous intrinsic and extrinsic factors, including cytokines, growth

factors, nutrients, environmental stresses, protein stability modulation, and many others, that

may potentially affect any of the signalling components through a wide variety of mechanisms

[37, 135, 136]. The cumulative effects of such perturbations would exert a heterogeneous in-

fluence on the basal state of the signalling network. We considered such random influences as

systemic perturbations and incorporated these effects into the model as multiplicative Gaussian

white noise [36, 130]. Thus we introduce the stochastic perturbation terms into the equations

of nodes A and B. The stochastic perturbations of the state variables around their steady-state
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values E∗ are Gaussian white noise proportional to the distances of A,B from their steady-state

values A∗,B∗ respectively. So, the deterministic model system (2.1) results in the following

stochastic model system

dA = F1(A,B)dt +σ1(A−A∗)dξ
1
t ,

dB = F2(A,B)dt +σ2(B−B∗)dξ
2
t . (2.18)

where σ1 and σ2 are real constants and known as the intensity of the fluctuations, ξ i
t = ξi(t),

i = 1,2 are standard Wiener processes, independent of each other, and F1, F2 are defined in the

Eq. (2.3). We consider Eq. (2.18) as an Ito stochastic differential system of the type

dXt = F(t,Xt)dt +G(t,Xt)dξt (2.19)

where the solution (Xt ,t > 0) is an Ito process, ’F’ is the drift coefficient, ’G’ is the diffusion

coefficient, and ξt is a two-dimensional stochastic process having scaler Wiener process com-

ponents with increments4ξ
j

t = ξ j(t+4t)−ξ j(t) are independent Gaussian random variables

N(0,4t). In the case of system (2.18),

Xt =

 A

B

 ,ξt =

 ξ 1
t

ξ 2
t

 , (2.20)

F =

 F1(A,B)

F2(A,B)

 ,G =

 σ1(A−A∗) 0

0 σ2(B−B∗)

 (2.21)

Since the diffusion matrix ’G’ depends upon the solution of Xt , the system (2.18) is said to

have multiplicative noise.

Following above, the deterministic model system (2.2) results in the following stochastic



2.3. Construction of the stochastic models 49

model system

dA = F̂1(A,B)dt +σ1(A−A∗)dξ
1
t ,

dB = F̂2(A,B)dt +σ2(B−B∗)dξ
2
t . (2.22)

where σ1 and σ2 are real constants and known as the intensity of the fluctuations, ξ i
t = ξi(t),

i = 1,2 are standard Wiener processes, independent of each other, and F̂1, F̂2 are defined in Eq.

(2.5). We consider Eq. (2.18) as an Ito stochastic differential system of the type

dXt = F̂(t,Xt)dt +G(t,Xt)dξt (2.23)

with

Xt =

 A

B

 ,ξt =

 ξ 1
t

ξ 2
t

 , (2.24)

F̂ =

 F̂1(A,B)

F̂2(A,B)

 ,G =

 σ1(A−A∗) 0

0 σ2(B−B∗)

 (2.25)

Since the diffusion matrix ’G’ depends upon the solution of Xt , the system (2.22) is said to have

multiplicative noise.

2.3.1 Stochastic stability of interior equilibrium

The stochastic differential system (2.18) can be centred at its positive equilibrium points E∗(A∗,

B∗) by introducing the variables U1 = A−A∗,U2 = B−B∗. It seems difficult to derive asymp-

totic stability in the mean square sense by the Lyapunov functions method working on the

complete non-linear equation (2.18). For simplicity of mathematical calculations, we deal with

the stochastic differential equation obtained by linearising the vector function ’F’ in (2.21)

about the positive equilibrium point E∗. The linearized version of (2.19) around E∗ is given by

dU(t) = f (U(t))dt +G(U(t))dξ (t) , (2.26)



50
Chapter 2. Unravelling the sensitivity of two frequently observed motif structures under

random perturbations

where

U(t) =

 U1(t)

U2(t)

 , (2.27)

f (U(t)) =

 −P11U1−P12U2

P21U1−P22U2

 , (2.28)

G(U(t)) =

 σ1U1 0

0 σ2U2

 (2.29)

with

P11 =
kIkmII

(kmI +(1−A∗))2 +
k2km2B∗

(km2 +A∗)2 ,

+
kAkmAA∗− kA(1−A∗)(kmA +(1−A∗))

(kmA +(1−A∗))2 (2.30)

P12 =
k2A∗

km2 +A∗
, (2.31)

P13 =
k1(1−B∗)

km1 +(1−B∗)
, (2.32)

P14 =
k1km1A∗

(km1 +(1−B∗))2 +
kBB∗(2kmB +B∗)

(kmB +B∗)2 (2.33)

Note that, in (2.26) the positive equilibrium E∗ corresponds to the trivial solution (U1,U2) =

(0,0). Let Ω be the set defined by Ω =
[
(t > t0)×R2, t0 ∈ R+

]
. We define the following

theorem [111]

Theorem 2.3.1. Suppose there exist a differentiable function V (U, t) ∈ C2(Ω) satisfying the

inequalities

K1|U |α ≤V (U, t)≤ K2|U |α (2.34)

LV (U, t)≤−K3|U |α , Ki > 0, i = 1,2,3, α > 0 . (2.35)

Then the trivial solution of (2.26) is exponentially α stable for all time t ≥ 0.

Note that, if in (2.34), (2.35), α = 2, then the trivial solution of (2.26) is exponentially

mean square stable. Furthermore, the trivial solution of (2.26) is globally asymptotically stable
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in probability.

Here, following (2.26),

LV (t,U) =
∂V (t,U(t))

∂ t
+ f T (U(t))

∂V (t,U)

∂U

+
1
2

Tr
[

GT (U(t))
∂ 2V (t,U)

∂U2 G(U(t))
] (2.36)

where
∂V
∂U

=

(
∂V
∂U1

∂V
∂U2

)T

,
∂ 2V (t,U)

∂U2 =

(
∂ 2V

∂U j∂Ui

)
i, j=1,2

and T means transposition.

We can prove the following theorem:

Theorem 2.3.2. When the inequality

kIkmII
(kmI +(1−A∗))2 +

kAkmAA∗

(kmA +(1−A∗))2 +
k2km2B∗

(km2 +A∗)2 >
kA(1−A∗)

kmA +(1−A∗)
(2.37)

holds true then the zero solutions of the system (2.18) will be exponentially 2-stable if

σ1
2 < 2

[
kIkmII

(kmI +(1−A∗))2 +
kAkmAA∗

(kmA +(1−A∗))2

]
+2
[

k2km2B∗

(km2 +A∗)2 −
kA(1−A∗)

kmA +(1−A∗)

]
,

σ2
2 < 2

[
k1km1A∗

(km1 +(1−B∗))2 +
kBB∗(2kmB +B∗)

(kmB +B∗)2

]
.

with the positive constants ω1 and ω2, where ω1 =
km2+A∗

k2A∗ and ω2 =
km1+(1−B∗)

k1(1−B∗) .

Proof. Let us consider the Lyapunov function

V (U(t)) =
1
2
[
ω1U1

2 +ω2U2
2] (2.38)

where ωi are real positive constants to be chosen later. It is easy to check the inequalities in

(2.34) are true for α = 2.
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Next, using (2.29) and (2.36),

LV (U(t)) =
(
−P11 +

1
2

σ1
2
)

ω1U1
2 +

(
−P22 +

1
2

σ2
2
)

ω2U2
2 +(P21ω2−P12ω1)U1U2

(2.39)

Assuming

ω1 =
km2 +A∗

k2A∗
, and ω2 =

km1 +(1−B∗)
k1(1−B∗)

,

(2.39) becomes

LV (U(t)) =
(
−P11 +

1
2

σ1
2
)

ω1U1
2 +

(
−P22 +

1
2

σ2
2
)

ω2U2
2

=−UT QU

(2.40)

where

Q =

 (P11− 1
2σ1

2)ω1 0

0
(
P22− 1

2σ2
2)ω2

 .

The relations (2.37) and (2.3.2) imply that Q is a real symmetric positive definite matrix and

therefore all its eigenvalues λi(Q), i = 1,2 are positive real numbers. Let λm = min{λi(Q), i =

1,2}, λm > 0. From (2.40), we get

LV (U(t))≤−λm|U(t)|2.

If the conditions in Theorem 2.3.2 hold true then the zero solutions of the system (2.18) are

exponentially mean square stable.

Hence the proof.
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Figure 2.8: Time series analysis. The figure showing stability of the system (2.18) under
stochastic perturbation for σ1,2 = 0.1.

Thus we observed analytically that under a certain threshold on σi’s, the deterministic stable

system remains stable under stochastic perturbation, which also agrees with our numerical

result, see Fig. 2.8. But when σ becomes greater than the threshold value given in Theorem

2.3.2, we observed that the bi-stable points obtained for the system (2.1) with Table 2.1 show

scattered dots. Fig. 2.9 confirms that the system (2.1) loses its bi-stability under stochastic

perturbation for high noise intensity.
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Figure 2.9: Phase plane of structure 1. Phase plane diagram for the system (2.18). The top
figure shows the stable nature of E∗ for a low value of σ1,2 = 0.1, and the bottom figures show
the probability clouds for σ1,2 = 1.3, above the threshold value.

Following similar arguments, one can prove the following theorem for the stochastic differ-

ential system (2.22).

Theorem 2.3.3. When the following inequality holds true

kBkmBB∗

(kmB +(1−B∗))2 +
k1km1A∗

(km1 +B∗)2 >
kB(1−B∗)

kmB +(1−B∗)
(2.41)

then the zero solutions of the system (2.22) will be exponentially 2-stable if

σ1
2 < 2

[
kIkmII

(kmI +(1−A∗))2 +
k2km2B∗

(km2 +(1−A∗))2 +
kAA∗(2kma +A∗)
(kmA +A∗)2

]
σ2

2 < 2
[

kBkmBB∗

(kmB +(1−B∗))2 +
k1km1A∗

(km1 +B∗)2 −
kB(1−B∗)

kmB +(1−B∗)

]

with positive constants ω1 and ω2 are ω1 =
km2+(1−A∗)

k2(1−A∗) , ω2 =
km1+B∗

k1B∗ .

The behaviour of the system (2.22) for lower and higher values of sigma than its threshold

value (given in Theorem 2.3.3) are presented in Figure 2.10. It shows that two clouds replace
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the two stable equilibrium points for higher noise intensity.

Figure 2.10: Phase plane of structure 2. Phase plane diagram for the system (2.22). The top
figure shows the stable nature of E∗ for a low value of σ1,2 = 0.1, and the bottom figures show
the probability clouds for σ1,2 = 1.2, above the threshold value.

2.3.2 Stochasticity induces loss of bistability

It is well known that cellular signalling memory can be affected by an increase in the stochastic

perturbations in the system. In other words, it can switch the system from one steady state to

another steady state [99, 105]. So, we wanted to examine the change in the system’s qualitative

behaviour due to the introduction of random perturbation. We have considered one motif struc-

ture, structure 1, to demonstrate the changes caused by stochasticity on the observed bistability.

The system shows bistability in the deterministic system (Fig. 2.11 (a)) and remains bistable

for very small noise intensity (σ1,2 = 0.1) (see Fig. 2.11 (b)). When we increase one of the

noise intensities σ1 = 1.3 keeping σ2 = 0.1, the left cloud (red) moves to the right (blue), mak-

ing the system monostable (Fig. 2.11 (c)). The result is reversed when σs are switched (Fig.

2.11 (d)). So an increase in the noise intensity disrupts the bistability, and the system converges

into a monostable system.
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Figure 2.11: Effect of randomness on bistability. (a) Here, the red and the blue dots represent
deterministic stable points of structure 1. (b) Figure showing the existence of bistability for
structure 1 for the low intensity of noise (σ1,2 = 0.1). (c)-(d) The figures illustrate the distortion
of the bistable cloud into a monostable cloud with the increase in the noise intensity.

2.4 Discussion

The biological system displays remarkable robustness in the stochastic environment of diverse

physical and physiological stimuli. Some attributes that impart robustness to external and inter-

nal perturbations include topological features of the signalling network [137]. The topological

features can further be weighted in their magnitude of influence depending on the net concen-

tration of the constituent nodes as well as stochastic variations in their level owing to various

intrinsic mechanisms [138]. However, the contribution of these features towards the overall

robustness and sensitivity of the biological networks still needs to be understood.

In the present study, we studied two well-observed motif structures which show bistability,

i.e., depending upon the initial conditions, the outputs can take any of the two steady-state
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values. We observed that the range of the output signal depends on the structure, but the

parameter’s sensitivity is independent of the structure. In both structures, the downstream node

is more sensitive to the outcome of the output signal. We also observed that under random

perturbation with high noise intensity, the system loses its stability, and the bistable points

are scattered, leading to an undesirable output signal. More precisely, we have seen that the

system loses its bistability and converges to a monostable system due to an increase in the noise

intensity beyond some threshold value. In conclusion, we have observed the emergence of very

complex behaviour like bistability in two frequently observed two-node network motifs. We

also observed that the bistability might be lost due to the presence of noise in the system.

This pilot study on two specific structures showed the importance of the structure and the

noise in the signalling mechanism. This study encourages a deeper investigation of the asso-

ciation between motif structures and noise signalling networks. So, we have considered all

possible two-node network motifs in the next chapter to get a global view of the signal-noise

relationship of the network motifs. The knowledge obtained from our study could be explored

further in screening potential candidates for drug targets. The results will be especially useful

in diseases such as cancer, diabetes, and obesity that cause complex perturbations in cellular

signalling networks.





3
Understanding noise in cell signalling in the

prospect of drug-targets1

3.1 Introduction

Cell signalling networks have been studied under the influence of noise to understand noise-

motif relations. Chatterjee and Kumar [31] attempted to understand such relations; however, it

was restricted to three-node FFLs. Kittisopikul and Suel [139] did a detailed study on different

feed-forward loop (FFL) motifs. They observed that the FFL could be categorised depending

on whether their ON (stimulated) or OFF (unstimulated) steady states exhibit noise. The role of

coherent and incoherent FFL on noise tolerance was also studied by Guantes et al. [124]. They

1The bulk of this chapter has been published in Journal of Theoretical Biology, 2022, 555, p.111298.
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observed that coherent FFLs act as suitable noise tolerance detectors. In another study by Osella

et al. [140], the incoherent FFL was observed to couple the fine-tuning of a target protein label

with efficient noise control, thus maintaining stability to the overall gene expression program

in the presence of noise. Hornung and Barkai [28] have studied the significance of positive

feedback in maintaining sensitivity towards the input signal in the presence of noise. In a study

by Simpson et al. [141], the negative feedback loop was observed to reduce the effect of noise

on protein concentration. The negative feedback loop can suppress internal and external noise

[103].

Developing efficient treatment methods necessitates a system-level knowledge of the mole-

cules affected by disease and their complicated relationships. However, the studies discussed

above were limited to some groups of network motifs, and more work needs to be done to

capture the global understanding of the noise-motif relationships. The whole network must be

explored for a concrete understanding of such relations. In the previous chapter, we considered

only two frequently observed two-node network motifs and studied them under the influence of

noise. This chapter incorporates all possible two-node network motifs to understand the whole

network globally, as any network can be constructed by considering two-node motifs.

The current study aims to understand the importance of motif structures in determining

cellular function in the presence of noise to filter noise from the network. To achieve this, a

detailed study on the sensitivity of motifs in the network is required. The amount of change

in the output steady state due to the change in the input signal defines sensitivity. However,

stochastic systems also add noise in measuring sensitivity. Sensitivity could be defined as

the measure of behavioural change of steady states due to changes in input stimuli and noise

intensity. The vulnerability of a node to noise could be a significant factor in causing signalling

error and need to be controlled. To capture the noise tolerance of network motifs, in this

chapter, we developed a SDE-based mathematical model for different two-node motif structures

and studied the association between motif structure and input-noise relation. We classified

and ranked these motifs according to their sensitivity toward noise and signal. The ranks of

the motifs were used to develop a tool that identifies sensitive nodes in a network, which we

hypothesised as potential targets. The significance of the tool was validated through cancer
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networks [142] and drug bank database [143].

Figure 3.1: Schematic diagram of the general two-node motif. The figure shows all possible
interactions between two nodes (input node A & output node B). Here the arrows represent
regulations (activation or inhibition). Here kI denotes the input node’s activation rate by stim-
ulus I. The parameters k1 denote the regulation rate of node B by node A. The reverse rate is
denoted by k2. kA and kB denote the self-regulation rates of node A and B, respectively.

3.2 Model formulation

3.2.1 Two-node motifs and their nomenclature

A two-node network motif consists of two nodes, node A and node B. Node A receives the

input signal (I), which influences output node B (see Fig. 3.1). The total number of possible

topologies with two-node motifs is 81 (given by 3n2
, n is the number of node(s)). Among them,

there are two kinds of positive and negative feedback loops, which can be termed as positive

feedback type I (PF1), positive feedback type II (PF2), negative feedback type I (NF1), and

negative feedback type II (NF2). In PF1, node A (input node) activates node B (output node)

in return node B also activates node A. In PF2, node A inhibits node B in return node B also

inhibits node A. In NF1, node A activates node B, but node B inhibits node A, and the reverse

scenario of NF1 is given by NF2. When self-loops are added to these four topologies, we get

eight new combinations for each topology. Here self-loop is denoted by S followed by the node

with self-loop, and the sign +/- denotes activation/inhibition. So, if PF1 has a self-activating

loop on node A, then it is denoted by PF1SA+. Also, if both the self-loops are present, i.e. node

A with self-activating loop and node B with self-inhibiting loop, then it is denoted by PF1SB−
A+.

Similarly, all the other topologies can be named. The rest of the topologies consist of linear
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Figure 3.2: All biologically feasible two-node topologies and their nomenclature. Here, the
motifs are grouped into six possible groups (a-f) according to the feedback. The green and
red arrows represent activation and inhibition, respectively. (a) Positive feedback type I (PF1)
with self-loops. (b) Positive feedback type II (PF2) with self-loops. (c) Negative feedback
type I (NF1) with self-loops. (d) Negative feedback type II (NF2) with self-loops. (e) Linear
activation (LA) with self loops. (f) Linear inhibition (LI) with self loops.

regulations or no regulation between node A and node B. We are interested in studying the

I/O relation, so we have not considered the topologies with no regulation from input node A

to output node B. The topologies with linear regulations, where node A activates or inhibits

node B, are linear activation (LA) and linear inhibition (LI). Including self-loops in these linear

topologies gives us sixteen new motifs in addition to LA and LI. Here self-loop is denoted by

S, followed by the node with the self-loop, and the sign +/- denotes activation/inhibition. For

example, the network motif structure LA with a self-activating loop on the node A is denoted

by LASA+. The node A with the self-activating loop and node B with the self-inhibiting loop
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are denoted by LASB−
A+, and so on. So, we get six groups of topologies, namely, PF1, PF2, NF1,

NF2, LA and LI, where each group contains nine motifs, including self-loops. Thus, we obtain

a total of 54 motif structures. So, we considered all feasible topologies with two-node motif

structures for the study, which are given in Fig. 3.2.

3.2.2 The general model for two-node topology

The two-node network motif system given in Fig. 3.1 was modelled based on ordinary differen-

tial equations (ODEs). Each node can activate or inhibit itself and/ or other nodes. The model

consists of activated forms of protein A (denoted by A) and protein B (denoted by B). Each

protein’s inactive form was calculated by deducting the activated form from the unity, thereby

maintaining the overall amount of a given molecule constant [56, 122]. Each node has a basal

synthesis rate [144]. A general model is given in the equation (3.1), which can be reduced to

different individual topologies.

dA
dt

= b1 +
kII(1−A)

kmI +(1−A)
+ fA + fBA−δ1A = F1(A,B),

dB
dt

= b2 + fB + fAB−δ2B = F2(A,B). (3.1)

where fA, fB, fAB and fBA take the following forms depending upon the motif structure.

fA =


kAA(1−A)

kmA+(1−A) , for self-activation on A

− kAA2

kmA+A , for self-inhibition on A

fB =


kBB(1−B)

kmB+(1−B) , for self-activation on B

− kBB2

kmB+B , for self-inhibition on B

fAB =


k1A(1−B)

km1+(1−B) , when A activates B

− k1AB
km1+B , when A inhibits B
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fBA =


k2B(1−A)

km2+(1−A) , when B activates A

− k2BA
km2+A , when B inhibits A

The system of equations (3.1) describes the rates of loss and creation of particular labelled

forms of proteins (nodes). I is the input to the first node (i.e. protein A) at a rate kI , and

the enzymatic reaction was modelled following the Michaelis-Menten form of the equation.

The output is defined by the steady state values achieved by the second node (i.e. protein B).

Here b1 and b2 are the basal values of node A and node B, respectively. kA,kB are the self

activating or self inhibiting rates and k1,k2 are the activating or inhibiting rates of A on B and

B on A respectively. kmI,kmA,kmB,km1,km2 are the half saturation constants. δ1 and δ2 are the

degradation rates of node A and node B respectively. We obtained all possible topologies by

considering different combinations in Fig. 3.1. The rate and degradation constants have one

unit over time, and the half-max constants have a unit of concentration.

3.2.3 Stochastic model of two-node topology

To account for the network’s intrinsic unpredictability, we created stochastic differential equa-

tions (SDEs). Mutations and changes in protein turnover rates might cause random perturba-

tions. They may also emerge as a result of faulty network signalling. The I/O interaction in

various motif structures in the presence of noise was investigated using these SDE models. The

noise under investigation was mainly driven by the fact that a variety of intrinsic and extrinsic

factors, including cytokines, growth factors, nutrients, environmental stresses, protein stabil-

ity modulation, and many others, can potentially influence any of the signalling components

through a variety of mechanisms [37, 135, 136]. So, we include a dispersed stochastic pertur-

bation in our model that can affect any network motif’s components regardless of the signal

input. The cumulative consequences of such perturbations would have a diverse effect on the

signalling network’s basal state. We treated random impacts such as systemic disturbances

as multiplicative Gaussian white noise and included them in the model [36, 130]. Thus, we

introduce the stochastic perturbation terms into node A and node B equations. The stochastic

perturbations of the state variables around their steady-state values E∗ are Gaussian white noise
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proportional to the distances of A,B from A∗,B∗, which are the steady-state values of the system

in the absence of the noise. So, the deterministic model system (3.1) results in the following

stochastic model system.

dA = F1(A,B)dt +σ1(A−A∗)dξ
1
t ,

dB = F2(A,B)dt +σ2(B−B∗)dξ
2
t . (3.2)

where σ1 and σ2 are real constants and known as the intensity of the noise, ξ i
t = ξi(t), i = 1,2

are standard Wiener processes, independent of each other, and F1, F2 are defined in the Eq.

(3.1). We consider Eq. (3.2) as an Ito stochastic differential system of the type

dXt = F(t,Xt)dt +G(t,Xt)dξt (3.3)

where the solution (Xt ,t > 0) is an Ito process, ’F’ is the drift coefficient, ’G’ is the diffusion

coefficient, and ξt is a two-dimensional stochastic process having scaler Wiener process com-

ponents with increments4ξ
j

t = ξ j(t+4t)−ξ j(t) are independent Gaussian random variables

N(0,4t). In the case of system (3.3),

Xt =

A

B

 ,ξt =

ξ 1
t

ξ 2
t

 ,F =

F1(A,B)

F2(A,B)

 ,G =

σ1(A−A∗) 0

0 σ2(B−B∗)

 (3.4)

Since the diffusion matrix ’G’ depends upon the solution of Xt , the system (3.2) is said to

have multiplicative noise.

3.3 Analytical results

3.3.1 Stochastic stability around interior equilibrium point

The stochastic differential system (3.2) can be centred at its positive equilibrium points E∗(A∗,

B∗) by introducing the variables H1 = A−A∗,H2 = B−B∗. For simplicity of mathematical
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calculations, we deal with the stochastic differential equation obtained by linearising the vector

function ’F’ in (3.4) about the positive equilibrium point E∗. The linearised version of (3.3)

around E∗ is given by

dH(t) = f (H(t))dt +G(H(t))dξ (t) , (3.5)

where

H(t) =

H1(t)

H2(t)

 , f (H(t)) =


(

∂F1
∂A

)
H1 +

(
∂F1
∂B

)
H2

(
∂F2
∂A

)
H1 +

(
∂F2
∂B

)
H2


,G(H(t)) =


σ1H1 0

0 σ2H2


(3.6)

Note that, in (3.5) the positive equilibrium E∗ corresponds to the trivial solution (H1,H2) =

(0,0). Let Ω be the set defined by Ω =
[
(t > t0)×R2, t0 ∈ R+

]
. To define stability following

theorem [111] can be used,

Theorem 3.3.1. Suppose there exist a differentiable function V (H, t) ∈ C2(Ω) satisfying the

inequalities

K1|H|α ≤V (H, t)≤ K2|H|α (3.7)

LV (H, t)≤−K3|H|α , Ki > 0, i = 1,2,3, α > 0 . (3.8)

Then the trivial solution of (3.5) is exponentially α stable for all time t ≥ 0.

Note that, if in (3.7), (3.8), α = 2, then the trivial solution of (3.5) is exponentially mean-

square stable. Furthermore, the trivial solution of (3.5) is globally asymptotically stable in

probability.

Here, following (3.5),

LV (t,H) =
∂V (t,H(t))

∂ t
+ f T (H(t))

∂V (t,H)

∂H
+

1
2

Tr
[

GT (H(t))
∂ 2V (t,H)

∂H2 G(H(t))
]

(3.9)
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where
∂V
∂H

=

(
∂V
∂H1

∂V
∂H2

)T

,
∂ 2V (t,H)

∂H2 =

(
∂ 2V

∂H j∂Hi

)
i, j=1,2

and T means transposition.

Using the above Theorem 3.3.1 we can calculate the critical value of noise (σc) analytically

for a motif structure, such that the deterministic steady state is stochastically stable if the noise

intensity is less than the critical value (σ < σc). To demonstrate with an example, we have

calculated the threshold values of the σ ′s for the motif PF2.

3.3.2 Analysis for the motif PF2

The deterministic model for the motif PF2 takes the following form,

dA
dt

= b1 +
kII(1−A)

kmI +(1−A)
− k2BA

km2 +A
−δ1A = F̂1(A,B),

dB
dt

= b2−
k1AB

km1 +B
−δ2B = F̂2(A,B). (3.10)

Considering Gaussian white noise around their steady-state values E∗ = (A∗,B∗), the deter-

ministic model system (3.10) results in the following stochastic model system,

dA = F̂1(A,B)dt +σ1(A−A∗)dξ
1
t ,

dB = F̂2(A,B)dt +σ2(B−B∗)dξ
2
t . (3.11)

where σ1 and σ2 are real constants and known as the intensity of the fluctuations, ξ i
t = ξi(t),

i = 1,2 are standard Wiener processes, independent of each other, and F̂1, F̂2 are defined in Eq.

(3.10). We consider Eq. (3.11) as an Ito stochastic differential system of the type

dXt = F̂(t,Xt)dt +G(t,Xt)dξt (3.12)

where the solution (Xt ,t > 0) is an Ito process, ’F̂’ is the drift coefficient, ’G’ is the diffusion
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coefficient, and ξt is a two-dimensional stochastic process having scaler Wiener process com-

ponents with increments4ξ
j

t = ξ j(t+4t)−ξ j(t) are independent Gaussian random variables

N(0,4t). In the case of system (3.11), with

Xt =

 A

B

 ,ξt =

 ξ 1
t

ξ 2
t

 , F̂ =

 F̂1(A,B)

F̂2(A,B)

 ,G =

 σ1(A−A∗) 0

0 σ2(B−B∗)

 (3.13)

Since the diffusion matrix ’G’ depends upon the solution of Xt , the system (3.11) is said to have

multiplicative noise.

The stochastic differential system (3.11) can be centred at its positive equilibrium points

E∗(A∗,B∗) by introducing the variables U1 = A−A∗,U2 = B−B∗. The linearised version of

(3.12) around E∗ is given by

dU(t) = f (U(t))dt +G(U(t))dξ (t) , (3.14)

where

U(t) =

 U1(t)

U2(t)

 , f (U(t)) =

 −P11U1−P12U2

−P21U1−P22U2

 ,G(U(t)) =

 σ1U1 0

0 σ2U2

 (3.15)

with

P11 =
kIkmII

(kmI +(1−A∗))2 +
k2km2B∗

(km2 +A∗)2 +δ1, P12 =
k2A∗

km2 +A∗
,

P21 =
k1B∗

km1 +B∗
, P22 =

k1km1A∗

(km1 +B∗)2 +δ2 . (3.16)

Note that, in (3.14) the positive equilibrium E∗ corresponds to the trivial solution (U1,U2) =

(0,0). Let Ω be the set defined by Ω =
[
(t > t0)×R2, t0 ∈ R+

]
. We can define the Theorem

3.3.1 and prove the following theorem.

Theorem 3.3.2. Assuming the inequality holds true:

(
2P11−σ

2
1
)(

2P22−σ
2
2
)
> (p12 +P21)

2 (3.17)
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where P11,P12,P21 and P22 are given in (3.16), then the zero solutions of the system (3.11) will

be exponentially 2-stable if

σ1
2 < 2

[
kIkmII

(kmI +(1−A∗))2 +
k2km2B∗

(km2 +A∗)2 +δ1

]
, σ2

2 < 2
[

k1km1A∗

(km1 +B∗)2 +δ2

]
. (3.18)

Proof. Let us consider the Lyapunov function

V (U(t)) =
1
2
[
U1

2 +U2
2] (3.19)

It is easy to check the inequalities in (3.7) are true for α = 2.

Next, using (3.15) and (3.9),

LV (U(t)) =
(
−P11 +

1
2

σ1
2
)

U1
2 +

(
−P22 +

1
2

σ2
2
)

U2
2− (P12 +P21)U1U2

=−UT QU

(3.20)

where

Q =

 (P11− 1
2σ1

2) 1
2 (P12 +P21)

1
2 (P12 +P21)

(
P22− 1

2σ2
2)
 .

The relation (3.17) and (3.18) imply that Q is a real symmetric positive definite matrix and

therefore all its eigenvalues λi(Q), i = 1,2 are positive real numbers. Let λm = min{λi(Q), i =

1,2}, λm > 0. From (3.20), we get

LV (U(t))≤−λm|U(t)|2 .

If the conditions in Theorem 3.3.2 hold true then the zero solutions of the system (3.11) are

exponentially mean square stable.

Hence the proof.
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3.4 Numerical results

3.4.1 Vulnerability of two-node network motifs under systemic noise

In random perturbation, the output value deviates from its steady-state B∗ depending on the

value of noise intensity. The output value appears as a range, instead of a single point, with

values close to the B∗ (see Fig. 3.3 (a)). This range can be observed if the noise intensities are

below the critical value (σc), which can be calculated mathematically. The detailed calculation

to find σc for the motif PF2 is given in section 3.3.2. Similar calculations were also done to

Figure 3.3: Association of noise and input stimulus with stochastic stability. Figure (a)
depicts output B∗ at a given signal as a function of systemic noise (given by black dots). Corre-
sponding output B∗ in the absence of noise is also shown by blue dots. The red arrow indicates
the threshold noise level (σc) at which output becomes divergent. The value of σc is obtained
mathematically using the Theorem 3.3.2. As an alternate measure of specific input-output (I/O)
relationship in the presence of systemic noise, standard deviations (SD) for the B∗ are plotted
as a function of σ (b) or I (c). Data used to plot (a), (b) and (c) were generated for the motif
PF2.
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calculate σc for the remaining motifs. The system is stochastically stable when the output val-

ues remain close to the deterministic steady state B∗. However, when the noise intensity crosses

the threshold value, a precise I/O relationship cannot be determined because the output value

range increases and deviates from the steady state, see Fig. 3.3 (b). A similar phenomenon is

observed when the input signal varies (Fig. 3.3 (c)). So the vulnerability threshold is governed

by noise and input level, beyond which output becomes unstable. Thus, this σ − I relation of

motifs can be used to calculate the stochastic stability of the network motifs.

Next, to evaluate the stochastic stability of the individual motif structures under the influ-

ence of noise and input fluctuation, we have calculated the stochastic stability of the steady-state

for the noise-input (σ − I) region for all the particular topologies. The exercise was done for

numerous parameter sets to avoid any parameter-based biases. First, we have generated 1000

random parameter sets (excluding σ&I) using the Halton sequences method to pick values

from the space (0,1). The unit interval in each dimension is evenly partitioned with equiproba-

ble sub-intervals using this quasi-random sampling approach. As a result, it eliminates potential

spatial biases and investigates the whole parameter space between them (0,1). Next, to calcu-

late the stochastic stable region area in the space created by varying input(I) and the strength

of noise intensity (σ ), we generated another 1000 parameter sets with different σ & I for each

previously generated parameter sets. So we get a total of 106 parameter sets for the study. Then

we filtered out 214 parameter sets out of the first 1000 sets, which yielded stable steady-states

in the deterministic system for all the motif structures, as the deterministic equilibrium points

are required for the calculations of stochastic stability. Moreover, for each of the 214 param-

eter sets, we have calculated the stochastic stable σ − I region for each motif structure. Then

to eliminate data variability due to the choice of parameter sets, we have normalised the data.

Normalisation was done by dividing the individual σ − I areas by the maximum σ − I area for

a particular parameter set. So we get a 214× 54 matrix with 214 rows of parameters and 54

topologies in columns, where each element denotes a fraction of the stochastic stable area for

a particular motif corresponding to a parameter set. Finally, we took each column’s mean to

calculate the individual motifs’ vulnerability. The topology with a larger mean σ − I area is

said to be stochastically robust, whereas the topology with less mean σ − I area will be called
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sensitive. The whole method is explained in Fig. 3.4 through a schematic flowchart.

Figure 3.4: Methodology to calculate stochastic stability. The figure depicts the flowchart of
the method used to calculate the stochastic stability of the motifs. Each small rectangle repre-
sents the 2D parameter σ − I region, and the green colour shows the stochastically stable area.
The X-axis of the big rectangle represent the parameter sets, and the Y-axis represents the 54
motifs. Left box: we have generated 1000 random parameter sets and calculated each motif’s
stochastically stable σ − I region. Middlebox: we have considered only the 214 parameter sets
yielding feasible solutions. Right box: we have normalised the data to [0,1] by dividing by
the maximum for each parameter set. Ultimately, we have taken the mean of the stochastically
stable area and arranged it in decreasing order. This information is used to rank the motifs
according to their vulnerability to noise.

After quantifying the vulnerability of the motifs under systemic noise, we have categorised

the topologies by calculating their modified z-score and termed them as sensitive (z-score <

−1) and robust (z-score > 1) motifs. Z-scores were calculated to significantly distinguish the

sensitive and robust motifs from the rest. We found eight motifs in the robust category (denoted

by blue bars in Fig. 3.5) and nine motifs in the sensitive category (indicated by red bars in Fig.

3.5). Then a score of 1 to 8 was assigned to the robust motifs, with eight being the most robust

and one being the least robust. Similarly, -1 to -9 were assigned to the sensitive motifs, with

-9 the most sensitive and -1 the least sensitive. The remaining motifs (denoted by green bars

in Fig. 3.5) were given 0. Different motif groups also showed distinctive characteristics under

systemic noise. Consistent with previous observations [28], the double-positive feedback loops,

i.e., the positive feedback type I, have a larger stable area and are robust under systemic noise
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(see Fig. 3.6). In contrast, the double negative feedback, i.e., the positive feedback type II

motifs, have the least stable area referring to their vulnerability to the systemic noise (see Fig.

3.6).

Figure 3.5: Ranking of the two-node motifs. The figure depicts the mean stochastically stable
region of all 54 topologies in increasing order. Each bar represents the mean stochastic stable
σ − I area fraction of the motifs calculated for all random parameter sets, and the error bar
represents their standard deviations. Motifs were categorised into sensitive (red bars) and robust
(blue bars) based on their modified z-score.
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Figure 3.6: Collective behaviour of the motif groups under systemic noise. The box plot
displays the stochastic stable σ − I area distribution for each category mentioned in Fig. 3.2.
Here, along Y-axis (top to bottom), the motif groups are arranged in descending order of their
median area fraction. The X-axis represents the area fraction of the stochastic stable region.

3.4.2 Significance of sensitive motifs

The cellular signalling system is inherently noisy. With the increase in the fluctuation of the

input stimulus or the increase in the noise intensity in the system, the sensitive motifs would
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quickly go to the stochastically unstable steady state. So the possibility of getting an undesir-

able output is maximum for sensitive motifs. The significance of the sensitive motifs could be

better understood through the druggability test [145]. We simulated the output node B as the

drug target to investigate the druggability of the network motifs. A drug was simulated by an

input that inhibited node B and was changed from 0.1 (I1) to 1.0 (I2). Two states of the system

(B1 and B2) that corresponded to I1 and I2 were used to evaluate the druggability of each net-

work motif as D= log10
(B1−B2

B1

)
[145]. This metric D represents the fractional reduction of the

target B in the logarithm scale. The simulation was conducted on each motif with the random

parameter sets described in section 3.4.1 to get a set of values of D. Taking the average of this

set gives us the druggability of each motif (see Fig. 3.7). The lower negative value of the drug-

gability metric D indicates a higher reduction of B. We compared the druggability results with

the motif categories. We observed that the sensitive motifs showed the highest druggability

(red bars in Fig. 3.7), whereas the robust motifs showed the least druggability (blue bars in Fig.

3.7). So, the sudden changes in the concentration of the output node of the sensitive motifs that

need to be controlled to maintain the desirable I/O signal in a network are also better druggable

than the robust motifs.

Figure 3.7: Druggability test. The bar represents the mean druggability of different motifs
calculated following [145]. The red bars represent the sensitive motifs, the blue bars represent
the robust ones, and the rest of the motifs are given by green bars (as given in Fig. 3.5).
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3.4.3 Identification of sensitive nodes

The proper maintenance of the I/O signalling between two nodes becomes significant in a large

protein-protein interaction (PPI) network. This maintenance can be done by targeting particular

types of motifs in the network. We found that the sensitive motifs are better druggable than

robust ones from the druggability test. That means we get a more significant reduction of the

output in the sensitive motif than the robust one for an equal amount of inhibition. Thus, the

sensitive motifs can be a better drug target. However, in a PPI network, a particular protein

may appear in different motifs, and multiple proteins can appear in a particular motif type. So,

to identify the target explicitly, we need to consider the overall sensitivity of a protein in the

network. To determine the overall sensitivity, we design a formula to calculate the cumulative

score (CS) of the protein in the network. Suppose P denotes the node, which appears in n

unique motifs in the network, and Ki denotes the number of times the node P occurs in ith motif

with score Si. Then the CS for node P is given by

PCS =

n

∑
i=1

KiSi.

The proteins frequently appearing in the sensitive motifs will have a higher negative score

than the other proteins. Thus, the nodes with high negative CS are considered sensitive nodes

and could be considered potential drug targets.

3.4.4 Sensitive nodes and drug targets

We considered three cancer networks, namely breast, ovarian and pancreatic cancers, from

literature [142]. We considered all the proteins involved in those cancer networks. To get

a directed PPI (signalling) network, we used SIGNOR (SIGnaling Network Open Resource)

database [146]. Using the database, we created directed graphs among the signalling proteins.

We obtained directed PPI networks with 5241 interactions from 1415 nodes for breast cancer,

3934 interactions from 1045 for ovarian cancer, and 3839 interactions from 990 for pancreatic

cancer. The sensitive and robust proteins were extracted from the networks by calculating their

CS. We searched the number of approved drugs against each node. We extract drug-target pro-
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tein data from the open-source Drugbank database [143]. Extensive information about drugs

and their targets is given in the Drugbank database, which includes chemical, pharmacologi-

cal, and pharmaceutical-specific drugs integrated with structures, pathways, and sequence drug

targets. We have considered the information of approved drugs only for our analysis.

Next, we calculated the CS of all the nodes in the three cancer networks. We also find the

number of approved drugs against the nodes from the Drugbank database [143]. It is observed

that the sensitive nodes have the most approved drugs against them compared to the robust

nodes in all three cancer networks. For example, in breast cancer, the highest number of drugs

against a single protein is 92, which belongs to the sensitive category, while the highest number

of drugs associated with a robust protein is only 3. A similar distribution of drugs was also

observed for ovarian and pancreatic cancers (see Fig. 3.8). We also observed that the average

number of approved drugs for a sensitive node is three times higher than the robust nodes (see

Fig. 3.8). Thus, a relation between sensitive nodes and drug targets is observed in all three

cancer networks. The relation shows that nodes from the sensitive category are associated with

the most number of drugs.
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Figure 3.8: Sensitive and robust nodes vs drugs. The figure depicts the number of approved
drugs against the sensitive and robust nodes across three cancer types. The first two groups of
bars show the highest number of drugs observed against a single sensitive and a single robust
node. The last two groups of bars show the average number of drugs per node. The bar colours
represent different cancers, as mentioned in the figure legend.

To further confirm this relation, we performed a reverse analysis to see the sensitivity of
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established drug targets. We used the proposed drug targets from Kanhaiya et al. [142] and

calculated their CS for all three cancer networks. Most high-impact drug-target proteins have

negative CS for all three cancer networks (see Table 3.1). Only two proteins, PDPK1 and

PRKDC, across three cancer types have positive CS (last two rows in Table 3.1).

Table 3.1: Table showing the cumulative score (CS) and total frequency of the highly impact
drug-targets of pancreatic, ovarian and breast cancers from Kanhaiya et al. [142]. All the highly
impact drug targets except PDPK1 and PRKDC have negative CS.

Drug-target
Pancreatic cancer Ovarian cancer Breast cancer

CS Frequency CS Frequency CS Frequency

GSK3B -71 26

INSR -70 16

RAC1 -45 19

ABL1 -44 23

RAF1 -39 33

AKT1 -39 33 -54 47

HDAC3 -12 4 -12 4

IGF1R -9 7

ERBB2 -5 18 -12 20

GRB2 -36 20

CDK2 -29 11 -22 13

MTOR -22 12 -22 12

JAK3 -21 18

RET -13 4

SMO -4 3

JAK2 -13 36

SRC -11 46

PDPK1 6 10 6 12

PRKDC 2 4 2 4
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Thus our analysis establishes a strong relationship between sensitive nodes and drug targets.

We also checked the influence of abundance biasses and observed that the drug targets are

independent of their abundance in the networks. Like in the case of pancreatic cancer, AKT1

and RAF1 are more abundant than GSK3B and INSR, but their sensitivity is much more than

AKT1 and RAF1. So, the potential drug targets depend not on the network’s abundance but

their abundance in the sensitive motifs. Thus, the above results support our hypothesis that the

nodes with highly negative CS could be considered potential drug targets.

3.4.5 Biological significance of sensitive nodes as drug targets

We applied our mathematical formalism to find natural drug targets from the cancer networks.

The CS for each protein in the network were calculated using the scoring formula described

in section 3.4.3. The number of proteins having negative CS decreases exponentially as we

decrease the CS (see Fig. 3.9 (a)). So the proteins with higher negative cumulative scores

significantly differ from the rest of the proteins in the network. The CS curves for all the

three cancer networks in Fig. 3.9 (a) tend to be asymptotic after it crosses the −50 CS value,

which means the number of proteins decreases very slowly as we decrease the CS value after

−50. Thus, we considered the proteins with CS≤−50 as the highly sensitive proteins from all

cancer networks to determine the natural drug targets. We collected their available approved

drugs from the drug bank database. Out of 24 proteins from breast cancer, 14 proteins have

approved drugs against them. In the case of ovarian and pancreatic cancers, 11 out of 13

proteins and 7 out of 13 proteins have approved drugs against them, respectively (see Fig. 3.9

(b)).

We also performed gene ontology (GO) and pathway enrichment analysis to see the bi-

ological significance of these highly sensitive nodes. We analysed them using the available

bioinformatics tools on the list of sensitive proteins. The GO analysis was performed using the

publicly available Enrichr database [147]. For the enrichment analysis of biological processes,

we used Enrichr [147], and for disease, we used DisGeNet [148], and for pathway analysis,

we used Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [149]. From the GO

analysis, the genes were found to be enriched in the different biological processes involved in
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the cancer progression, like negative regulations of apoptotic processes [150], response to reac-

tive oxygen species (ROS) [151], response to oxidative stress [152], cell proliferation [153] (see

Fig. 3.10). All the top 10 enriched diseases are also related to cancers (Fig. 3.10). The enriched

pathways are also majorly cancer-related (Fig. 3.10). Moreover, the number of genes enriched

in all these cases is also significant. Thus, the analysis revealed that the highly sensitive nodes

are also closely associated with different cancer-related biological events, and targeting them

will influence cancer progression.

Figure 3.9: Significance and application of cumulative score. (a) Graph portrays the abun-
dance of proteins as a function of CS in all three cancer networks. The number of nodes
decreases exponentially as we decrease the CS value. (b) The Y-axis shows the highly sen-
sitive nodes (CS ≤ −50) from three cancer networks. Here, the brown colour represents the
nodes with approved drugs against them, whereas the blue-coloured nodes do not have ap-
proved drugs against them. The white blank shows that the node is not highly sensitive in that
particular cancer network.
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Figure 3.10: GO annotation and KEGG pathway enrichment analysis of the highly sensi-
tive nodes. The figure displays the number of genes enriched (black bars) and -log10 (P-value)
for the top 10 GO terms in biological processes (green), diseases (red), and KEGG pathways
(blue). The classifications are sorted by -log10 (P-value). GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

3.5 Discussion

Protein-protein interactions (PPIs) are crucial for efficient internal or external signals, but this

connectivity also amplifies stochastic fluctuations by propagating noise between components

[28]. We searched for biological circuits that can maintain proper signalling by minimising

noise propagation, focusing on cases where rapid fluctuations characterise the noise. The sys-

tem’s output misbehaves when the noise intensity exceeds the critical value or with an increase

in the input stimuli. Moreover, this alteration in the output steady-state is undesirable as up-

regulation of an oncogene and down-regulation of a tumour suppressor; in both cases, the

system will lead to cancer [154]. We studied such a phenomenon by considering the smallest

network motif of a two-node structure and systematically analysed two-component circuits for

sensitivity in the presence of noise. The variation in noise tolerance was observed for different



3.5. Discussion 81

motif structures. We ranked all the motifs according to their vulnerability to systematic noise.

Moreover, motif ranking was used to calculate the CS of all nodes in a PPI network to identify

potential drug-target candidates. The analysis revealed that the positive feedbacks are mostly

robust than the other motif structures with exposure to ample parameter space [28]. In compar-

ison, the double negative feedbacks are the most sensitive one. The motifs without self-loops

have also shown vulnerability to intrinsic noise.

We identified some motif structures that are sensitive under systemic perturbations. These

sensitive motifs are more likely to go to stochastic instability with the introduction of noise

above the critical value or an increase in the input stimuli. Thus, the sensitive motifs play a

significant role in maintaining cell signalling through proper I/O relationships. We need to

monitor sensitive motifs in case of any unwanted network signal. The druggability [145] of

these sensitive motifs was studied, and they were found most likely druggable, whereas the

robust motifs are most undesirable for drug targets. So, these sensitive motifs require careful

monitoring and are druggable and thus could be used to identify potential drug targets.

In a large protein-protein interaction (PPI) network, maintaining adequate I/O relations be-

tween two nodes becomes critical. This could be accomplished by targeting the output node

B, which appears more frequently in sensitive motifs. We devised a methodology for calculat-

ing the CS to identify those nodes, and nodes with a strongly negative CS are regarded as the

network’s sensitive nodes. We hypothesised that sensitive nodes are prospective drug targets.

Our hypothesis was validated by considering three cancer networks from literature [142]. Most

approved drugs against all three cancers targeted the sensitive nodes. So, a strong association

between the sensitive nodes and the approved drug target was observed. A reverse analysis of

the established drug targets by Kanhaiya et al. [142] further confirms our proposition.

The biological relevance of the highly sensitive nodes revealed natural drug targets from the

cancer networks. It was observed that more than 55% of sensitive proteins from each network

already had approved drugs against them (Fig. 3.9(b)). Enrichment analysis of the highly sen-

sitive nodes reveals that the top ten enriched diseases are cancer-related. Also, they are highly

enriched in pathways related to cancers. In the case of biological processes, they are enriched

in cancer-related processes like negative regulation of apoptotic process [150], regulation of
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reactive oxygen species [151], cell proliferation [153] etc. This enrichment analysis reveals

that highly sensitive nodes are linked with various cancer-related biological events and that

targeting them will affect the disease. Thus, further cementing the possibility of considering

sensitive nodes of the cancer networks for the potential drug-target candidates.

The current chapter describes the significance of network motifs in maintaining cell sig-

nalling in a noisy environment and provides a methodology for finding potential drug targets.

However, the study ignores the importance of bistability in the context of input-output rela-

tions. We have observed in Chapter 2 that bistability plays an important role in maintaining

proper input-output relation in the presence of noise. So, in the next chapter, we explored all

the structures to seek for the existence of bistability and then studied its importance in cell

signalling.



4
Bistability in cell signalling and its

significance in identifying potential drug

targets1

4.1 Introduction

The aberration to the complex signalling interactome of cell signalling could lead to various

diseases as it governs most of the cellular responses in our body. The complexity of the process

further increases in the presence of bistability, where two different output signals coexist for an

input signal. The importance of bistability in a biological system is well known, especially in

1The bulk of this chapter has been published in Bioinformatics, 2021, 37(22), pp.4156-4163.
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cell signalling and functioning [71, 76–80], differentiation [71, 76, 77] and cell cycle progres-

sion [79–81]. It can enrich the adaptation in organisms extending from bacteria to mammals by

storing the cellular memory of the past stimuli [82, 83]. Ferrell and co-workers illustrated that

bistability might be led by ultra-sensitivity in positive feedback networks, where the input to the

MAPK cascade is positively regulated by the activated MAPK [71, 77, 78]. The possibility of

bistability at the level of a single stage of the MAPK cascade is established by Kholodenko et al.

[84]. The necessary condition for the oscillatory behaviour at the cascade level is single-stage

bistability was studied computationally by Qiao et al. [94]. The self-perpetuated activation of

a signalling circuit is a declaration of its bistability. Alam et al. [86] have demonstrated the

existence of self-perpetuated activation mechanisms for ERK1/2 in bronchial epithelial cells.

As a result, ERK1/2 bistability arises from repetitive stimulation of the cell. They have hypoth-

esised that this self-perpetuated ERK1/2 signal plays an important role in the pathogenesis of

asthma.

Inherent stochasticity of the signalling network may influence the emergence of bistability.

In recent years, many interesting consequences of random fluctuations have been elucidated

theoretically and observed in experiments [25, 97–99]. It has been observed that the determin-

istic system has a single steady state for all parameter values, but the stochastic response is

bimodal [100]. Arkun et al. [101] investigate how the positive and negative feedback loops

affect the dynamic characteristics that determine the cellular outcome. Positive and negative

feedback regulation in the presence of stochastic fluctuation was also observed in other stud-

ies [104]. Despite numerous studies, not much work is done on motif structures in deciding

input-output (I/O) signal relation in the presence of noise, especially when bistability emerges.

In Chapter 2, we have seen the effect of the random perturbation on the observed bistability for

two frequently observed motif structures, which demands a more detailed study to understand

the global view of the emergence of bistability. So, in this chapter, we have considered all

possible two-node network motifs and elucidated the association between the motif structures

in the emergence of bistability in a signalling network. Here, we are interested to see how

the choice of motif structure influences the I/O relation between two nodes focusing on the

existence of bistability. We systematically explore parameter space for different motifs to cap-
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ture their role in maintaining bistability. We also studied bistable switching through hysteresis.

The findings were then used to design a method that can be applied to any disease network to

identify potential drug targets and validate them with the existing data. We also studied the

system under random perturbation through stochastic differential equations to probe the issue

of maintenance of bistability.

4.2 Mathematical model of general topology with two-node

motif structure

To understand a global idea about noise-motif relationship and bistability, in this study, we

have considered all the 54 biologically feasible two-node network motifs as discussed in the

previous chapter (Chapter 3). Following similar arguments from Chapter 3, we then proposed

a model based on a system of ordinary differential equations (ODEs) that consists of activated

forms of protein A (denoted by A) and protein B (denoted by B). Here, we have not considered

the basal synthesis rate of the individual nodes [56]. Thus a general model can be given by the

system of equations (4.1), which then can be reduced to different individual topologies.

dA
dt

=
kII(1−A)

kmI +(1−A)
+ fA + fBA−δ1A = F1(A,B),

dB
dt

= fB + fAB−δ2B = F2(A,B). (4.1)

where fA, fB, fAB and fBA take the following forms depending upon the motif structure.

fA =


kAA(1−A)

kmA+(1−A) , for self-activation on A

− kAA2

kmA+A , for self-inhibition on A

fB =


kBB(1−B)

kmB+(1−B) , for self-activation on B

− kBB2

kmB+B , for self-inhibition on B



86
Chapter 4. Bistability in cell signalling and its significance in identifying potential drug

targets

fAB =


k1A(1−B)

km1+(1−B) , when A activates B

− k1AB
km1+B , when A inhibits B

fBA =


k2B(1−A)

km2+(1−A) , when B activates A

− k2BA
km2+A , when B inhibits A

The system of equations (4.1) describes the rates of loss and creation of particular labelled

forms of proteins (nodes). The parameters are described in the previous chapter, Chapter 3.

Considering different combinations, we can obtain all the feasible two-node topologies.

Figure 4.1: All possible bistable two-node motifs. The figure illustrates all possible bistable
two-node motifs considered in this study. Here arrowed lines (green) represent activation, and
lines ending with a circle (red) represent inhibition.
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4.3 Existence of possible two-node bistable structures in a

signalling network

To address the aim of the study, we look for the existence of bistability in the motif structures. It

is known that positive feedback is necessary for the existence of bistability [131]. In the case of

negative feedback, the inactivation can be supplemented with a positive term defining a positive

feedback (self) loop [132]. We have a total of 12 positive feedback topologies and 6 negative

feedback topologies with positive self-loops in the inactivated node that can be considered for

the possible bistable topologies. So, for the existence of bistability, further study is done on

these 18 topologies depicted in Fig. 4.1.

Next, the steady states were calculated for these 18 topologies to find the bistable mo-

tifs. To solve numerically, we choose our model parameter sets from (0,1). We generate 105

random parameter sets using the Halton sequences method to pick values uniformly from the

space. This quasi-random sampling method uniformly partitions the unit interval in each di-

mension with equiprobable sub-intervals. So, it removes possible space biases, explores the

whole parameter space between (0,1), and looks for a possible parameter set for which the

system shows bistability. Then for every motif structure, we calculated the number of feasible

(numerical value between 0-1) stable steady states corresponding to each parameter set. So we

get a matrix of 105 rows (each row is a parameter set) and 18 columns (each column is a motif

structure) containing the number of feasible stable steady states. Out of these 105 rows, 161

rows contain at least one element greater or equal to 2, i.e. 161 parameter sets have at least

one motif showing bistability for that particular parameter set. The topologies that were show-

ing bistability with these 161 parameter sets were (PF2SB+
A+), (NF1SA+), (NF1SB+

A+), (NF1SB−
A+),

(NF2SB+), (NF2SB+
A+) and (NF2SB+

A−), see Fig. 4.2. Some of these seven motifs are identified in

the literature to be associated with real bistable circuits. The motifs identified are (NF1SA+),

(NF1SB+
A+), (NF2SB+), which is present in the real network as bistable motifs through the pro-

teins given in [132]. The motif structures and the corresponding proteins are known to show

bistability are given in Table 4.1.
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Figure 4.2: Bistable two-node motifs. The structures of the seven frequently observed bistable
topologies. Here arrowed lines (green) represent activation, and lines ending with a circle (red)
represent inhibition.

Table 4.1: The table contains the motifs and the corresponding proteins as a real example from
Pfeuty et al. [132].

Motif Protein as input node Protein as output node

NF1SA+ CycB APC

HetR PatC

MEF2 Hdac9

p53 mdm2

FOXL2 SIRT1

Notch Hes

NF1SB+
A+ CycE CycA

Ime1 Ime2

NF2SB+ Ptc Gli

4.4 Sensitivity of parameters towards the occurrence of bista-

bility

It is known in the literature that the sensitivity of a circuit depends on parameters like positive

feedback [28, 155]. Next, we want to see the effect of parameters on the occurrence of bista-

bility. The sensitivity of the parameters for each topology was identified with respect to output

by performing the global sensitivity analysis. The global sensitivity analysis (GSA) is used to
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determine the important parameters of the model. In GSA, the Partially Ranked Correlation

Coefficients (PRCC) [115] technique is used to calculate the associated p-values to determine

the most sensitive parameters. For each run of PRCC calculations, the randomly selected vec-

tors of parameter values were generated by Latin Hypercube Sampling (LHS) method. Over

1,000 simulations were performed to calculate PRCCs. For each simulation, the system was

solved up to 100 time steps, as it was observed from the time series solutions that the system

behaves uniformly much before 100 time steps. We used a cut-off of ±0.3 [156, 157] to define

the sensitive parameters, i.e. if the PRCC value of a particular parameter lies beyond±0.3, then

that parameter will be called a sensitive parameter. The global sensitivity analysis (GSA) result

is given in Fig. 4.3. The GSA analysis suggests that the most sensitive parameters are kI , k1, δ2,

I, δ1, kB and km1. Explicitly it can be seen that δ2, the degradation rate of node B, is negatively

correlated with the output node B for all the motif structures. The rate of activation of input

node A by input stimuli I (kI), rate of activation or inhibition of output node B by node A (k1)

and input stimuli I (I) are positively correlated with the output node B for the motif structures

where node A activates node B and they are negatively correlated in those motifs with node A

inhibiting node B.
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Figure 4.3: Global sensitivity analysis. Figure depicts the sensitivity of system parameters for
all seven bistable motifs. Here red and blue colours represent sensitive parameters with respect
to output node B. The correlation of parameters with respect to output node B are as follows:
Red: PRCCs ≥ 0.3, Blue: PRCCs ≤−0.3, Grey: 0.3 > PRCCS >−0.3, White: parameter is
not present in the motif.
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Figure 4.4: Robustness analysis. Here, each bar represents the mean fold change of a partic-
ular sensitive parameter from its basal value for which the topology shows bistability, and the
error bar represents the standard deviation. Green bars on the left-hand side of the basal value
portray the range of parameters when it is reduced from the basal values, while the orange bars
on the right are the ranges when they are increased from the basal values.

4.5 Robustness of sensitive parameters towards the mainte-

nance of bistability

We varied each sensitive parameter two-fold up and down from the basal values to study their

effect on the existence of bistability. Here the basal values are defined by the parameter values

for which we obtained the bistability of the motif structures. The same exercise is repeated

for all the bistable parameter sets of each motif structure and plotted their mean and standard

deviation (Fig. 4.4). We observed that the input stimulus (I) and its rate (kI) are robust in

all motif structures with respect to the bistability of the system. That is, the input parameter

maintains bistability for a wider variation compared to the other sensitive parameters of the

systems. Since bistability is crucial in cell signalling and functioning, the robustness shown by
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the input parameter in maintaining the bistability of the system motivates us to explore further

the role of this parameter in the existence of bistability.

4.6 Bistable property of a motif structure can be applied to

identify potential drug targets through hysteresis

Bistable systems often exhibit a kind of memory known as hysteresis [72]. Hysteresis is the

phenomenon where bistable switching is observed for different stimulus-response [73, 74]. The

two response curves form two loops, known as the hysteresis loop [75], that represent two dis-

crete stable steady states for a single value of the stimulus. Thus the input-output (I/O) relation

becomes a loop rather than a curve. This hysteretic switching can be categorised into two

types, reversible and irreversible [75]. If it comes back, it is reversible hysteresis; otherwise,

it is irreversible. Whether a system will have reversible or irreversible hysteresis depends on

the strength of the feedback parameter [71]. A reversible hysteresis can be changed to an ir-

reversible hysteresis by increasing the strength of the feedback parameter. Here we varied the

input parameter I between 0 to 1, showing the strength of the input signal. The input signal

is weak when close to zero and is highest at 1. A similar range is also available in literature

[132]. To understand the reversible and irreversible hysteresis in our bistable motifs, let us take

the example of the topology NF1SA+. It was observed that one steady state (say OFF) goes to

another steady state (say ON) with the increase in the input stimulus (I). The system may or

may not return to its initial OFF state when the input parameter is reversed (Fig. 4.5). Both

types of hysteresis were also observed in other bistable structures.

As the feedback strength of the bistable system defines the nature of hysteresis, it is impor-

tant to study each motif structure for the separate ranges of feedback strengths. So we calculated

the fold change of the feedback parameter for every bistable parameter set and its mean and

standard deviations (Fig. 4.6). We could use this information to rank the motifs according to

their ability to reverse back. The topology NF1SB+
A+ has the largest feedback parameter range,

while NF2SB+
A+ with the smallest. Since in reversible hysteresis, we can bring back the initial

steady state by reversing the input parameter value. We hypothesize that the motif with a larger
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reversible hysteretic feedback parameter range might be a better consideration for a potential

drug target candidate.

Figure 4.5: Bistable properties through hysteresis. The figure illustrates reversible and irre-
versible hysteresis. The left and the right panels show reversible and irreversible hysteresis in
NF1SA+ for feedback parameter k2 = 0.28 and 0.2652, respectively.

Figure 4.6: Feedback and reversible hysteresis. The figure depicts the mean range of feed-
back parameter (k2) fold change for which different structures show reversible hysteresis, and
the error bar represents its standard deviation. The motifs are arranged in the decreasing order
of their reversible hysteretic feedback parameter range.
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Figure 4.7: Abundance of bistable nodes (proteins) in PPI networks. Here Y-axis represents
the list of proteins from the cancer networks that are present in bistable motifs as input nodes.
The black bar in the X-axis represents the percentage of those proteins present in the network
as a part of the seven bistable motifs. The grey bar shows the percentage when they are present
in other motifs. White blanks show the absence of the protein as either of the two.

4.7 Validation of the model predictions using existing drug

information

Bistability exists in networks, and we establish that its occurrence depends on the motif struc-

ture. We also hypothesize that the structure with a larger reversible hysteretic range could be

a better drug target. So, we now look to validate our hypothesis in a real biological network,

which will also establish the significance of the present study. We considered three disease

networks and studied them in the context of bistability. The three diseases considered for our



94
Chapter 4. Bistability in cell signalling and its significance in identifying potential drug

targets

study are breast, ovarian and pancreatic cancer. We built directed protein-protein interaction

(PPI) networks using the data available in the literature [142]. To get a directed PPI (signalling)

network, we used SIGNOR (SIGnaling Network Open Resource) database [146], which out-

puts binary matrix representations of the user-provided protein lists. Using the database, we

created directed graphs among the signalling proteins. We obtained directed PPI networks of

5092 interactions from 1415 nodes for breast cancer, 4134 interactions from 1045 nodes for

ovarian cancer, and 4030 interactions from 990 nodes for pancreatic cancer.

Next, we wanted to find the distribution of proteins associated with the bistable motifs in

these networks. 44 out of 1415 nodes in the breast cancer network, 38 out of 1045 nodes in

ovarian cancer and 35 out of 990 in pancreatic cancer are present as input nodes of bistable

motifs. The distribution of those proteins in respective networks is given in Fig. 4.7. It was

observed that the sets of 38 nodes from the ovarian cancer network and 35 from the pancreatic

cancer network are subsets of the 44 nodes from the breast cancer network. So, some proteins

are missing from the ovarian and pancreatic cancer list in the distribution of bistable nodes.

We then compared our results with available drug target information to see how many of

these proteins are known as drug targets. Reversible hysteresis reverses the system back to the

non-disease state from the disease state by reducing the input parameter, which can be done

with the help of a drug. So in our study, we will use input nodes as the drug target. Firstly,

we extract drug-target protein data from the open-source Drugbank database [158]. Extensive

information about drugs and their targets is given in the Drugbank database, which includes

information of chemical, pharmacological and pharmaceutical-specific drugs integrated with

structures, pathways and sequence drug targets. We first draw out only the proteins that have

been used as a drug target. Next, we find the available drugs targeting only those bistable pro-

teins obtained from our study. We considered those proteins in the networks present as the input

node of the bistable motifs and used as drug targets at least once in the open-source Drugbank

database [158]. We arranged the motif structures in the descending order of their feedback pa-

rameter range of reversible hysteresis and plotted their frequency in those motifs. We observe

that the proteins which are present in the motifs with higher reversible feedback range tend to

be associated with higher numbers of drugs (Fig. 4.8), thus, validating our hypothesis that the
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structure with larger reversible hysteretic range can be a better drug target.

Figure 4.8: Drug targets and reversible hysteresis. In this figure, the Y-axis represents pro-
teins that are present in bistable motifs as input nodes in cancer networks and also used as drug
targets. The X-axis represents the topologies in descending order of the reversible hysteresis
feedback parameter range. The colour bar represents the frequency of a particular protein as an
input node in that particular motif.

We want to verify that the observed result is not because the higher-ranked motifs are more

abundant than the others. In other words, the claim that the proteins associated with motifs

with larger reversible hysteretic ranges are better drug targets is unrelated to their abundance.

The frequency distribution of bistable motifs in three cancer networks is given in Table 4.2.

We calculated the Spearman’s rank correlation [159] between the motif’s rank according to the

hysteretic property and its rank according to its abundance in all three cancer networks. No

correlation was observed between the two motif ranks in the three cancer networks. The rank

correlation coefficients are -0.171 for the breast cancer network and -0.2143 for the ovarian and

pancreatic cancer networks. Hence, the motifs with larger reversible hysteretic ranges may not

be abundantly present in the cancer networks, but still, the associated proteins are targets of

numerous drugs.

Finally, we looked for the drug targets in the network associated with the list of drugs
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Table 4.2: Frequency distribution of bistable motifs in three cancer networks.

Motif Breast cancer Ovarian cancer Pancreatic cancer

NF1SB+
A+ 8 7 6

NF1SA+ 22 18 18

PF2SB+
A+ 4 0 0

NF1SB−
A+ 3 3 3

NF2SB+
A− 3 3 3

NF2SB+ 22 18 18

NF2SB+
A+ 8 7 6

mentioned by Kanhaiya et al. [142] (Table 4.3) and found that they belong to the motifs with

larger reversible hysteretic range. For example, one of the two targets of the drug Lapatinib is

EGFR which belongs to the bistable motif with a higher reversible range. In another example,

the drug Dasatinib has 23 targets, of which seven are from bistable motifs and that too from the

top two ranks. We will see our formalism on these real targets through an illustrative example.

Let’s consider the ABL1 as a target to understand how hysteresis might play a role in switching

the system’s behaviour. ABL1 interacts with NCK1 through the NF1SA+ motif. Dasatinib,

bosutinib and ponatinib inhibit ABL1 causing a reduction in NCK1 as they are present in

NF1SA+ motif (see Table 4.4). The decrease in NCK1 reduces cell proliferation that controls

the breast cancer [160], similar to what was observed in the reversible hysteresis (left panel Fig.

4.5), where reduction in the input signal causing a switch in the output node state leading to a

change in the system behaviour. To further validate this theory, it was observed that the output

nodes associated with the other drug target proteins through the bistable motifs are also linked

with breast cancer. The input and output proteins corresponding to each drug target are given

in Table 4.4. The downregulation of these proteins or reduction in their concentration leads to

a reduction of cell proliferation [161–163].
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Table 4.3: Table showing drugs from Kanhaiya et al. [142] with their targets present as bistable
motifs

Drugs Total number Targets present as Bistable motif where

of targets bistable motifs the targets are present

Lapatinib 2 EGFR NF1SA+, NF1SB−
A+

Dasatinib 23 ABL1, SRC, LCK, KIT NF1SA+, NF1SB+
A+

LYN, FYN, PDGFRB

Bosutinib 10 ABL1, SRC, LYN, MAP2K1 NF1SA+, NF1SB+
A+

Ponatinib 15 ABL1, KIT, LCK, SRC, LYN NF1SA+, NF1SB+
A+

Temsirolimus 1 MTOR NF1SA+

Ruxolitinib 4 JAK2 NF1SA+

Erlotinib 2 EGFR NF1SA+, NF1SB−
A+

Table 4.4: Distribution of the output nodes of the drug targets mentioned in the Table 4.3.

Drug targets NF1SA+ (output node) NF1SB+
A+ (output node)

KIT GRB2 -

JAK2 PTPN11 -

PDGFRB PTPN11 -

MTOR AKT1 -

MAP2K1 - MAPK1

FYN PTPRF -

EGFR CBL, EPS15, ERRFI1 -

ABL1 NCK1, PSTPIP1 STK3, STK4

LCK PTPN6 MAPK1, MAPK3

SRC PTPN6 -

LYN PTPN6 -
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Figure 4.9: Effect of stochasticity on model prediction. Figure depicts the reversible hys-
teretic range of feedback parameter (k2) and their corresponding minimum strength of noise
(σ ) required to move one of the steady state clouds to the other for all the bistable topolo-
gies. The reversible hysteretic feedback range along with the σc value were calculated with the
parameters given in Table 4.5.

4.8 Disruption of bistability due to the introduction of ran-

dom perturbations

It is known that an increase in stochastic perturbation may affect the cellular signalling memory.

In other words, it can switch the system from one steady state to another steady state [99,

105], which we have seen in Chapter 2. So, it would be interesting to see the effect of the

stochastic perturbation on the bistability of our systems. We build a stochastic differential

equation (SDE) based model by adding noise to the deterministic system, following similar

arguments in Chapter 3. We calculated the steady states keeping the intensity of the fluctuations

σ1,σ2 below a certain threshold value σc determined by solving the SDE models. We observed

a similar loss of bistability for topology NF1SB−
A+ as of structure 1 in Chapter 2. We observed that

the system remained bistable for small noise intensity less than σc. When one of the σ ’s was

increased, movement of stochastic clouds was observed. Thus an increase in the noise intensity

distorts the bistable system into a monostable system. In such a condition, the system can not

be reversed back to the previous steady state, making it irreversible, though the corresponding
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deterministic system shows reversible hysteresis. The influence of the stochasticity on the

reversibility depends on the strength of the noise intensity, which again depends on the feedback

parameter values. So, we have calculated the minimum noise strength required to change the

bistable system to a monostable system for all the bistable motifs for the parameter set given in

Table 4.5, see Fig. 4.9. This analysis was performed for one parameter set to demonstrate the

effect of the random perturbation on the model hypothesis. That is, even though deterministic

systems experience reversible hysteresis, reversibility may be lost due to noise above some

threshold value.

Table 4.5: Table contains one parameter set for each topology from 161 sets that give bistable
steady state.

Parameters Topologies

PF2SB+
A+ NF1SA+ NF1SB+

A+ NF1SB−
A+ NF2SB+ NF2SB+

A+ NF2SB+
A−

I 0.3671 0.2904 0.4348 0.2161 0.2204 0.1616 0.0286

kI 0.2823 0.1155 0.1867 0.1263 0.1360 0.4012 0.1580

kmI 0.5802 0.7652 0.7801 0.3401 0.4375 0.6755 0.4596

kA 0.9336 0.3448 0.9833 0.4998 - 0.7117 0.3104

kmA 0.1014 0.0565 0.4083 0.0203 - 0.7927 0.9311

kB 0.6998 - 0.8252 0.2573 0.4370 0.5659 0.7611

kmB 0.1833 - 0.5157 0.8689 0.1815 0.0532 0.1517

k1 0.4267 0.6000 0.3132 0.8099 0.4440 0.5460 0.2076

km1 0.8511 0.2887 0.5770 0.6115 0.9046 0.1709 0.0288

k2 0.6279 0.2625 0.2636 0.6280 0.5688 0.8600 0.7021

km2 0.3624 0.0936 0.1090 0.4531 0.9936 0.6307 0.9699

δ1 0.0832 0.0107 0.0697 0.0443 0.0252 0.8200 0.1001

δ2 0.0930 0.1755 0.0226 0.0567 0.0256 0.1473 0.3314
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4.9 Discussion

Bistability is a crucial feature of dynamical systems and is used in various all-or-none kinds

of decision-making processes [14, 164]. It is a phenomenon where two distinct stable steady

states coexist in a given set of experimental conditions [70]. It has been observed in a number

of biochemical systems [165, 166]. The occurrence of bistability in biological systems has

attracted a lot of attention in recent years [167–170]. The presence of bistability in a signalling

network plays a crucial role in the input-output (I/O) relation. It is also known that stochastic

fluctuations or randomness are inherently present in the signalling network [96]. So, we were

interested in studying the effect of stochastic fluctuations or randomness on the occurrence of

bistability. Here, by means of a theoretical model, we have also analysed the conditions for

which bistability occurs. We looked for a relation between network motif structures and the

occurrence of bistability in a signalling network.

We considered the smallest network motif of a two-node structure and analysed for the

existence of bistability. Our analysis revealed that 7 out of 18 two-node possible bistable

structures were showing bistability with exposure to ample parameter space. We observed six

of them have negative feedback supplemented by positive self-loops. Some of the identified

motifs are reported in the literature to show bistability. After establishing the link between

the motif structure and the occurrence of bistability, we wanted to identify parameters driving

the motif structures towards bistability. Our sensitivity analysis revealed that the parameters,

like the output node’s degradation rate, are sensitive in most of the motif structures. We take

forward eight such sensitive parameters to study their effect on the existence of bistability for

each structure. The effect of parameter variation leads to different outcomes for different motif

structures. In some structures, these parameters showed little effects like PF2SB+
A+, NF1SA+ and

NF1SB+
A+, while in others, the effect was immediately observed with parameter variation like

NF2SB+ and NF2SB+
A+.

One of the most sensitive parameters obtained from our study is the input signal I. It is

known that the bistability switching phenomenon, referred to as hysteresis, is observed for dif-

ferent stimulus-response [73, 74]. So, we studied the effect of the input signal on bistability

through hysteresis. It better captures the importance of input signals in maintaining and switch-
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ing states in a bistable system. We studied the hysteresis in all seven bistable motif structures.

Up-regulation of a particular protein is a common phenomenon in many cancers [154]. So we

referred to the higher steady state of the hysteresis loop as the disease state (or ON state) and

the lower disease-free state (or OFF state). However, in some cases, the higher state could be

disease-free, like in the case of tumour suppressor proteins [154]. In both these cases, the ab-

sence of input stimulus is referred to disease-free (OFF) state, which will change if the absence

of stimulus is referred to disease state. By this consideration, we can explain all the possibil-

ities. We are not specifying the disease and disease-free state as it is beyond the scope of the

current study. However, our method can be applied to a specific motif in a network to extract

relevant information. For simplicity, we refer to one state as disease free (OFF) and the other

as disease state (ON). A protein in any state (ON or OFF) remains robust for certain levels of

perturbation [171]. So a certain increase in the input signal does not affect the steady state, and

if it is in a disease-free state, it remains there until the input signal crosses a certain value, and

the system migrates to the disease state.

The bistable system can reverse back to its previous state if it shows reversible hysteresis,

which is impossible for irreversible hysteresis. So reversible hysteresis can make the system

disease-free (OFF) state from a disease (ON) state by reversing the input parameter, which

is difficult for irreversible hysteresis. The transition of reversible and irreversible hysteresis

depends on the feedback parameter of the system. We obtained ranges of feedback parameters

for reversible and irreversible hysteresis for each bistable motif structure. We hypothesise that

the nodes following motifs with a larger feedback range of reversible hysteresis can be better

or easier drug targets. Based on the hypothesis, we ranked the motifs, and the obtained rank is

independent of the chosen parameter set.

The hypothesis was validated using three directed protein-protein interaction networks as-

sociated with breast, ovarian and pancreatic cancer. 50% of the nodes were only present as the

input node of bistable motif structures and not featured in the other motifs. We also searched

for the nodes already used as drug targets from the open-source Drugbank database. The nodes

in the motifs with larger reversible hysteretic feedback range are associated with a higher num-

ber of drugs. Thus reversible hysteresis might be a good indicator for identifying drug targets.
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We further observed that the known drugs tended to target the bistable motifs and are associ-

ated with those with larger feedback effects. However, the challenge involves the existence of

such reversible hysteresis in the presence of a noisy environment. It has been observed that

stochastic effects can change the reversible and irreversible hysteresis [172]. When a cell goes

to ON state from OFF state due to stochastic perturbation, it does not reverse back [60]. We

also observed in Chapter 2 that when the noise intensity crosses the critical value, the sys-

tem loses its bistability and becomes monostable. The existence of bistability is important in

many biological processes, so the loss of bistability in the presence of random perturbation may

cause cellular dysfunction, which needs further investigation. We also observed that the effect

of stochasticity on reversibility depends on the strength of the feedback and noise intensity.

In this chapter, we explored the emergence of bistability and used it to identify the potential

drug targets from the cancer networks. After establishing the significance of bistability in

cell signalling networks, we want to explore it further to understand how bistability works in

making decisions in real biological processes. So in the next chapter, we have considered the

tumour necrosis factor (TNF) signalling network to understand the complex mechanism of cell

survival and death in regulatory T cells.
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Bistability regulates TNFR2-mediated

survival and death of T-regulatory cells1

5.1 Introduction

A particular subpopulation of T cells known as T-regulatory cells (Tregs) suppresses immuno-

logical response to preserve homeostasis and self-tolerance. It has been demonstrated that

Tregs can limit T cell expansion and cytokine production and are essential for avoiding au-

toimmunity [173]. On the other hand, in the case of cancer, Tregs infiltrate into several tumour

tissues to suppress the effector functions of tumour-specific T cells [174]. Through direct and

bystander inhibition, Tregs influence immunological tolerance. In direct suppression, Tregs act

1The bulk of this chapter has been published in Journal of Biological Physics, 2023,
https://doi.org/10.1007/s10867-023-09625-3
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to specifically inhibit the target cell in response to an antigen. Whereas in bystander suppres-

sion, Tregs specific for one antigen might inhibit immunological responses to other antigens

in close proximity. Thus, immunological tolerance is restored, and these anti-inflammatory

responses maintain immune homeostasis [175].

Conventionally, a decrease in the functional Treg number is often correlated with the disease

severity in autoimmune diseases [176]. However, a diverse pattern related to Treg frequency

can be seen in the case of autoimmune diseases. A consistent decrease in Tregs number is ob-

served in systemic lupus erythematosus (SLE) subjects [176], in the case of multiple sclerosis

(MS), both an increase [177], and a decrease [178] in Tregs numbers were observed. Con-

trastingly, an increase in Tregs number was observed in rheumatoid arthritis (RA) and type-1

diabetes (T1D) patients [179, 180]. Although the number of Tregs in peripheral blood increases

in the case of T1D but they have diminished functionality [181], a similar functional deficiency

was also observed in the case of RA patients [182].

The contributing inflammatory responses that mark the pathogenesis of many autoimmune

diseases begin with the up-regulation of tumour necrosis factor (TNF), which can bind to its

two receptors, tumour necrosis factor receptor 1 (TNFR1) and tumour necrosis factor receptor

2 (TNFR2). Nearly every cell in the body expresses TNFR1. TNFR2 is expressed in more

limited cells, which include T-regulatory cells (Tregs). Thus, TNFR2 becomes a more attrac-

tive molecular target than TNFR1 [183]. Exogenous TNF alone has a systemic harmful effect

when TNFR1 is activated. TNFR2 offers better protective behaviour in diseases like autoim-

munity, cardiac diseases, demyelinating, neurodegenerative disorders, and infectious diseases

[183]. Several defects, including TNFR2 gene polymorphisms and TNFR2 receptor shedding,

are present in many autoimmune disorders. These include graft versus host disease, Crohn’s

disease, ulcerative colitis, and familial rheumatoid arthritis [183]. TNFR2 agonism has been a

common strategy to destroy autoreactive T cells in various autoimmune diseases [183–187].

A highly complicated signalling network like TNF signalling frequently exhibits intricate

dynamic regulation in response to perturbations. It has been established that mathematical

modelling is a crucial method in the study of complex networks and dynamic systems in TNF

signalling. Since mathematical modelling is important in molecular biology, it has been used
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to construct testable hypotheses and guide experimental design to maximise the information

obtained [188–193]. These mathematical models can unravel complex mechanisms like bista-

bility, demonstrating the all-or-none decision-making processes to determine the fate of cells

[194, 195]. The mathematical model on bistability was also used to understand evolutionary

reversibility by Kheir Gouda et al. [87]. These extremely complex signalling systems could be

further influenced by the inherent noise present in the signalling network [96]. Low copy num-

bers of the chemical reactants and their diverse distribution inside the cell are the root causes

of randomisation at the intracellular level [196]. Numerous intriguing effects of random fluctu-

ations have recently been theorised and experimentally verified [25, 95, 97–99]. In Chapter 2,

we have seen that the bistability can be lost due to the presence of randomness in the system.

Therefore, it is important to examine noise in these complicated systems.

The commonality of TNFR2 signalling abnormalities and the diverse patterns related to

Treg frequency observed in autoimmune diseases motivated us to study the TNFR2 signalling

pathway in Treg cells. TNF-mediated apoptosis is one of the intricate and carefully controlled

cellular processes brought on by activating both pro- and anti-apoptotic signalling pathways.

So, we are curious to understand the mechanism governing Treg cell survival and death that

could facilitate targeted treatment for the disease. To capture the process of cell survival and

death in Treg cells via TNFR2 signalling, an ordinary differential equation (ODE) based model

was developed and analysed. The model reveals the existence of bistability in the system.

The system strives to adapt to changing stimuli through hysteretic switching. We compute

bifurcation diagrams and create cell fate maps to analyse how stimulus strength and feedback

strength affect cell survival and death. Our findings suggest that the main causes of the death

of Tregs are an elevated level of TNF and enhanced JNK phosphorylation. Finally, the system

was studied in the presence of random perturbations to capture the influence of noise in the

observed bistability.
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5.2 Construction of the deterministic model

We proposed a simplified mathematical model of TNFR2 signalling in Treg cells to understand

the underlying mechanism of TNF-mediated survival and death. To construct the mathematical

model, we adopted the TNFR2 signalling pathway described in Fig. 5.1 from Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways [149, 197] and literature [183, 198]. The

model consists of the input stimuli TNF (I), which binds to its receptor TNFR2, forming the

TNF-TNFR2 complex (T R2). After the initial trigger, we suppose that the signal moves to-

wards the end irreversibly. The complex T R2 activates TNF receptor-associated factors 1,

2, 3 (TRAF1/2/3), which further activates the downstream signalling pathways. TRAF1/2/3

activates the IkB kinase (IKKs) via multiple signalling pathways through successive phospho-

rylation of the intermediate molecules like phosphoinositide 3 kinase (PI3K), protein kinase B

(Akt), nuclear factor kappa B inducing kinase (NIK), cellular inhibitors of apoptosis proteins

1 and 2 (cIAP1/2) and receptor-interacting protein (RIP). Finally, IKKs activate nuclear factor

kappa B (NF-κB) by phosphorylating the inhibitor of NF-κB (IκBα). The transcription factor

NF-κB ensures cell viability by dissociating from its cytoplasmic inhibitor protein IkBα and

moving to the nucleus, where it activates target genes that are involved in cell survival [183].

So, we have considered the concentration of activated NF-κB as the survival complex (S). T R2

also activates disabled homolog 2-interacting protein (AIP1), which further activates its down-

stream protein c-Jun N-terminal kinase (JNK (J)), which can promote cell survival by activating

transcription factor Jun (c-Jun). Moreover, c-Jun promotes cell survival by activating the Akt

survival pathway [199], which eventually activates NF-kB. Thus, we can consider the activa-

tion of the survival complex by JNK via an indirect link. Also, c-Jun can prevent apoptosis by

cooperating with NF-κB [200]. Apoptosis is triggered and carried out by caspase activation

[198]. Thus, we have taken the concentration of caspase as the apoptotic complex (A), which is

also the system’s output. Long-term JNK activation "breaks the brake" on apoptosis by inacti-

vating suppressors of the mitochondrial-dependent death cascade [198]. TNF activates NF-κB,

which prevents caspase activation and prevents TNF-induced apoptosis [198]. The additional

downstream linkages and the cross-talks were not included to keep the mathematical model

simple for analysis.
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Figure 5.1: Map of the TNFR2 pathway. The figure depicts the schematic representation of
the TNFR2 signalling pathway. The solid lines represent molecular interactions or relations,
and the dashed lines represent indirect links. Furthermore, the arrow represents activation, and
the line with the hammerhead denotes inhibition. The input TNF (I) and all the state variables
used in the model system are written inside parentheses.

The model’s equations describe the rates of loss and formation of the TNF-TNFR2 complex

(T R2(t)), survival complex (S(t)), JNK (J(t)), and the apoptotic complex A(t) at time t. Here

the input stimulus TNF, I, binds to the free TNFR2. Grell et al. [201] have shown that the

formation of TNF-TNFR2 (T R2) has a saturation, so to replicate this behaviour, we have con-

sidered the Michaelis-Menten form of kinetics for TR2 formation. Similar enzymatic kinetics

has been used to describe the interaction of TNF with its receptor [202]. The total number of

TNFR2 in different cell types remains constant. For example, the number of TNFR2 in KYM-1

cells is approximately 30,000 per cell [201], and HeLa cells contain about 50,000 TNFR2 per

cell [203]. Wang et al. [204] showed that the number of TNFR2 on the Treg cell surface is

three times higher than the other T cell types, but their actual number is unknown. So, we have

considered the total concentration of TNFR2 to be a constant and normalized to 1 [56]. So

the concentration of free TNFR2 at the membrane is (1-TR2). Thus, the formation of TR2 can

be given by k1I(1−T R2)
km1+(1−T R2) , where k1 is the maximum rate of TR2 formation and km1 is the half-

saturation constant. The production of S depends on the number TR2 of TNF-TNFR2 com-

plexes on the cell membrane, with a rate constant k2 [193]. Also, the production of J depends

on the number of TR2, with a rate constant of k4. Similarly, the production of S and A depends

on the number of J, with rate constant k3 and k7, respectively. So, a linear positive growth term
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is added to the respective equations. The cell survival pathway inhibits the apoptotic reactions

in A with a rate k8S [193]. Thus, a negative term is added to the apoptosis equation. Bagowski

et al. [69] experimentally found that the steady-state response of the JNK cascade is highly

ultrasensitive and exhibits switch-like responses to various stimuli. This ultra-sensitivity is due

to strong positive feedback, which is given by the autocatalysis of the JNK activation [12]. The

Hill equation can model this switch-like ultrasensitive response with a Hill coefficient greater

than one [67]. Hence, we have added the term k5J2

k2
6+J2 for the autocatalysis to the equation of J

considering the Hill coefficient to be equal to two. The ligand/receptor complexes T R2 can be

degraded with a rate constant d1. The activated JNK has a degradation with a rate constant of

d3. The processes described by the rate constants d2 and d4, respectively, represent the degra-

dation of S and A by ubiquitination and proteasome cleavage and/or irreversibly inhibited by

other molecular species [193]. All these assumptions lead to the following model:

dT R2
dt

=
k1I(1−T R2)

km1 +(1−T R2)
−d1T R2 = F1(T R2,S,J,A),

dS
dt

= k2T R2+ k3J−d2S = F2(T R2,S,J,A),

dJ
dt

= k4T R2+
k5J2

k2
6 + J2 −d3J = F3(T R2,S,J,A),

dA
dt

= k7J− k8SA−d4A = F4(T R2,S,J,A). (5.1)

with initial conditions

T R2(0) = T R20 > 0,S(0) = S0 > 0,J(0) = J0 > 0,A(0) = A0 > 0. (5.2)

5.3 Analytical results

5.3.1 Positive invariance and boundedness of the solutions

Theorem 5.3.1. All solutions of (5.1) satisfying the initial condition (5.2) are positively invari-

ant.
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Proof. From the first equation of (5.1), we have

T R2(t) = T R20e−d1t +
k1I
d1

[
1− e−d1t

]
− k1km1Ie−d1t

∫ t

0

{
ed1s

km1 +1−T R2(s)

}
ds

It implies that T R2(t)≥ 0 for all t > 0 as T R20 > 0.

Similarly, from the third equation of (5.1)

J(t) = J0e−d3t +
k5

d3

[
1− e−d3t

]
+ e−d3t

∫ t

0

{
k4T R2(s)−

k5k2
6

k2
6 + J(s)2

}
ed3s ds

Since T R2(t) is positive, then J(t) remains non-negative for all t > 0 provided J0 > 0.

Also, we have

S(t) = S0e−d2t + e−d2t
∫ t

0
{k2T R2(s)+ k3J(s)}ed2s ds

Since T R2(t) and J(t) both are positive, then S(t) remains non-negative for all t > 0 pro-

vided S0 > 0.

Following similar arguments, we have

A(t) = A0e−d4t + e−d4t
∫ t

0
{k7J(s)− k8S(s)A(s)}ed4s ds

Since J(t) and S(t) both are positive, then A(t) remains non-negative for all t > 0 provided

A0 > 0. Thus, all solutions of (5.1) satisfying the initial condition (5.2) are positively invariant.

This completes the proof.

Theorem 5.3.2. All solutions of system (5.1) with initial condition (5.2) are bounded within a

region Γ, where

Γ =

{
(T R2,S,J,A)εR4

+ : 0 < T R2(t)≤ k1I
d1

,0 < S(t)≤Ω1,

0 < J(t)≤ 1
d3

(
k4

k1I
d1

+ k5

)
,0 < A(t)≤

k7

(
k4

k1I
d1

+ k5

)
d3(d4 + k8α)

}
,

Ω1 =
1
d2

{
k2

k1I
d1

+ k3
d3

(
k4

k1I
d1

+ k5

)}
and α is the minimum of S(t).
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Proof. From the first equation of system (5.1), we can write

dT R2
dt

+d1T R2≤ k1I

where k1I is the maximum of k1I(1−T R2)
km1+(1−T R2) . Thus, following [205], we have T R2(t)≤ k1I

d1
as

t→ ∞.

From the third equation of system (5.1), we can write

dJ
dt

+d3J ≤ k4
k1I
d1

+ k5

where k1I
d1

is the maximum of T R2(t) and k5 is the maximum of k5J2

k2
6+J2 . Thus, following

[205], we have J(t)≤ 1
d3

(
k4

k1I
d1

+ k5

)
as t→ ∞.

Using the second equation, we have

dS
dt

+d2S≤ k2
k1I
d1

+
k3

d3

(
k4

k1I
d1

+ k5

)

giving S(t)≤ 1
d2

{
k2

k1I
d1

+ k3
d3

(
k4

k1I
d1

+ k5

)}
as t→ ∞.

From the fourth equation, we get

dA
dt

+(d4 + k8α)A≤ k7

d3

(
k4

k1I
d1

+ k5

)
where α is the minimum of S(t). Thus, following [205], we have A(t)≤ k7

d3(d4+k8α)

(
k4

k1I
d1

+ k5

)
as t→ ∞.

Hence all solutions of system (5.1) with initial condition (5.2) are ultimately bounded within

the region Γ, where

Γ =

{
(T R2,S,J,A)εR4

+ : 0 < T R2(t)≤ k1I
d1

,0 < S(t)≤Ω1,

0 < J(t)≤ 1
d3

(
k4

k1I
d1

+ k5

)
,0 < A(t)≤

k7

(
k4

k1I
d1

+ k5

)
d3(d4 + k8α)

}
,

Ω1 = 1
d2

{
k2

k1I
d1

+ k3
d3

(
k4

k1I
d1

+ k5

)}
and α is the minimum of S(t). This completes the proof.
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5.3.2 Equilibrium point and stability analysis

The system has no axial equilibrium points. The interior equilibrium point E∗(T R2∗,S∗,J∗,A∗)

of the system is obtained by solving the following algebraic equations:

k1I(1−T R2∗)
km1 +(1−T R2∗)

−d1T R2∗ = 0,

k2T R2∗+ k3J∗−d2S∗ = 0,

k4T R2∗+
k5(J∗)2

k2
6 +(J∗)2 −d3J∗ = 0,

k7J∗− k8S∗A∗−d4A∗ = 0. (5.3)

Solving the first equation we get a quadratic equation of T R2∗, given by

d1(T R2∗)2− [d1(km1 +1)+ k1I]T R2∗+ k1I = 0.

The discriminant (D) of this quadratic equation is given by D=(d1(km1−1)+k1I)2+4d2
1km1 >

0. Thus, we get two distinct positive real roots T R2∗. So, T R2∗ is feasible when 0≤ T R2∗ ≤ 1.

From the third equation of (5.3), we get J∗ in terms of T R2∗ which satisfies the cubic

equation

d3J∗3− (k4T R2∗+ k5)J∗2 +d3k2
6J∗− k4k2

6T R2∗ = 0.

From Descartes’ rule of sign, we can easily find that the J∗ have either one or three positive

roots.

Next, by solving the second equation of (5.3) we get S∗ = 1
d2
(k2T R2∗+ k3J∗) and from

fourth equation we get A∗ = k7J∗
k8S∗+d4

.

The Jacobian matrix evaluated at the interior equilibrium E∗ is given by
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V (T R2∗,S∗,J∗,A∗) =

−d1− k1km1I
(km1+1−T R2∗)2 0 0 0

k2 −d2 k3 0

k4J∗ 0 −d3 +
2k5k2

6J∗

(k2
6+J∗2)2 0

0 −k8A∗ k7 −k8S∗−d4


The eigenvalues λi(i = 1,2,3,4) are the roots of the characteristics equation

(
−d1−

k1km1I
(km1 +1−T R2∗)2 −λ1

)
(−d2−λ2)(

−d3 +
2k5k2

6J∗

(k2
6 + J∗2)2 −λ3

)
(−k8S∗−d4−λ4) = 0. (5.4)

Note that the three eigenvalues λi(i = 1,2,4) of (5.4) are always negative and the fourth

eigenvalue λ3 is negative iff 2k5k2
6J∗

(k2
6+J∗2)2 < d3. Hence, the interior equilibrium point E∗ is locally

asymptotically stable (LAS) iff 2k5k2
6J∗

(k2
6+J∗2)2 < d3.

5.4 Construction of the stochastic model

Signalling systems are inherently noisy [206], so to study the effect of noise in the system, we

built the stochastic differential equations (SDE) model by incorporating random perturbation in

the system (5.1). The random influences were viewed as systemic disturbances, and their effects

were included in the model as multiplicative Gaussian white noise [36, 130]. Consequently, we

added the stochastic perturbation terms to the equations relating to each state variable. The

random fluctuations of the state variables around their steady-state values E∗(T R2∗,S∗,J∗,A∗)

are Gaussian white noise, and they are proportional to the distances of T R2, S, J and A from

their steady-state values, respectively. In light of this, the stochastic model system that follows

the deterministic model system (5.1) is as follows:
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dT R2 = F1(T R2,S,J,A)dt +σ1(T R2−T R2∗)dξ
1
t ,

dS = F2(T R2,S,J,A)dt +σ2(S−S∗)dξ
2
t ,

dJ = F3(T R2,S,J,A)dt +σ3(J− J∗)dξ
3
t , (5.5)

dA = F4(T R2,S,J,A)dt +σ4(A−A∗)dξ
4
t .

where σi (i = 1,2,3,4) are real constants and known as the intensity of the fluctuations, ξ i
t =

ξi(t) (i = 1,2,3,4) are standard Wiener processes, independent of each other, and Fi (i =

1,2,3,4) are defined in the Eq. (5.1). We consider Eq. (5.5) as an Ito stochastic differen-

tial system of the type

dXt = F(t,Xt)dt +G(t,Xt)dξt (5.6)

where the solution (Xt ,t > 0) is an Ito process, ’F’ is the drift coefficient, ’G’ is the diffusion

coefficient, and ξt is a four-dimensional stochastic process having scaler Wiener process com-

ponents with increments4ξ
j

t = ξ j(t+4t)−ξ j(t) are independent Gaussian random variables

N(0,4t). In the case of the system (5.5),

Xt =



T R2

S

J

A


,ξt =



ξ 1
t

ξ 2
t

ξ 3
t

ξ 4
t


,F =



F1(T R2,S,J,A)

F2(T R2,S,J,A)

F3(T R2,S,J,A)

F4(T R2,S,J,A)


,

G =



σ1(T R2−T R2∗) 0 0 0

0 σ2(S−S∗) 0 0

0 0 σ3(J− J∗) 0

0 0 0 σ4(A−A∗)


. (5.7)

Since the diffusion matrix ’G’ depends upon the solution of Xt , the system (5.5) is said to have

multiplicative noise.
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5.4.1 Stochastic stability of the interior equilibrium point

The variables U1 = T R2−T R2∗,U2 = S−S∗,U3 = J−J∗,U4 = A−A∗ were introduced to cen-

tre the stochastic differential system (5.5) at its positive equilibrium points E∗(T R2∗,S∗,J∗,A∗).

To keep mathematical computations simple, we work with the stochastic differential equation

created by linearising the vector function ’F’ (5.7) about the positive equilibrium point E∗. The

linearised system of (5.6) around E∗ is given by

dU(t) = f (U(t))dt +G(U(t))dξ (t) , (5.8)

where

U(t) =



U1(t)

U2(t)

U3(t)

U4(t)


, f (U(t)) =



−a11U1

k2U1−d2U2 + k3U3

k4J∗U1−a33U3

−k8A∗U2 + k7U3−a44U4


,

G(U(t)) =



σ1U1 0 0 0

0 σ2U2 0 0

0 0 σ3U3 0

0 0 0 σ4U4


, (5.9)

a11 = d1 +
k1km1I

(km1 +1−T R2∗)2 , a33 = d3−
2k5k2

6J∗

(k2
6 + J∗2)2 , a44 = d4 + k8S∗.

Note that, in (5.8) the positive equilibrium E∗ corresponds to the trivial solution (U1,U2,U3,U4)=

(0,0,0,0). Let Ω be the set defined by Ω =
[
(t > t0)×R4, t0 ∈ R+

]
. To define stability follow-

ing theorem [111] can be used,

Theorem 5.4.1. Suppose there exist a differentiable function V (U, t) ∈ C4(Ω) satisfying the

inequalities

K1|U |α ≤V (U, t)≤ K2|U |α (5.10)

LV (U, t)≤−K3|U |α , Ki > 0, i = 1,2,3, α > 0 . (5.11)
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Then the trivial solution of (5.8) is exponentially α stable for all time t ≥ 0.

Note that, if in (5.10), (5.11), α = 2, then the trivial solution of (5.8) is exponentially mean-

square stable. Furthermore, the trivial solution of (5.8) is globally asymptotically stable in

probability.

Here, following (5.8),

LV (t,U) =
∂V (t,U(t))

∂ t
+ f T (U(t))

∂V (t,U)

∂U

+
1
2

Tr
[

GT (U(t))
∂ 2V (t,U)

∂U2 G(U(t))
] (5.12)

where
∂V
∂U

=

(
∂V
∂U1

∂V
∂U2

)T

,
∂ 2V (t,U)

∂U2 =

(
∂ 2V

∂U j∂Ui

)
i, j=1,2

and T means transposition.

Using the above Theorem 5.4.1, we have calculated the critical value of noise (σc), below

which the system is stochastically stable. We can define and prove the following Theorem

5.4.2.

Theorem 5.4.2. Assume that for some positive real value ω1, ω2, ω3, ω4 and ω5 the following

inequality holds: (
2a33−σ3

2)(2a44−σ4
2)> k2

7
ω2

(ω3 +ω4 +ω5) (5.13)

then the zero solutions of the system (5.8) will be exponentially 2-stable if

σ1
2 <

2P11

(ω1 +ω2 +ω4)
, σ2

2 <
2P22

(ω1 +1)
, σ3

2 < 2a33, σ4
2 < 2a44, (5.14)

where ω1 =
P

a11+d2−P , ω2 =
k3ω1+k7ω4
a11−k4J∗ , ω3 =

k3
k7
(1+ω1), ω4 =

a11ω3
a11+a44

, ω5 =
(

a44
k8A∗ −1

)
ω3−ω4,

P = k2− a11k3
k7

[
1+ k8A∗

a11+a44

]
, P11 = a11(ω1+ω2+ω4)−k2ω1−k4J∗ω2 and P22 = d2(ω1+1)−

k8A∗ω3.

Proof. Let us consider the Lyapunov function

V (U(t)) =
1
2
[
ω1(U1 +U2)

2 +U2
2 +ω2(U1 +U3)

2 +ω3(U2−U4)
2 +ω4(U1 +U4)

2] (5.15)
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It is easy to check the inequalities in (5.10) are true for α = 2.

Next, using (5.9) and (5.12),

LV (U(t)) =
(
−P11 +

1
2
(ω1 +ω2 +ω4)σ1

2
)

U1
2 +

(
−P22 +

1
2
(ω1 +1)σ2

2
)

U2
2

+

(
−a33 +

1
2

σ3
2
)

ω2U3
2 +

(
−a44 +

1
2

σ4
2
)
(ω3 +ω4 +ω5)U4

2

+ k7 (ω3 +ω4 +ω5)U3U4

=−UT QU

(5.16)

where

Q =



H11 0 0 0

0 H22 0 0

0 0 H33
1
2k7(ω3 +ω4 +ω5)

0 0 1
2k7(ω3 +ω4 +ω5) H44


,

and

H11 = P11−
1
2
(ω1 +ω2 +ω4)σ1

2, H22 = P22−
1
2
(ω1 +1)σ2

2,

H33 =

(
a33−

1
2

σ3
2
)

ω2, H44 =

(
a44−

1
2

σ4
2
)
(ω3 +ω4 +ω5).

The relation (5.13) and (5.14) imply that Q is a real symmetric positive definite matrix and,

therefore, all its eigenvalues λi(Q), i= 1,2,3,4 are positive real numbers. Let λm =min{λi(Q),

i = 1,2,3,4}, λm > 0. From (5.16), we get

LV (U(t))≤−λm|U(t)|2 .

If the conditions in Theorem 5.4.2 hold, then the zero solutions of the system (5.8) are expo-

nentially mean-square stable.

Hence the proof.
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Table 5.1: Kinetic parameters involved in the system.

Parameter Description Value Reference

I Concentration of free TNF acting 0.59 µM Estimated

as input stimulus

k1 Association rate constant of TNF 1.49 min−1 [201]

and TNFR2 giving TNF-TNFR2

km1 Half saturation constant of 0.42 × 10−3 µM [207]

TNF-TNFR2 formation

k2 Activation rate of survival complex 0.016 min−1 [193]

by TNF-TNFR2 complex

k3 Activation rate of survival complex 0.02 min−1 Estimated

by JNK

k4 Activation rate of JNK by 0.01 min−1 Estimated

TNF-TNFR2 complex

k5 Maximum expression level of JNK 0.9 µMmin−1 Estimated

k6 Half saturation constant of JNK 0.5 µM Estimated

k7 Activation rate of death complex 0.9 min−1 Estimated

by JNK

k8 Caspase inhibition rate 2.2 × 103 µM−1min−1 [193]

d1 Rate of degradation of 0.829 min−1 Estimated

TNF-TNFR2 complex

d2 Rate of degradation of survival 0.003 min−1 [193]

complex

d3 Rate of degradation of JNK 0.059 µMmin−1 Estimated

d4 Rate of degradation of death 0.003 min−1 [193]

complex
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Figure 5.2: Model validation with experimental data. (a) The figure depicts the time series of
TNF-TNFR2 formation with parameters given in Table 5.1. Inconsistent with existing literature
[201], the black curve shows saturation kinetics of TNF-TNFR2 formation. Here, the red boxes
represent experimental data from Grell et al. [201]. (b) Left panel: Sigmoidal curve of JNK
activity when HeLa, HEK 293 and Jurkat T cells were treated with sorbitol (data taken from
literature [69]). Right panel: The figure shows the sigmoidal response of JNK, similar to the
curves in the left panel. The parameters used are given in Table 5.1.

5.5 Numerical results

5.5.1 Model validation with experimental data

The model is first established by demonstrating certain key facets of the biological system.

The model is observed to generate saturated TNF-TNFR2 formation [201], and sigmoidal JNK

response [12, 69]. It is observed that the association of TNF with TNFR2 is very rapid [201].

Our model successfully depicts the saturation kinetics of TNF-TNFR2 formation (represented

by the black line in Fig. 5.2 (a)) incongruent with the experimental data (red dots in Fig. 5.2

(a)) from Grell et al. [201]. The model also showed a sigmoidal JNK response (right panel

Fig. 5.2 (b)) as reported by Bagowski et al. [12, 69] (left panel Fig. 5.2 (b)). Some parameter

values were collected from the literature, and the rest were estimated to generate these curves.

Grell et al. [201] conducted their experiment using 4×105 KYM-1 cells in a volume of 150 µl.

The average number of TNFR2 is approximately 30,000 per cell. Thus, we have considered

the initial concentration of TNFR2 to be 13.2× 10−5µM. Also, from Grell et al. [201], the
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association rate of TNF-TNFR2 (k1) is 1.49 min−1. From Lang et al. [207], the half saturation

constant of TNF-TNFR2 formation (km1) is 0.42 × 10−3 µM. From Chignola et al. [193],

the activation rate of survival complex by TNF-TNFR2 complex (k2) is between [0.016, 0.3]

min−1, the caspase inhibition rate (k8) is between [2.2 × 103, 4.5 × 104] µM−1min−1, the

degradation rate of survival complex (d2) and death complex (d4) lie in the interval [0.0014,

0.003] min−1. All these parameters from the literature and the other parameters estimated to

validate the model are mentioned in Table 5.1. The output response (caspase concentration

(A)) generated by this parameter set is in the scale of 10−5µM, in agreement with the literature

[195].

Figure 5.3: Global sensitivity of the system parameters. Here, corresponding to every pa-
rameter, four different colour bars represent four state variables. And the sensitivity of each
parameter is measured by the length of the bars.

5.5.2 Global sensitivity analysis

We conducted global sensitivity analysis (GSA) using Latin Hypercube Sampling (LHS) and

Partial Ranked Correlation Coefficient (PRCC) to evaluate the sensitivity of each parameter

[115]. A parameter is considered sensitive if its PRCC value is equal to or larger than the

predetermined threshold value of ±0.3 [206, 208]. The GSA reveals that the input parameter

(I) is sensitive to all the state variables of the system. It is further observed that the output of

the system (A) is sensitive to the parameters k2,k4,k5,k7 and k8 (see Fig. 5.3).
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5.5.3 Existence of bistability

The presence of positive feedback on JNK production satisfies the necessary condition for the

existence of bistability in the system [206]. In addition, Bagowski et al. [12, 69] reported

that the JNK response is ultrasensitive, i.e., it can show abrupt responses when subjected to

different stimuli. These shreds of evidence suggest that with the change in feedback strength

and the variation of input stimulus, the system may attain different characteristics of bistability

[71]. Initially, the system exhibits bistability when we decrease the input concentration to 0.026

µM, and the rest of the parameter values are as in Table 5.1. We lower the feedback strength

of the system to k5 = 0.075 µMmin−1 to examine different stability patterns of the system. For

three different values of the input stimuli, viz. I = 0.2 µM, I = 0.3 µM and I = 0.4 µM, the J

vs J̇ or dJ
dt phase portrait display monostability, bistability and monostability respectively (see

Fig. 5.4 (a)). The system’s output response also shows saddle-node bifurcation at L1 and L2

(see Fig. 5.4 (b)) in the process displaying bistability for a range of input stimuli.

Figure 5.4: Existence of bistability. (a) The figure depicts the phase portrait of J̇ vs J (solid
black line) for three distinct levels of the input stimulus, I. Blue dots with full and open centres
denote stable and unstable fixed points. The units of J and I are in µM. (b) Single parameter
saddle-node bifurcation diagram of response A showing stable (black line) and unstable (red
lines) steady states. Bifurcations occurs at points L1 and L2. The feedback strength (k5) used to
generate figures (a) and (b) is 0.075 µMmin−1, and the other parameters are given in Table 5.1.

5.5.4 Robustness of bistability

The observed bistability is robust if the sensitive parameters are varied and maintained bista-

bility. So, to calculate the robustness of the bistability, we varied each sensitive parameter ten
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folds up and down from their basal values and evaluated their bistable region. The basal pa-

rameter values correspond to the parameters given in Table 5.1 with I = 0.026 µM. We can see

from Fig. 5.5 that the parameters k2,k7,k8 can maintain bistability for the entire range of their

variations. The other parameters k4,k5, and I retain bistability for the entire range when they

are decreased. Thus, we could conclude that the bistability of the system is robust.

Figure 5.5: Robustness analysis. The figure shows the robustness of the sensitive parameters
towards the maintenance of bistability. Each bar in this diagram indicates a parameter range in
fold change from its basal values where the system is bistable. The basal value for I is 0.026
µM, and the rest of the parameters are given in Table 5.1.

5.5.5 Bistability determines cell’s fate: survival or death

The robustness analysis of the sensitive parameters shows that the system exhibits bistability

for a wide range of parameters. This motivates us to look for the significance of bistability.

In the bistable region (shaded region in Fig. 5.6), the two stable steady states attained by

the output of the system are termed as the lower steady state (LSS) for the low value of A

and an upper steady state (USS) for the high value of A. That means in LSS, the apoptotic

complex concentration or the caspase concentration is low, and the cell goes to survival. In

USS, the caspase concentration is high, and the cell goes to apoptosis. Hence, LSS signifies

cell survivability, and USS represents cell death (see Fig. 5.6). Similar considerations were also

made by Bagci et al. [195]. Beyond this bistable range, the system is monostable, i.e., only one

stable, steady state exists. In this monostable range, the caspase concentration is either high or

low. So, the cell can go only in one direction: survival or death.
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One of the hallmarks of bistability is the existence of hysteresis, i.e., the system’s output

becomes a loop rather than a curve [206]. This hysteresis can be of two types: reversible (see

Fig. 5.6 (a)) and irreversible hysteresis (see Fig. 5.6 (b)). In reversible hysteresis, the sys-

tem can come back to its previous steady state only by changing the input stimulus (Fig. 5.6

(a)), whereas in irreversible hysteresis, it can not (Fig. 5.6 (b)) [206]. The nature of hysteresis

depends on the strength of the feedback parameter [14, 206]. The change of qualitative be-

haviour of the response curve when we change the feedback strength is depicted in Fig. 5.7.

With a low feedback strength (k5 = 0.04 µMmin−1) the response is a smooth curve. When

k5 is gradually raised to 0.06 µMmin− 1, it becomes sigmoidal (but still monostable). Upon

further increasing the feedback strength to 0.07 µMmin−1, the response splits into two curves

and becomes bistable. And the system shows reversible hysteresis for k5 = 0.07 µMmin−1 &

0.08 µMmin−1. Eventually, when the feedback becomes too large (k5 = 0.09 µMmin−1), the

response shows irreversible hysteresis. The system can retain its current state through this hys-

teresis even when the input concentration is varied. Hence, these hystereses make the system

robust against fluctuations in the input stimuli.

Figure 5.6: Hysteresis: the hallmark of bistability. (a) The figure depicts the reversible
hysteresis in the system. (b) Here the figure shows the irreversible hysteresis in the system. In
both figures, the shaded region refers to the bistable region. The feedback parameter strength
for reversible hysteresis (a) is k5 = 0.075 µMmin−1 and for irreversible hysteresis (b) is k5 =
0.085 µMmin−1. Table 5.1 gives all the other parameters.
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5.5.6 TNF concentration regulates cell death

The diverse pattern of Treg frequency observed in various autoimmune diseases may result

from bistable caspase concentrations in the Treg system. That is, two systems with similar

parametric conditions can attain opposite outputs. That means for equal concentrations of TNF,

one system can achieve the survival state, whereas in the other case, it can go to apoptosis. To

fully comprehend the mechanism, we have considered three different autoimmune diseases: in-

flammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus

(SLE). In the case of IBD and SLE subjects, a decrease in Tregs number is observed in periph-

eral blood [176, 209]. However, in the case of RA, contradictory observations are reported that

the number of Tregs in the peripheral blood increase, unchanged, or decreases [182]. However,

a more precise analysis shows that the number of Tregs in peripheral blood decreases [182].

It suggests that the death of Tregs can mark the onset of the disease. Thus, the USS in Fig.

5.6 could be defined as the disease state which marks the death of Tregs due to higher cas-

pase concentrations. In the case of reversible hysteresis Fig. 5.6 (a), the system will attain the

USS when the TNF concentration is high, which means higher TNF concentration implies a

high apoptosis rate of Tregs and can be reversed by reducing the TNF concentration. Similar

observations are also reported in the literature that the serum TNF concentration is elevated

in IBD [210], RA [211, 212] and SLE [213, 214] patients. The viability of the hypothesis

can be examined by comparing the mathematical results with the existing literature. Through

our model, we observe that the system could be reversed, i.e., it can change the stable steady

states by reducing the TNF concentrations in the system. Veltkamp et al. [215] demonstrated

that patients with active IBD showed more local CD4(+)Foxp3(+) Treg cell apoptosis in the

inflamed mucosa than non-inflamed control colon tissue. In addition, there was a decrease in

the frequency of Treg cells and an increase in their apoptosis, accompanied by increased cas-

pase activity in the serum. They observed that anti-TNF therapy reduced Treg cell death with

increased peripheral Treg cell numbers in tandem with a decrease in caspase activation and

disease activity. These data suggest that the onset of IBD is marked by increased apoptosis of

the Tregs and can be reversed by anti-TNF treatment, i.e., by reducing the TNF concentration,

thus, validating our hypothesis. Similar kinds of narratives are reported in the literature for RA
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and SLE. When TNF antagonists were used to treat RA patients, they showed marked improve-

ment in the disease symptoms [216]. In the case of SLE, an open-label reported that anti-TNF

therapy suppresses local tissue destruction [217]. These findings suggest that we can explain

the complex mechanism of cell survival and death in Treg cells through bistable switching.

Furthermore, by reducing TNF concentration, the system can be reversed.

Figure 5.7: Response and feedback strength. Figure depicts the change of the response curve
upon changing the feedback strength (k5). The response is a smooth curve when the feedback
strength is low (k5 = 0.04 µMmin−1). It becomes sigmoidal when k5 is increased slowly to 0.06
µMmin−1 (but still monostable). Upon further increasing, the response curve splits into two
curves and becomes bistable at k5 = 0.07 µMmin−1, and it shows reversible hysteresis for k5 =
0.07 µMmin−1 & 0.08 µMmin−1. Eventually, the curve shows irreversible hysteresis when k5
is 0.09 µMmin−1. In this figure, the blue line curves (with k5 = 0.04 µMmin−1) are included
for comparison. The rest of the parameter values are given in Table 5.1.

A major factor that controls the nature of hysteresis is the feedback strength of the system.

We can revert the system to its previous steady state if it is in reversible hysteresis. So, along

with TNF concentration, we need to control the autoregulation of the JNK production to revert
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the system to the survival state. On the contrary, the increase in the feedback strength will

make the system go to irreversible hysteresis. Then, even with a decrease in the TNF concen-

tration, the disease state will persist. Thus, increased JNK activation will be associated with

autoimmune patients. Related results have been reported that the increased JNK activation was

associated with organ damage in SLE patients [218]. Similarly, increased phosphorylation of

JNK was detected in inflamed joints of different animal models of RA and patients with au-

toimmune arthritis [219]. As JNK is autoregulated by its production [220]. Thus the inhibition

of its activation can limit its rate. Administration of JNK specific inhibitors like SP600125

(anthra[1,9-cd]pyrazol-6(2H)-one), CC-930 improved symptoms related to autoimmune arthri-

tis [219]. In our model, JNK is a function of TNF-TNFR2 concentration, which means a

decrease in TNF indicates a decrease in TNF-TNFR2 formation, hence inferring a reduction in

JNK production. Similar results were reported that in synovial samples from RA patients, im-

munological staining for JNK is reduced after anti-TNF therapy [219]. This evidence strongly

suggests that the bistable mechanism of cell survival and apoptosis could be controlled. The

system can be reverted to a survival state by reducing the TNF concentration.

Figure 5.8: Time evolution of TNF-TNFR2 and JNK in the presence of noise. At low noise
intensity (σ = 0.02), the time series of TR2 and JNK (see left panel of (a) and (b)) experience
a little deviation from its deterministic curve (plotted in black). However, in case of high noise
(σ = 0.1), the system becomes stochastically unstable (see right panel of (a) and (b)). The
parameters used are given in Table 5.1.
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5.5.7 Addition of randomness triggers loss of bistability

The effect of the inherent noise on the system’s bistability was studied through the stochastic

model constructed on the deterministic system (5.1). The effect of stochasticity on the model

system’s dynamics is depicted in Fig. 5.8. For a low value of noise, i.e., with the noise intensity

(σ ) below the critical value (σc), the system shows slight deviation from its deterministic val-

ues, which means the system is stochastically stable (see left panel of Fig. 5.8 (a) and 5.8 (b)).

With the noise intensity above the critical value, the time series shows significant deviations

from its deterministic values, i.e., the system becomes stochastically unstable (see right panel

of Fig. 5.8 (a) and 5.8 (b)).

In Chapter 2, it has been observed that the system may lose bistability in the presence of

noise. Thus, the system converges to one of the two stable steady states when noise intensity

increases beyond the critical value [206]. In addition, the bistable properties of the model

depend on the input parameter and the system’s feedback. So, to observe the effect of noise on

the bistability of the system, we have calculated different stochastic stability regions when input

is varied for different values of feedback strengths. In Fig. 5.9, the coloured regions of σ − I

plane depicts the stochastically bistable (green), monostable (magenta) and unstable (yellow)

regions. The system is stochastically bistable when the TNF concentration and noise intensity

are low (the green region near the origin). However, with an increase in the noise value, the

system becomes stochastically monostable (magenta). So, a deterministically bistable system

may become monostable for high noise intensity. The system becomes stochastically unstable

(yellow) with a further increase in the noise intensity, exceeding its critical value. When we

gradually increase the value of TNF, the system shows a gradual decrease in σ values for the

stochastic bistable region. Beyond the bistable TNF concentration, the system attains stochastic

monostability up to a certain σ value, exceeding which, the system becomes stochastically

unstable. These stochastic bistable region decreases as we gradually increase the feedback

strength (k5) of the system from 0.2 µMmin−1 to 1 µMmin−1. Thus, the bistable range of

the input stimuli and the feedback parameter decreases when randomness is introduced to the

system; hence the reversibility of the system is reduced.
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Figure 5.9: Change of stochastic stability with variation in feedback strength. The figure
depicts the change of stochastic stability of the equilibrium points with the variation of input
stimulus (I) and the noise intensity (σ ) for different values of feedback strength (k5), as indi-
cated in the plots. The unit of k5 is µMmin−1. The green, magenta and yellow coloured regions
depict the stochastically bistable, monostable and unstable regions, respectively. The length of
the X-axis in each figure refers to the deterministic bistability range of the input parameter for
the feedback strength mentioned inside the figure. The rest of the calculation parameters are
given in Table 5.1.
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5.5.8 Effect of saturated synthesis of S, J and A on model results

Although we have constructed a minimal model of the complex signalling system, which was

further validated with experimental data and showed the emergence of complex behaviour like

bistability, it would be interesting to check the change in the results with the introduction of

additional non-linearity in the system. The mathematical model (5.1) was modified by consid-

ering the non-linear synthesis of three state variables S, J, and A. In place of linear synthesis of

S, J, and A in model (5.1), we have considered saturated synthesis of S, J, and A as we used for

the formation of T R2. The modified mathematical model is given below:

dT R2
dt

=
k1I(1−T R2)

km1 +(1−T R2)
−d1T R2,

dS
dt

=
k2T R2(1−S)
km2 +(1−S)

+ k3J−d2S,

dJ
dt

=
k4T R2(1− J)
km4 +(1− J)

+
k5J2

k2
6 + J2 −d3J,

dA
dt

=
k7J(1−A)

km7 +(1−A)
− k8SA−d4A. (5.17)

with initial conditions

T R2(0) = T R20 > 0,S(0) = S0 > 0,J(0) = J0 > 0,A(0) = A0 > 0. (5.18)

We performed a numerical analysis with the parameters from Table 5.1 and sought bista-

bility. The new model also showed the existence of bistability. Bistability was obtained for the

parameters T = 0.026, k5 = 0.075, km2 = 0.04, km4 = 0.6940 and km7 = 0.0053 and the other

parameters are mentioned in Table 5.1. The units of km2, km4 and km7 are in µM. GSA reveals

similar results for the new and the old systems, see Fig. 5.10 (a). All the sensitive parameters

of the system (5.1) were also sensitive for the system (5.17). In system (5.17) we obtained four

additional sensitive parameters namely k6, d1, km2 and km4. The robustness of the sensitive pa-

rameters (see Fig. 5.10 (b)) also remains the same as observed for system (5.1), with the highly

robust parameters remaining highly robust and least robust parameters remaining least robust.

Thus, the addition of non-linearity to the system does not significantly affect the qualitative
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outcome of the study.

Figure 5.10: Global sensitivity analysis and robustness analysis. (a) The figure depicts the
GSA of model parameters of the model (5.17). Here, corresponding to every parameter, four
different colour bars represent four state variables. And the sensitivity of each parameter is
measured by the length of the bars. (b) The figure shows the robustness of the sensitive pa-
rameters towards the maintenance of bistability. Each bar in this diagram indicates a parameter
range in fold change from its basal value where the system is bistable. The basal values for
the parameters are T = 0.026, k5 = 0.075, km2 = 0.04, km4 = 0.6940 and km7 = 0.0053 and the
other parameters are mentioned in Table 5.1.

5.6 Discussion

Immunological homeostasis of the body is maintained by a special subset of T cells known

as Treg cells. They can influence immunological tolerance in an antigen-specific manner or
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by bystander suppression [175]. In bystander suppression of Tregs, TNF plays an important

role, initiating the signalling by binding to its two receptors, TNFR1 and TNFR2. Generally,

TNFR1 sends the signal for apoptosis, whereas TNFR2 signalling can lead to both survival and

apoptosis [183]. Defects in TNFR2 signalling are prominent in many autoimmune diseases

[183]. The contrasting patterns of Treg cell frequency have also been observed in different

autoimmune diseases [176–180]. Thus, the similarity of TNFR2 signalling defects and abnor-

malities in Treg cell frequency in autoimmune diseases motivates us to study the mechanism of

cell survival and cell death through TNFR2 signalling. To unravel the underlying mechanism

of Treg cell survivability, we have constructed a theoretical model of TNFR2 signalling. We

have formulated an ODE-based model to study the mechanism of cell survival and cell death

in Treg cells. The proposed ODE model successfully reproduces the saturation kinetics for the

TNF-TNFR2 formation as described by Grell et al. [201]. It also reproduces the sigmoidal

JNK curve as reported by Bagowski et al. [12, 69]. It generates a response of apoptosis con-

centration in the 10−5 µM range as reported by Bagci et al. [195]. Thus, the model is validated

by generating these important biological facets of the system.

The global sensitivity analysis reveals that six of fourteen model parameters are sensitive

to the system’s output. Out of these six parameters, only the input parameter (I) is sensitive to

all the state variables. The presence of feedback in the system satisfies the necessary condition

for the existence of bistability [206]. JNK also exhibits graded responses for various stimuli

[12, 69]. These pieces of evidence inspire us to study the present system for the existence of

bistability. Initially, bistability is observed when we decrease the input TNF concentration.

The robustness analysis of the sensitive parameters showed that the model could maintain this

bistability for a wide range of parameter variations. Thus, the deterministic model can generate

a graded response for significant variations of parameters. However, the system can exhibit

different bistable behaviour when we alter the feedback strength of the system [71]. When

the system’s feedback is modulated, the bistable curve becomes a loop called hysteresis [206].

Depending on the feedback strength, the system can have two types of hysteresis, reversible

and irreversible [71]. In reversible hysteresis, the system can be reverted by reducing the in-

put stimulus of the system, but not in the case of irreversible hysteresis [206]. Through this
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bistability, we can explain the complex behaviour of cell survival and cell death in Treg cells.

Thus, the observed bistability can explain the diverse patterns related to Treg cell survivability

observed in autoimmune diseases.

We have considered three different autoimmune diseases to understand the mechanism

clearly: IBD, RA and SLE. These diseases are marked by the decrease in the number of Tregs

in the peripheral blood [176, 182, 209]. The death of Treg is characterized by high caspase con-

centration [195]. This evidence suggests that the increase of caspase is high in the autoimmune

state. Our model reveals that the system can be reverted by reducing the TNF concentration

in the system. This hypothesis is validated by the fact that the patients with these diseases

have shown marked improvement with the anti-TNF therapy [215–217]. Thus, when the TNF

concentration is reduced, the caspase concentration of the system can be decreased. Another

factor that determines the output of the system is the feedback strength of the system. This

feedback strength decides the type of hysteresis the system will show [71]. In reversible hys-

teresis, we can revert the system to its previous state [206]. Here, the feedback is defined by

the autoregulation of the JNK; that is, it can enhance its production [220]. Thus, inhibition of

JNK would limit its production. Similar observations were made when inhibitors of JNK were

used to treat RA patients, and they showed marked improvements in the symptoms related to

RA [219]. As JNK is a function of TNF-TNFR2, a reduction in the TNF would reduce the

production of JNK. Similar stories were reported that anti-TNF therapy showed a decrease of

JNK in synovial samples of RA patients [219]. This evidence cements our hypothesis that the

bistability in the system regulates cell survival and apoptosis in Treg cells and can be controlled

by reducing the TNF concentration. Finally, our study incorporated inherent noise through a

SDE-based model. We have shown that the presence of noise in the system can reduce the

bistable parameter region of the system. Thus, the reversibility of the output is reduced due to

the presence of randomness in the system, which may hinder normal functioning.

In this chapter, we have observed the existence of bistability in TNF signalling in T regula-

tory cells. Through bistable switching, we could explain the complex behaviour of cell survival

and death. The model reveals that the elevated TNF concentration and increased c-Jun N-

terminal kinase (JNK) phosphorylation are the major contributors to the death of T-regulatory
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cells and can be controlled by reducing the TNF concentration. It also explained how inher-

ent stochasticity could reduce a system’s bistability and affect its normal functioning. In the

next chapter we have selected another real biological system to examine the effect of random-

ness. We have considered the calcium signalling pathway in cardiomyocytes to understand the

complex aetiology of diabetic cardiomyopathy and study calcium oscillation under a stochastic

environment.



6
Studying the role of random translocation of

GLUT4 in cardiomyocytes on calcium

oscillations1

6.1 Introduction

The International Diabetes Federation predicts that by 2030, 643 million people worldwide

will be diagnosed with diabetes between the ages of 20 and 79. The number is projected to rise

to 783 million by 2045 [221]. Diabetes is frequently associated with cardiovascular diseases,

including heart failure [222, 223]. The emergence of a cardiac injury, known as "diabetic

1The bulk of this chapter has been communicated for possible publication.
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cardiomyopathy", is a factor that develops heart failure in persons with diabetes [224]. Dia-

betic cardiomyopathy is an aberrant myocardial structure, and it functions in the absence of

other cardiac risks factors such as coronary artery disease or hypertension [225, 226]. DCM’s

pathophysiology is intricate and complicated. Predisposition to ventricular dysfunction, which

affects myocardial energetics and contractile function, is one of its functional characteristics

[227–230]. Diabetes has a pathologic impact on cardiomyocyte function due to altered calcium

ion regulation and insulin signalling [223, 231]. The primary function of cardiomyocytes is to

contract synchronously to meet the heart’s pumping function. The heart’s four chambers must

contract and relax in a highly synchronized manner to optimize circulation and ensure a supply

of nutrients and signals throughout the body. These heart contractions are caused by the peri-

odic increase and decrease in the intracellular Ca2+ concentration. Electrical depolarization of

the cardiomyocyte sarcolemma coordinates the intracellular Ca2+ exchanges. For an effective

cardiac pump, individual myocytes are synchronized throughout the heart by the electric signal

originating from the sinoatrial node [232, 233]. The altered Ca2+ homeostasis establishes these

fundamental roles of Ca2+ in the heart. Faulty hemodynamics and rhythmic disturbances are

marked by altered Ca2+ signalling [232, 233].

One of the main reasons for contractile dysfunction connected to DCM is defective excitation-

contraction coupling (ECC). During ECC, the sarcoplasmic reticulum (SR) is a significant

source of Ca2+ influx into the cytosol. SR Ca2+ concentration is maintained via ryanodine re-

ceptor (RyR2) channels, L-type Ca2+ channels (LTCCs), SR Ca2+ ATPase (SERCA2a) pumps,

and/or a coordinated action of all three. ECC is started by extracellular Ca2+ entering the cell

through LTCCs, which then causes the release of SR Ca2+ into the cytosol by RyR2, com-

pleting the trigger [134]. At the same time, the other ATP-driven pumps, exchangers, and

channels mediate the calcium fluxes between sub-cellular compartments and across the plasma

membrane. The core calcium dynamics in cardiomyocytes are primarily governed by the mem-

brane’s electrical activity that drives voltage-gated channels, allowing calcium to enter the cell

[234]. The level of intracellular calcium oscillates due to electrical bursting. Any disturbance in

calcium homeostasis may significantly contribute to the development of common cardiovascu-

lar diseases, such as heart failure and cardiac arrhythmias [235]. For typical cardiac cells, Ca2+
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oscillates in a dynamic range of 40 to 180 beats per minute (bpm). Any deviation implies an

unhealthy state [236]. Significant amounts of cellular energy are used via EC coupling, mainly

offset by mitochondrial oxidative phosphorylation [237]. Glucose metabolism makes up to

20% of the total energy needed by a healthy heart. In mature cardiomyocytes, GLUT4 is the

primary glucose transporter that carries extracellular glucose into the cell [238]. The primary

glucose transporter in adult cardiomyocytes, GLUT4, is translocated to the sarcolemmal mem-

brane in response to elevated intracellular Ca2+ concentration. An instantaneous 10- to 20-fold

increase in glucose absorption happens when GLUT4 is translocated to the sarcolemmal mem-

brane [238]. In adult rat cardiomyocytes, GLUT4 expression is down-regulated in myocardial

insulin resistance and is linked to momentary insulin resistance [239]. This insulin resistance

can promote the development of diabetic cardiomyopathy [240, 241]. In animal and in vitro

models of type 1 and type 2 diabetes, impaired SERCA2a function is correlated with myocyte

insulin resistance [242, 243]. Additionally, starting insulin therapy in diabetic mice returns

SERCA2a levels to normal [244] and boosts intracellular Ca2+ oscillations [245], leading to a

restoration of cardiac function. GLUT4 is randomly recruited to the sarcolemmal membrane

upon insulin stimulation [246].

The severity of the insulin resistance is associated with the degree of defect in GLUT4

mRNA regulation [247]. Significant insulin resistance and glucose intolerance are caused by

the targeted disruption of GLUT4 in muscle [248]. On the other hand, type 2 diabetes treat-

ment may benefit from the enhanced insulin- or contraction-stimulated glucose transfer and was

seen in skeletal muscle after GLUT4 overexpression [249, 250]. Cardioprotection is linked to

the up-regulation of GLUT4 [251]. According to evidence from Yamaguchi et al. [252], 5’

adenosine monophosphate-activated protein kinase (AMPK) regulates GLUT4’s translocation

to the plasma membrane in 3T3-L1 adipocytes. In cardiomyocytes, long-term (18 h) metformin

treatment increased glucose transport capacity 3- to 5-fold through a decrease in GLUT4 en-

docytosis [253]. In a different study, metformin administration for four weeks lowered insulin

resistance and dramatically raised GLUT4 expression in cardiac tissues in mice [254]. These

studies indicate that glucose absorption mediated by GLUT4 is essential for maintaining glu-

cose homeostasis.
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The complex aetiology of DCM is further complicated by the oscillatory participation of

LTCC, SERCA2a, RyR2, and NCX in the regulation of Ca2+ homeostasis. To better understand

this, it would be prudent to divide the whole picture into more manageable sections. Dupont et

al. [255] reviewed the new developments in understanding the underlying mechanism of cal-

cium oscillations by using the power of mathematical modelling. First, they demonstrated how

computational simulations of Ca2+ oscillations could help us draw several crucial inferences

regarding the mechanics behind oscillation formation. Models help us conceptualize and quan-

tify our intuition, especially for oscillatory events. Additionally, they provided an overview of

the research on the mechanisms by which calcium oscillations couple to downstream effectors

and the significance of calcium entry through store-operated channels in maintaining calcium

oscillations. More recently, many mathematical models have been constructed to unravel this

complex signalling [134, 236]. However, only a few studies included the effect of randomness

involved in the system [109]. Firstly, the recruitment of GLUT4 to the sarcolemmal membrane

happens at random [246]. The opening and closing of the RyR channels are also stochastic [93].

As a whole, this calcium oscillation is stochastic in nature [256, 257]. Recent research has hy-

pothesized and experimentally confirmed various fascinating random fluctuations effects on the

system behaviour [25, 95, 97–99]. Therefore, this study aims to comprehend how stochasticity

affects calcium dynamics in cardiomyocytes. More specifically, we wish to assess the impact of

GLUT4’s random translocation on the Ca2+ dynamics. In an earlier study [236], we observed

that the time delay involved in GLUT4 translocation to the plasma membrane plays a vital

role in maintaining normal physiological oscillations in cardiomyocytes. However, the study

does not include the cell membrane GLUT4 concentration and its random translocation, which

plays an essential role in glucose-calcium dynamics. So, the present study aims to capture the

relationship between glucose uptake by cardiomyocytes and calcium oscillation essential for

normal cardiac functioning. This will help us to explore the possible factors related to DCM.

To capture glucose uptake by cardiomyocytes and how it changes in diabetic conditions, we

examine the dynamics of GLUT4. Since randomness plays a vital role in the translocation of

GLUT4 to the membrane that controls the glucose uptake, we focused our study on exploring

the dynamics of GLUT4 with other players like glucose and calcium under a stochastically
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perturbed environment.

Figure 6.1: Calcium signaling in cardiomyocytes. The figure depicts the schematic repre-
sentation of the calcium dynamics in cardiomyocytes. The arrows represent the direction of
movement of the specific molecules. A detailed description of the interactions is given in the
text. SR: sarcoplasmic reticulum; SERCA2a: SR Ca2+ ATPase 2a; RyR2: ryanodine recep-
tor 2; NCX: Na+/Ca2+ exchanger; GLUT4: glucose transporter type 4; GSV: GLUT4 storage
vesicles.

6.2 Construction of deterministic model

To decipher the complex mechanism of calcium (Ca2+) oscillation in cardiomyocytes, we pro-

posed a simplified mathematical model of calcium signalling. The model system comprises the

interactions between the insulin-regulated glucose transporter type 4 (GLUT4), glucose and

calcium molecules in cardiomyocytes illustrated in the schematic diagram, Fig. 6.1. Let Ti and

Tp represent the intracellular and plasma membrane GLUT4 concentrations, respectively. Since

Tp is recruited from Ti, we always assume Tp ⊆ Ti. Assume that Gi represents the intracellular

glucose level, while Cc and Cs represent the cytoplasmic and sarcoplasmic reticulum (SR) cal-

cium levels. The rate equations of the two GLUT4 variables are adopted from Sedaghat et al.
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[258] with some simplifications. Constant inclusion of intracellular GLUT4 from its sources is

considered with the term k1, while a self-degradation is included by the term −k2Ti in its rate

equation. GLUT4 is found in specialized vesicles called GLUT4 storage vesicles (GSV) before

the translocation to the plasma membrane. In the translocation of GLUT4 from intracellular

space to the plasma membrane, the term−k4Ti is considered, where k4 is the translocation rate.

Insulin is the most extensively studied stimulus that triggers this translocation of GLUT4 from

intracellular stores to the cell surface [259]. Note that this translocated GLUT4 is now the

membrane GLUT4 which allows the cell to intake extracellular glucose inside cardiomyocytes.

Once the glucose transportation is completed, some of the membrane GLUT4 goes back to

the intracellular space and organelles. We consider this phenomenon with the term k3Tp in the

rate equation of Ti, where k3 is the relocation rate of membrane GLUT4. In the rate equation

of membrane GLUT4, we have only considered the translocation and relocation of GLUT4.

Hence two terms, k3Tp and k4Ti, are included here with the opposite signs, as in the rate equa-

tion of intracellular GLUT4. Although the amount of recycling GLUT4 molecules and the

cell surface GLUT4 level gradually increase as insulin concentrations increase, the kinetics of

the increase in time is independent of insulin concentration [246]. Also, the internalization of

GLUT4 is independent of the stimulus [260], and therefore, we have not explicitly considered

any insulin-related parameters in the equations of the GLUT4. Now, in the rate equation of in-

tracellular glucose, the term rTpGi
k5+Gi

stands for glucose intake due to the opening of transporters

on the plasma membrane. This intake is assumed to be proportional to membrane GLUT4 and

saturated by glucose concentration. To describe this phenomenon, we considered a Holling

type II function. Here r is the maximum intake rate, and k5 is the corresponding half-saturation

constant. The degradation of intracellular glucose is taken from Das et al. [134] and is repre-

sented by −k6Gi with the degradation rate constant k6. The rate equations of cytoplasmic and

SR calcium are adopted from the proposed model of Das et al. [134]. In the rate equation of cy-

toplasmic calcium concentrations, we include a constant input rate L to represent calcium input

by L-type channels from extracellular space into the cytoplasm [261, 262]. Calcium efflux via

NCX (Na+/Ca2+ exchanger) channels is assumed to be linear [261, 262] and is represented by

the term d1Cc with d1 as the rate constant. For calcium release from SR via ryanodine receptor



6.2. Construction of deterministic model 139

2 (RyR2), we used the term pCcCs
k2

7+C2
c
, where p is the maximum release rate and k7 is a positive

constant [263, 264]. The calcium restoration in SR from the cytoplasm is sarcoplasmic retic-

ulum Ca2+-ATPase (SERCA2a) dependent, which is defined by the term nC2
c Gi

k2
8+C2

c
[264], where

n is the maximum restoration rate and k8 is the corresponding half-saturation constant. These

two terms are considered in the SR calcium rate equation with opposite signs. There is always

an additional calcium ions leakage from SR into intracellular space [261, 262] and we use the

term −d2Cs to represent it, where d2 is the corresponding rate constant. Moreover, this leakage

amount of calcium comes into the cytoplasmic space. Thus d2Cs is added to the cytoplasmic

calcium rate equation. Based on all these assumptions, the proposed model can be written as

follows:

dTi

dt
= k1− k2Ti + k3Tp− k4Ti,

dTp

dt
=−k3Tp + k4Ti,

dGi

dt
=

rTpGi

k5 +Gi
− k6Gi,

dCc

dt
= L+d2Cs +

pCcCs

k2
7 +C2

c
− nC2

c Gi

k2
8 +C2

c
−d1Cc,

dCs

dt
=

nC2
c Gi

k2
8 +C2

c
− pCcCs

k2
7 +C2

c
−d2Cs.

(6.1)

with the initial conditions Ti(0) = Ti0 > 0, Tp(0) = Tp0 > 0, Gi(0) = Gi0 > 0, Cc(0) =Cc0 > 0

and Cs(0) = Cs0 > 0. All parameters are non-negative from a physiological viewpoint. The

descriptions and default values of the parameters are presented in Table 6.1.



140
Chapter 6. Studying the role of random translocation of GLUT4 in cardiomyocytes on

calcium oscillations

Table 6.1: Description of system parameters with their default values and references.

Parameters Description Values & unit Source

k1 Intracellular GLUT4 recruitment rate constant 5 mML−1s−1 Estimated

k2 Self-degradation rate of intracellular GLUT4 1 mML−1 Estimated

k3 Relocation rate of membrane GLUT4 1.2 s−1 Estimated

k4 Translocation rate of intracellular GLUT4 5.1 s−1 Estimated

to membrane

r Maximum glucose input rate constant via GLUT4 0.278 µMs−1 Estimated

k5 Half-saturation constant for glucose input 0.5 µM Estimated

k6 Glucose degradation rate constant 0.5 s−1 Estimated

L Ca2+ input constant via L-type channels 3.02 µMs−1 [261]

d1 Ca2+ efflux rate constant through NCX 10 s−1 [261, 262]

d2 Sarcoplasmic Ca2+ leakage rate constant 1 s−1 [261, 262]

p Maximum activity rate constant of RyR2 20 µMs−1 [262]

k7 Positive constant related to RyR2 0.5 µM [262]

n Ca2+ flux constant through SERCA2a pump 6 s−1 [262]

k8 SERCA2a pump half-saturation constant 0.1 µM [261]

6.3 Analysis of the deterministic model

6.3.1 Positivity and boundedness

Theorem 6.3.1. For the system (6.1), the interior R5
+ is invariant, and solutions with positive

initial conditions are uniformly bounded within a region Ω, where

Ω =

{
(Ti,Tp,Gi,Cc,Cs) ∈ R5

+ : 0 < Ti(t)< α, 0 < Tp(t)<
αk4

k3
, 0 < Gi(t)<

rαk4

k3k6
,

0 <Cc(t)≤
β

d1
, 0 <Cs(t)≤

nrαk4

d2k3k6

}

with k2 + k4 > k3, α = k1
k2+k4−k3

and β = L+

(
d2 +

p
k7

)
nrαk4
d2k3k6

.
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Proof. To prove the positive invariance, we express the system (6.1) in the vector form

v̇ = f (v) (6.2)

with v(0) = v0 ∈ R5
+, where v = (Ti,Tp,Gi,Cc,Cs)

T ∈ R5
+, f = ( f1, f2, f3, f4, f5)

T , fi(v) =

fi(Ti,Tp,Gi,Cc,Cs), i = 1,2, · · · ,5. Here f : C+→ R5 and f ∈C∞(R5). One can check that the

functions fi are continues and Lipschitzian on R5
+ = {(Ti,Tp,Gi,Cc,Cs) : Ti ≥ 0,Tp ≥ 0,Gi ≥

0,Cc ≥ 0,Cs ≥ 0}. Hence a solution of (6.1) with a non-negative initial condition exists and is

unique. Due to the lemma of Nagumo [133], any solution of equation (6.2) with v0 ∈ R5
+, say

v(t) = v(t;v0), is such that v(t) ∈ R5
+ for all t > 0. Hence, the interior R5

+ is invariant for the

system (6.2), and hence for (6.1).

Since Tp is recruited from Ti, so without loss of generality, we can assume that Tp ≤ Ti.

Using this assumption, the first equation of (6.1) gives

dTi

dt
+(k2 + k4− k3)Ti ≤ k1

Form the theory of differential inequalities [205], and assuming k2 + k4 > k3, we have

0 < Ti(t)<
k1

k2 + k4− k3

(
1− e−(k2+k4−k3)t

)
+Ti0e−(k2+k4−k3)t .

As t→ ∞, we then have 0 < Ti(t)< α , where α = k1
k2+k4−k3

.

Since Ti(t)< α , the second equation of (6.1) gives

dTp

dt
+ k3Tp ≤ αk4.

Accordingly, when t→ ∞, we have 0 < Tp(t)< αk4
k3

.

The third equation of (6.1) gives

dGi

dt
+ k6Gi ≤

rαk4

k3
.
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Taking t→ ∞, we have 0 < Gi(t)< rαk4
k3k6

.

Using the last equation of (6.1), one can write

dCs

dt
+d2Cs ≤

nrαk4

k3k6
.

Following the same arguments, we have 0 <Cs(t)< nrαk4
d2k3k6

.

Finally, from the fourth equation of (6.1), we have

dCc

dt
+d1Cc ≤ β ,

where β = L+

(
d2 +

p
k7

)
nrαk4
d2k3k6

. Hence, one obtains 0 <Cc(t)<
β

d1
, when t→ ∞.

This shows the existence of a compact neighbourhood Ω, which is a proper subset of R5
+,

such that, for sufficiently large initial conditions (Ti0,Tp0,Gi0,Cc0,Cs0), the solutions of system

(6.1) will always be within the set Ω. This completes the proof.

6.3.2 Equilibrium point and its stability

The equilibrium points of the system (6.1) are the solutions of the following equations:

k1− k2Ti + k3Tp− k4Ti = 0,

−k3Tp + k4Ti = 0,

rTpGi

k5 +Gi
− k6Gi = 0, (6.3)

L+d2Cs +
pCcCs

k2
7 +C2

c
− nC2

c Gi

k2
8 +C2

c
−d1Cc = 0,

nC2
c Gi

k2
8 +C2

c
− pCcCs

k2
7 +C2

c
−d2Cs = 0.

Its first two equations give Ti =
k1
k2

and Tp = k1k4
k2k3

. Form Eq. (6.3c), either Gi = 0 or Gi =

rk1k4
k2k3k6

− k5. From the last two equations, one obtains Cc =
L
d1

. One can then easily obtain from

the last equation either Cs = 0 or Cs =
nL2

d2
1k2

8+L2

(
pd1L

d2
1k2

7+L2 +d2

)−1(
rk1k4
k2k3k6

− k5

)
.
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Thus, the system (6.1) has two equilibrium points E0 =

(
k1
k2
, k1k4

k2k3
,0, L

d1
,0
)

and E∗ = (T ∗i ,

T ∗p ,G
∗
i ,C
∗
c ,C
∗
s ), where T ∗i = k1

k2
, T ∗p = k1k4

k2k3
, G∗i =

rk1k4
k2k3k6

−k5, C∗c =
L
d1

and C∗s =
nL2

d2
1k2

8+L2

(
pd1L

d2
1k2

7+L2 +

d2

)−1(
rk1k4
k2k3k6

− k5

)
. The feasibility of E∗ is ensured by the condition r > k2k3k5k6

k1k4
. We are in-

terested in the interior equilibrium point E∗ and its stability hence, and analyze the system

around that point.

Theorem 6.3.2. If r > k2k3k5k6
k1k4

, then the unique interior equilibrium point E∗=(T ∗i ,T
∗
p ,G

∗
i ,C
∗
c ,C
∗
s )

of the system (6.1) is locally asymptotically stable if a44+a55 > 0, where a44 = d1−
pC∗s (k

2
7−C∗c

2)

(k2
7+C∗c

2)2 +

2nk2
8G∗i C∗c

(k2
8+C∗c

2)2 and a55 = d2 +
pC∗c

k2
7+C∗c

2 .

Proof. The Jacobian matrix of the system (6.1) at the interior equilibrium point is given by

J(E∗) =



−(k2 + k4) k3 0 0 0

k4 −k3 0 0 0

0 a32 −a33 0 0

0 0 −a43 −a44 a45

0 0 a53 a54 −a55


, (6.4)

where
a32 =

rG∗i
k5 +G∗i

,

a33 =
rT ∗p G∗i

(k5 +G∗i )2 ,

a43 =
nC∗c

2

k2
8 +C∗c

2 = a53,

a44 = d1−
pC∗s (k

2
7−C∗c

2)

(k2
7 +C∗c

2)2
+

2nk2
8G∗i C∗c

(k2
8 +C∗c

2)2
,

a45 = d2 +
pC∗c

k2
7 +C∗c

2 = a55,

a54 = a44−d1.

(6.5)

The characteristic equation then reads

(λ +a33)
[
λ

2 +(k2 + k3 + k4)λ + k2k3
][

λ
2 +(a44 +a55)λ +d1a55

]
= 0. (6.6)
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Clearly, Eq. (6.6) has five eigenvalues. Of which, one is λ1 = −a33 < 0. Note that both roots

of the equation

λ
2 +(k2 + k3 + k4)λ + k2k3 = 0

are real negative. The roots of the equation

λ
2 +(a44 +a55)λ +d1a55 = 0 (6.7)

will have negative real parts if a44 + a55 > 0. Thus, all the roots of the characteristic equa-

tion (6.6) will have negative real parts if a44 + a55 > 0, and the equilibrium will be locally

asymptotically stable. Thus, the theorem is proven.

Analysis of calcium subsystem

We have already demonstrated the stability of the system (6.1) through Theorem 6.3.2. How-

ever, the Ca2+ oscillation plays an important role in the functioning of cardiomyocytes. To

study the existence of oscillation for calcium, we consider the following two-dimensional sys-

tem (6.8) with Cc and Cs as variables. The glucose Gi in this subsystem is considered at the

equilibrium value G∗i . The calcium subsystem reads

dCc

dt
= L+d2Cs +

pCcCs

k2
7 +C2

c
− nC2

c G∗i
k2

8 +C2
c
−d1Cc,

dCs

dt
=

nC2
c G∗i

k2
8 +C2

c
− pCcCs

k2
7 +C2

c
−d2Cs.

(6.8)

The equilibrium point of the calcium subsystem (6.8) is given by E p = (Cp
c ,C

p
s ), where Cp

c = L
d1

and Cp
s = nL2

d2
1k2

8+L2

(
pd1L

d2
1k2

7+L2 +d2

)−1(
rk1k4
k2k3k6

− k5

)
. We can see that Cp

c and Cp
s are equal to the

C∗c and C∗s , respectively. The Jacobian matrix of (6.8) is Jp(Cp
c ,C

p
s ) =

−a44 a45

a54 −a55

 and the

characteristic equation is given by

λ
2 +(a44 +a55)λ +d1a55 = 0,
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which is identical with equation (6.7). It is mentionable that the roots of this equation may be

real or complex. Therefore, Hopf bifurcation may occur in this subsystem.

6.3.3 Hopf bifurcation analysis

Our stability analysis shows that a pair of complex conjugate roots can only be obtained from

the third factor of the equation (6.6). The third factor of equation (6.6) gives

λ
2 +Aλ +B = 0, (6.9)

where, A = a44 + a55 and B = d1a55. In diabetic conditions, the glucose uptake rate (r) by

cardiomyocytes decreases. Therefore, we consider r as the Hopf bifurcation parameter. One

can also choose another parameter of interest for such a study.

Theorem 6.3.3. The system (6.1) experiences a Hopf bifurcation around E∗ when the glucose

intake rate through GLUT4 crosses a critical value r∗ such that A = a44 + a55 = 0 at r = r∗

along with the transversality condition dA
dr 6= 0 at r = r∗.

Proof. The necessary and sufficient conditions for Hopf bifurcation to occur at some critical

value r = r∗ are

(i) A(r∗) = 0,

(ii) dA
dr

∣∣
r=r∗ 6= 0.

Let us assume, at r = r∗, A = 0. Then from (6.9), we have

λ
2 +B = 0. (6.10)

which has two roots, namely λ4,5 =±i
√

B.

Now note that A = d1 +d2 +
pC∗c

k2
7+C∗c

2 +
2nk2

8G∗i C∗c
(k2

8+C∗c
2)2 −

pC∗s (k
2
7−C∗c

2)

(k2
7+C∗c

2)2 . Substituting the values of G∗i
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and C∗s , one can write

A = d1 +d2 +
pC∗c

k2
7 +C∗c

2 +

[
2nk2

8C∗c
(k2

8 +C∗c
2)2
−

p(k2
7−C∗c

2)

(k2
7 +C∗c

2)2
× nL2

d2
1k2

8 +L2

(
pd1L

d2
1k2

7 +L2 +d2

)−1]
(

k1k4

k2k3k6
r− k5

)
.

Differentiating A with respect to r, we get

dA
dr

=

[
2nk2

8C∗c
(k2

8 +C∗c
2)2
−

p(k2
7−C∗c

2)

(k2
7 +C∗c

2)2
× nL2

d2
1k2

8 +L2

(
pd1L

d2
1k2

7 +L2 +d2

)−1] k1k4

k2k3k6
. (6.11)

Note that the right-hand side of (6.11) is independent of r. Thus, dA
dr 6= 0 at r = r∗, and the

transversality condition holds. Therefore, there exists a Hopf bifurcation around E∗ when r

crosses the critical value r∗. This completes the proof.

Remark: It is to be noted that the Hopf bifurcation occurs in the calcium subsystem

only when the other system variables attain their equilibrium values. Thus, oscillations in the

concentrations of Cc and Cs will be observed even when the other three concentrations of E∗

maintain their steady-state levels.

6.4 Analysis of the stochastic model

6.4.1 Construction of the stochastic model

In a natural system, the translocation of the GLUT4 molecule is a random process [246]. Also,

inherent stochastic dynamics are displayed by the opening and closing of the RyR2 channels

[109]. Stochastic effects could significantly impact [265] the characteristics of oscillations

[266, 267]. Thus, we have explored the effects of randomness on the Ca2+ oscillations in

the deterministic model (6.1). The stochastic perturbations of the state variables around their

steady-state values E*, which are Gaussian white noise, and are proportional to the distances of

Ti, Tp, Gi, Cc, Cs from their steady-state values T ∗i , T ∗p , G∗i , C∗c , C∗s . So, the deterministic model
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system (6.1) results in the following stochastic system:

dTi = F1(Ti,Tp,Gi,Cc,Cs)dt +σ1(Ti−T ∗i )dξ
1
t ,

dTp = F2(Ti,Tp,Gi,Cc,Cs)dt +σ2(Tp−T ∗p )dξ
2
t ,

dGi = F3(Ti,Tp,Gi,Cc,Cs)dt +σ3(Gi−G∗i )dξ
3
t , (6.12)

dCc = F4(Ti,Tp,Gi,Cc,Cs)dt +σ4(Cc−C∗c )dξ
4
t ,

dCs = F5(Ti,Tp,Gi,Cc,Cs)dt +σ5(Cs−C∗s )dξ
5
t ,

where σi (i = 1,2,3,4,5) are real constants, called the intensity of the fluctuations, ξ i
t =

ξi(t) (i = 1,2,3,4,5) are standard Wiener processes, independent of each other, and Fi (i =

1,2,3,4,5) are defined in the Eq. (6.1). We consider Eq. (6.12) as an Ito stochastic differential

system of the type

dXt = F(t,Xt)dt +G(t,Xt)dξt (6.13)

where the solution (Xt , t > 0) is an Ito process, ’F’ is the drift coefficient, ’G’ is the diffusion

coefficient, and ξt is a five-dimensional stochastic process having scaler Wiener process com-

ponents with increments4ξ
j

t = ξ j(t+4t)−ξ j(t) are independent Gaussian random variables

N(0,4t). In the case of system (6.12),

Xt =



Ti

Tp

Gi

Cc

Cs


,ξt =



ξ 1
t

ξ 2
t

ξ 3
t

ξ 4
t

ξ 5
t


,F =



F1(Ti,Tp,Gi,Cc,Cs)

F2(Ti,Tp,Gi,Cc,Cs)

F3(Ti,Tp,Gi,Cc,Cs)

F4(Ti,Tp,Gi,Cc,Cs)

F5(Ti,Tp,Gi,Cc,Cs)


,

G =



σ1(Ti−T ∗i ) 0 0 0 0

0 σ2(Tp−T ∗p ) 0 0 0

0 0 σ3(Gi−G∗i ) 0 0

0 0 0 σ4(Cc−C∗c ) 0

0 0 0 0 σ5(Cs−C∗s )


. (6.14)
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6.4.2 Stochastic stability of interior equilibrium

The stochastic differential system (6.12) can be centred at its positive equilibrium point E∗(T ∗i ,

T ∗p ,G
∗
i ,C
∗
c ,C
∗
s ) by introducing the variables U1 = Ti− T ∗i ,U2 = Tp− T ∗p ,U3 = Gi−G∗i ,U4 =

Cc−C∗c ,U5 = Cs−C∗s . It seems difficult to derive asymptotic stability in the mean square

sense by the Lyapunov functions method working on the complete non-linear equation (6.12).

For simplicity of mathematical calculations, we deal with the stochastic differential equation

obtained by linearising the vector function ’F’ in (6.14) about the positive equilibrium point

E∗. The linearised version of (6.13) around E∗ is given by

dU(t) = f (U(t))dt +G(U(t))dξ (t) , (6.15)

where

U(t) =



U1(t)

U2(t)

U3(t)

U4(t)

U5(t)


, f (U(t)) =



−(k2 + k4)U1 + k3U2

k4U1− k3U2

a32U2−a33U3

−a43U3−a44U4 +a45U5

a53U3 +a54U4−a55U5


,

G(U(t)) =



σ1U1 0 0 0 0

0 σ2U2 0 0 0

0 0 σ3U3 0 0

0 0 0 σ4U4 0

0 0 0 0 σ5U5


(6.16)

Note that, in (6.15) the positive equilibrium E∗ corresponds to the trivial solution (U1,U2,U3,U4,

U5)= (0,0,0,0,0). Let Ω be the set defined by Ω=
[
(t > t0)×R5, t0 ∈ R+

]
. To define stability,

the following theorem from Carletti [111] can be used.

Theorem 6.4.1. Suppose there exist a differentiable function V (U, t) ∈ C5(Ω) satisfying the
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inequalities

K1|U |α ≤V (U, t)≤ K2|U |α , (6.17)

LV (U, t)≤−K3|U |α , Ki > 0, i = 1,2,3, α > 0 . (6.18)

Then the trivial solution of (6.15) is exponentially α-stable for all time t ≥ 0.

Note that, if α = 2 in (6.17), (6.18), then the trivial solution of (6.15) is exponentially mean

square stable. Furthermore, the trivial solution of (6.15) is globally asymptotically stable in

probability.

From (6.15),

LV (t,U) =
∂V (t,U(t))

∂ t
+ f T (U(t))

∂V (t,U)

∂U
+

1
2

Tr
[

GT (U(t))
∂ 2V (t,U)

∂U2 G(U(t))
]
, (6.19)

where
∂V
∂U

=

(
∂V
∂U1

∂V
∂U2

)T

,
∂ 2V (t,U)

∂U2 =

(
∂ 2V

∂U j∂Ui

)
i, j=1,2

and T means transposition.

The critical noise level (σc), below which the system is stochastically stable, has been deter-

mined using the aforementioned Theorem 6.4.1. Thus, we can define and prove the following

Theorem.

Theorem 6.4.2. For some positive real values of ω1,ω2,ω3,ω4 and ω5 if the following inequal-

ities hold true

[
k3ω2−

1
2
(1+ω2)σ

2
2

][(
a33−a43−

1
2

σ3
2
)

ω3

]
>

(
1
2

a32ω3

)2

,[(
a33−a43−

1
2

σ3
2
)

ω3

][
−a54 +(1+ω3 +ω4)

(
a44−

1
2

σ4
2
)]

(6.20)[
k3ω2−

1
2
(1+ω2)σ

2
2

]
>

[(
a33−a43−

1
2

σ3
2
)

ω3−a54 +(1+ω3 +ω4)

(
a44−

1
2

σ4
2
)]

(
1
2

a32ω3

)2

,
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then the zero solution of the system (6.15) will be exponentially 2-stable if

σ1
2 < 2

[
k4ω1 +(1+ω1)k2

(1+ω1)

]
, σ2

2 < 2
[

k3ω2

(1+ω2)

]
, σ3

2 < 2 [a33−a44] ,

σ4
2 < 2

[
a44(1+ω3 +ω4)−a54

(1+ω3 +ω4)

]
, σ5

2 < 2
[

a45ω5

(1+ω5)

]
,

(6.21)

where ω1 = k2−k4ω2
k3

, ω2 = 1
10 , ω3 = d1a43

a45(a33+a44+a54)
, ω4 =

(
a33+a44

a43
−1
)

ω3, ω5 = a45
a43

ω3 and

a32,a33,a43,a44, a45, a53, a54, a55 are given in (6.5).

Proof. Let us consider the Lyapunov function

V (U(t)) =
1
2
[
(U1 +U2)

2 +ω1U2
1 +ω2U2

2 +ω3(U3−U4)
2 +(U4 +U5)

2 +ω4U2
4 +ω5U2

5
]
,

(6.22)

where ωi are real positive constants to be chosen later.

It is easy to check the inequalities in (6.17) are true for α = 2. So, we have

∂V
∂U

=



(1+ω1)U1 +U2

U1 +(1+ω2)U2

ω3(U3−U4)

−ω3U3 +(1+ω3 +ω4)U4 +U5

U4 +(1+ω5)U5


,

∂ 2V
∂U2 =



1+ω1 1 0 0 0

1 1+ω2 0 0 0

0 0 ω3 −ω3 0

0 0 −ω3 1+ω3 +ω4 1

0 0 0 1 1+ω5


. (6.23)

Using (6.16) and (6.19), we have
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LV (U(t)) =
(
−[k2 +ω1(k2 + k4)]+

1
2
(1+ω1)σ

2
1

)
U1

2 +

(
−k3ω2 +

1
2
(1+ω2)σ

2
2

)
U2

2

+

(
−a33 +a43 +

1
2

σ3
2
)

ω3U3
2 +

(
−a45ω5 +

1
2
(1+ω5)σ5

2
)

U5
2

+

(
−a44(1+ω3 +ω4)+a54 +

1
2
(1+ω3 +ω4)σ4

2
)

U4
2

+[−k2 +ω1k3 +ω2k4]U1U2 +a32ω3U2U3−a32ω3U2U4

+[(a33 +a44−a43)ω3−a43ω4]U3U4 +[−a45ω3 +a43ω5]U3U5

+[−d1 +a45(ω3 +ω4)+a54ω5]U4U5.

Choosing ω1 = k2−k4ω2
k3

, ω3 = d1a43
a45(a33+a44+a54)

, ω4 =
(

a33+a44
a43

−1
)

ω3 and ω5 = a45
a43

ω3, the

above equation reduces to

LV (U(t)) =
(
−[k2 +ω1(k2 + k4)]+

1
2
(1+ω1)σ

2
1

)
U1

2 +

(
−k3ω2 +

1
2
(1+ω2)σ

2
2

)
U2

2

+

(
−a33 +a43 +

1
2

σ3
2
)

ω3U3
2 +

(
−a45ω5 +

1
2
(1+ω5)σ5

2
)

U5
2

+

(
−a44(1+ω3 +ω4)+a54 +

1
2
(1+ω3 +ω4)σ4

2
)

U4
2

+a32ω3U2U3−a32ω3U2U4

=−UT QU,

(6.24)
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where

Q =



A11 0 0 0 0

0 A22 −1
2a32ω3

1
2a32ω3 0

0 −1
2a32ω3 A33 0 0

0 1
2a32ω3 0 A44 0

0 0 0 0 A55



,

and

A11 = ω1k4 +(1+ω1)

[
k2−

1
2

σ
2
1

]
,

A22 = k3ω2−
1
2
(1+ω2)σ

2
2 ,

A33 =

(
a33−a43−

1
2

σ3
2
)

ω3,

A44 =−a54 +(1+ω3 +ω4)

[
a44−

1
2

σ4
2
]
,

A55 = a45ω5−
1
2
(1+ω5)σ5

2.

The relation (6.20) and (6.21) imply that Q is a real symmetric positive definite matrix, and

therefore, all its eigenvalues λi(Q), i= 1,2,3,4,5 are positive real numbers. Let λm =min{λi(Q),

i = 1,2,3,4,5}, λm > 0. From (6.24), we then have

LV (U(t))≤−λm|U(t)|2 .

If the conditions in Theorem 6.4.2 hold, then the zero solutions of the system (6.15) are expo-

nentially mean-square stable. This completes the proof.



6.5. Numerical analysis 153

6.5 Numerical analysis

6.5.1 Parameter choice and model validation

The parameter values were collected from the literature to build the primary parameter set

for the numerical analysis (see Table 6.1). The remaining parameters were calculated to fit

the calcium kinetics observed through experiment [268]. The frequency of cytosolic calcium

([Ca2+]c) oscillations determines whether or not the reported dynamics represent physiolog-

ically healthy conditions. In this study, we have considered the level of cytosolic calcium

([Ca2+]c) as the output of the system. We assumed that physiological oscillations of [Ca2+]c

occur at a frequency of 40 to 180 bpm (beats per minute) [269, 270] with an amplitude of ≥0.4

µM [271]. It was observed that the cytosolic calcium ([Ca2+]c) in Fig. 6.2 oscillate in the PO

range (with frequency 78 bpm and amplitude ≥ 0.4 µM) for the parameter set mentioned in

Table 6.1. The outcomes shown in Fig. 6.2 further confirm our analytical findings that calcium

concentration will fluctuate due to Hopf-bifurcation. Non-physiological oscillations (NPO)

represent calcium oscillations outside the PO range. In Fig. 6.3, we have depicted the PO and

NPO patterns for easier comprehension.
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Figure 6.2: Time series analysis of the deterministic system (6.1). The figure depicts Ca2+

oscillation when GLUT4 and glucose maintain a steady state. Time course simulation recreat-
ing experimentally reported [268] calcium oscillations for the parameter set presented in Table
6.1. The time scale on this x-axis is measured in seconds. The time scale begins at thirty to
eliminate the transient dynamics.

6.5.2 Effect of parameter variations on the Ca2+ oscillation

We performed a single-parameter variation study to find the variational effect of individual

parameters on the system. We perturbed the parameters up and down from their basal values

and recorded their PO, NPO, and stable ranges, see Table 6.2. The component-wise descriptions

are given below.

(i) Effect of GLUT4 related parameters (k1,k2,k3,k4). All the GLUT4-related parame-

ters show an extensive PO range, especially k1 and k4 have shown vast PO ranges. The large

range of the translocation rate (k4) of GLUT4 to the plasma membrane indicates that the system

is very robust in maintaining the PO of cytosolic calcium. When insulin stimulation exceeds

some threshold value, GLUT4 translocates to the membrane and facilitates glucose entry into

the cardiomyocytes. This glucose helps to maintain healthy physiological calcium oscillations.
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Figure 6.3: PO and NPO patterns of the deterministic system (6.1). The top panel shows
cytosolic calcium’s physiological oscillation (PO) with a frequency equal to 80 bpm and ampli-
tude > 40.4 µM. The bottom panel depicts the non-physiological oscillation (NPO) of cytosolic
calcium with a frequency equal to 24 bpm (much below the normal range of 40 to 180 bpm).
The parameters used to generate these curves are given in Table 6.1, with L = 3.02 for PO and
L = 1.338 for NPO.

Figure 6.4: Existence of periodic solution through Hopf bifurcation. The figure shows the
bifurcation of cytoplasmic calcium [Ca2+]c when the bifurcating parameter r, the maximum
glucose input rate constant via GLUT4, is varied smoothly (Fig. (a)). Fig. (b) shows a similar
bifurcation for the Ca2+ flux parameter through the SERCA2a pump, n. The rest of the pa-
rameters are mentioned in Table 6.1. Here, we plotted the maximum and minimum values of
[Ca2+]c for each parameter value. Both values are the same when the system is stable but differ
when the system is unstable (oscillatory). Stability switching occurs at the Hopf bifurcation
points r = 0.168 and n = 3.49 in the left and right figures, respectively.

(ii) Role of glucose related parameters (r,k5,k6). When the maximum rate of glucose

absorption (r) through GLUT4 was changed from its predetermined value of 0.278, we saw that

the system maintained PO within the range of 0.2 ≤ r ≤ 0.68, but it showed NPO outside of
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this range. As r was decreased below 0.168, the system displayed stability toward the interior

equilibrium point E∗. The Hopf bifurcation (following Theorem 6.3.3) occurred at r = 0.168

(see Fig. 6.4 (a)). The system (6.1) may also experience Hopf bifurcation for other sensitive

parameters. For example, when we vary the parameter n, representing the Ca2+ flux constant

through the SERCA2a pump, the system loses its stability through Hopf bifurcation at n = 3.49

(see Fig. 6.4 (b)). Similar PO, NPO, and stability patterns were observed for the glucose

degradation rate (k6) and the half-saturation constant of glucose input (k5).

(iii) Parameters associated with calcium fluxes through cell membrane (L,d1): For a

brief interval of 1.34≤ L≤ 3.5, the calcium influx rate constant (L) of L-type channels displays

PO. To keep the system in PO, L must be tightly regulated because it is quite sensitive. The PO

range for the NCX-dependent calcium efflux rate via the cell membrane was 8.5 ≤ d1 ≤ 18.1.

To sustain proper calcium oscillations, a delicate balance must exist between the LTCC input

rate (L) and NCX-dependent calcium outflow rate (d1).
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Table 6.2: Impact of individual parameters on the overall performance of the system. Each
parameter was altered independently, and the results were recorded along with their ranges.

Parameters Dynamics Parameter ranges Parameters Dynamics Parameter ranges

k1 Stable 0.3≤ k1 ≤ 3 k8 Stable k8 > 0.124

NPO 3 < k1 ≤ 3.5 NPO 0.111≤ k8 ≤ 0.124

and k1 > 11.7

PO 3.5 < k1 ≤ 11.7 PO 0 < k8 < 0.111

k2 Stable k2 > 1.66 d1 Stable 0 < d1 ≤ 8.4

and d1 ≥ 21.7

NPO 1.43 ≤ k2 ≤ 1.66 NPO 18.2≤ d1 ≤ 21.6

PO 0 < k2 < 1.43 PO 8.5≤ d1 ≤ 18.1

k3 Stable k3 > 1.99 d2 Stable d2 ≥ 5.2

NPO 1.72 ≤ k3 ≤ 1.99 NPO 2.8 < d2 < 5.2

PO 0 < k3 < 1.72 PO 0 < d2 ≤ 2.8

k4 Stable 0 < k4 < 3.07 p Stable 0 < p≤ 1.4

NPO 3.07 ≤ k4 ≤ 3.57 NPO 1.5≤ p≤ 2.9

and p≥ 41.8

PO k4 > 3.57 PO 3≤ p≤ 41.7

k5 Stable k5 > 5.21 r Stable 0 < r ≤ 0.16

NPO 4.01 ≤ k5 ≤ 5.21 NPO 0.16 < r < 0.2

and r > 0.68

PO 0 < k5 < 4.01 PO 0.2≤ r ≤ 0.68

k6 Stable k6 > 0.83 L Stable 0 < L≤ 1.32

and L≥ 3.6

NPO 0.72≤ k6 ≤ 0.83 NPO 1.32 < L < 1.34

PO 0 < k6 < 0.72 PO 1.34≤ L≤ 3.5

k7 Stable 0 < k7 < 0.45 n Stable 0 < n≤ 3.4

and k7 > 4.13

NPO 1.19 < k7 < 4.13 NPO 3.5≤ n≤ 4.1

PO 0.45≤ k7 ≤ 1.19 PO 4.2≤ n≤ 10.9
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(iv) Aspects of RyR2 channel parameters (p,k7): We found a wide range of interval (3

≤ p ≤ 41.7) for p and a thin range of interval 0.45 ≤ k7 ≤ 1.19 for k7 in which the system

maintains PO. Beyond this, the system either displayed NPO or became stable.

(v) Kinetic input of the SERCA2a pump (n,k8): When we changed the SERCA2a

pump-related parameters, namely the maximal calcium removal rate through the pump (n) and

its half saturation constant (k8), we found that the system could sustain PO over a wide range

(4.2 ≤ n ≤ 10.9) for the parameter n and a relatively narrow range for k8 (0 ≤ k8 ≤ 0.111).

(vi) Impact of calcium leakage rate from SR (d2): We looked at the calcium leakage

parameter d2’s variational influence. We saw that the system switches from a PO to an NPO

state when d2 crosses 2.8, stabilizing after 5.2.

6.5.3 Global sensitivity analysis

Global Sensitivity Analysis (GSA) was performed based on Latin Hypercube Sampling (LHS)

and Partial Ranked Correlation Coefficient (PRCC) [115] to evaluate the sensitivity of the pa-

rameters. A cut-off value of± 0.3 on PRCC values [206, 208] was taken to identify the sensitive

parameters. The GSA reveals that the parameters related to intracellular GLUT4 recruitment

rate constant (k1), self-degradation rate of intracellular GLUT4 (k2), translocation rate of intra-

cellular GLUT4 to the membrane (k4), maximum glucose input rate constant via GLUT4 (r),

Ca2+ input constant via L-type channels (L) and Ca2+ flux constant through SERCA2a pump

(n) were most sensitive to the output of the system (see Fig. 6.5). All these parameters are

essential for the energy requirements of the cardiomyocytes. The GLUT4-related parameters

are sensitive to all the system’s state variables. Parameters L and n are Ca2+ related parameters

and are essential in maintaining calcium homeostasis in the cell.
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Figure 6.5: Global sensitivity analysis. Here, five different colour bars represent five state
variables of the system. The sensitivity of each parameter is measured by the length of the bars
corresponding to the state variables. Parameters with PRCC values beyond±0.3 are considered
sensitive in this study [206, 208]. It is evident from the figure that the parameters k1,k2 and
k4 are sensitive to all the state variables of the system, whereas the parameters k1,k2,k4,d1,r,L
and n are sensitive for the cytosolic calcium (Cc).

6.5.4 Robustness analysis of the sensitive parameters

To determine the robustness of the sensitive parameters in maintaining cytosolic Ca2+ oscilla-

tion in the PO range, we have perturbed each of the sensitive parameters individually, keeping

the other parameters at their basal values given in Table 6.1. The strength of the parameter in

maintaining the PO of cytoplasmic calcium is indicated by the length of the bars in Fig. 6.6.

The shorter bars suggest that the PO is disrupted with smaller perturbations to the parameters,

whereas for longer bars, the parameter can hold PO for larger perturbations. We observed that

the parameters d1 (Ca2+ efflux rate constant through NCX) and r (maximum glucose input

rate constant via GLUT4) were the top robust parameters in maintaining PO when perturbed

up or down. In contrast, parameters k2 (self-degradation rate of intracellular GLUT4) were

the least robust. Other parameters k1,k4,n, and L could maintain PO for a sizeable downward

perturbation from their basal values but could not preserve PO when perturbed upward.
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Figure 6.6: Robustness analysis. The figure describes the robustness of the sensitive parame-
ters toward maintaining the PO of cytosolic calcium. Each sensitive parameter was perturbed
individually from its basal values given in Table 6.1, keeping the other parameters at their basal
levels. Here, each bar indicates a parameter range in fold change from its basal values up to
which it can maintain the PO of cytosolic calcium. The blue bar represents the downward
perturbation, and the yellow represents the upward perturbation.

6.5.5 Effect of randomness on Hopf bifurcation

The translocation of the GLUT4 molecule is a random process [246]. Similarly, the opening

and closing of the RyR2 channels have inherent stochastic dynamics [109]. Stochasticity with

minimal intensity is observed to impact the properties of oscillation significantly [265–267].

To observe the effect of noise on the system behaviour, we first calculated the critical value

of the noise intensity (σc) using Theorem 6.4.2. The zero solution of the system (6.15) will

be exponentially 2-stable for any noise intensity below this critical level. As the theorem is

based on the stable equilibrium point, we considered n = 0.5, keeping all the parameters as

mentioned in Table 6.1 so that the deterministic system remains stable. Theorem 6.4.2 allows

us to estimate the critical sigma value as σc = 0.2377. The population densities will remain

concentrated around the deterministic equilibrium value E∗ = (5,21.25,11.315,0.302,0.272)

if the noise strength is lower than the critical σc (see Fig. 6.7a). For a higher noise intensity, the

population densities diffuse more around the deterministic equilibrium value (see Fig. 6.7b).
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Figure 6.7: Population distribution for low and high noise intensities. (a) This figure shows
populations (indicated by blue dots) are concentrated near the deterministic steady state value
(denoted by red dot) when noise intensity is below the critical value σc = 0.2377. (b) This
figure shows populations (indicated by blue dots) are dispersed around the deterministic steady
state (denoted by red dot) when noise intensity is above the critical value σc = 0.2377.
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Figure 6.8: Comparison of Hopf bifurcation results for the deterministic and stochastic
systems. The figure compares the bifurcation results of cytoplasmic calcium [Ca2+]c for the
deterministic system (represented by blue dots) and stochastic system (indicated by red dots)
for the variation in r. An early bifurcation occurs in the stochastic system due to a small noise
(σ = 0.2 < σc = 0.2377). The amplitude of oscillations is also increased for this noise. The
parameters remain as in Table 6.1.

To observe how noise affects the bifurcation, we compared the bifurcation results of the

deterministic and stochastic systems in Fig. 6.8. It reveals that the stochastic system displayed

early bifurcation than the deterministic system as the parameter r is gradually increased. The

bifurcation occurs at r = 0.156 (red dots in Fig. 6.8) whereas the Hopf-bifurcation occurred at

r = 0.168 for the deterministic system (blue dots in Fig. 6.8). In addition, noise increases the

amplitude of oscillations, which helps to attain the PO range. It has been seen that biological
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oscillators can utilize stochastic noise by channelling it into oscillatory power [102]. Marchena

et al. [109] observed that adding a small amount of noise to the RyR behaviour increases the

oscillatory regime of calcium oscillations. Thus, randomness may enhance the PO range as the

amplitude of the oscillations measures the PO and NPO.

Table 6.3: Restoration of cytosolic Ca2+ PO by adjusting the sensitive parameters after perturb-
ing parameter r up and down by 2, 3, 4, and 5 folds. Here each entry represents the fold changes
of the sensitive parameters required to restore the PO of cytosolic Ca2+. The abbreviation NR
means variation not required. The ↑ and ↓ represent fold increase and decrease, respectively.

Parameters σ r/5 r/4 r/3 r/2 2r 3r 4r 5r

k1

0 3.52 ↑ 2.82 ↑ 2.12 ↑ 1.42 ↑ NR 4.16 ↓ 5.55 ↓ 6.25 ↓

0.1 3.28 ↑ 2.60 ↑ 1.98 ↑ 1.34 ↑ NR 1.56 ↓ 2.08 ↓ 2.50 ↓

k2

0 4.00 ↓ 3.03 ↓ 2.17 ↓ 1.42 ↓ NR 1.24 ↑ 1.65 ↑ 2.07 ↑

0.1 4.00 ↓ 2.70 ↓ 2.00 ↓ 1.31 ↓ NR 1.54 ↑ 1.99 ↑ 2.16 ↑

k4

0 3.80 ↑ 2.92 ↑ 2.14 ↑ 1.41 ↑ NR 1.24 ↓ 1.65 ↓ 2.06 ↓

0.1 3.35 ↑ 2.60 ↑ 1.97 ↑ 1.29 ↑ NR 1.52 ↓ 2.00 ↓ 2.53 ↓

d1

0 - - - - NR - - -

0.1 - - - - NR - - -

L
0 - - - - NR - - -

0.1 - - - - NR - - -

n
0 4.2 ↑ 3.19 ↑ 2.27 ↑ 1.44 ↑ NR 1.24 ↓ 1.65 ↓ 2.08 ↓

0.1 3.83 ↑ 2.89 ↑ 2.07 ↑ 1.32 ↑ NR 1.50 ↓ 1.74 ↓ 2.56 ↓

6.5.6 Restoration strategies and potential drug-targets

The robustness analysis determines that one of the most robust parameters for preserving the

physiological oscillations of cytosolic Ca2+ is the maximal glucose input rate constant (r) via

GLUT4. In essence, it relies on insulin stimulation, which could significantly affect the de-

velopment of diabetic cardiomyocytes. The transfer of plasma glucose into cardiomyocytes is

impeded in the event of insulin-resistant diabetes, which mainly affects the parameter r. With

further exploration, we found that the suppression and over-expression of r result in altered
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calcium oscillations. It is demonstrated that the system operates normally for a 2-fold increase

in r and that no parameters need recalibration. However, a more significant fold change in r

causes cardiomyocyte malfunction. Although parameters d1 and L individually could maintain

PO with two folds reduction, they cannot restore PO of [Ca2+]c due to a perturbation in r (see

Table 6.3). By controlling the rest of the sensitive parameters, one might preserve normalcy

even for a 5-fold increase or decrease of r. The analysis was performed both for the determinis-

tic (σ = 0) and stochastic systems (σ = 0.1). A comprehensive result outlining the contribution

of several sensitive parameters to the restoration of PO of [Ca2+]c with the change in r is tabu-

lated in Table 6.3. For both the deterministic and stochastic systems, the parameters k2,k4, and

n need about a maximum of 3 fold perturbations for restoring PO even when r is perturbed five

times its basal value. However, it is different in the case of parameter k1. The deterministic

system requires a six-fold decrease of k1 to restore PO when r is perturbed five times its basal

value (see Fig. 6.9). Interestingly, this change is significantly reduced (less than three folds)

when a small amount of randomness (less than the critical value σc) is added to the system.

The stochastic system only requires a three-fold decrease in the k1 value to restore PO (see Fig.

6.9).

Figure 6.9: Parameter recalibration. The figure depicts the perturbation of sensitive parame-
ters required to restore PO of [Ca2+]c after up and down regulations of r by 2, 3, 4, and 5 times.
Parameter recalibration was done for the deterministic system (represented by red colour) and
the stochastic system (represented by blue colour). The positive and negative fold change rep-
resents the up and down-regulation of the sensitive parameters.
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Insulin resistance (IR) plays a central role in the progression of cardiovascular diseases

related to diabetes, including diabetic cardiomyopathy [272, 273]. In models of insulin resis-

tance, there has been evidence of a decrease in GLUT4 expression [273]. As insulin signalling

causes GLUT4 to move to the plasma membrane and boosts glucose absorption, so in insulin

resistance conditions, a reduction of GLUT4 implies a reduction of glucose uptake [273, 274].

Thus, in our model system, we have used this strategy of reduction of glucose uptake to mimic

insulin resistance. Therefore in case of insulin resistance, when the maximum glucose input rate

constant via GLUT4 (r) decreases, PO of [Ca2+]c could be restored by increasing the GLUT4

related parameters, namely, intracellular GLUT4 recruitment rate constant (k1) and transloca-

tion rate of intracellular GLUT4 to the membrane (k4) and also by increasing Ca2+ flux constant

through SERCA2a pump (n). A decrease in the self-degradation rate of intracellular GLUT4

(k2) is also capable of restoring the PO of [Ca2+]c in the IR heart. Thus by controlling GLUT4

related parameters (k1,k2 and k4) and the Ca2+ flux constant through SERCA2a pump (n) we

could restore the PO of [Ca2+]c in IR cardiomyocytes.

6.6 Discussion

According to the International Diabetes Federation, 643 million people aged between 20 to 79

worldwide will be diagnosed with diabetes by 2030. That number will rise to 783 million by

2045 [221]. Cardiovascular disorders, particularly heart failure and diabetes, are frequently

linked [222, 223]. Diabetes-related heart failure is influenced by the onset of cardiac damage

known as "diabetic cardiomyopathy" [224]. One of its functional characteristics is a propensity

for ventricular dysfunction, which influences the myocardial energy and contractile function

[227–230]. Systematic plasma glucose delivery into cardiomyocytes and other cells is nec-

essary to preserve a healthy cardiac function. The primary function of cardiomyocytes is to

contract, which creates the pressure required to pump blood through the circulatory system

[275]. Calcium oscillation in cardiomyocytes facilitates this contractile function. From con-

trolling proliferation in human cardiac progenitor cells to controlling pacemaker rhythm in both

early embryonic heart cells and sinoatrial nodal pacemaker cells, calcium oscillations play a
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significant function [109]. Calcium is essential for preserving physiological oscillations (PO),

whereas glucose transporters like GLUT4 are responsible for maintaining glucose uptake. Any

deviations from its normal range will affect the normal functioning of the cardiomyocytes. Un-

derstanding how these aberrations affect cardiomyocytes at the molecular level can help predict

how diabetes will affect the structural and functional changes in the heart.

The present study demonstrated the emergence of periodic calcium oscillation using a pre-

cise subcellular calcium model of cardiomyocytes. It analyzed the critical facets of the system

using ODE and SDE-based mathematical models and studied the importance of calcium os-

cillations in the normal functioning of cardiomyocytes. The parameter set satisfying the exis-

tence of physiological oscillation (PO) of cytosolic calcium is considered the basal parameter

set. Then by altering these parameters, we induced non-physiological oscillations (NPO) to

mimic the diseased conditions. The emergence of Hopf bifurcation around the interior equilib-

rium point established the existence of periodic solutions. Randomness is crucial for GLUT4

translocation to the membrane, which regulates glucose absorption. So, the present study fo-

cused on GLUT4 dynamics related to other players like glucose and calcium in a stochastically

perturbed environment.

Single parameter variation analysis explored the relation of different parameters on the

system’s output in terms of PO, NPO, and stability. The sensitive parameters were identified

through Global sensitivity analysis (GSA). We identified the range for every sensitive parameter

for the existence of PO. Outside of the PO range, the system either exhibits stability or non-

physiological oscillations (NPO). An interesting phenomenon of early bifurcation was observed

when minimal noise was introduced to the deterministic system. With early bifurcation, the

oscillation amplitude also gets enlarged in the stochastic case. In our case, we are not only

interested in the oscillatory behaviour of the system but also in the physiological and the non-

physiological oscillations, which mark healthy and unhealthy cardiac functions.

The primary goal of this work was to simulate the diabetic condition that can alter physi-

ological calcium oscillations, causing heart dysfunction. Our model could mimic this diabetic

condition by inducing insulin resistance (IR) in cardiomyocytes by perturbing the maximum

glucose input rate constant via GLUT4 (r). Plasma glucose enters the cell with the help of
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insulin-stimulated GLUT4 to supply the cell’s energy needs. The plasma glucose entry is im-

peded in IR cardiomyocytes. In such a condition, we tried to restore the PO of the cytosolic

Ca2+ by changing the other sensitive parameters. The parameter recalibration was performed

for both systems with respect to the sensitive parameters. Parameters L and d1 are linearly

related to the amount of cytosolic calcium [Ca2+]c, so any alteration in those parameters would

directly affect the concentrations of [Ca2+]c. However, here we observed that if parameter r is

perturbed to mimic the IR condition, L and d1 cannot restore the PO of [Ca2+]c. The only Ca2+

related parameter that could restore the PO of [Ca2+]c is n, which represents the Ca2+ flux

rate through SERCA2a pump. The GLUT4-related parameters, like intracellular GLUT4 re-

cruitment rate (k1), self-degradation rate of intracellular GLUT4 (k2), and translocation rate of

intracellular GLUT4 to the membrane (k4), can restore PO. Thus, restoration of PO is possible

by altering three GLUT4-related parameters and one Ca2+ related parameter. The stochasticity

in the system tends to ease this restoration process.

Cardioprotection has been linked to GLUT4 up-regulation [251]. Recent studies also em-

phasized the regulation of the GLUT4 transporter for the prevention of type 2 diabetes [276].

Thus, the drugs that target enhancing GLUT4 expression and GLUT4 translocation are the

most suitable to restore the PO of [Ca2+]c. An earlier study [277] reports that chloroquine im-

proves insulin resistance by boosting GLUT4 translocation and fusion with the plasma mem-

brane in L6 muscle cells. Neferine also stimulates the expression of GLUT4 and its fusion

with the plasma membrane to trigger glucose uptake in L6 muscle cells [278]. This neferine-

induced GLUT4 fusion with the plasma membrane and glucose uptake are Ca2+-dependent

[278]. In the case of cardiomyocytes, recent articles report the protective effects of neferine

in cardiac dysfunctions [279–281], and many other pathologies [282, 283]. Many efforts have

been made, including targetting insulin signalling, especially GLUT4, in treating diabetes and

cardiovascular diseases [284]. Up-regulation of GLUT4 has been related to cardioprotection

[251]. Ormazabal et al. [272] opined that making overexpression of GLUT4 might be the

potential strategy for creating a new class of medications in treating diabetic cardiomyopa-

thy. It has been demonstrated that in 3T3-L1 adipocytes, AMPK controls the translocation

of GLUT4 to the plasma membrane [252]. According to Yang et al. [253], long-term (18



6.6. Discussion 167

h) metformin administration of cardiomyocytes boosted glucose transport activity 3- to 5-fold

through a reduction in GLUT4 endocytosis that was dependent on AMP-activated protein ki-

nase. In another study, metformin treatment for four weeks in metabolic syndrome-induced

mice significantly reduced insulin resistance and significantly increased GLUT4 expression in

heart tissues [254]. Through the stimulation of AMPK activity, berberine also reduces insulin

resistance in H9c2 cardiomyocytes [285]. By restoring PI3K/AKT signalling-mediated GLUT4

membrane translocation, carvacrol is a possible therapeutic drug for DCM [286]. Therefore, in

a state resembling diabetes, an increase in the GLUT4 expression and GLUT4 translocation to

the plasma membrane might be crucial in sustaining PO and might be utilized as therapeutic

targets. An increase in GLUT4 expression and its translocation to the plasma membrane may

be essential for maintaining PO in a diabetic condition and may be used as therapeutic targets.

We have demonstrated here that the PO of [Ca2+]c in IR cardiomyocytes could be restored by

increasing the intracellular GLUT4 recruitment rate (k1) and GLUT4 translocation rate to the

membrane (k4) and could be used as therapeutic strategies.

In conclusion, this chapter discusses the effect of randomness in calcium signalling in car-

diomyocytes. The current study developed a SDE-based mathematical model to examine the

effect of the random movement of GLUT4, which facilitates glucose entry in the cardiomy-

ocytes. Then, by altering system parameters, we induced insulin resistance (IR) in cardiomy-

ocytes to mimic diabetic conditions and proposed potential restoration strategies to recover the

physiological oscillations of cytosolic calcium. Early bifurcation was observed when we in-

troduced randomness in the system. Thus, the random translocation of GLUT4 facilitates the

restoration mechanisms.





7
Conclusions and future directions

7.1 Conclusions

Cell signalling research has emerged with significant progress in interdisciplinary fields in the

era of high throughput techniques. However, therapeutic strategies targeting key molecules

have yet to fulfil the expected promises for most common malignancies. Major difficulties

include incomplete understanding due to single-pathway targeted approaches. Signalling path-

ways are not linear, but they have molecular cross-talk. To achieve this, we must consider the

system as a complex network of interacting components. Such departure from the traditional

paradigm of studying a single pathway to a more global approach will aid the design of novel

therapeutics.

The present thesis incorporated a systems biology approach integrated with mathematical

169
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modelling to understand complex mechanisms of cell signalling systems in a global manner.

The complexity in signalling networks arises due to the presence of highly connected modules

that regulate multiple functions. This complexity increases even more due to the presence of in-

trinsic noise. The signalling systems must be robust enough to execute their cellular activities.

At the same time, they must be sensitive enough to capture the variations in the input stimuli.

To unravel this complexity, we have considered the smaller functional subunits known as net-

work motifs. The motif organisation influences their sensitivity, robustness, and trade-off in a

signalling network. We have developed analytical formulas derived by solving mathematical

models that classify and rank motifs depending on their sensitivity profile under random per-

turbation. In the following bullet points, we have summarised different results obtained from

different chapters.

• The study on two frequently observed two-node network motifs reveals the emergence of

complex qualitative behaviour, like bistability, that can be disrupted due to the presence

of randomness in the system. These signal-noise relations are useful in diseases that

cause complex perturbations in cellular signalling networks, like cancer, diabetes, and

autoimmunity. That encouraged us for a deeper investigation of the association between

motif structures and the noise in signalling networks.

• The study considering all possible two-node network motifs provides a global view of the

significance of network motifs in maintaining cell signalling in a noisy environment and

also provides a methodology for screening potential drug targets. We observed that the

double-positive feedback loops have a larger stable area and are robust under systemic

noise. In contrast, the double negative feedback has the least stable area referring to their

vulnerability to systemic noise. The druggability test reveals that the sensitive motifs

have the highest druggability, whereas the robust motifs have the least druggability. So,

the sudden changes in the concentration of the output node of the sensitive motifs that

need to be controlled to maintain the desirable input-output signal in a network are also

better druggable than the robust motifs. We applied the dependency of the input-output

relation on motif structure and designed a quantitative scoring formula to identify critical

nodes in protein-protein interaction networks. High-impact drug targets like GSK3B,
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ERBB2, INSR, RET, SRC etc., were identified from three cancer networks, namely

breast, pancreatic and ovarian cancers, using the formula. We observed a strong asso-

ciation between the sensitivity of the proteins towards noise and the proteins approved as

drug targets. A reverse analysis of the established drug targets from the literature further

confirmed our proposition.

• We explored the emergence of bistability and used it to identify the potential drug targets

from the cancer networks. Seven out of the eighteen possible bistable motifs showed

bistability in our study. A bistable system often shows hallmark characteristics like hys-

teresis, a switching phenomenon observed for different stimulus-response. This hystere-

sis can be of two types: reversible and irreversible hysteresis. In reversible hysteresis,

the system can return to its previous steady state only by changing the input stimulus,

whereas in irreversible hysteresis, it can not. The nature of hysteresis depends on the

strength of the feedback parameter. We obtained ranges of feedback parameters for re-

versible and irreversible hysteresis for each bistable motif structure. Based on the re-

versible hysteretic feedback parameter range, we ranked the motifs and found that they

are better or easier drug targets. We further observed that the known drugs tended to

target the bistable motifs and are associated with those with larger feedback effects.

• Our study introduced methods to identify prospective drug targets independent of the

data structure. All currently used network-based techniques rely heavily on centrality

and differentia. Differential network analysis identifies drug targets by analysing dif-

ferent networks that are data-dependent. In comparison, the centrality-based approach

detects nodes with high-degree, betweenness, closeness centrality etc. Targeting these

central positions helps to disintegrate the network. However, employing the disintegra-

tion methods to identify the targets has detrimental side effects. The study overcomes

these drawbacks by proposing a methodology independent of the data and network struc-

ture.

• The significance of bistability in cell signalling networks was explored by studying decision-

making processes in the tumour necrosis factor (TNF) signalling network in T regulatory
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cells. Through bistable switching, we explained the complex behaviour of cell survival

and death. The model reveals that the elevated TNF concentration and increased c-Jun

N-terminal kinase (JNK) phosphorylation are the major contributors to the death of T-

regulatory cells and can be controlled by reducing the TNF concentration. Inherent

stochasticity reduces the system’s bistability and affects its normal functioning.

• The significance of randomness on the existence of calcium oscillation in cardiomyocytes

was investigated. The calcium signalling pathway in cardiomyocytes reveals the complex

aetiology of diabetic cardiomyopathy in terms of calcium oscillations under a stochastic

environment. Diabetes develops due to altered calcium signalling in the presence of

randomness, which can be utilised to determine targets for diabetic hearts. We induced

insulin resistance in cardiomyocytes to mimic diabetic conditions and proposed potential

restoration strategies to recover the physiological oscillations (PO) of cytosolic calcium.

We observed that in case of insulin resistance when the maximum glucose input rate

constant via GLUT4 decreases, PO of cytosolic calcium could be restored by increasing

the GLUT4-related parameters, namely, intracellular GLUT4 recruitment rate constant

and translocation rate of intracellular GLUT4 to the membrane and also by increasing

calcium flux constant through SERCA2a pump. Random translocation of GLUT4 to

the plasma membrane that controls glucose uptake unfolds early oscillations in cytosolic

calcium, facilitating the restoration mechanisms.

Overall the thesis developed novel methods and tools to identify regulatory points of the

complex biological networks by exploring the emergence of bistability and the presence of in-

trinsic randomness in the system. In the early part of the thesis, the developed methods are

independent of data and network structures that can be used to identify potential drug targets.

The kinetic models developed in the last two chapters studied the significance of randomness

in various biological problems. It captured the significance of bistability in TNF signalling,

especially in decision-making processes. It also showed the importance of random transloca-

tion of GLUT4 in diabetic cardiomyocytes in facilitating the physiological calcium oscillations

restoration.
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7.2 Future directions

The current research presents several intriguing theories that merit additional investigation and

can be extended through different facets of systems biology and mathematical modelling. In the

following bullet points, we have presented the possible future extensions of the current thesis.

• Protein-protein interaction networks include various classes of proteins like kinases,

phosphatases, transcription factors, etc. However, in our study, we have considered only

the enzymatic reactions based on the Michaelis-Menten form of kinetics. But these pro-

tein classes may differ in their functional relationships. This study takes a global ap-

proach that may lack mechanistic details displayed by various protein classes. So, an

in-depth study considering specific functional relationships of different protein classes

needs to be done to get more mechanistic insights.

• This study also does not include the effect of coupling of individual motifs. Reports sug-

gest that coupling two-node feedback motifs increase the safety zone or the hysteretic

region, which can be crucial in determining input-output relations, especially under ran-

dom perturbations. Thus this study can be extended for the coupled motifs.

• Although the study of TNF signalling in T regulatory cells quantitatively captured the

realistic mechanism of cell survival and death, it excluded many intermediate molecules

and cross-talks. An extensive study of TNF signalling can be done by considering all the

intermediate molecules to investigate TNF treatment exclusively.

• We all know the biological system works in unison and is minutely organised and coor-

dinated. But to focus on capturing the effect of random translocation of GLUT4, we have

taken a portion of the calcium signalling in cardiomyocytes. So, a detailed study of the

whole calcium signalling system can be done to get more mechanistic insights.

• Finally, the study can be extended by performing the experimental validations of the

proposed drug targets identified from the cancer networks in the thesis. The proposed

therapeutic targets identified by the kinetic model of the TNF signalling and restoration

strategies of the diabetic cardiomyocytes also can be verified through experiments.
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