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Preface

This doctoral study is focused on the effects of potential with position-

dependent mass at the quantum level for getting further insight into the

relativistic quantum mechanical system. To continue this study two rela-

tivistic equations are considered here: the Klein-Gordon equation that de-

scribes spin−0 particle, for example π meson and the spin−1
2
particle due

to Dirac that describes an electron. The presentation is interspersed with

some of my own research material, where I have felt that it elucidates the

presentation. In order to understand and describe processes on the atomic

scale (here atomic spectra), I choose some physical potential for relativistic

wave equation within the framework of Frobenious Method, Asymptotic

Iteration Method, Nikiforov-Uvarov method, Laplace Transform Approach

etc..

Effective masses occur in the context of transport phenomena in crys-

tals e.g., semiconductors, where the electrons are not completely free, but

interact with the potential of the lattice. To serve the purpose of the

study I have considered the potentials like: q-deformed modified Eckart

plus Hylleraas potential, generalised asymmetric Manning-Rosen potential,

double ring shaped Coulomb potential and Manning-Rosen potential.

To gain a basic understanding of any subject demands a careful study

of the underlying mathematical structures without getting trapped in the

physically irrelevant mathematical details and technicalities. The need for

a comprehensive and readable treatment of basic mathematical notions and

v



their physical consequences forces us to discuss the mathematical tools and

results that are necessary for addressing the conceptual issues of direct

relevance to the physical aspects of our study. This has been a decisive

factor in the layout of this thesis. The thesis consists of six chapters.

I give an extensive, but not comprehensive, introduction to the field of

relativistic quantum mechanics along with a brief review of the relevant

literature are presented in Chapter 1.

In Chapter 2, relativistic Klein-Gordan equation with position depen-

dent mass has been solved analytically for the q-deformed modified Eckart

plus Hylleraas potential. A generalised series is used to obtain the bound

state solutions of the K-G equation using the Frobenious Method . The one

dimensional K-G equation for the mass dependent modified Eckart plus

Hylleraas potential in absence of scalar potential are studied here. The

exactly normalized bound state wave function and energy expressions are

obtained by using N-U method. Also, the bound state solutions are found

for the Hulthén and Rosen-Morse potential.

Chapter 3 deals with the one dimensional Dirac Equation with posi-

tion dependent mass and the Dirac equation has been solved in terms of

the hypergeometric functions for generalised asymmetric Manning-Rosen

potential containing different types of physical potential.Considering one

dimensional electric current density for the Dirac particle the transmission

and the reflection coefficients are obtained.The expression of the energy

eigen values is obtained by using continuity conditions of the wave func-

tions.

Chapter 4 considers the double ring shaped Coulomb potential within

framework of relativistic Klein-Gordon equation. The bound state solution

is obtained for inverse square potential from Radial part in terms of con-

fluent hypergeometric function .Energy eigen value for isotropic harmonic

oscillator and ring shaped oscillator with its solution in terms of Gauss

hypergeometric function are also obtained from the angular part.

In Chapter 5, we have studied the quantum mechanical system within

the framework of position-dependent mass for Manning-Rosen potential

with the help of Laplace transform method combining with Point Canoni-

cal transformation. The general solutions are obtained via Pekeris approxi-

mation appropriate for potential analogs to Manning-Rosen potential. The
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bound state solutions are obtained in an analytical form.

In Chapter 6, we have given some necessary appendices for Special

functions connecting to relativistic wave equation and deformed hyperbolic

functions which play a crucial role for mathematical understanding of the

subatomic world.
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1
Introduction

We are on the verge of a century since the relativistic quantum me-

chanics started it’s journey . The journey began with the attempts to use

the correspondence principle in order to derive a relativistic wave equation

intended to replace the Schrödinger equation. In 1926, the great Austrian-

Irish physicist Erwin Schrödinger himself proposes the relativistic version

of his non-relativistic equation (namely, Schrödinger equation)[1]. In the

same year (i.e. 1926), two other physicists Oskar Klein and Walter Gordon

proposed a revolutionary equation (which is now known as Klein-Gordon

equation)[2,3] to describe spin-zero particle where the interaction potential

is not so strong to create particle-antiparticle pairs. Although, the Klein-

Gordon equation was initially dismissed due to its inability to led to positive

probability density.

In 1928, British physicist Paul Dirac proposed a relativistic wave equa-

tion named upon him which pertains to particles with 1/2−spin and is able

to describe most of the single particle properties of fermions [4]. This equa-

tion also possesses solutions with negative energy similar to Klein-Gordon

equation. In 1930, he postulated that the states of negative energy should

be occupied to prevent transitions of an electron into lower lying states of

energy[5].

Quantum mechanics is the theory that describes the dynamics of matter

at the microscopic scale. This is the only valid framework to describe the

microphysical world. It is vital for understanding the physics of solids,

lasers, semiconductor and superconductor devices, plasmas, etc. In short,

quantum mechanics is the founding basis of all modern physics: solid state,
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Chapter 1. Introduction

molecular, atomic, nuclear, and particle physics, optics, thermodynamics,

statistical mechanics, e.t.c.

Quantum theory works extremely well, and this represents its experi-

mental justification. It has a very penetrating qualitative as well as quan-

titative prediction power; this prediction power has been verified by a rich

collection of experiments. So the accurate prediction power of quantum the-

ory gives irrefutable evidence to the validity of the postulates upon which

the theory is built.

The theory of quantum mechanics has become an accepted component

of modern science due to a large number of experimental verifications of its

theoretical predictions. For a consistent quantum mechanical theory, there

need to be restrictions or assumptions. All but one of these assumptions are

physical requirements. For example, the energy spectrum is required to be

real because all measurements of the energy of a system yield real results.

Another axiom requires that the energy spectrum be bounded below so that

the system has a stable lowest-energy state. Yet another axiom requires that

the time evolution of a quantum system be unitary (probability-conserving)

because the expected result of a probability measurement of a state cannot

grow or decay in time. A quantum theory of elementary particles must also

satisfy the physical axioms of Lorentz covariance and causality. However,

there is one axiom that stands out because it is mathematical rather than

physical in character, and this is the requirement that the Hamiltonian H,

which is the operator that expresses the dynamics of the quantum system,

be Hermitian.

In quantum mechanics the standard formalism is based on the require-

ment that all observable properties of a dynamic nature are associated

with the real eigenvalues of a Hermitian Hamiltonian. The motivation of

the non-Hermitian quantum mechanics formalism are:

• to be able to address questions that can be answered within this for-

malism.

• the desire to tackle problems that can also be solved within the conven-

tional Hermitian framework, but only with extreme difficulty, whereas

the non-Hermitian quantum mechanics formalism enables a much sim-

pler and more elegant solution.

2



Chapter 1. Introduction

In the context of quantum mechanics, Hermiticity is required for a

Hamiltonian to have a real energy spectrum. The Hermiticity of H is ex-

pressed by the equation

H = H† (1.1)

where the Dirac Hermitian conjugation symbol † represents the combined

operations of matrix transposition and complex conjugation. The mathe-

matical symmetry condition (1.1) is physically obscure but very convenient

because it implies that the eigenvalues of H are real and that the time-

evolution operator e−iHt is unitary. Hamiltonians that are non-Hermitian

have traditionally been used to describe dissipative processes, such as the

phenomenon of radioactive decay. However, these non-Hermitian Hamil-

tonians are only approximate, phenomenological descriptions of physical

processes. They cannot be regarded as fundamental because they violate

the requirement of unitarity. A non-Hermitian Hamiltonian whose purpose

is to describe a particle that undergoes radioactive decay predicts that the

probability of finding the particle gradually decreases in time. Of course, a

particle cannot just disappear because this would violate the conservation

of probability; rather, the particle transforms into other particles. Thus, a

non-Hermitian Hamiltonian that describes radioactive decay can at best be

a simplified, phenomenological, and non-fundamental description of the de-

cay process because it ignores the precise nature of the decay products. In

his book on quantum field theory Barton gives the standard reasons for why

a non-Hermitian Hamiltonian cannot provide a fundamental description of

nature [6]: “A non-Hermitian Hamiltonian is unacceptable partly because

it may lead to complex energy eigenvalues, but chiefly because it implies a

non-unitary S matrix, which fails to conserve probability and makes a hash

of the physical interpretation.” The purpose of this paper is to describe

at an elementary level the breakthroughs that have been made in the past

decade which show that while the symmetry condition (1.1) is sufficient

to guarantee that the energy spectrum is real and that time evolution is

unitary, the condition of Dirac Hermiticity is not necessary. It is possible

to describe natural processes by means of non-Hermitian Hamiltonians.

To describe the particle dynamics in relativistic quantum mechanics

3



Chapter 1. Introduction

with some typical potential the Klein-Gordon wave equation is frequently

used in literature. The exact solutions of the wave equations (non-relativistic

or relativistic) contain all the necessary information regarding the quantum

system under consideration and so they are very important. However, ana-

lytical solutions are possible only in a few simple cases such as the hydrogen

atom and the harmonic oscillator [7]. If we consider the case where the in-

teraction potential is not strong enough to create particle-antiparticle pairs,

we can apply the Klein-Gordon equation to the treatment of a zero-spin par-

ticle. The near realization of these symmetries may explain degeneracies in

some heavy meson spectra (spin symmetry) or in single particle energy lev-

els in nuclei (pseudospin symmetry), when physical systems are described

by relativistic theories with scalar and vector potentials [8-12].

Quantum mechanical system with position dependent mass is a very

useful model in many applied branches of modern physics, e.g. semiconduc-

tor heterostructure [13], Quantum liquids [14], quantum wells and quantum

dots [15], 3He clusters [16], compositionally graded crystals [17] etc. In these

cases, the wave function actually provides a macroscopic description of the

motion of carrier electrons with position dependent mass. Consequently

the study of such equation with position dependent mass becomes relevant

for deeper understanding on the non-trivial quantum effects observed in the

nanostructures. A lot of studies have been performed to obtain the solu-

tions of the Schrodinger, Klein-Gordon and Dirac equations in the presence

of variable mass having suitable mass distribution function for different po-

tentials [18-19]. For example, Aygun et al. [20], Jia et al. [21], Antia et al.

[22] and Souza Dutra considered position-dependent effective mass [23].

In this study our main concern is to focus on the effects of position-

dependent mass at the quantum level for getting further insight into the

relativistic quantum mechanical system. The energy spectra and corre-

sponding wave function for Klein-Gordon and Dirac equation for different

potentials have been studied by using different methods. We propose to in-

vestigate the solutions for Klein-Gordon and Dirac equation by introducing

PDM for various potentials.

4



Chapter 1. Introduction

1.1 Effective-mass Quantum system

The mass distribution of a quantum system, which can be measured

as the expectation values of certain observables, has two possible existent

forms: it is either real or effective. The distribution is real means that

it exists throughout space at the same time. The distribution is effective

means that there is only a localized particle with the total mass and charge

of the system at every instant, and the time average of its motion during an

infinitesimal time interval forms the effective distribution. Moreover, since

the integral of the formed mass density in any region is required to be equal

to the expectation value of the total mass in the region, the motion of the

particle must be ergodic.

For the effective mass distribution, no gravitational self-interactions ex-

ists, as there is only a localized particle at every instant. This is consistent

with the superposition principle of quantum mechanics. By contrast, if the

mass distribution is real, then there will exist gravitational self-interactions

of the real distribution, as the distribution exists throughout the space at

the same time. The existence of the gravitational self-interactions is in-

consistent with the superposition principle of quantum mechanics for real

distribution of mass.

In a word, the superposition principle of quantum mechanics requires

that the mass distribution of a quantum system is not real but effective; at

every instant there is only a localized particle with the total mass of the

system, while during an infinitesimal time interval the time average of the

ergodic motion of the particle forms the effective mass distribution, and the

mass density in each position is proportional to the modulus square of the

wave function of the system.

Effective masses occur in the context of transport phenomena in crys-

tals, where the electrons are not completely free, but interact with the

potential of the lattice. The quantum dynamics of such electrons can be

modeled by an effective mass, the behaviour of which is determined by the

band curvature. The effective-mass wave equations are more complicated

to be solvable for potentials of physical interest than constant mass cases.

The cause behind this is, the effective mass function must be chosen to be

5



Chapter 1. Introduction

physically meaningful, gives the equation a more complicated form than in

the constant mass case.

A quantum mechanical particle endowed with a position-dependent ef-

fective mass constitutes an interesting and useful model for the study of

many physical problems.The effective mass approximation is a very impor-

tant method in semiconductor physics to study dynamic and static prop-

erties of charge carriers without complexity due to the lattice potential of

the material. The effective-mass approach has also been used as a compu-

tational method to deal with nonuniform crystals.

To determine the electronic properties of semiconductors effective-mass

theory is an important and extensively used tool. The theory is well es-

tablished for homogeneous materials with small perturbations [24]. The

effective-mass theory has also been applied to non-uniform materials in

which the carrier effective mass depends on position.

The concept of effective mass also plays an important role within the

strictures of the energy density functional approach to the quantum many

body problem. The energy density functional formalism has yielded rea-

sonable theoretical predictions of many experimental properties for several

quantum many body systems. Within the energy density functional ap-

proach, the non-local terms of the associated potential can be often ex-

pressed as a position dependence on an appropriate effective mass. Besides

its practical applications, the study of quantum mechanical systems with

a position dependent mass also raises interesting conceptual problems of a

fundamental nature.

1.2 Hamiltonian in quantum mechanics

In quantum mechanics, the Hamiltonian of a system is an operator

corresponding to the total energy of that system, including both kinetic

energy and potential energy. The mathematical formulation of quantum

mechanics is built upon the concept of an operator. Physical pure states in

quantum mechanics are represented as unit-norm vectors (probabilities are

normalized to one) in a special complex Hilbert space.

Physical observable in quantum mechanics are described by Hermitian

6



Chapter 1. Introduction

(also, called self-adjoint) operators . An operator A that is self adjoint has

the very reasonable property that its effect on the vectors of the Hilbert

space in which it is defined is independent of what vector it acted on

first. Using the standard Dirac bra and ket notation we can write this

as 〈φ|Aψ〉 = 〈Aφ|ψ〉. But the specific matrix properties enforced by self-

adjoincy depend on the definition of an inner product used, and there are

infinite ways to define an inner product on a vector space. Vectors in the

Hilbert space are written in terms of the basis vectors, and if the basis

vectors are orthonormal then the inner product is just the standard one:

〈φ|ψ〉 =
∑

i φ
∗
iψi = φ†ψ . So an operator that is Hermitian is self-adjoint

with respect to a given inner product rule, and in the case of the standard

Hermitian inner product this means the matrix representation of the oper-

ator is equal to its complex conjugate transpose. In elementary courses on

quantum mechanics one learns that a quantum theory is specified by the

Hamiltonian operator that acts on a Hilbert space. The Hamiltonian H
does three things:

• The Hamiltonian determines the energy eigenstates |En〉 . These states
are the eigenstates of the Hamiltonian operator and they solve the

time-independent Schrödinger equation H|En〉 = En|En〉. The energy

eigenstates span the Hilbert space of physical state vectors. The eigen-

values En are the energy levels of the quantum theory. In principle,

one can observe or measure these energy levels. The outcome of such

a physical measurement is a real number, so it is essential that these

energy eigenvalues be real.

• The HamiltonianH determines the time evolution in the theory. States

|t〉 in the Schrödinger picture evolve in time according to the time-

dependent Schrödinger equation H|t〉 = −i d
dt
|t〉, whose formal so-

lution is |t〉 = eiHt|0〉. Operators A(t) in the Heisenberg picture

evolve according to the time-dependent Schrödinger equation d
dt
A(t) =

−i[A(t),H], whose formal solution is A(t) = eiHtA(0)e−iHt.

• The Hamiltonian incorporates the symmetries of the theory. A quan-

tum theory may have two kinds of symmetries: continuous symme-

tries, such as Lorentz invariance, and discrete symmetries, such as

parity invariance and time reversal invariance. A quantum theory is

7



Chapter 1. Introduction

symmetric under a transformation represented by an operator A if A
commutes with the Hamiltonian that describes the quantum theory:

[A,H] = 0. It should be Noted that the commutation relation between

the symmetry transformation represented by a linear operator A and

the Hamiltonian implies that the eigenstates of H are also eigenstates

of A. Two important discrete symmetry operators are parity (space

reflection), which is represented by the symbol P , and time reversal,

which is represented by the symbol T . The operators P and T are

defined by their effects on the dynamical variables x̂ (the position op-

erator) and p̂ (the momentum operator). The operator P is linear

and has the effect of changing the sign of the momentum operator

p̂ and the position operator x̂ : p̂ −→ −p̂ and x̂ −→ −x̂. The op-

erator T is anti-linear and has the effect p̂ −→ −p̂ , x̂ −→ x̂, and

i −→ −i. Note that P changes the sign of i because (like P) T is

required to preserve the fundamental commutation relation [x̂, p̂] = i

of the dynamical variables in quantum mechanics.

Quantum mechanics is an association between states in a mathematical

Hilbert space and experimentally measurable probabilities. The norm of a

vector in the Hilbert space must be positive because this norm is a proba-

bility and a probability must be real and positive. Furthermore, the inner

product between any two different vectors in the Hilbert space must be

constant in time because probability is conserved. The requirement that

the probability not change with time is called unitarity. Unitarity is a fun-

damental property of any quantum theory and must not be violated. To

summarize the discussion so far, the two crucial properties of any quantum

theory are that the energy levels must be real and that the time evolution

must be unitary. There is a simple mathematical condition on the Hamilto-

nian that guarantees the reality of the energy eigenvalues and the unitarity

of the time evolution; namely, that the Hamiltonian be real and symmetric.

The Hamiltonian related to variable mass must clearly incorporate the

spatial variation of the conduction band edge Vc(r). Morrow et al. [25]

considers the general form of Hamiltonians with position dependent mass

is

H =
1

2
mαpmβpmα + Vc(r)

8



Chapter 1. Introduction

With 2α + β = −1, which constitutes the Hermitian Hamiltonians for

inhomogeneous material.

The most general Hamiltonian for effective-mass system, as originally

proposed by von Roos [13] is

H = −~
2

4
[mδ(r)∇mk(r)∇mλ(r) +mλ(r)∇mk(r)∇mδ(r)] + V (r)

whose classical limit is identical to the first one, and the parameters are

constrained by the condition δ + k + λ = −1.
In our study, we have used the Hamiltonian for the position dependent

mass m = m(r), of the form:

H =
1

4(a+ 1)

{

a
[ 1

m
P2 +P2 1

m

]

+mαPmβPmγ +mγPmβPmα

}

+V(r)

where P denotes the momentum operator and V(∇) is an arbitrary po-

tential. also α, β, γ and a are the ambiguity parameters satisfying the

constrain α + β + γ = −1 and r is the radial coordinate.

1.2.1 Hermitian Hamiltonian

In quantum mechanics the standard formalism is based on the require-

ment that all observable properties of a dynamical system are associated

with the real eigenvalues of a Hermitian Hamiltonian. The operator, H that

expresses the dynamics of the quantum system requires to be Hermitian.

In 1945 the great British physicist P.A.M. Dirac done revolutionary work

[26] on relativistic quantum mechanics to discover a wave equation that

was first order in space and time derivatives and consistent with special

relativity. A key assumption made by Dirac was that the corresponding

Hamiltonian would be Hermitian. In this way Dirac was led to his cele-

brated equation which predicted antimatter and describes both electrons

and quarks. It should turn out to describe neutrinos as well, the Dirac

theory would govern all known fermionic matter in nature. The physi-

cal quantum theory must have bounded energy spectrum and acquire a

Hilbert space of state vectors which are confer with an inner product hav-

ing a positive norm and unitary time evolution. The simplest condition

on the Hamiltonian H which guarantees that the quantum theory satisfies

these requirements is that the H be real and symmetric.

9
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For a given Hamiltonian H, one can write down the time-independent

wave equation associated withH and calculate the eigenfunctions ψn(x) and

eigenvalues En. Usually the calculations of eigenvalues and eigenfunctions

are performed numerically or analytically. The eigenfunctions of Hermitian

Hamiltonian H, will be orthogonal with respect to the standard Hermitian

inner product:

〈ψ, φ〉 =
∫

[ψ(x)]∗φ(x)dx

Two eigenfunctions ψm(x) and φn(x) associated with different eigenvalues

Em 6= En of H are said to be orthogonal if

〈ψm, φn〉 = 0

For Hermitian Hamiltonian H, the norm of any vector is positive and

so we can normalize the eigenfunctions for which the norm is unity then

〈ψm, φn〉 = 1

For a hermitian Hamiltonian the time evolution operator e−iHt is unitary

and it automatically preserves the inner product

〈χ(t), χ(t)〉 = 〈χ(0)e−iHt, e−iHtχ(0)〉 = 〈χ(0), χ(0)〉

It is a theorem in the Hilbert space for linear operators which states that

any (finite norm) vector . can be expressed as a linear combination of

eigenfunctions of H

χ =
∞
∑

n=0

anψn

In other words, we can say that the eigenfunctions of a hermitian Hamil-

tonian are complete. The formal statement of completeness in co-ordinate

space is the reconstruction of the unit operator as a sum over the eigen-

functions ∞
∑

n=0

[ψn(x)]
∗φn(y) = δ(x− y)

An observable is represented by a linear hermitian operator. The outcome

of a measurement is one of the real eigenvalues of this operator. The other

topics such as classical and semiclassical limit of quantum theory, probabil-

ity and current density for perturbative and non-perturbative calculations

can also be considered for hermitian Hamiltonians.

10
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1.2.2 Non-Hermitian Hamiltonian

Quantum mechanical systems are traditionally described by self-adjoint

Hamiltonians which fulfil the natural axioms of Quantummechanics, namely

that the possible outcomes of the energy measurements correspond to real

eigenvalues of the Hamiltonian, that generates a unitary (probability-conserving)

evolution of the system. Still, non-self adjoint (in other words non-Hermitian)

operators may be encountered in the course of quantum-mechanical anal-

ysis as a technical tool, facilitating calculations, as it happens e.g. in the

method of complex scaling often used in molecular physics, or in the calcula-

tion of adiabatic transition probabilities . when an open system is described

they can also arise in quantum theory as a consequence of using approxi-

mative methods, as it is in the case of a radioactive decay, dissipation in

semiconductor physics or description of systems with repeated interactions.

The motivation of the non-Hermitian quantum mechanics formalism are:

• to be able to address questions that can be answered within this for-

malism.

• the desire to tackle problems that can also be solved within the conven-

tional Hermitian framework, but only with extreme difficulty, whereas

the non-Hermitian quantum mechanics formalism enables a much sim-

pler and more elegant solution.

Moreover it provides the insight that is required to predict novel physical

phenomena and to design the corresponding experiments.

By non-Hermitian operators we mean those operators which are not

self-adjoint and consequently do not necessarily have real spectra. Non-

Hermitian Hamiltonians appear frequently in the study of quantum sys-

tems and are usually interpreted as effective Hamiltonians associated with

dissipative models when they posses complex spectra. However, also non-

Hermitian Hamiltonians whose spectra were believed to be real have emerged

sporadically in the literature. This illustrates that whereas Hermitian op-

erators must have real eigenvalues, so that complex characteristic values

can only appear in non-Hermitian systems, the latter can also present real

spectra. In other words, by restricting their investigations to self-adjoint

operators physicists miss out potentially significant setups. From this ob-
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servation rises the interest in determining under what conditions will non-

Hermitian Hamiltonians generate real eigenvalues.

Non-Hermitian Hamiltonians appear most frequently in the physics lit-

erature to describe dissipative systems, regarded as a result of an effective

description. This picture arises when one has a complicated physical con-

figuration and judges that it is sensible to isolate a handful of degrees

of freedom from the totality. The outlined approach represents an initial

step to have a tractable configuration formed only by the elements of in-

terest as opposed to the larger number, possibly infinite, composing the

complete setup. However, both subsystems, the smaller depicted structure

and its complement, are usually inherently coupled so that there will occur

exchanges between them. Therefore from the perspective of one of the sub-

systems one will find either loss or gain of particle number, energy or any

other physical quantity. Dissipation thus emanates in a natural way and

is an indication that the model used cannot be considered fundamental as

a complementary description becomes necessary for taking the remaining

environment into account.

In classical mechanics it is long understood the universality of dissipa-

tion, as a consequence of microscopic phenomena of increasing disorder.

When the system is not in thermodynamical equilibrium and energy and

matter can be exchanged between the system, considered open, and the

environment, dissipation leads to heating. When extending to quantum

theory, ideas concerning dissipative systems appear promptly in the study

of open and closed channels in atomic physics.

Dissipation is a common feature in realistic problems not only at the

classical level but also at the quantum level. Metastable states, those in

equilibrium but susceptible to fall into lower-energy states with only slight

interaction. Thus, dissipative phenomena constitute a very important as-

pect of non-Hermitian quantum systems and these concepts can hardly be

dissociated. But the physical description of systems by Hamiltonians which

are not self-adjoint go beyond the scope of open systems. Non-Hermitian

Hamiltonians can be used as well to formulate a consistent conservative

theory, with real energy and unitary evolution.

It has been understood recently that the reality of the spectra can be

explained in terms of a concept known as unbroken PT -symmetry , whose
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name stems from the physical operation of simultaneous space and time

reflection. In the occasion when these ideas were proposed a whole class

of non-Hermitian Hamiltonians with real spectra, generalizing in a way the

harmonic oscillator, were identified and analyzed. The simultaneous in-

variance of the Hamiltonian and its eigenfunctions under parity and time

reversal transformations is a specific example of an anti-linear symmetry for

which spectral properties had already been established in a generic man-

ner . PT -symmetry however was conjectured to be a reasonable candidate

to substitute the Hermiticity postulate of quantum mechanics and despite

being a more appealing formulation of the quantum theory, it has become

more evident that it is not fundamental. However, in practical terms one

is usually not in a position to know all eigenfunctions and eigenvalues for

a Hamiltonian and therefore PT -symmetry furnishes a convenient mecha-

nism to single out possibly relevant models just by examining the form of

the Hamiltonian.

A broader approach to the microscopic world must instead deal with

the use of various metrics characterizing different Hilbert spaces. The in-

herent freedom of choosing the metric in the quantum formalism may be

used to redefine isospectral observable partners which are Hermitian with

respect to a nontrivial metric [27]. This opens up the possibility that a

non-Hermitian set of observables might be regarded as Hermitian with re-

spect to a new metric. Given a Hamiltonian which is not Hermitian, the

construction of the associated metric will guarantee not only the reality of

its spectrum but also the existence of a consistent quantum framework in

which one has unitary time evolution. This last property, essential in order

to maintain the probabilistic interpretation of quantum mechanics since it

assures conservation of probability, cannot be established simply from the

reality of the spectrum. Such notions are the cornerstone of the framework

known to some as Quasi-Hermiticity and to others as Pseudo-Hermiticity.

Many interesting non-Hermitian systems have been proposed, most of

them theoretically but also experimentally. It still remains somewhat un-

clear how setups of this kind can be best employed in a laboratory although

initial attempts have been made. Perhaps the most controversial consists

of the quantum brachistochrone problem for non-Hermitian systems, inves-

tigated initially in [28]. Not surprisingly it is also one of the most exciting

13



Chapter 1. Introduction

problems in the area. It consists of determining under which conditions

the evolution of a system between two pre-defined states occurs in the least

amount of time. By introducing PT -symmetric non-Hermitian Hamiltoni-

ans as the generators of the time evolution it was observed that in principle

transitions faster than in Hermitian quantum mechanics could take place.

Shortly after it was shown that such phenomenon could also happen for

non-PT -symmetric systems, even for dissipative ones. The key feature of

this peculiar behaviour is that one uses the eigenstates of an equivalent

Hermitian Hamiltonian as the initial and/or final states regarding the non-

Hermitian evolution. As all interesting problems, it generated not only

answers but also more fundamental questions, such as the intriguing possi-

bility of mixing Hermitian and non-Hermitian frameworks.

The non-Hermitian operators are traditionally employed in the effective

description of physical systems displaying decay or dissipative behavior .

The main quality of non-Hermitian operators that motivated these appli-

cations is that a generic non-Hermitian operator has complex eigenvalues

whose imaginary part may be associated with decay rates. Although, there

is a class of non-Hermitian operators that, similar to Hermitian operators,

have a real spectrum.

Research into non-Hermitian Hamiltonians follows two paths. The first

involves trying to find a physically reasonable alternative to Hermitian

quantum mechanics. The second uses non-Hermitian Hamiltonians to for-

mulate new computational schemes in the hope of making problems more

tractable. The value of a non-Hermitian Hamiltonian comes from the fact

that if it provides a physically reasonable and consistent theory, then it

will enrich the number of solvable systems available to physicists. Bender

and associates developed an approach to study non-Hermitian Hamiltonians

which considers space-time reflection symmetry (called, PT -symmetry)[29-

32].

According to C.M.Bender and associates:

• the PT -symmetric and the CPT -symmetric together form a physically

reasonable alternative to Hermitian quantum mechanics.

• all Hermitian Hamiltonians are PT -symmetric.

• PT -symmetric Hamiltonians can be used to define real energy eigen-
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values for a quantum system. In addition, unitary time evolution can

be defined if the CPT -inner product is used to define a Hilbert space.

A more recent attempt at generalizing Quantum Mechanics is due to

Bender and his collaborators who adopted all its axioms except the one

that restricted the Hamiltonian to be hermitian. They replaced the lat-

ter condition with the requirement that the Hamiltonian must have an

exact PT -symmetric which in particular assured the reality of its spec-

trum. Bender and associate in [33] and R.M. Singh [34-36] also suggested

that,PT -symmetric version of a non-hermitian Hamiltonian possesses real

eigenvalue even if concerned potentials possess complex parameters.

In recent years, special attention started to be paid to non-Hermitian

Hamiltonian in the area of the so-called PT -symmetric quantum mechan-

ics. Motivated by the numerical observation of purely real spectrum of an

imaginary cubic oscillator Hamiltonian it blossomed into a large and rapidly

developing field. It is said that Hamiltonian H is PT -symmetric, when it

commutes with the operator PT , i.e.

[H;PT ] = 0;

in operator sense, where the operator PT stands for simultaneous spatial

reflection P and time reversal T . Physical relevance of PT -symmetrical

models have been suggested in electromagnetism , nuclear physics , optics ,

scattering , solid state physics or in superconductivity. The above condition

that the Hamiltonian is PT − symmetric is a physical condition because P
and T are elements of the homogeneous Lorentz group of spatial rotations

and Lorentz boosts. The real Lorentz group consists of four parts [37]:

• The first part, called the proper orthochronous Lorentz group, is a sub-

group of the Lorentz group whose elements are continuously connected

to the identity.

• The second part consists of all of the elements of the proper or-

thochronous Lorentz group multiplied by the parity operator P .

• The third part consists of all of the elements of the proper orthochronous

Lorentz group multiplied by the time-reversal operator T .

• The fourth part consists of all of the elements of the proper orthochronous

Lorentz group multiplied by PT .
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Note that parts 2nd to 4th are not subgroups of the Lorentz group because

they do not contain the identity element. These four parts of the Lorentz

group are disconnected because there is no continuous path in group space

from one part to another. The Lorentz invariance is a physical requirement

of a theory that the theory must be invariant under Lorentz transformations

belonging to the proper, orthochronous Lorentz group. We know that the

physical world is not invariant under the full homogeneous Lorentz group

because it has been demonstrated experimentally that there exist weak pro-

cesses that do not respect parity symmetry and other weak processes that

do not respect time-reversal symmetry. The real Lorentz group can be ex-

tended to the complex Lorentz group with a crucial assumption that the

eigenvalues of the Hamiltonian are real and bounded below. The complex

Lorentz group consists of two and not four disconnected parts. In the com-

plex Lorentz group there exists a continuous path in group space from the

elements of the real proper, orthochronous Lorentz group to the elements of

4th part of the real Lorentz group. There also exists a continuous path in

group space from the elements of 2nd part to the elements of 3rd part of the

real Lorentz group. The most important consequence of the discovery that

non-Hermitian PT −symmetric Hamiltonians can define acceptable theo-

ries of quantum mechanics is that we now can construct many new kinds

of Hamiltonians that only a decade ago would have been rejected as being

unphysical because they violate the axiom of Hermiticity. It is commonly

accepted that the physical relevance of PT -symmetric Hamiltonian holds

only in case when they are similar to self-adjoint operators. This is closely

related to the so-called quasi-Hermiticity

ΘH = H∗Θ;

where Θ is positive operator often called metric operator. The central idea

is that a non-Hermitian but quasi-Hermitian operator can be taken as self-

adjoint with respect to the modified scalar product (.; Θ.).

From a mathematical point of view, it is challenging to study non-

Hermitian operators, since many powerful techniques usable in the self-

adjoint case are not available, among others the spectral theorem and the

Min-max principle. One often has to seek new techniques of investigation

of these Hamiltonians, generalize the classic techniques and often resort to
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perturbation methods.

1.2.3 Pseudo-Hermitian Hamiltonian

A quantum theory of elementary particles must also satisfy the physical

axioms of Lorentz covariance and causality. However, there is one axiom

that stands out because it is mathematical rather than physical in character,

and this is the requirement that the Hamiltonian H, which is the operator

that expresses the dynamics of the quantum system, be Hermitian.

In search of the alternative to Hermitian Hamiltonian, the theory of

non-Hermitian Hamiltonian is developed to provide a physically reasonable

and consistent theory in the hope of making problems more tractable. An

alternative approach was developed by Mostafazadeh [38] who works with

pseudo-Hermitian Hamiltonians which have real and positive eigenvalues.

Mostafazadeh claimed that it is more practical to use the pseudo-Hermitian

framework, rather than working in the PT -symmetric framework directly.

The fact that a PT -symmetric theory can be constructed in the pseudo-

Hermitian framework adds weight to Mostafazdeh’s claim that pseudo-

Hermitian quantum mechanics is the more general of the two. Mostafazadeh

introduced an additional theorem which states: “if H is a non-Hermitian

Hamiltonian with a discrete spectrum and has a complete biorthonormal

eigen basis, then H is pseudo-Hermitian if and only if one of the following

conditions hold”:

• The spectrum of H is real.

• The complex eigenvalues come in complex conjugate pairs and the

multiplicity of the eigenvalue pairs is the same.

It has also been shown that all pseudo-Hermitian Hamiltonians satisfy the

above points.

It is claimed that the necessary and sufficient condition for the reality

of energy spectrum of any Hamiltonian is that the Hamiltonian admits a

complete set of bi-orthonormal eigenvectors. A Hamiltonian H is pseudo-

Hermitian if it obeys the similarity transformation

ηHη−1 = H†
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where η is a Hermitian invertible linear operator. Mostafazadeh has

pointed out that all the PT -symmetric Hamiltonians regarded so far are

actually P-pseudo Hermitian, namely

PHP−1 = H†

Furthermore, by highlighting the concept of pseudo-Hermiticity he ad-

dressed that pseudo-Hermitian is a generalization of Hermiticity. This the-

ory explains many unusual features of PT -symmetric quantum mechanics,

and also implies the redefinition of the orthogonality condition as

(E∗i − Ej)

∫ ∞

−∞
ψ∗i (x)ηψj(x)dx = 0 (1.2)

This construction contains both conventional Hermiticity (η = 1) and PT -
symmetry (η = P). For the conventional Hermiticity the above equation

becomes

(E∗i − Ej)

∫ ∞

−∞
ψ∗i (x)ψj(x)dx = 0 (1.3)

and for η = P the equation becomes

(E∗i − Ej)

∫ ∞

−∞
ψPTi (x)ψj(x)dx = 0 (1.4)

1.3 Symmetry in quantum mechanics

Symmetries in quantum mechanics describe features of space-time and

particles which are unchanged under some transformation, in the context of

quantum mechanics and with applications in the mathematical formulation

of the standard model and condensed matter physics. Symmetries in physics

are fundamentally important constraints to formulate physical theories and

models. For mathematical formulation of a system or deeper insight into

the physical nature of a problem, symmetries in the system plays a crucial

role. They lead to the characteristic patterns in the energy spectrum of

any physical system. Symmetries are useful in physical sciences to describe

crystal structures or to classify fundamental particles since with the deter-

mination of the symmetry properties of a system many of its features may

be extracted. A very important theorem, due to Coleman and Mandula

[39], states that the only conserved quantities in a physical theory must
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be invariant under Lorentz transformations, i.e. those space-time trans-

formations relating the coordinates of objects in different reference frames

according to Special Relativity. As a consequence, as long as some require-

ments are fulfilled, realistic theories can only involve symmetries which do

not mix internal symmetry groups, like spin, with Poincaŕe group symme-

tries, which are composed of translations, rotations and Lorentz transforma-

tions. The Coleman-Mandula theorem therefore correspond to important

restrictions in nature.A surprising combination of space-time with internal

symmetries can be achieved by super-symmetry, e.g. [40], where symme-

tries are not only formulated in terms of commutation relations but also

with anti-commutation relations. One of their interesting properties is that

if you apply successive symmetries to an object the composed action will

still be a symmetry, allowing them to considered to form a group. Actu-

ally, the branch of science responsible for providing a general fabric to study

symmetries is known as group theory.

The Standard Model of particle physics has three related natural near-

symmetries. These state that the universe in which we live should be in-

distinguishable from one where a certain type of change is introduced.

• C-symmetry : In physics, charge conjugation is a transformation that

switches all particles with their corresponding antiparticles, thus chang-

ing the sign of all charges: not only electric charge but also the charges

relevant to other forces. The term C-symmetry is an abbreviation of

the phrase “charge conjugation symmetry”, and is used in discussions

of the symmetry of physical laws under charge-conjugation.

• P-symmetry : In quantum mechanics, a parity transformation is the

flip in the sign of one spatial coordinate.It can also be thought of as

a test for chirality of a physical phenomenon, in that a parity inver-

sion transforms a phenomenon into its mirror image. All fundamental

interactions of elementary particles, with the exception of the weak in-

teraction, are symmetric under parity. The weak interaction is chiral

and thus provides a means for probing chirality in physics. In inter-

actions that are symmetric under parity, such as electromagnetism in

atomic and molecular physics, parity serves as a powerful controlling

principle underlying quantum transitions.
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• T -symmetry : this symmetry mandates that the laws of physics affect-

ing the interactions of particles behave the exact same ways whether

you run the clock forwards or backwards in time.

These symmetries are near-symmetries because each is broken in the present-

day universe. But all of the fundamental interactions, every single one,

always obeys the combination of all three of these symmetries: CPT -
symmetry. It states that any physical system made of particles that moves

forwards in time will obey the same laws as the identical physical system

made of antiparticles, reflected in a mirror, that moves backwards in time.

It should hold for all physical phenomena, even ones we have yet to dis-

cover. In the following subsections, we kept the knowledge about some

symmetries related to quantum mechanical system.

PT -symmetry

PT -symmetric quantum mechanical systems are invariant under the si-

multaneous action of the P space and T time inversion operations. These

systems possess non-Hermitian Hamiltonians, still they have some charac-

teristics similar to Hermitian problems. The most notable of these is their

discrete energy spectrum, which can be partly or completely real. Typically

the transition from the fully real energy spectrum to the complex one occurs

when the non-Hermitian component of the Hamiltonian exceeds a certain

critical limit, and it can be interpreted as the spontaneous breakdown of

PT -symmetry in that the energy eigenstates cease to be eigenstates of the

PT operator then.

Another typical feature PT -symmetric systems have in common with

Hermitian problems is that their basis states form an orthogonal set pro-

vided that the inner product is redefined as < Ψ|Φ > PT =< Ψ|PΦ >.

Similarly to the Hermitian setting, the so-called pseudo-norm defined by

this inner product is conserved, however, a major difference is that it turned

out to possess indefinite sign, and this raised the question of the probabilis-

tic interpretation of PT -symmetric systems. PT -symmetry also manifests

itself in scattering aspects in that the reflection coefficient exhibits hand-

edness.

It is possible to describe natural processes by means of non-Hermitian
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Hamiltonians i.e. the Hermiticity requirement (1.1) may be replaced by

the analogous but physically transparent condition of space-time reflection

symmetry (PT -symmetry)

H = HPT (1.5)

without violating any of the physical axioms of quantum mechanics. If H
satisfies (1.5), it is said to be PT -symmetric. The notation used in this

context is as follows: The space-reflection operator, or parity operator, is

represented by the symbol P . The effect of P on the quantum-mechanical

coordinate operator x̂and the momentum operator p̂ is to change their signs:

Px̂P = −x̂ and P p̂P = −p̂. (1.6)

Note that P is a linear operator and that it leaves invariant the fundamen-

tal commutation relation (the Heisenberg algebra) of quantum mechanics,

x̂p̂− p̂x̂ = i~I, (1.7)

where I is the identity matrix. The time-reversal operator is represented

by the symbol T . This operator leaves x̂ invariant but changes the sign of p̂:

T x̂T = x̂ and T p̂T = −p̂. (1.8)

Like the parity operator P , the time-reversal operator T leaves the com-

mutation relation (1.7) invariant, but this requires that T reverse the sign

of the complex number i:

T iT = −i. (1.9)

Equation (1.9) demonstrates that T is not a linear operator; T is said to

be antilinear. Also, since P and T are reflection operators, their squares

are the unit operator:

P2 = T 2 = 1. (1.10)
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Finally, the P and T operators commute:

PT − T P = 0. (1.11)

In terms of the P and T operators, we define the PT -reflected Hamiltonian

HPT in (1.5) as HPT = (PT )H(PT ). Thus, if a Hamiltonian is PT sym-

metric [that is, if it satisfies (1.5)], then the PT operator commutes with H:

H(PT )− (PT )H = 0. (1.12)

A PT -symmetric Hamiltonian need not be Hermitian; that is, it need not

satisfy the Hermiticity symmetry condition (1.1). Thus, it is possible to

have a fully consistent quantum theory whose dynamics is described by a

non-Hermitian Hamiltonian. Some examples of such non-Hermitian PT -
symmetric Hamiltonians are

H = p̂2 + ix̂3 (1.13)

and

H = p̂2 − x̂4 (1.14)

It is amazing indeed that the eigenvalues of these strange-looking Hamil-

tonians are all real and positive and that these two Hamiltonians specify a

unitary time evolution even though they are non-Hermitian. The Hamilto-

nians in (1.13) and (1.14) are special cases of the general parametric family

of PT -symmetric Hamiltonians

H = p̂2 + x̂2(ix̂)ǫ (1.15)

where the parameter ǫ is real. These Hamiltonians are all PT -symmetric

because they satisfy the condition in (1.5). It was shown in 1998 that when

ǫ ≥ 0 all of the eigenvalues of these Hamiltonians are entirely real and

positive, but when ǫ < 0 there are complex eigenvalues [32]. We say that
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ǫ ≥ 0 is the parametric region of unbroken PT -symmetry and that ǫ < 0

is the parametric region of broken PT symmetry.

Perhaps the simplest PT -symmetric Hamiltonian contains a one-dimensional

Klein-Gordon operator with a complex potential satisfying the V ∗ (−x) =
V(x) relation. A number of such problems have been described by numerical

and perturbational techniques, but the exact analytical solution of several

potentials have also been given.

PT -symmetry was put into a more general context when it was found

that it is a special case of pseudo-hermiticity, and this explains most of

the peculiar features of PT -symmetric systems. It was shown that PT -
symmetric, and in general, pseudo-hermitian systems can be mapped into

equivalent Hermitian ones, although this mapping is technically not straight-

forward in general. A recent significant result was the experimental veri-

fication of the existence of PT -symmetric systems which also exhibit the

spontaneous breakdown of PT -symmetry .

Our first results concerning PT -symmetric potentials was the system-

atic exploration of conditions under which shape-invariant potentials pos-

sess real and complex energy spectrum. These studies revealed that the

PT -symmetric Coulomb potential cannot be defined on the real x axis,

rather one has to define an integration path in the complex x plane . This

result also raised several further questions concerning the definition of the

PT -symmetric Coulomb potential, which have been settled only recently

both for bound and scattering states.

Based on the results for one-dimensional exactly solvable PT -symmetric

potentials, we also discussed such potentials in two and three spatial dimen-

sions, which can be factorized into one-dimensional problems by means of

separating the radial and angular variables.

An alternative formalism of quantum mechanics in which the mathemat-

ical axiom of the hermiticity (1.1) is replaced by the physical transparent

condition of space-time reflection symmetry (PT -symmetry) i.e.

H = HPT and HPT = (PT )H(PT )

The Hamiltonians described by the equation (1.15) with a real parameter

ǫ are all PT -symmetric because they satisfy the condition H = HPT . It

was shown by Bender et.al in 1998 [32] that when ǫ ≥ 0 all the eigenvalues
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of these Hamiltonians are entirely real and positive, but when ǫ < 0 there

are complex eigenvalues. From this Bender concluded that ǫ ≥ 0 is the

parametric region of the unbroken PT -symmetry and that ǫ < 0 is the

parametric region of the broken PT -symmetry. No general condition has

been found for the breakdown of PT -symmetry, but it has been observed

that it usually characterizes strongly the non-Hermitian problems.

The PT must be ‘unbroken’ in the sense that it should be possible to

find eigenvectors of the Hamiltonian that are invariant under PT . This is
crucial as it ensures the eigenvalues of H are real; since this is a subtlety

arising from the prominent role of parity and time-reversal in PT quantum

mechanics. If PT is unbroken then the eigenvalues of H must all be real,

and the converse, if the eigenvalues H are real then PT is unbroken. If H
and A commute and are linear operators then there exists a set of simulta-

neous eigenvectors. However since PT is not a linear operator we have no

reason to believe that H and PT should have simultaneous eigenvectors.

CPT -symmetry

In an attempt at devising a probabilistic interpretation for quantum

systems with Hamiltonians having exact PT -symmetry, Bender and his

collaborators have introduced a generic symmetry of these Hamiltonians

that they term as the ‘charge-conjugation’ symmetry [29]. Using the gen-

erator C of this symmetry, they were able to introduce a positive-definite

inner product that they called the CPT -inner product.
The description of the ‘charge conjugation’ operator C of the PT -symmetric

QM [29] provided by the theory of pseudo-Hermitian Hamiltonians and the

fact that general pseudo-Hermitian Hamiltonians have generic antilinear

symmetries [41-43] raise the natural question whether one could associate

to a general pseudo-Hermitian Hamiltonian a linear symmetry generator

C and an antilinear symmetry generator PT that would respectively gen-

eralize C and PT . This question is answered in [44]. It turns out that

for a given diagonalizable pseudo-Hermitian Hamiltonian H one may intro-

duce generalized parity (P), time-reversal (T ) and charge-conjugation (C)
operators and establish the PT -, C-, and CPT -symmetries of H, [44]. It

must be noted that the use of the term ‘charge-conjugation’ in the above
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discussions solely rests on the fact that similarly to the ordinary charge-

conjugation operator of relativistic QM, C is a Hermitian involution, i.e.,

C† = C = C−1. It is important to note that because C is a linear operator,

it is actually a Z2-grading operator for the Hilbert space [45].

CPT is the only combination of C, P , and T that is observed to be

an exact symmetry of nature at the fundamental level. The CPT theorem

says that CPT -symmetry holds for all physical phenomena. The CPT -
symmetry implies that a “mirror-image” of our universe; with all objects

having their positions reflected through an arbitrary point (corresponding

to a parity inversion), all momenta reversed (corresponding to a time in-

version) and with all matter replaced by antimatter (corresponding to a

charge inversion) would evolve under exactly our physical laws. The CPT
transformation turns our universe into its “mirror image” and vice versa.

It is recognized to be a fundamental property of physical laws.

In order to preserve this symmetry, every violation of the combined

symmetry of two of its components must have a corresponding violation in

the third component; in fact, mathematically, these are the same thing.

In physics, we have to be willing to challenge our assumptions, and to

probe all possibilities, no matter how unlikely they seem. But our default

should be that the laws of physics that have stood up to every experimental

test, that compose a self-consistent theoretical framework, and that accu-

rately describe our reality, are indeed correct until proven otherwise. In

this case, it means that the laws of physics are the same everywhere and

for all observers until proven otherwise.

Sometimes, particles may behave differently than antiparticles, physi-

cal systems may behave differently than their mirror-image reflections and

physical systems behave differently depending on whether the clock runs

forwards or backwards. But, as a consequence of the CPT theorem, parti-

cles moving forwards in time must behave the same as antiparticles reflected

in a mirror moving backwards in time. That’s the one symmetry, as long

as the physical laws that we know of are correct, that must always hold.
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1.4 Relativistic Wave Equation

Efforts to formulate a relativistic quantum mechanics began with at-

tempts to use the correspondence principle in order to derive a relativistic

wave equation intended to replace the Schrödinger equation. The first

such equation was due to Schrödinger, Gordon (1926), and Klein (1927) .

This scalar wave equation of second order, which is now known as the Klein-

Gordon equation, was initially dismissed, since it led to negative probability

densities. The year 1928 saw the publication of the Dirac equation. This

equation pertains to particles with spin-1/2 and is able to describe many

of the single-particle properties of fermions. The Dirac equation, like the

Klein-Gordon equation, possesses solutions with negative energy, which, in

the framework of wave mechanics, leads to difficulties.

To prevent transitions of an electron into lower lying states of negative

energy, in 1930 Dirac postulated that the states of negative energy should all

be occupied. Missing particles in these otherwise occupied states represent

particles with opposite charge (antiparticles). This necessarily leads to a

many-particle theory, or to a quantum field theory. By reinterpreting the

Klein-Gordon equation as the basis of a field theory, Pauli and Weisskopf

showed that this could describe mesons with spin zero, e.g., p mesons. The

field theories based upon the Dirac and Klein-Gordon equations correspond

to the Maxwell equations for the electromagnetic field, and the d’Alembert

equation for the four-potential. The Schrödinger equation, as well as the

other axioms of quantum theory, remain unchanged. Only the Hamiltonian

is changed and now represents a quantized field. The elementary particles

are excitations of the fields (mesons, electrons, photons, etc.).

It will be instructive to now follow the historical development rather

than begin immediately with quantum field theory. For one thing, it is

conceptually easier to investigate the properties of the Dirac equation in its

interpretation as a single-particle wave equation. Furthermore, it is exactly

these single-particle solutions that are needed as basis states for expanding

the field operators. At low energies one can neglect decay processes and

thus, here, the quantum field theory gives the same physical predictions as

the elementary single-particle theory.
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Schrödinger and others soon recognized that the source of discrepancy

between the relativistic wave equation and observations was the neglect

of the spin of the electron (the Klein-Gordon equation describes spin 0

particles) and the journey of relativistic wave equation commenced. Now

the one-dimensional K-G equation takes the beautiful form for a spinless

particle of rest mass M in the natural units (~ = c = 1) as

Ψ′′(x) + [(En − V(x))2 − (M+ S(x))2]Ψ(x) = 0 (1.16)

where n,En,V(x) and S(x) are the quantum number, relativistic energy of

the particle , vector and scaler potentials respectively.

And the Dirac equation of a nucleon with mass M moving in moving

in an attractive scalar potential S(r) and a repulsive vector potential V(r)
for spin-1

2
particles in the relativistic unit (~ = c = 1) is

[α.p+ β(M+ S(r))]ψ(r) = [E − V(r)]ψ(r) (1.17)

where E is the relativistic energy of the system, p = −i∇ is the three di-

mensional momentum operator and M is the mass of the fermionic particle.

α, β are the 4× 4 Dirac matrices given as

α =

(

0 σi

σi 0

)

, β =

(

I 0

0 −I

)

(1.18)

where I is a 2× 2 unit matrix and σi are the Pauli three-vector matrices:

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(1.19)

Another form of the Dirac equation for relativistic free-particle (in natural

units ~ =c=1) is

[iγµ∂µ −m(x)]ψ(x) = 0 (1.20)

where m(x) is the Dirac particle mass, depends on one spatially coordinate

x. To obtain the one-dimensional Dirac equation for the external potential

V(x) we consider the gamma matrices γx and γ0γ in terms of Pauli matrices

iσ(x) and iσ(z) respectively,
{(

0 1

1 0

)

d

dx
− [E − V(x)]

(

1 0

0 −1

)

+m(x)

(

1 0

0 1

)}

×
(

U1(x)

U2(x)

)

= 0 (1.21)
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where U1(x) and U2(x) are decomposed into upper and lower components

of the two-component wave function ψ(x).

1.4.1 Solvability

In quantum mechanics, the state of a system is characterized by a wave

function Ψ which is the solution of the concern wave equation i.e. the

second order linear partial differential equation of the form:

HopΨ = EΨ (1.22)

where, Hop (may be Hermitian or, non-Hermitian) is a second order linear

differential operator and E is the eigenvalue of the partial differential equa-

tion. In general, the form of the operator includes a term that depends on

the corresponding interaction potential and the solutions to the equation

of the system are associated with the set of energy eigenvalues.

In some models imply that the amount of conserved quantities equals the

degrees of freedom in the system roughly and some models refer to a situa-

tion in which the spectra can be determined explicitly. Some models whose

spectral properties, i.e., the eigenvalues and eigenfunctions of the Hamilto-

nian characterizing the quantum system under consideration, can be given

in an explicit and closed form are denoted by exactly solvablemodels. The

concept of solvability has also been extended to quasi− exactly solvable

and conditionally exactly solvable models. Quantum mechanical

Hamiltonians are said to be quasi − exactly solvable if a finite por-

tion of the energy spectrum and associated eigenfunctions can be found

exactly and in closed form. And if the Hamiltonians have exact solu-

tions only under certain conditions within the potential parameters are

of conditionally exactly solvable models.

1.4.2 Normalization of wave function

The wave function Ψ can be interpreted as the probability amplitude

of the particle’s position, i.e. |Ψ|2 is the probability density. For this to be

possible, Ψ must be square-integrable and all such square-integrable wave

functions are called normalizable. And, the probability that a particle will
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be found somewhere in a region is unity. That implies, for a normalized

wavefunction
∫

|Ψ|2dτ = 1 (1.23)

taking the integral over the entire region.The above equation gives the

condition of normalization.

The normalization is accomplished by adjusting the numerical coeffi-

cient of Ψ so that the integral is unity. Normalization does not alter the

fact that Ψ is a solution of the wave equation. If the region of space of a

wave function is arbitrarily large and finite then the normalization condi-

tion converges when integrated over the finite volume of the region. This

suggests that normalization is always possible. The coefficient of Ψ that

makes normalization possible must be time invariant so that Ψ may satisfy

the wave equation. Therefore, if normalization condition is satisfied at one

instant of time, it should always be satisfied.

1.5 A brief review of literature

Effective-mass theory is an important and extensively used tool for the

determination of electronic properties of semiconductors. The theory is

well established for homogeneous materials with small perturbations. With

the recent interest in superlattices and quantum wells, effective-mass the-

ory has also been applied to non-uniform materials in which the carrier

effective mass depends on position. Effective masses occur in the context

of transport phenomena in crystals (e.g., semiconductors), where the elec-

trons are not completely free, but interact with the potential of the lattice.

The quantum dynamics of such electrons can be modeled by employing a

position-dependent (effective) mass, the behaviour of which is determined

by the band curvature. The Hamiltonian dynamics systems have been

played an important role not only in modern physics, but also in math-

ematics, mechanics, engineering science, and social sciences, especially in

nonlinear science, celestial mechanics, and spacecraft attitude dynamics.

But traditional Hamiltonian systems theory is defined in even dimension-

ality space where good characters have on the structure, so also limit its

29



Chapter 1. Introduction

application. The principle of symmetry is a higher level of law in physics,

and conserved quantities of the dynamical systems can better reveal the

profound physical laws. The conserved quantity of a physical system has a

close relation with its symmetry. The motivation for obtaining exact solu-

tions of the wave equation with position dependent mass comes from the

wide range of applications of these solutions in various areas of material

science and condensed matter.

1.5.1 Methods involved in our study

There have been many mathematical methods developed in the past to

obtain energy eigenvalues and eigenfunctions. In literature, there exist vari-

ous way to study the quantum mechanical system with position-dependent

mass for relativistic wave equations. These methods are mainly used to

obtain the eigenvalues and the corresponding eigenfunctions for the expla-

nation of phenomena. The methods followed to this study are given below:

Nikiforov-Uvarov Method

The N-U method [46-55] is based on solving a second order linear dif-

ferential equation by reducing it to a generalized hypergeometric type. In

both relativistic and non-relativistic quantum mechanics, the wave equa-

tion with a given potential can be solved by this method by reducing the

one dimensional K-G equation to an equation of the form :

Ψ′′(x) +
τ̃(x)

σ(x)
Ψ′(x) +

σ̃(x)

σ2(x)
Ψ(x) = 0 (1.24)

Where σ(x) and σ̃(x) are polynomials of degree atmost 2 and τ̃(x) is a

polynomial of degree atmost 1 . In order to find a particular solution to

equation(1.24) , we set the following wave function as a multiple of two

independent parts

Ψ(x) = Φ(x)y(x) (1.25)

Thus equation (1.24) reduces to a hyper-geometric type equation of the

form :

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0
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Where τ(x) = τ̃(x) + 2π(x) satisfies the condition τ ′(x) < 0 and π(x) is

defined as

π(x) =
σ′(x)− τ̃(x)

2
±
√

(
σ′(x)− τ̃(x)

2
)2 − σ̃(x) +Kσ(x) (1.26)

in which K is a parameter . Determining K is the essential point in calcu-

lation of π(x). Since π(x) has to be a polynomial of degree at most one,

the expression under the square root sign in Eq. (1.26) can be put into

order to be the square of a polynomial of first degree [46], which is possible

only if its discriminant is zero. So, we obtain K by setting the discriminant

of the square root equal to zero . Therefore, one gets a general quadratic

equation for K . By using

λ = K + π′(x) = −nτ ′(x)− n(n− 1)

2
σ′′(x) (1.27)

The values of K can used for the calculation of energy eigenvalues . Poly-

nomial solutions yn(x) are given by the Rodrigues relation

yn(x) =
Bn

ρ(x)
(
d

dx
)n[σn(x)ρ(x)] (1.28)

in which Bn is a normalization constant and ρ(x) is the weight function

satisfying

ρ(x) =
1

σ(x)
exp

∫

τ(x)

σ(x)
dx (1.29)

on the other hand , second part of the wave function φ(x) in relation (1.25)

is given by

φ(x) = exp

∫

π(x)

σ(x)
dx (1.30)

Frobenius method

In this section we have worked on a method of obtaining one solution

of the linear, second-order,homogeneous ODE. The method [56,57,98], a

series expansion, will always work, provided the point of expansion is no

worse than a regular singular point. In physics this very gentle condition

is almost always satisfied.

31



Chapter 1. Introduction

In mathematics, the method of Frobenius, named after Ferdinand Georg

Frobenius, is a way to find an infinite series solution for a second-order

ordinary differential equation of the form

x2f ′′ + p(x)xf ′ + q(x)f = 0 (1.31)

with f ′ ≡ df

dx
and f ′′ ≡ d2f

dx2 in the vicinity of the regular singular point

x = 0. One can divide by x2 to obtain a differential equation of the form

f ′′ +
p(x)

x
f ′ +

q(x)

x2
f = 0 (1.32)

which will not be solvable with regular power series methods if either p(x)/x

or q(x)/x2 are not analytic at x = 0. The Frobenius method enables one

to create a power series solution to such a differential equation, provided

that p(x) and q(x) are themselves analytic at 0 or, being analytic elsewhere,

both their limits at 0 exist (and are finite).

The method of Frobenius is to seek a power series solution of the form

f(x) = xr
∞
∑

k=0

Akx
k, (A0 6= 0) (1.33)

Applying 1st and 2nd order differentiation in equation (1.33):

f ′(x) =
∞
∑

k=0

(k + r)Akx
k+r−1 and f ′′(x) =

∞
∑

k=0

(k + r − 1)(k + r)Akx
k+r−2 (1.34)

Substituting equation (1.33) and (1.34) into (1.31), one can obtain

[r(r − 1) + p(x)r + q(x)]A0x
r+

∞
∑

k=1

[(k + r − 1)(k + r) + p(x)(k + r) + q(x)]Akx
k+r = 0 (1.35)

The expression r(r − 1) + p(0)r + q(0) = I(r) is known as the indicial

polynomial, which is quadratic in r. The general definition of the indicial

polynomial is the coefficient of the lowest power of x in the infinite series. In

this case it happens to be that this is the rth coefficient but, it is possible for

the lowest possible exponent to be r−2, r−1 or, something else depending

on the given differential equation. This detail is important to keep in mind.

In the process of synchronizing all the series of the differential equation to
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start at the same index value (which in the above expression is k = 1),

one can end up with complicated expressions. However, in solving for the

indicial roots attention is focused only on the coefficient of the lowest power

of x.

Using this, the general expression of the coefficient of xk+r is

I(k + r)Ak +
k−1
∑

j=0

(j + r)pk−j(0) + qk−j(0)

(k − j)!
Aj,

These coefficients must be zero, since they should be solutions of the dif-

ferential equation, so

I(k + r)Ak +
k−1
∑

j=0

(j + r)pk−j(0) + qk−j(0)

(k − j)!
Aj = 0

This equation implies that

Ak = −
1

I(k + r)

k−1
∑

j=0

(j + r)pk−j(0) + qk−j(0)

(k − j)!
Aj (1.36)

The series solution with Ak above,

Fr(x) =
∞
∑

k=0

Akx
k+r (1.37)

Must satisfy,

x2F ′′r (x) + p(x)xF ′r(x) + q(x)Fr(x) = I(r)xr (1.38)

If we choose one of the roots to the indicial polynomial for r in Fr(x), we

gain a solution to the differential equation. If the difference between the

roots is not an integer, we get another, linearly independent solution in the

other root.

Asymptotic Iteration Method

The AIM method [58-65] is based on solving a second order differential

equation of the form :

f ′′n(x) = λ0(x)f
′
n(x) + s0(x)fn(x) (1.39)

Where λ0(x) 6= 0 and the prime denotes the derivative with respect to

x. The variables, s0(x) and λ0(x) are sufficiently differentiable. To find a
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general solution to this equation, we differentiate(1.31) with respect to x

and find

f ′′′n (x) = λ1(x)f
′
n(x) + s1(x)fn(x) (1.40)

Where λ1(x) = λ′0(x) + s0(x) + λ20(x),

s1(x) = s′0(x) + s0(x)λ0(x). (1.41)

Similarly, the second derivative of (1.31) yields

f 4
n(x) = λ2(x)f

′
n(x) + s2(x)fn(x), (1.42)

Where

λ2(x) = λ′1(x) + s1(x) + λ0(x)λ1(x),

s2(x) = s′1(x) + s0(x)λ1(x). (1.43)

Equation (1.31) can be easily iterated up to (k+1)th and (k+2)th derivatives,k =

1, 2, 3, ........... Therefore, we have the reccurence relations

f (k+1)
n (x) = λk−1(x)f

′
n(x) + sk−1(x)fn(x),

f (k+2)
n (x) = λk(x)f

′
n(x) + sk(x)fn(x), (1.44)

Where

λk(x) = λ′k−1(x) + sk−1(x) + λ0(x)λk−1(x),

sk(x) = s′k−1(x) + s0(x)λk−1(x). (1.45)

From the ratio of the (k+2)th and (k+1)th derivatives, we have

d

dx
ln[f (k+1)

n (x)] =
f
(k+2)
n (x)

f
(k+1)
n (x)

=
λk(x)[f

′
n(x) +

sk(x)
λk(x)

fn(x)]

λk−1(x)[f ′n(x) +
sk−1(x)

λk−1(x)
fn(x)]

. (1.46)

For sufficiently large k, if

sk(x)

λk(x)
=
sk−1(x)

λk−1(x)
= α(x) (1.47)

which is the ”asymptotic” aspect of the method, then, (1.38) reduces to

d

dx
ln[f (k+1)

n (x)] =
λk(x)

λk−1(x)
, (1.48)
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which yields

f (k+1)
n (x) = C1exp(

∫

λk(x)

λk−1(x)
dx) = C1λk−1(x)exp(

∫

[α(x) + λ0(x)]dx), (1.49)

where C1 is the integration constant and the right hand side of (1.41) is

obtained by using (1.39) and (1.40). By inserting (1.41) into (1.36), the

first-order differential equation is obtained as

f ′n(x) + α(x)fn(x) = C1exp(

∫

[α(x) + λ0(x)]dx). (1.50)

This first-order differential equation can easily be solved and the general

solution of (1.31) can be obtained as:

fn(x) = exp(−
∫ x

α(x1)dx1)[C2 + C1

∫ x

exp(

∫ x1

[λ0(x2) + 2α(x2)]dx2)dx1] (1.51)

For a given potential, the radial Klein-Gordon equation is converted to the

form of (1.31). Then, s0(x) and λ0(x) are determined and sk(x) and λk(x)

parameters are calculated by the recurrence relations given by (1.37). The

termination condition of the method in (1.39) can be arranged as

∆k(x) = λk(x)sk−1(x)− λk−1(x)sk(x) = 0, (1.52)

where k shows the iteration number. For the exactly solvable potentials,

the energy eigenvalues are obtained from the roots of (1.44) and the radial

quantum number n is equal to the iteration number k for this case. For

nontrivial potentials that have no exact solutions, for a specific n principal

quantum number, we choose a suitable x0 point, determined generally as

the maximum value of the asymptotic wave function or the minimum value

of the potential and the approximate energy eigenvalues are obtained from

the roots of (1.44) for sufficiently great values of k with iteration for which

k is always greater than n in these numerical solutions.

The general solution of (1.31) is given by (1.43). The first part of (1.43)

gives us the polynomial solutions that are convergent and physical, whereas

the second part of (1.43) gives us non-physical solutions that are divergent.

Although (1.43) is the general solution of (1.31), we take the coefficient of

the second part (C1) as zero, in order to find the square integrable solu-

tions. Therefore, the corresponding eigenfunctions can be derived from the

following wave function generator for exactly solvable potentials :

fn(x) = C2exp(−
∫ x sn(x1)

λn(x1)
dx1), (1.53)
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where n represents the principal quantum number.

Laplace Transform Approach

The Laplace transform is an integral transform named upon the French

mathematician Laplace (who proposed the transform in 1782). It helps in

solving the differential equations with boundary values without finding the

general solution and values of the arbitrary constants. The method [66-

69] of Laplace transforms is a system that relies on algebra (rather than

calculus-based methods) to solve differential equations. While it might seem

to be a somewhat cumbersome method at times, it is a very powerful tool

that enables us to readily deal with differential equations with discontinuous

forcing functions. With the use of different properties of Laplace transform

and Inverse Laplace transform one can solve many important problem of

physics with very simple way. Thus we will learn here to use the approach

for solving the differential equations.

The Laplace transforms of different functions can be found in most of the

mathematics and engineering books and hence, a very few part is included

here relevant to my study.

Suppose the differential equation contain a term of the form tmy(n)(t)

i.e., tmdny(t)
dtn

. Then the Laplace transform of the term is represented by

L

{

tm
dny(t)

dtn

}

= (−1)m dm

dsm
L

{

y(n)(t)

}

(1.54)

So,

L{ty′′(t)} = (−1) d
ds
L{y′′(t)} (1.55)

Again, another important theorem for Laplace transform of first order and

second order derivative for continuous y(t) and y′(t) with t ≥ 0 of expo-

nential order σ as t→∞ and if y′(t) and y′′(t) is of class A, then Laplace

transform of y′(t) and y′′(t) for s > σ are given by

L{y′(t)} = sL{y(t)} − y(0) (1.56)

and

L{y′′(t)} = s2L{y(t)} − sy(0)− y′(0) (1.57)
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One of the most important formula used in our calculation is : if y(t) is

a function of class A , then

L{tny(t)} = (−1)nd
nf(s)

dsn
(1.58)

where, f(s) = L{y(t)} =
∫∞
0
y(t)e−tsdt and n = 1, 2, 3, .........

After conversion of second order differential equation to a first order

one, we further apply the inverse Laplace transform to obtain the wave

function. The relevant formulas for inverse Laplace transform are followed

from reference [70].

Point Canonical Transformation Approach

The procedure in point canonical transformation [71-75] is illustrated

below:

Let us consider the stationary Schrödinger equation

1

2M
Φ′′(x) + (E − U)Φ(x) = 0 (1.59)

where the mass M is a positive constant, U = U(x) denotes the potential

with constant energy E, and Φ = Φ(x) is the wave function. Now, consider

the effective mass time-dependent Schrödinger equation (TDSE)

iΨt +
1

2m
Ψxx −

mx

2m2
Ψx − VΨ = 0 (1.60)

where m = m(x, t) is the real-valued and positive mass, V = V (x, t) stands

for the potential, and Ψ = Ψ(x, t) is the wave function. Suppose that the

potential V in the effective mass TDSE can be expressed in the form

V = UI23 +
2AB

M
3
2

I1 − 2
( A

M
I1
)2 − B

2
√
M
I2 −

A

M
I1I2 −

1

8
I22 −

7m2
x

32m3
+
mxx

8m2

+

∫

(

(

A
√
m

M
+

mt

4
√
M

)

I2 +

√
m

2
(I2)t +

(

2A′
√
m

M
+

Amt

M
√
m

)

I1

+
B′
√
m√
M

+
Bmt

2
√
mM

)

dx+ i

(

c′ − A

M

)

− B2

2M
(1.61)
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where the following abbreviations have been used:

U = U

(

√

1

M
I3I1 +

1

M

∫

I3Bdt

)

, (1.62)

I1 =

∫ √
mdx, I2 =

∫

mt√
m
dx, I3 = exp

(

2

M

∫

Adt

)

. (1.63)

Then the solutions of the Schrödinger (1.59) and (1.60) are related to each

other via the following point canonical transformation:

Ψ(x, t) = exp

(

f(x, t)− iEV (t)

)

Φ(u(x, t)), (1.64)

where the functions f , u and v read as follows:

f =

∫
(

mx

4m
− i

(√
m

2

(
∫

mt√
m
dx

)

+
2A
√
m

M

(
∫ √

mdx

)

+
B
√
m

M

))

dx

+C (1.65)

u =

√

1

M
exp

(

2

M

∫

Adt

)(
∫ √

mdx

)

+
1

M
exp

(

2

M

∫ t

Adt′
)

Bdt,(1.66)

v =

∫

exp

(

4

M

∫

Adt

)

dt (1.67)

with arbitrary, real-valued A = A(t), B = B(t), and C = C(t). The latter

statement is proved in a straightforward manner by substitution of (1.64)

with (1.65)− (1.67) into the effective mass TDSE (1.60). Thus, each effec-

tive mass TDSE with a potential of the form (1.61) can be reduced to a

stationary Schrödinger equation by means of the point canonical transfor-

mation (1.64). Hence, if the stationary Schrödinger (1.59) is solvable, so is

its effective mass counterpart (1.60).

To apply the scheme we need to follow three steps. First, to choose

a potential U, such that the associated stationary Schrödinger equation

(1.59) is exactly solvable, and calculate its solution. In the second step,

to consider the effective mass m and fix the free parameters A, B, c that

appear in (1.61) to compute the transformation components f , u, v that are

defined in (1.65)− (1.67). In the final step, we obtain the time-dependent

potential (1.61) and its solution (1.64).
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Pekeris-type approximation

A Pekeris-type approximation is a mapping for passing from (3+1)− di-

mensional KG and Dirac equations with an arbitrary spherical non-minimal

coupling to an associated Schrödinger-like equation and the family of po-

tentials for which this mapping corresponds to a Schrödinger equation with

non-minimal coupling can be obtained. The process [76-77] is based on the

expansion of the centrifugal term in powers of y − ye, where y = f(r) is a

suitable function of r and ye = f(re). The function f is chosen in such a way

that the replacement of the dimensionless quantity ( re
r
)2 in the centrifugal

term by the first three terms in the expansion yields an exactly solvable

approximate radial equation.

To obtain an approximation transforming equation into an exactly solv-

able approximate equation for any value of the azimuthal quantum number

l, one can use the linear independence of the terms in the potential function.

Let us consider an arbitrary spherical potential U(r) and y is the func-

tion of the potential coupling U(r) related to Pekeris expansion to deduce

the family of potentials from which a mapping onto a Schrödinger equation

with non-minimal coupling emerges. More generally, if U(r) represents an

spherical radial potential, we can define the dimensionless variable

y = γU(r) + 1 = f−1(γ(r − re)) (1.68)

with γ a real parameter having units of distance−1, f−1(x) = γU(x/γ +

re)+ 1 and f(x) = γU−1((x− 1)/γ)− γre. In order to provide the method,

we assume that U has a differentiable inverse U−1 and then f and f−1 result

also differentiable. Thus, from (1.68) it follows approximated expressions

for (re/r) and (re/r)
2 up to terms of order 2 around y = 1(r = re)

re
r

=

(

1 + f(y)

γre

)−1
≈ 1

f(1)
γre

+ 1
+

2
∑

i=1

ai(y − 1)i

(

re
r

)2

=

(

1 + f(y)

γre

)−2
≈ 1

(f(1)
γre

+ 1)2
+

2
∑

j=1

aj(y − 1)j

a1 = −
γref

′(1)
(

γre + f(1)

)2
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a2 = −
γre

(

γref
′′(1) + f(1)f ′′(1)− 2(f ′(1))2

)

2

(

γre + f(1)

)3

b1 = −
2(y − 1)γ2r2ef

′(1)
(

γre + f(1)

)3

b2 = −
γ2r2e

(

γref
′′(1) + f(1)f ′′(1)− 3(f ′(1))2

)

(

γre + f(1)

)4 (1.69)

To avoid terms of the type ∝ U3 in the term U/r, we can still make a2 =

0. Then, using (1.69) the effective potential can be recasted in terms of

y − 1 = γU for r ∼ re as

Ueff (r) ≈
(

mω2

2γ2
− [1 + f(j, l)]

~ω

γre
a1 +

~
2l(l + 1)

2r2e
b2

)

(y − 1)2

+

(

− [1 + f(j, l)]
~ω

γre
+

~
2l(l + 1)

2r2e
b1

)

(y − 1) +
~
2l(l + 1)

2r2e
− ~ω

2γ

d(y − 1)

dr

= Aγ2
[

U(r) +
B

2γA

]2

+ C − B2

4A
− ~ω

2

dU(r)

dr
(1.70)

with appropriate identifications for the constants A,B,C. These constants

are determined by

A =
mω2

2γ2
− [1 + f(j, l)]

~ω

γre
a1 +

~
2l(l + 1)

2r2e
b2

B = −[1 + f(j, l)]
~ω

γre
+

~
2l(l + 1)

2r2e
b1

C =
~
2l(l + 1)

2r2e
(1.71)

which together with (1.69) and f(x) = γU−1((x−1)/γ)−γre give a complete

Pekeris mapping.
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1.5.2 Potentials considered in our study

In nature, it is clearly not true that all electron wavefunctions spread

out more and more as time passes. If we have an electron in an atom,

the electron stays in the atom unless disturbed by some outside influence.

Similarly, for an electron in a metal, the wavefunction might spread out

through the metal, but the electron will not escape without some outside

influence. The physical difference in these situations from the case of free

electrons is that electrons in an atom or in a metal have forces acting on

them. Equivalently, the electrons have a potential energy that is different

for different locations. To learn how wavefunctions evolve in the presence

of these forces or potentials, we need to understand how to modify the wave

equation when they are present.

To understand the subatomic world local potentials are being used since

the introduction of quantum mechanics. Most of these (like the harmonic

oscillator) represent approximations of the actual physical situation, while

Some of them (like the Coulomb potential) do not differ essentially from

the forces observed in nature. The most elementary examples introduced

at the dawn of quantum mechanics still form essential part of any quantum

mechanical course, and also play a fundamental role in the formulation

of most physical models of the microscopic world. The potential shape,

defined by the potential type and the parameters in it is usually chosen

in a way that reflects the physical picture of our intuition associates with

the problem; therefore we can define attractive or repulsive, short-range or

long-range potentials, etc.

The energy eigenvalues, the bound-state wave functions and the scat-

tering matrix can be determined in closed analytical form for some po-

tential(exactly solvable potentials). The range of these potentials has been

extended considerably in the recent years by investigations inspired by some

novel symmetry-based approaches. The concept of solvability has also been

extended: one can talk about conditionally exactly or quasi-exactly solv-

able potentials too, in addition to the ”classical” exactly solvable examples.

Due to these developments more and more interactions can be modeled by

making advantage of the increasingly flexible potential shapes offered by

solvable potentials. Their solutions can be applied directly, or can be com-
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bined with numerical calculations. In the simplest case analytical calcula-

tions can aid numerical studies in areas where numerical techniques might

not be safely controlled. When physical system crosses a critical point,

for certain singular potentials or complex potentials, or in situations, we

can obtain the bound-state wave functions with arbitrary node numbers

as per requirement. As the next level of complexity, analytical solutions

can supply a basis for numerical calculations. This makes exactly solvable

problems indispensable even in the age of rapidly developing computational

resources. Besides their role in describing realistic physical problems, solv-

able quantum mechanical potentials also represent an interesting field of

investigation in their own right. This is largely due to the mathematical

elegance and beauty associated with the symmetries of these problems.

The problem of the relativistic wave equations with spatially dependent

masses has been attracting much intention in the literature. Systems with

position-dependent mass have been found to be very useful in studying

the physical properties of various microstructures, such as semiconductor

heterostructure. Quantum liquids, quantum wells and quantum dots, 3He

clusters, compositionally graded crystals etc. A lot of studies have been

performed to obtain the solutions of the Schrodinger, Klein-Gordon and

Dirac equations with position-dependent mass for different potentials.

Our activity in this field mainly concerned the exact,analytical, scat-

tering state and bound state solution of the relativistic wave equation (i.e.

of one-dimensional Klein-Gordon equation and Dirac equation). We gave

a systematic treatment of shape-invariant potentials , which contain the

most well-known textbook examples for solvable potentials. The potentials

considered in our study are given bellow:

q-deformed modified Eckart plus Hylleraas Potential

The q-deformed modified Eckart plus Hylleraas Potential [78-82] of the

form see figure 2.1:

V (x) =
V0
b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2

Where q is the shape parameter.

We prefer to use the mass function equals to the rest mass along with the
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vector part of the potential as

m(x) = m0 +
V0
b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2

to obtain an exactly solvable Schrödinger-like equation in absence of scalar

potential . The mass function should also be a physical distribution , so we

restrict ourself in the range 0 ≤ x <∞ , which gives the finite mass values

as follows :

m(x) =

{

m0 +
V0

b
(a− 1)− V1 + V2 (forq → 0) , x→ 0

m0 +
V0a
b

, x→∞

Actually, this distribution corresponds to shifted scalar potential function

in the problem.

Generalized Asymmetric Manning-Rosen potential

The generalized Maning-Rosen (GAMR) potential [83] taken for our

study is of the following form see figure 3.1,

V(x) = Θ(−x)
[

Ae2α(x+x0)

(Λ + ∆eα(x+x0))2
+

Be2α(x+x0)

(Λ + ∆eα(x+x0))

]

+Θ(x)

[

Ce−2β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))2
+

De−β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))

]

(1.72)

Where Θ(x) is Heaviside step function and all the parameters are real.

The shape of GAMR potential varies according to the values of the pa-

rameters. It becomes a potential barrier if A, B, C and D are positive and

it becomes a potential well if A, B, C and D are negative.

The mass function is chosen here as m(x) = m0 + f(x) , where f(x) =

V(x) and m0 is the rest mass.

Double Ring Shaped Coulomb potential

The double ring shaped Coulomb potential [84] is a 3-dimensional Coulomb

potential surrounded by a double ring shaped inverse square potential.
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Mainly the double ring shaped Coulomb potential is a non-central potential

in spherical coordinate and can be written as:-

V(r, θ) = −A
r
+

B

r2sin2Θ
+

C

r2cos2Θ
(1.73)

where, A = ησ2e2, B = ~
2η2σ2

2µ
, C = ~

2

2µ
a where,a ≥ 0

µ is the mass of the particle, η and σ are positive real parameters which

range from 1 to 10 and r and Θ are the spherical coordinates. When we

put B = 0 and C = 0 then V(r) reduces to coulomb potential and when

B = 0 then V(r) reduces to ring shaped Hartmann potential. Specially

the ring shaped non central potentials are used to describe the molecular

structure and the interaction between the deformed nuclie and specially the

molecular structure of benzene.

Manning Rosen Potential

The Manning Rosen Potential [85] is see figure 5.1:

V(r) =
−V1(1 + qe−αr)

(1 + qe−αr)
+

V2e
−αr

(1− qe−αr)2
. (1.74)

Here r0 is the equilibrium position of molecules and potential acting range

is determined by the dimensionless parameter α and V1 and V2 are two

general potential parameters.

Here we use the mass function m = m0

(1−qe−αr)2
, where m0 is the rest mass

and α determines the potential range.

1.6 Scope of the thesis

In recent years, the effects of the position-dependent mass on the energy

spectra and corresponding eigenvalues of wave equations has been received

a great attention. A very few study appeared in literature on wave equa-

tion having position-dependent mass but began in a haphazard and diffuse

fashion. There are numerous early examples of isolated and disconnected

discoveries of such study.

In our study, we have observed several issues:
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• The results may have many applications in nuclear physics especially

in chemical and molecular physics. For example, it is most useful in ex-

ploration of the resonance phenomena, where particles are temporarily

trapped by the potential.

• The outcomes of our study may be able to shed light on the most

outstanding problem in condensed matter physics, the theory of high

temperature superconductivity.

• The knowledge of the study can be useful to decide whether some

of the examples of quantum mechanical system which have appeared

in the literature in the past do indeed constitute consistent quantum

systems or if the same applies to newly proposed models, opening a

vast universe of possibilities.

• Our study about the relativistic wave equations having position-dependent

mass can be useful in studying the physical properties of various mi-

crostructures (such as semiconductor heterostructure, Quantum liq-

uids, quantum wells and quantum dots, 3He clusters, compositionally

graded crystals etc).

• Our study about the relativistic wave equations having position-dependent

mass can be helpful for the study of the multi-band transport system

in nano-devices in the subject area of nanoscience and nanotechnology.

• Our study can be helpful in shedding new light on the conceptual

foundations of quantum physics and also at the core of the new field of

Quantum Information Theory, which foresees important technological

developments through concepts such as “entanglement”, “teleporta-

tion” and “quantum computation”.

• Our study about the relativistic wave equations having position-dependent

mass can be helpful for the study of the description of the dynamics

of an anisotropic DNA molecule in biophysics with some real coupling

constants.

• Our study provides a better understanding of the approximation schemes

used in the context of the past and allows for the improvement to a

more reliable quantitative description of scattering problem.

• The purpose of this thesis is to give an elementary introduction to this
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exciting and active field of research. In writing this thesis, my hope

is that the rate of new discoveries and the development of the field

will continue at such a rapid pace that this review will soon become

obsolete.

1.7 Conclusions

In this thesis we have searched for exact results for theories described

by relativistic wave equations with position-dependent mass in Quantum

Physics. Although it is widely believed that such systems can only be used

to describe effective models, we have argued that they have achieved a more

fundamental status in recent years. The motivation for obtaining solutions

of the wave equation with position dependent mass comes from the wide

range of applications of these solutions in various areas of material science

and condensed matter. The main concern of our study primarily focused

on obtaining the energy spectrum and wave function for a given mass dis-

tribution. Then we gave remarks on the effects of position-dependent mass

into the corresponding system which we eager to describe.

Relativistic wave equations with position dependent mass plays an im-

portant role in the study of electronic properties of semi-conductors in ho-

mogeneous crystals, quantum dots, He clusters, quantum liquids etc. For

some relevant mass distributions some phenomenological potentials have

been solved in recent times, but there are only few papers that give the

solution of the relativistic wave equation with position-dependent mass in

quantum mechanics.

In order to investigate nuclear shell structure, the study of spin and

pseudospin symmetric solutions of the Dirac equation has been an impor-

tant area of research in nuclear physics. The concept of spin and pseudospin

symmetry with nuclear shell model has been used widely in explaining a

number of phenomena in nuclear physics and related areas. The spin sym-

metry is relevant for meson and the pseudospin symmetry has been used

to study the structure of the deformed nuclei, to construct an effective

shell model coupling scheme and identical bands and triaxality observed in

nuclei.
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To predict physical phenomena and to design the corresponding ex-

periments, the understanding of this thesis is very helpful. The results

are most useful in exploration of the resonance phenomena, where parti-

cles are temporarily trapped by the potential. One of the most striking

phenomena in nature is resonance phenomena. These are associated with

metastable states of a system that has sufficient energy to break up into two

or more subsystems. These systems can be nuclei, atoms, molecules, solids,

nano-structured materials and condensates. In this thesis many physical

problems have been solved to provide a better understanding to explain

the algorithms for calculating the resonance measurable quantities and to

illustrate the applications of the formalism in physics, chemistry and tech-

nology.

In nuclear physics, the shape form of the potential plays an important

role particularly when studying the structure of deformed nuclei or the

interaction between them. Therefore, q-deformed potential is used with

the shape parameter ‘q’ along with screening parameter ‘α′.

Further developments regarding this problem have been intensively re-

ported. Besides geometric analysis establishing, as expected, the equiva-

lence between a completely Hermitian formulation and a completely non-

Hermitian formulation, more recent results indicate that the quantum brachis-

tochrone can be realized as subsystem of a larger Hermitian system living

in a higher-dimensional Hilbert space. This is an example where theoreti-

cal advances come before those accomplished by experiments so that more

direct evidences to clarify this problem still need to be obtained.

This work confirms the potential importance of studying effective mass

quantum system, motivated by the recent interest in mass dependent quan-

tum theories. The scope of such models is immense, covering possibly all

fields of theoretical physics, with some illustrations presented here. I have

no doubts that the investigations carried out by me are of relevance to the

scientific community and hope it can inspire further developments.
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2
Relativistic Equation with PDM for
q-deformed modified Eckart plus
Hylleraas potential

2.1 Introduction

Quantum Mechanical phenomena are described by Schrödinger equation which dictates

the dynamics of quantum systems represented by Hamiltonian Operator. Solutions of

Klein-Gordan Equation for some physical potential have important applications in

Molecular Physics, Quantum Chemistry, Nuclear physics, condensed matter Physics,

high energy physics. The study of potentials such as Hulthén [86-87], Morse [88],

Rosen-Morse [64], Pseudo-harmonic [89], Pöschl-Teller [90-91], Kratzer-Fuez [68], gen-

eralized Wood Saxon [54,92-94], ring-shaped Hartmann [55] and the corresponding

wave functions has been performed using various methods.

Recently, there has been renewed interest in solving Quantum Mechanical systems

within the frame work of Nikiforov-Uvarov method[46-55].This technique is successfully

used to solve Schrödinger, Klein-Gordan, Dirac and Duffin-Kemmer-Petieu Equqtions.

In nuclear physics, the shape form of the potential also plays an important role

particularly when studying the structure of deformed nuclei or the interaction between

them. Therefore , our aim , in the present work is to investigate analytical bound state

Corresponding article has been published in Electronic Journal of Theoretical Physics, (2018), 14,

No. 37, 79-90.
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solutions of the Klein-Gordon equation with q-deformed modified Eckart plus Hylleraas

potential[78-82] in the Frobenius method [57,95] as well as in N-U method. Also, we

will show that, when the deformation parameter q takes a particular value (q = 1),

the obtained results lead to the solutions of the same problem for modified Eckart plus

Hylleraas potential.

The number of solvable potentials in ordinary quantum mechanics is in fact lim-

ited, but when we assume the particle mass has a nontrivial space distribution the

mathematical difficulties grow even more. In last few years, an increasing atten-

tion has been paid to the study of quantum systems with position-dependent mass

(PDM). This interest is due to the wide applicability of such models in different areas

of physics. A well-known example is the so-called effective-mass approximation theory

in condensed matter physics, which has been extensively used for the determination

of electronic properties of semiconductors, and for the description of the properties of

hetero-junctions and quantum dots. In addition, PDM-models have been successfully

applied in the field of molecular and atomic physics. Besides, we should also cote the

recent new proposed scenarios based on the theory of general relativity, where systems

with PDM arise from another origin, quite different from the condensed matter one.

Furthermore, the inclusion of relativistic effects was found to be very significant when

condensed systems with heavy atoms or heavy ion doping are considered. Even more,

the recent discovery of graphene, a two-dimensional allotrope of carbon, which is re-

ceiving a lot of attention, has shown that electrons in this material behave as massless

fermions. All these considerations have fostered an intense research activity in the field

of relativistic quantum mechanics with PDM.

In recent years , the solutions of the non-relativistic wave equation with position-

dependent mass have been a topic of great interest[96-100] , but there are only few

papers that give the solution of the relativistic wave equation with position-dependent

mass in quantum mechanics. Exact solution of the Dirac equation with position-

dependent mass in the Coulomb field [101], Kepler problem in Dirac theory for a

particle whose potential and mass are inversely proportional to the distance from the

force center [102], the approximate solution of the one-dimensional Dirac equations

with spatially dependent mass for the generalized Hulthén potential [103], the exact

solution of the one-dimensional K-G equation with spatially dependent mass for the

inversely linear potential [104] are some papers on relativistic wave equations with

position dependent mass.

Our focus is to study the quantum systems with Position Dependent Effective
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Mass (PDEM). PDEM Klein-Gordan Equation plays an important role in the study

of electronic properties of semi-conductors in homogeneous crystals,quantum dots,He

clusters, quantum liquids etc.

Exact solutions of effective mass Klein-Gordan Equations are difficult to obtain, as

such, approximate numerical techniques are often used.

In this chapter, relativistic Klein-Gordan equation with Position Dependent Mass

has been solved analytically for the q-deformed modified Eckart plus Hylleraas po-

tential. A generalized series is used to obtain the bound state solutions of the K-G

equation using the Frobenious Method . The one dimensional K-G equation for the

mass dependent modified Eckart plus Hylleraas potential in absence of scalar poten-

tial are studied in this paper. The exactly normalized bound state wave function and

energy expressions are obtained by using N-U method.

2.2 Brief discussion of Klein Gordan Equa-

tion with position dependent mass

In this study, the one dimensional K-G equation for a spinless particle of mass m in

the natural units ~ = c = 1 can be expressed

Ψ′′(x) + [(E − V(x))2 − (m+ S(x))2]Ψ(x) = 0 (2.1)

where E , V(x) and S(x) are the relativistic energy of the particle , vector and scalar

potentials respectively. Now considering the q-deformed modified Eckart plus Hylleraas

Potential of the form:

V(x) = V0
b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2
(2.2)

Where q is the shape parameter.

We prefer to use the mass function equals to the rest mass along with the vector

part of the potential as

m(x) = m0 +
V0
b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2
(2.3)
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Figure 2.1: The modified Eckart plus Hylleraas Potential with unit value of α, a, b, q.

to obtain an exactly solvable Schrödinger-like equation in absence of scalar potential .

The mass function should also be a physical distribution , so we restrict ourself in the

range 0 ≤ x <∞ , which gives the finite mass values as follows :

m(x) =

{

m0 +
V0

b
(a− 1)− V1 + V2 (forq → 0) , x→ 0

m0 +
V0a
b

, x→∞

Actually, this distribution corresponds to shifted scalar potential function in the prob-

lem. Substituting equation (2.3) in equation (2.1) we have

Ψ′′(x) +

[

(E2 −m2
0)− 2(E +m0)

{

V0
b

(

a− e−2αx

1− qe−2αx

)

− V1

e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2

}]

Ψ(x) = 0 (2.4)

2.3 Application of Nikiforov-Uvarov Method

Introducing a new variable s = e−2αx it is straight forward to show that (2.4) takes the

form:

Ψ′′(s) +
1− qs

s(1− qs)
Ψ′(s) +

1

s2(1− qs)2

[

s2q2(ǫ2 − γ2 − ζ2)

+2qs(γ2 − ǫ2) + (ǫ2 − ω2)

]

Ψ(s) = 0 (2.5)
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Where we use the notations
E2−m2

0

4α2 = ǫ2 ,γ2 = E+m0

4α2q
{2V1 + 2V0

b
(aq + 1) − 2V2} ,

ζ2 = E+m0

4α2q
{(V1+V2)− V0

b
(aq−1)} and 2V0

b
E+m0

4α2 = ω2 comparing equation (2.5) with

equation (1.24) we have

τ̃(s) = 1− qs;

σ(s) = s(1− qs);

σ̃(s) = s2q2(ǫ2 − γ2 − ζ2) + 2qs(γ2 − ǫ2) + (ǫ2 − ω2); (2.6)

Substituting equation (2.6) the relation (1.26) we get

π(s) = −qs
2
±
√

q2s2(
1

4
+ γ2 + ζ2 − ǫ2 − k1) + qs(k1 − 2γ2 + 2ǫ2) + (ω2 − ǫ2) (2.7)

where k1 satisfies the relation k = k1q Further the discriminant of the upper expression

under the square root has to be set equal to zero. Therefore, we obtain

∆ = q2(k1 + 2ǫ2 − 2γ2)2 − 4q2(
1

4
+ γ2 + ζ2 − ǫ2 − k1)(ω

2 − ǫ2) (2.8)

Solving equation (2.8) for constant k1 , we obtain the double roots as , k1′, k1′′ =
2(γ2 − ω2)± 2ξη , where ξ2 = ω2 − ǫ2 and η2 = (1

4
+ ζ2 + ω2 − γ2).

Thus substituting these values for each k1 into equation (2.7) , we obtain

π(s) = −qs
2
±
{

(ξ − η)qs− ξ; for k1′ = 2(γ2 − ω2) + 2ξη

(ξ + η)qs− ξ; for k1′′ = 2(γ2 − ω2)− 2ξη
(2.9)

By choosing an appropriate value for k in π(s) which satisfies the condition τ ′(s) < 0

, one gets π(s) = −qs(ξ + η + 1
2
) + ξ for k = 2(γ2 − ω2)− 2ξη ; giving the function:

τ(s) = 1− 2qs[1 + (ξ + η)] + 2ξ (2.10)

If we consider λ = k +Π′ defined in (1.27) we obtain

λ = q[2(γ2 − ω2)− 2ξη − 1

2
− (ξ + η)] (2.11)

Again using equation (1.27) , we have:

λn = q[n2 + n+ 2n(ξ + η)] (2.12)

Using the condition λ = λn one obtains the eigen values of ǫ from the following equation:

ω2 − ǫ2 =

[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(2.13)
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From (1.29) it can be shown that the weight function ρ(s) is ρ(s) = s2ξ(1− qs)2η and

by substituting ρ(s) into the Rodrigues relation (1.28) one gets

yn(s) =
Bn

s2ξ(1− qs)2η
(
d

ds
)n[sn(1− qs)ns2ξ(1− s)2η] =

Bn

s2ξ(1− qs)2η
P (2ξ,2η)
n (s) (2.14)

where P
(2ξ,2η)
n (s) stands for Jacobi polynomial [105,106] and Bn is the normalizing

constant. The other part of the wave function is simply found from (1.30) as ,

φ(s) = sξ(1− qs)(
1
2
+η) (2.15)

Finally , the wave function is obtained as follows

ψ(s) = Bns
−ξ(1− qs)(−η+

1
2
)P (2ξ,2η)

n (s) (2.16)

2.4 Application of Frobenius Method

consider the same Klein-Gordan equation and the same Eckart plus modified Hylleraas

Potential given in section 2.2. After development , we get the following equation:

ψ′′(s) +
1

s
ψ′(s) +

1

s2

[

ǫ2 − 2β2

{

V0
b

a− s

1− qs
− V1

s

1− qs
+ V2

s

(1− qs)2

where we use the notations
E2−m2

0

4α2 = ǫ2 and E+m0

4α2 = β2

Comparing (2.17) with the equation (1.32) we have, P (s) = 1 and

Q(s) =

[

ǫ2 − 2β2

{

− V1
s

1−qs +
V0

b
a−s
1−qs + V2

s
(1−qs)2

}]

Putting these values the equation (2.17) becomes ,

ψ′′(s) +
P (s)

s
ψ′(s) +

Q(s)

s2
ψ(s) = 0 (2.18)

By using Fuck’s theorem , we can write :

ψ(s) =
∞
∑

k=0

aks
k+r, with a0 6= 0 (2.19)

Differentiation gives us:

ψ′′(s) =
∞
∑

k=0

(k + r − 1)(k + r)aks
k+r−2 and ψ′(s) =

∞
∑

k=0

(k + r)aks
k+r−1 (2.20)
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Putting equation (2.20) in equation (2.18) one obtains:

∞
∑

k=0

aks
k{[(k + r)2 + ǫ2 − 2

V0
b
aβ2] + s2[q2{(k + r)2 + ǫ2} − 2qV1β

2 − 2q
V0
b
β2]

+s[−2q(k + r)2 − 2qǫ2 + 2V1β
2 + 2

V0
b
(qa+ 1)β2 − 2V2β

2]} = 0 (2.21)

By effecting a change of variable we obtain:

a0[(q
2 + 1)(r2 + ǫ2)− 2qV1β

2 − 2
V0
b
β2(a+ q)] +

∞
∑

n=1

sn[an{(q2 + 1){(n+ r)2 + ǫ2}

−2V1β2q − 2
V0
b
β2(a+ q)}+ an−1{2V1β2 + 2

V0
b
(aq + 1)β2 − 2V2β

2

−2q{(n+ r − 1)2 + ǫ2}}] = 0 (2.22)

By solving the indicial equation I = a0[(q
2 + 1)(r2 + ǫ2)− 2qV1β

2 − 2V0

b
β2(a+ q)] ,we

obtain

(q2 + 1)(r2 + ǫ2)− 2qV1β
2 − 2

V0
b
β2(a+ q) = 0

i.e. r = ±

√

−ǫ2(q2 + 1) + 2qV1β2 + 2V0

b
β2(a+ q)

q2 + 1
= ±ν (2.23)

For r = ν we have:

an =
n
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2 − 2V0

b
(aq + 1)β2 + 2V2β

2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2 − 2V0

b
(a+ q)β2

a0 , n = 1, 2, ....(2.24)

So it gets a representation of the solution

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2 − 2V0

b
(aq + 1)β2 + 2V2β

2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2 − 2V0

b
(a+ q)β2

a0 , k = 1, 2, .......(2.25)

Using the relations (2.23) and (2.13) , we obtain the energy eigenvalue associated with

the wave function. We can express the solutions obtained based on the Jacobi poly-

nomial [106]:this result is more accurate.The coefficients of the solution being assessed

explicitly,we seek the bounded solutions.We will only retain the negative value .

2.5 Discussion

In this subsection we consider some special cases of the potential in consideration:

(I) Hulthén Potential:
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Figure 2.2: The Hulthén Potential with unit value of α, q.

If we set V0 = V2 = 0 and a = 0 and b = 1 ,the potential in (2.2) reduces to

V(x) = −V1
e−2αx

1− qe−2αx
(2.26)

which is the Hulthén potential.

Furthermore we get the eigen values ǫ from the equation

ǫ2 = −
[

8γ2 − (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(2.27)

and the eigen function is

ψ(s) = Bns
−ξ(1− qs)(−η+

1
2
)P (2ξ,2η)

n (s) (2.28)

where γ2 = 2ζ2, ω2 = 0, η2 = (1
4
− ζ2), ξ2 = −ǫ2 .

Again, applying Frobenius method we obtain

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2
a0 , k = 1, 2, .... (2.29)

(II) Rosen-Morse Potential:

If we set V1 = V2 = 0 and a = −1 and b = 1 ,the potential in (2.2) reduces to

V(x) = −V0
1 + e−2αx

1− qe−2αx
(2.30)

which is the Rosen-Morse potential [106].

Furthermore we get the eigen values ǫ from the equation

ǫ2 = ω2 −
[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(2.31)

55



Chapter 2. Relativistic Equation with PDM for q-deformed modified Eckart plus Hylleraas potential

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.3: The Rosen-Morse Potential with unit value of α, q.

and the eigen function is

ψ(s) = Bns
−ξ(1− qs)(−η+

1
2
)P (2ξ,2η)

n (s) (2.32)

where γ2 = 2V0(aq+1)
b

E+m0

4α2q
,ζ2 = −V0(aq−1)

b
E+m0

4α2q
, ω2 = 2V0

b
E+m0

4α2q
, η2 = (1

4
+ω2+ζ2−γ2)

, ξ2 = ω2 − ǫ2 .

Again, applying Frobenius method we obtain

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V0

b
(aq + 1)β2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V0

b
(a+ q)β2

a0 , k = 1, 2, .... (2.33)

(III) shape parameter q = 1 :

For N-U method we have the wave function as

ψ(s) = Bns
−ξ(1− s)(−η+

1
2
)P (2ξ,2η)

n (s) (2.34)

one obtains the eigen values of ǫ from the following equation:

ω2 − ǫ2 =

[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(2.35)

For Frobenius method, we have

ak =
k
∏

i=1

{(i+ ν − 1)2 + ǫ2} − V1β
2 − V0

b
(a+ 1)β2 + V2β

2

{(i+ ν)2 + ǫ2} − V1β2 − V0

b
(a+ 1)β2

a0 , k = 1, 2, .... (2.36)

2.6 Conclusions

In this chapter, the exact solution of the effective mass K-G equation for the modified

Eckart plus Hylleraas potential in absence of Lorentz scalar potential. The eigen val-

ues and eigen functions are obtained using the Frobenius method as well as Nikiforov-

Uvarov method. We gave a schematic graphical representation of the modified Eckart
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plus Hylleraas potential with a shape parameter ‘q’ and also the graphical representa-

tion of Hulthén and Rosen-Morse Potential. The eigen values of the potential reduces

to that of well known potentials viz., Hulthén Potential in equation (2.26) and Rosen-

Morse Potential in equatioon (2.30), when we make appropriate choices of parameter

a, b, V0, V1, V2 . Finally we also obtain the wave function which is expressed in terms of

the Jacobi Polynomials.
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3
Massive Dirac Particle in
Generalized Asymmetric
Manning-Rosen Potential

3.1 Introduction

In recent years the study of Quantum Mechanical Systems within the framework of

position dependent mass(PDM) has received much attention in the literature[107-

111].Quantum particles with PDM constitute useful models for the study of many

physical problems, for example determination of electronic properties of semiconductor

hetero-structure[112] , the properties of hetero-junctions, quantum dots[113,114] ,3He

clusters [115], metal clusters [116], the properties of heterojuncions [107], quantum

wells [14], semi-conductors [117], the study of condensed matter physics of impurities

in crystals [17] and the density of energy in many body problems.The investigation of

relativistic effect is important in the study of heavy atoms or heavy ions[107] . For this

type of particles Dirac equation where the mass becomes a function, plays an impor-

tant role.

Dirac equation has been used for the study of relativistic heavy ion collisions, heavy

ion spectroscopy, laser matter interaction and specially in higher energy physics and

Corresponding article has been published in The African Review of Physics , (2017), 12: 0007,

54-60.
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condensed matter physics[118]. In physics it is very important to understand the struc-

ture of nucleus, atoms, molecules and the material objects.In order to get a complete

information about a Quantum Mechanical system it is needed to study the scatter-

ing and the bound states. The scattering and bound states in non-relativistic and

relativistic Quantum Mechanics with a potential are studied in order to describe the

behaviour and the interaction between atoms and particles. Thus it is important to

create a model which contain potential concepts. Some potentials that describes the

interaction between nuclie and nuclie-particle and the structures of diatomic and poly-

atomic molecules are Kratzer-fuez[68], Rosen-Morse[106], Wood-Saxon[94], Morse[88],

Hulthén[119], Cusp[120], Eckart potentials[81,82] etc.

In this article we have considered Generalised Asymmetric Manning Rosen (GAMR)

potential[83]. The GAMR potential was first proposed by Manning and Rosen [85] in

1932 to define the vibrational behaviour of diatomic molecules. After that it has been

used to describe the interaction between two atoms of a diatomic molecule. Some

potentials can be generalized to describe the interactions consisting of more than one

process.

The GAMR potential taken for our study is of the following form,

V(x) = Θ(−x)
[

Ae2α(x+x0)

(Λ + ∆eα(x+x0))2
+

Be2α(x+x0)

(Λ + ∆eα(x+x0))

]

+Θ(x)

[

Ce−2β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))2
+

De−β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))

]

(3.1)

Where Θ(x) is Heaviside step function and all the parameters are real.

The shape of GAMR potential varies according to the values of the parameters. It

becomes a potential barrier if A, B, C and D are positive and it becomes a potential

well if A, B, C and D are negative.

The mass function is chosen here as m(x) = m0+ f(x) , where f(x) = V(x)and m0

is the rest mass.
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Figure 3.1: The Generalised Asymmetric Manning Rosen Potential for α = β = 2,x0 = x̃0 = 1

,A = B = C = D = 1 ,Λ = Λ̃ = 0.1 and ∆ = 0.2, ∆̃ = 0.3 (for smaller values of αx0 and βx̃0)

-6 -4 -2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: The Generalised Asymmetric Manning Rosen Potential for α = β = 5,x0 = x̃0 = 2

,A = B = C = D = 1 ,Λ = 1 ,Λ̃ = 10 and ∆ = 2.5, ∆̃ = 3.5 (for larger values of αx0 and βx̃0)
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3.2 Dirac equation with position depen-

dent mass

The Dirac equation for relativistic free-particle[121] (in natural units ~ =c=1) is as

[iγµ∂µ −m(x)]ψ(x) = 0 (3.2)

where m(x) is the Dirac particle mass, depends on one spatially coordinate x. To

obtain the one-dimensional Dirac equation for the external potential V(x) we consider
the gamma matrices γx and γ0γ in terms of Pauli matrices iσ(x) and iσ(z) respectively,

{(

0 1

1 0

)

d

dx
− [E − V(x)]

(

1 0

0 −1

)

+m(x)

(

1 0

0 1

)}

×
(

U1(x)

U2(x)

)

= 0 (3.3)

where U1(x) and U2(x) are decomposed into upper and lower components of the two-

component wave function ψ(x) and (3.3) turns into the following two-coupled differen-

tial equations :

dU1(x)

dx
= −

[

m(x) + E − V(x)
]

U2(x)

dU2(x)

dx
= −

[

m(x)− E + V(x)
]

U1(x) (3.4)

According to Flügge[122] the following expressions are obtained

Θ(x) = U1(x) + iU2(x)

Φ(x) = U1(x)− iU2(x) (3.5)

By putting (3.5) into (3.4) we get the following equations:-

dΘ(x)

dx
= i[E − V(x)]Θ(x)− im(x)Φ(x) (3.6)

dΦ(x)

dx
= −i[E − V(x)]Φ(x) + im(x)Θ(x) (3.7)
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From equations (3.6) and (3.7) for Θ(x) and Φ(x) we get the following two distinct

second order differential equations as follows:

d2Θ(x)

dx2
− 1

m(x)

dm(x)

dx

dΘ(x)

dx
+

{

[E − V(x)]2 −m(x)2 + i
dV(x)
dx

+ i[E − V(x)] 1

m(x)

dm(x)

dx

}

Θ(x) = 0 (3.8)

d2Φ(x)

dx2
− 1

m(x)

dm(x)

dx

dΦ(x)

dx
+

{

[E − V(x)]2 −m(x)2 − i
dV(x)
dx

− i[E − V(x)] 1

m(x)

dm(x)

dx

}

Φ(x) = 0 (3.9)

The mass function for the Dirac particle is chosen as

m(x) = m0 + f(x), (3.10)

where the function f(x) is given by

f(x) = Θ(−x)
[

Ae2α(x+x0)

(Λ + ∆eα(x+x0))2
+

Be2α(x+x0)

(Λ + ∆eα(x+x0))

]

+Θ(x)

[

Ce−2β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))2
+

De−β(x−x̃0)

(Λ̃ + ∆̃e−β(x−x̃0))

]

and the rest mass for the Dirac particle is m0 ; therefore the derivative term of the

mass function m(x) is ignored in (3.8) and (3.9) .

So the equations (3.8) and (3.9) becomes respectively as:

d2Θ(x)

dx2
+

{

[E − V(x)]2 −m(x)2 + i
dV(x)
dx

}

Θ(x) = 0 (3.11)

d2Φ(x)

dx2
+

{

[E − V(x)]2 −m(x)2 − i
dV(x)
dx

}

Φ(x) = 0 (3.12)
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Figure 3.3: The mass variation for Generalised Asymmetric Manning Rosen Potential for

α = β = 5(for larger values of αx0 and βx̃0) ,x0 = x̃0 = 1,A = B = C = D = 1 ,Λ = Λ̃ = 0.2

and ∆ = 0.3, ∆̃ = 0.5, α = β = 2,(for smaller values of αx0 and βx̃0) and taking m0 = 1

3.3 Scattering State Solution of Dirac Equa-

tion

As we have to find out the solutions for region x < 0 and x > 0 thus we consider a new

variable y = −∆
Λ
eα(x+x0) in (3.11)for region x < 0. Then the equation (3.11) becomes,

α2y2
d2ΘL(y)

dy2
+ α2y

dΘL(y)

dy

+

{

(E2 −m0
2)− 2(E +m0)

(

Ay2

∆2(1− y)2
− By

∆(1− y)

We consider a trial wave function ,

ΘL(y) = yξ(1− y)λω(y) (3.14)

Then equation (3.13) reduces to the Gaussian Differential Equation[123] given in fol-

lowing equation,

y(1− y)
d2ω

dy2
+

{

1 + 2ξ − (2ξ + 2λ+ 1)y

}

dω

dy
− (ξ + λ+ η)(ξ + λ− η)ω = 0 (3.15)

The parameters ξ , λ and η are given by,

ξ =
iρ

α
, where ρ =

√

E2 −m0
2
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λ =
1

2
+

√

2A(E +m0)

α2∆2
+

1

4

η =

√

−(E2 −m0
2)

α2
+

2(E +m0)

∆α2
[
A

∆
+B] (3.16)

The solution of (3.15) is found in the form of hypergeometric function as

ω(y) = N12F1(ξ + λ+ η, ξ + λ− η, 1 + 2ξ; y)

+N2y
−2ξ2F1(−ξ + λ+ η,−ξ + λ− η, 1− 2ξ; y) (3.17)

Then the whole left-hand solution of equation (3.11) i.e. the solution of equation (3.13)

becomes,

ΘL(y) = N1y
ξ(1− y)λ2F1(ξ + λ+ η, ξ + λ− η, 1 + 2ξ; y)

+N2y
−ξ(1− y)λ2F1(−ξ + λ+ η,−ξ + λ− η, 1− 2ξ; y) (3.18)

Now we choose a new variable z = − ∆̃
Λ̃
e−β(x−x̃0) for equation (3.11) for region x > 0

and then equation (3.11) becomes,

β2z2
d2ΘR(z)

dz2
+ β2z

dΘR(z)

dz

+

{

(E2 −m0
2)− 2(E +m0)

(

Cz2

∆̃2(1− z)2
− Dz

∆̃(1− z)

)}

ΘR(z) = 0 (3.19)

We consider a trial wave function ,

ΘR(z) = zξ̃(1− z)−̃λν(z) (3.20)

Then equation (3.19) reduces to the Gaussian Differential Equation given in following

equation,

z(1− z)
d2ν

dz2
+

{

1 + 2ξ̃ − (2ξ̃ + 2λ̃+ 1)z

}

dν

dz
− (ξ̃ − λ̃+ η̃)(ξ̃ − λ̃− η̃)ν = 0 (3.21)

The parameters ξ̃ , λ̃ and η̃ are given by,

ξ̃ =
iρ

β
, where ρ =

√

E2 −m0
2

64



Chapter 3. Massive Dirac Particle in Generalized Asymmetric Manning-Rosen Potential

λ̃ = −1

2
+

√

2C(E +m0)

β2∆̃2
+

1

4

η̃ =

√

−(E2 −m0
2)

β2
+

2(E +m0)

∆̃β2
[
C

∆̃
−D] (3.22)

The solution of (3.21) is found in the form of hypergeometric function as

ν(z) = N32F1(ξ̃ − λ̃+ η̃, ξ̃ − λ̃− η̃, 1 + 2ξ̃; z)

+N4z
−2ξ̃2F1(−ξ̃ − λ̃+ η̃,−ξ̃ − λ̃− η̃, 1− 2ξ̃; z) (3.23)

Then the whole right-hand solution of equation (3.11) i.e. the solution of equation

(3.19) becomes,

ΘR(z) = N3z
ξ̃(1− z)−λ̃2F1(ξ̃ − λ̃+ η̃, ξ̃ − λ̃− η̃, 1 + 2ξ̃; z)

+N4z
−ξ̃(1− z)−λ̃2F1(−ξ̃ − λ̃+ η̃,−ξ̃ − λ̃− η̃, 1− 2ξ̃; z) (3.24)

3.4 Transmission and Reflection Coefficient

for Electric Current Density

By using the asymptotic behaviours as x → −∞ and as x → +∞ for the solutions

given in equation(3.18) and equation(3.24) we get the transmission(T) and reflection(R)

coefficients.

As x→ −∞ the left-hand solution i.e. equation (3.18) becomes,

ΘL(x) = N1(
∆

Λ
)
iρ
α e

−πρ
α eiρ(x+x0) +N2(

∆

Λ
)
−iρ
α e

πρ
α e−iρ(x+x0) (3.25)

and as x→ +∞ the right hand solution i.e. equation (3.24) becomes,

ΘR(x) = N4(
∆̃

Λ̃
)−

iρ
β e

πρ
β eiρ(x−x̃0) (3.26)

So to find the electric current density J(x) for Dirac particle

J(x) =
1

2
[|Θ(x)|2 − |Φ(x)|2] (3.27)
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By putting equation (3.25) and (3.26) in equation (3.6) we have ,

the asymptotic behaviours for left hand solution ΦL(x) becomes,

ΦL(x) = N1(
∆

Λ
)
iρ
α e

−πρ
α eiρ(x+x0)

(E − ρ)

m(x)
+N2(

∆

Λ
)
−iρ
α e

πρ
α e−iρ(x+x0)

(E + ρ)

m(x)
(3.28)

and the asymptotic behaviours for right hand solution ΦR(x) becomes,

ΦR(x) = N4(
∆̃

Λ̃
)−

iρ
β e

πρ
β eiρ(x−x̃0)

(E − ρ)

m(x)
(3.29)

Using equations (3.25),(3.26),(3.28) and (3.29) in equation (3.27) we get left hand value

of J(x) i.e. JL(x) and the right hand value of J(x) i.e. JR(x).

From JL(x) and JR(x) we can calculate the value of Jtrans(transmitted current) ,

Jinc(incident current) and Jref (reflected current) .Finally the reflection coefficient(R)

and the transmission coefficient(T) are found as the following equations respectively:

R =
Jref
Jinc

=

∣

∣

∣

∣

N2

N1

∣

∣

∣

∣

2
E + ρ

E − ρ
e

4πρ
α (3.30)

T =
Jtrans
Jinc

=

∣

∣

∣

∣

N4

N1

∣

∣

∣

∣

2

e2πρ(
1
α
+ 1

β
) (3.31)

where R and T satisfy the condition R + T = 1. For the clear view of the coefficients

we have to use continuity condition

ΘL(x = 0) = ΘR(x = 0) and (3.32)

dΘL

dx

∣

∣

x=0
=
dΘR

dx

∣

∣

x=0
(3.33)

using the continuity condition we obtain the following result:-

N4

N1

=
D2K2[(R1 +R2)D1 +R3D4]−D1K1[(R4 +R5)D2 +R6D5]

D2K2[(R7 +R8)D3 +R9D6]−D3K3[(R4 +R5)D2 +R6D5]

N2

N1

=
D1K1[(R7 +R8)D3 +R9D6]−D3K3[(R1 +R2)D1 +R3D4]

D3K3[(R4 +R5)D2 +R6D5]−D2K2[(R7 +R8)D3 +R9D6]
(3.34)

where the abbreviations are given below:-

σ = −∆
Λ

σ̃ = − ∆̃
Λ̃

K1 = σξeαξx0(1− σeαx0)λ
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K2 = σ−ξe−αξx0(1− σeαx0)λ

K3 = σ̃−ξ̃e−βξ̃x̃0(1− σ̃eβx̃0)−λ̃

D1 = 2F1(ξ + λ+ η, ξ + λ− η, 1 + 2ξ; σeαx0)

D2 = 2F1(−ξ + λ+ η,−ξ + λ− η, 1− 2ξ; σeαx0)

D3 = 2F1(−ξ̃ − λ̃+ η̃,−ξ̃ − λ̃− η̃, 1− 2ξ̃; σ̃eβx̃0)

D4 = 2F1(ξ + λ+ η + 1, ξ + λ− η + 1, 2 + 2ξ; σeαx0)

D5 = 2F1(−ξ + λ+ η + 1,−ξ + λ− η + 1, 2− 2ξ; σeαx0)

D6 = 2F1(−ξ̃ − λ̃+ η̃ + 1,−ξ̃ − λ̃− η̃ + 1, 2− 2ξ̃; σ̃eβx̃0)

R1 = σξ(αξ)eαξx0(1− σeαx0)λ

R2 = σ(ξ+1)(−λα)eα(ξ+1)x0(1− σeαx0)λ−1

R3 = σξeαξx0(1− σeαx0)λ (ξ+λ+η)(ξ+λ−η)
(1+2ξ)

R4 = σ−ξ(−αξ)e−αξx0(1− σeαx0)λ

R5 = σ(−ξ+1)(−λα)e−α(1−ξ)x0(1− σeαx0)(λ−1)

R6 = σ−ξe−αξx0(1− σeαx0)λ (−ξ+λ+η)(−ξ+λ−η)
(1−2ξ)

R7 = σ̃−ξ̃(βξ̃)e−βξ̃x̃0(1− σ̃eβx̃0)−λ̃

R8 = σ̃(−ξ̃+1)(λ̃β)e−β(ξ̃−1)x̃0(1− σ̃eβx̃0)−λ̃

R9 = σ̃−ξ̃e−βξ̃x̃0(1− σ̃eβx̃0)−λ̃ (−ξ̃−λ̃+η̃)(−ξ̃−λ̃−η̃)
(1−2ξ̃)

3.5 Bound State and Ground State Solu-

tion for Energy Eigen Value

CaseI:-Solution for Negative Region(x < 0)

We put V (x) → −V (x) in equation (3.1) to obtain the shape of the potential as

a potential well and for the potential well we get the bound states solution.Thus we

consider a new variable y = −∆
Λ
eα(x+x0) in (3.11)for region x < 0. Then the equation

(3.11) becomes,

α2y2
d2ΘL(y)

dy2
+ α2y

dΘL(y)

dy

+

{

(E2 −m0
2)− 2(E +m0)

(

− Ay2

∆2(1− y)2
+

By

∆(1− y)

)}

ΘL(y) = 0 (3.35)
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We consider a trial wave function ,

ΘL(y) = yξ1(1− y)λ1P (y) (3.36)

Then equation (3.35) reduces to the Gaussian Differential Equation given in following

equation,

y(1− y)
d2P

dy2
+

{

1 + 2ξ1 − (2ξ1 + 2λ1 + 1)y

}

dP

dy

− (ξ1 + λ1 + η1)(ξ1 + λ1 − η1)P = 0 (3.37)

The parameters ξ1 , λ1 and η1 are given by,

ξ1 =
iρ

α
, where ρ =

√

E2 −m0
2

λ1 =
1

2
+

√

−2A(E +m0)

α2∆2
+

1

4

η1 =

√

−(E2 −m0
2)

α2
+

2(E +m0)

∆α2
[
−A
∆
− B] (3.38)

The solution of (3.37) is found in the form of hypergeometric function as

P (y) = A12F1(ξ1 + λ1 + η1, ξ1 + λ1 − η1, 1 + 2ξ1; y) + (3.39)

A2y
−2ξ12F1(−ξ1 + λ1 + η1,−ξ1 + λ1 − η1, 1− 2ξ1; y) (3.40)

Then the left hand solution of equation (3.11) i.e. the solution of equation (3.36)

becomes,

ΘL(y) = A1y
ξ1(1− y)λ12F1(ξ1 + λ1 + η1, ξ1 + λ1 − η1, 1 + 2ξ1; y)

+ A2y
−ξ1(1− y)λ12F1(−ξ1 + λ1 + η1,−ξ1 + λ1 − η1, 1− 2ξ1; y) (3.41)

CaseII:-Solution for Positive Region(x > 0)

Now we choose a new variable z = − ∆̃
Λ̃
e−β(x−x̃0) for equation (3.11) for region x > 0

and then equation (3.11) becomes,

β2z2
d2ΘR(z)

dz2
+ β2z

dΘR(z)

dz
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+

{

(E2 −m0
2)− 2(E +m0)

(

−Cz2
∆̃2(1− z)2

− −Dz
∆̃(1− z)

)}

ΘR(z) = 0 (3.42)

We consider a trial wave function ,

ΘR(z) = zξ̃1(1− z)
˜−λ1Q(z) (3.43)

Then equation (3.41) reduces to the Gaussian Differential Equation given in following

equation,

z(1− z)
d2Q

dz2
+

{

1 + 2ξ̃1 − (2ξ̃1 + 2λ̃1 + 1)z

}

dQ

dz

− (ξ̃1 − λ̃1 + η̃1)(ξ̃1 − λ̃1 − η̃1)Q = 0 (3.44)

The paramters ξ̃1 , λ̃1 and η̃1 are given by,

ξ̃1 =
iρ

β
, where ρ =

√

E2 −m0
2

λ̃1 = −
1

2
+

√

−2C(E +m0)

β2∆̃2
+

1

4

η̃1 =

√

−(E2 −m0
2)

β2
+

2(E +m0)

∆̃β2
[−C

∆̃
−D] (3.45)

The solution of (3.43) is found in the form of hypergeometric function as

Q(z) = A32F1(ξ̃1 − λ̃1 + η̃1, ξ̃1 − λ̃1 − η̃1, 1 + 2ξ̃1; z) +

A4z
−2ξ̃12F1(−ξ̃1 − λ̃1 + η̃1,−ξ̃1 − λ̃1 − η̃1, 1− 2ξ̃1; z)

(3.46)

Then the whole right-hand solution of equation (3.11) i.e. the solution of equation of

equation (3.42) becomes,

ΘR(z) = A3z
ξ̃1(1− z)−λ̃12F1(ξ̃1 − λ̃1 + η̃1, ξ̃1 − λ̃1 − η̃1, 1 + 2ξ̃1; z)

+ A4z
−ξ̃1(1− z)−λ̃12F1(−ξ̃1 − λ̃1 + η̃1,−ξ̃1 − λ̃1 − η̃1, 1− 2ξ̃1; z) (3.47)
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By the boundary condition i.e. as x→ ∓∞ , y → 0 and z → 0 and the wave functions

go to zero at infinity we get from equation (3.40) and (3.46) A2 = A4 = 0 .

Then equation (3.40) becomes,

ΘL(y) = A1y
ξ1(1− y)λ12F1(ξ1 + λ1 + η1, ξ1 + λ1 − η1, 1 + 2ξ1; y) (3.48)

and the equation (3.46) becomes,

ΘR(z) = A3z
ξ̃1(1− z)−λ̃12F1(ξ̃1 − λ̃1 + η̃1, ξ̃1 − λ̃1 − η̃1, 1 + 2ξ̃1; z) (3.49)

CaseIII:-Solution for Ground state(x = 0)

Then by using the continuity condition given by

ΘL(x = 0) = ΘR(x = 0) and (3.50)

dΘL

dx

∣

∣

x=0
=
dΘR

dx

∣

∣

x=0
(3.51)

using the continuity condition we obtain from equation(3.47) and (3.48), the expression

for the energy eigen values given by:-

[(C5 − C6)C1 + C7C3]C11C1 − [(C8 − C9)C2 + C10C4]C12C2 = 0 (3.52)

where the abbreviations are:-

S1 = −∆
Λ

S2 = − ∆̃
Λ̃

C1 = 2F1(ξ1 + λ1 + η1, ξ1 + λ1 − η1, 1 + 2ξ1;Se
αx0)

C2 = 2F1(ξ̃1 − λ̃1 + η̃1, ξ̃1 − λ̃1 − η̃1, 1 + 2ξ̃1); S̃1e
βx̃0)

C3 = 2F1(ξ1 + λ1 + η1 + 1, ξ1 + λ1 − η1 + 1, 2 + 2ξ1;Se
αx0)

C4 = 2F1(ξ̃1 − λ̃1 + η̃1 + 1, ξ̃1 − λ̃1 − η̃1 + 1, 2 + 2ξ̃1); S̃1e
βx̃0)

C5 = αξ1S
ξ1
1 e

αξ1x0(1− S1e
αx0)λ1

C6 = αλ1S
ξ1+1
1 eα(ξ1+1)x0(1− S1e

αx0)λ1−1

C7 = Sξ1
1 e

αξ1x0(1− S1e
αx0)λ1 (ξ1+λ1+η1)(ξ1+λ1−η1)

(1+2ξ1)

C8 = −βξ̃1S̃1
ξ̃1
eβξ̃1x̃0(1− S̃1e

βx̃0)
˜−λ1

C9 = βλ̃1S̃1
ξ̃1
e(ξ̃1+1)βx̃0(1− S̃1e

βx̃0)
˜−λ1−1

C10 = S̃1
ξ̃1
eβξ̃1x̃0(1− S̃1e

βx̃0)
˜−λ1 (ξ̃1−λ̃1+η̃1)(ξ̃1−λ̃1−η̃1)

(1+2ξ̃1)

C11 = Sξ1
1 e

αξ1x0(1− S1e
αx0)λ1

C12 = S̃1
ξ̃1
eβξ̃1x̃0(1− S̃1e

βx̃0)
˜−λ1

70



Chapter 3. Massive Dirac Particle in Generalized Asymmetric Manning-Rosen Potential

3.6 Conclusions

The scattering state and the bound state solutions for the one dimensional Dirac equa-

tion with position dependent mass for GAMR potential is obtained in this study. Solv-

ing the equation for the positive and negative region we get the wave function in terms

of the hypergeometric function.Bound state and ground state solutions are also ob-

tained. For the solution at x = 0 we use continuity condition and finally an expression

for energy eigen value is obtained. Transmission(T) and reflection(R) coefficients for

electric current density for this equation are found and the unitary condition R+T = 1

is preserved for PDM case.For bound state we get the discrete spectrum for GAMR

potential well with effective PDM , finding an exact condition for the energy eigen

values. Here we gave a schematic graphical representation of the GAMR potential and

the mass distribution.
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4
Klein-Gordon Equation with Double
Ring Shaped Coulomb Potential

4.1 Introduction

In relativistic quantum mechanics, scattering state solutions of the relativistic wave

equation play an important role for some physical potentials. Recently, there has been

an increased interest in finding the scattering states solutions for non-relativistic and

relativistic quantum mechanics with central and non-central potentials. B.Talukdar,

A. Yunus and M.R. Amin have obtained the s-wave bound state and scattering state

solutions of Klein-Gordon equation for the Hulthen potential[124]. F. Dominguez-

Adame and A. Rodriguez obtained the solutions for the relativistic Screened Coulomb

Potential[125]. Alhaidari obtained the scattering and bound state solutions of the three-

dimensional Scrödinger equation for non-central potentials (special cases considered

as the Aharonov-Bohm, Hartmann and magnetic monopole potentials)[126], Chen et

al. studied relativistic scattering with the Coulomb plus a new ring-shaped potential

[127]. Wei et al. investigated approximately analytical scattering state solutions of the

l-wave Scrödinger equation for the Eckart potential by a proper approximation to the

centrifugal term[82]. Wei et al. also studied approximately analytical scattering state

Corresponding article has been published in Springer Nature Switzerland , (2020), SCI 863, 725-

733
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solutions of the l-wave Scrödinger equation for the Manning-Rosen potential[128]. M.

Movahedi et al. investigated the relativistic scattering state solutions of the Makarov

potential [129]. Arda et al. obtained the scattering solutions of the one-dimensional

Schrödinger equation for the Woods-Saxon potential within the position-dependent

mass formalism [130].

Particularly the Coulombic ring shaped Potential is introduced by Hartmann et

al.[131] in Quantum Chemistry to describe ring shaped molecules, such as benzene.

The double ring shaped Coulomb potential is a 3-dimensional Coulomb potential sur-

rounded by a double ring shaped inverse square potential. Mainly the double ring

shaped Coulomb potential is a non-central potential in spherical coordinate and can

be written as:-

V(r, θ) = −A
r
+

B

r2sin2Θ
+

C

r2cos2Θ

where, A = ησ2e2, B = ~
2η2σ2

2µ
, C = ~

2

2µ
a where,a ≥ 0 µ is the

mass of the particle, η and σ are positive real parameters which range from 1 to 10

and r and Θ are the spherical coordinates. In equation (1) when we put B = 0 and

C = 0 then V(r) reduces to coulomb potential and when B = 0 then V(r) reduces to

ring shaped Hartmann potential. Specially the ring shaped non central potentials are

used to describe the molecular structure[132] and the interaction between the deformed

nuclie [133,202] and specially the molecular structure of benzene[134].

The method includes the super symmetric approach [86,135-136], the Variational

method [137],the exact quantization rule (EQR) [128,138-141], the hypervirial pertur-

bation [142], the shifted 1
N

expansion (SE) [143-152], the modified shifted 1
N

ex-

pansion (MSE) [153], smooth transformation [154], series method [155], the path in-

tegral approach [156], the standard methods [157-159], the perturbative treatment

[160-166], the algebraic method [167], the shape invariant method [168], the Frobe-

nius method [57,95], the Laplace transform approach [66-69], the asymptotic iteration

method (AIM) [58-65] and the Nikiforov-Uvarov method (NU) [46-55]. However, since

the Klein-Gordon equation is a second order differential equation, the NU method is

more suitable for obtaining analytical solutions to such a differential equation.
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4.2 Stationary Radial and Angle-dependent

Klein-Gordon Equation

The stationary 3D K-G equation with the coupling of a vector potential V(r) and a

scalar potential S(r) for a particle of rest mass m0 in the natural units ~ = c = 1 can

be expressed as

∇2Ψ(r, θ, φ) + [(E − V(r, θ, φ))2 − (m0 + S(r, θ, φ)2)]Ψ(r, θ, φ) = 0 (4.1)

where, E,V(r) and S(r) are the relativistic energy of the particle, vector and

scaler potentials, respectively. Assuming V(r) = S(r) we get from Eqn. (4.1),

∇2Ψ(r, θ, φ) + [(E2 −m0
2)− 2(E +m0)V (r, θ)]Ψ(r, θ, φ) = 0 (4.2)

Now considering the double ring shaped Coulomb potential the KG-equation reduces

to,

∇2Ψ(r, θ, φ) + [(E2 −m0
2)− 2(E +m0){−

A

r
+

B

r2sin2Θ
+

C

r2cos2Θ
}]Ψ(r, θ, φ) = 0

(4.3)

To separate the variables for the stationary wave function we assume,

Ψ(r, θ, φ) =
R(r)

r

Θ(θ)

sin
1
2 θ

Φ(φ) (4.4)

By following the standard procedure of separation of variables we get the component

equations as follows:-

d2R

dr2
+ (δ2 +

λA

r
− α2

r2
)R(r) = 0 (4.5)

d2Θ

dθ2
− [

λB

sin2θ
+

λC

cos2θ
− 1

4
− 1

4sin2θ
− α2 +

β2

sin2θ
]Θ(θ) = 0 (4.6)

d2Φ

dφ2
= −β2Φ(φ) (4.7)

where, λ = 2(E + m0), δ
2 = (E2 − m0

2) , represents the relativistic energy of

a particle and α2 and β2 are separation constants. Putting α2 = l(l + 1), which
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we often encounter in various Schrödinger quantum systems, with the orbital angular

momentum l = 0,1,2,... and the magnetic quantum number β = 0,±1,±2,... .
The solution of equation (4.7) is the azimuthal angle solution and it is,

Φ(φ) = Deiβφ (4.8)

The equation (4.5) is radial equation and equation (4.6) is angle-dependent equation

for the KG equation. For these two equations we use AIM in our next parts.

4.3 Solution Of the Radial and Angle-dependent

Klein-Gordon Equation

4.3.1 Solution Of the Radial Klein-Gordon Equation :

To solve the equation (4.5) with AIM for l 6= 0, we should transform equation (4.5)to

the form of equation (4.1).For bound state solution of the equation (4.5) we consider

R(0) = 0 and R(∞) = 0. Therefore for the physically acceptable radial solution we

consider the radial wave function as follows :

R(r) = r(l+1)e−iδf(r) (4.9)

Thus by substituting y = −2iδr and taking R(r) as in equation (4.5) the wave function

reduces to ,

d2f

dy2
− 2(

1

2
− l + 1

y
)
df

dy
− (

l + 1

y
− iξA

yδ
)f(y) = 0 (4.10)

where, ξ = λ
2
and λ0(y) = 2(1

2
− l+1

y
) and S0(y) =

l+1
y
− iξA

yδ
.
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Calculating λn(y) and Sn(y) we get,

λ0(y) = 2(
1

2
− l + 1

y
)

S0(y) =
l + 1

y
− iξA

yδ

λ1(y) =
2(l + 1)

y2
+

(l + 1)− a

y
− 4(l + 1)

y
+

4(l + 1)2

y2

S1(y) =
(l + 1− a)(y − 2l − 3)

y2

λ2(y) = 1− 2(a− 2l + 2)

y
+

(a+ 3l + 3)− 2(l + 1)(l + a)

y2
− 4(l + 1)(2l2 + 9l + 8)

y3

S2(y) =
1

y3
[(l + 1− a){y2 − y(a+ 3l + 4) + (4l2 + 16l + 15)}]...etc.

(4.11)

where, a = iξA

δ
combining these results with the condition given in equation (1.47)

yields:

S0

λ0
=
S1

λ1
⇒

[

iξA

δ

]

n=0

= (l + 1) (4.12)

S1

λ1
=
S2

λ2
⇒

[

iξA

δ

]

n=1

= 2(l + 1) (4.13)

. . .

Sn

λn
=
S(n+1)

λ(n+1)

⇒
[

iξA

δ

]

n

= (n+ 1)(l + 1) (4.14)

Thus the generalised term in equation (4.14) gives the energy spectrum of the KG-

equation with double ring shaped Coulomb potential ,where n is radial quantum num-

ber (n = 0, 1, 2, ..).

For A = 0 in equation (4.5) we get a singular solution which corresponds to the

inverse square potential which gives bound state only if the separation constant is

negative specially less than −1
4
. The bound states are determined by potential well

type and hence the quantum number n is limited by the study of potential well.

Equation (4.10) satisfies the confluent hypergeometric function and the solution of

the differential equation given in (4.10) can be written as,

f(r) = 1F1(l + 1− iξA

δ
, 2l + 2;−2iδr) (4.15)
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Thus the radial part of the wave function can be written as,

R(r) = N1r
(l+1)e−iδ1F1(l + 1− iξA

δ
, 2l + 2;−2iδr) (4.16)

where N1 is the normalizing constant.

4.3.2 Solution Of the Angle-dependent Klein-Gordon Equa-

tion :

The angular part of the KG equation for double ring shaped coulomb potential is given

by equation (4.6). We consider l̃ = l + 1
2
and l(l + 1) = l̃2 − 1

4
and the equation (4.6)

becomes ,

d2Θ

dθ2
−
[

λC

cos2θ
+
λB − 1

4
+ β2

sin2θ

]

Θ = −l̃2Θ(θ) (4.17)

Defining P and Q as follows,

P = −1

2
±
√

λB + β2 and (4.18)

Q = −1

2
±
√

λC +
1

4
(4.19)

Equation (4.17) reduces to,

d2Θ

dθ2
−
[

Q(Q+ 1)

cos2θ
+
P (P + 1)

sin2θ

]

Θ = −l̃2Θ(θ) (4.20)

To solve this equation by AIM with boundary conditions i.e. θ(0) and θ(π) are finite

we consider the following wave function,

Θ(θ) = sinP+1θcosQ+1θf(θ) (4.21)

By using this wave function in equation (4.20) we get the second order homogeneous

differential equation as,

d2f

dθ2
= 2{(Q+ 1)tanθ − (P + 1)cotθ}}df

dθ
+ [(P +Q+ 2)2 − (l +

1

2
)2]f (4.22)

Now by using AIM method we have,

s0 = [(P +Q+ 2)2 − (l +
1

2
)2] (4.23)

λ0 = 2{(Q+ 1)tanθ − (P + 1)cotθ} (4.24)
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s1 = 2[(P +Q+ 2)2 − (l +
1

2
)2]{(Q+ 1)tanθ − (P + 1)cotθ} (4.25)

λ1 = 2{(Q+ 1)sec2θ + (P + 1)cosec2θ}+ [(P +Q+ 2)2 − (l +
1

2
)2] +

4[{(Q+ 1)tanθ − (P + 1)cotθ}]2 (4.26)

and so on . Thus combining these results with the condition given by equation (1.47)

we have ,

S0

λ0
=
S1

λ1
⇒ l̃2 = (P +Q+ 2)2 (4.27)

S1

λ1
=
S2

λ2
⇒ l̃2 = (P +Q+ 4)2 (4.28)

....etc. (4.29)

and finally we get the generalized form as,

l̃2 = (P +Q+ 2n+ 2)2 for n = 0, 1, 2, 3, ... (4.30)

By putting the value of P , Q and l̃2 into the equation (4.30) we get value of l,

l =
√

λB + β2 +

√

λC +
1

4
+ 2n+

1

2
(4.31)

now by inserting the value of l into the generalized form of energy eigen value for the

radial part of the KG-equation with double ring shaped coulomb potential given by

equation (4.14), we get the relativistic energy spectrum for a bound electron from the

following equation,
[

iξA

δ

]

n

= (n+ 1)(
√

λB + β2 +

√

λC +
1

4
+ 2n+

1

2
+ 1) (4.32)

By putting B = C = 0 into the above equation we get the energy eigen value for

isotropic harmonic oscillator and by putting B = 0 and C 6= 0 into the above equation

we get the eigen values for the ring shaped oscillator.

For the eigen function of the angular part we substitute cos2(θ) = x in the equation

(4.22) and it reduces to the form :

x(1− x)
d2f

dx2
+ [(Q+

3

2
)− (P +Q+ 3)x]

df

dx
+

1

4
[(P +Q+ 2)2 − (l +

1

2
)2]f = 0
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(4.33)

The solution of the above differential equation is of the form of Gauss hypergeometric

function given by,

f(θ) = 2F1(−n, P +Q+ 2 + n,Q+
3

2
; cos2(θ) (4.34)

Therefore, using the value of f(θ) in the equation (4.21) and we get the eigen function

for the angular part as follows:

Θ(θ) = N2sin
P+1θcosQ+1θ2F1(−n, P +Q+ 2 + n,Q+

3

2
; cos2(θ)) (4.35)

where N2 is the normalizing constant.

4.4 The Wave Function

Combining equations (4.8), (4.16) and (4.35) we obtain the total wave function for the

double ring shaped coulomb potential in spherical co-ordinates as

Ψ(r, θ, φ) = Anr
le−i(δ−βφ)sinP+ 1

2 θcosQ+1θ1F1(l + 1− iξA

δ
, 2l + 2;−2iδr)

2F1(−n, P +Q+ 2 + n,Q+
3

2
; cos2(θ)) (4.36)

where An is a normalization constant.
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4.5 Conclusions

We have solved the KG-equation for the Double Ring Shaped coulomb Potential via

Asymptotic Iteration Method .Using this method we get the general expression of the

energy spectrums and the corresponding wave function in terms of confluent hyperge-

ometric function multi-dimensional space .From the solution of the radial part we get

the bound state solution of the inverse square potential by equating A = 0 in equation

(4.5) and we also get a solution of the bound state of potential well type .From the

solution of angular part we get the energy eigen values for isotropic harmonic oscillator

and for the ring shaped oscillator by equating the coefficients in equation (4.32) with

appropriate values . The double ring shaped potentials have many applications in the

field of nuclear physics and quantum chemistry which are mainly used to describe the

interaction between the deformed pair of nuclei in Physics and to describe the molec-

ular structure of benzene in chemistry. Thus the non-central potential named double

ring shaped Coulomb potential is used to find the quantum information in chemical

and Molecular Physics.
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5
Quantum mechanical system with
position dependent mass

5.1 Introduction

A quantum mechanical particle endowed with a position-dependent effective mass con-

stitutes an interesting and useful model for the study of many physical problems.The

effective mass approximation is a very important method in semiconductor physics to

study dynamic and static properties of charge carriers without complexity due to the

lattice potential of the material. The effective-mass approach has also been used as a

computational method to deal with nonuniform crystals.

To determine the electronic properties of semiconductors effective-mass theory is an

important and extensively used tool. The theory is well established for homogeneous

materials with small perturbations [24]. The effective-mass theory has also been applied

to non-uniform materials in which the carrier effective mass depends on position.

The concept of effective mass also plays an important role within the strictures

of the energy density functional approach to the quantum many body problem. The

energy density functional formalism has yielded reasonable theoretical predictions of

many experimental properties for several quantum many body systems. Within the

energy density functional approach, the non-local terms of the associated potential can

be often expressed as a position dependence on an appropriate effective mass. Besides

Corresponding article has been published in The African Review of Physics,(2013), 8:0030 195-200
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its practical applications, the study of quantum mechanical systems with a position

dependent mass also raises interesting conceptual problems of a fundamental nature.

It is important to create a model which contain potential concepts i.e. to describe

the behaviour and interaction between atoms and particles. Potentials play important

role to describe the interaction between nuclei , nuclear particle and the structures of

the diatomic molecules. Various potentials are used to analyze the nature of vibra-

tion of Quantum System such as pseudo-harmonic [69,169-171], modified Eckart plus

Hylleraas [78-82], morse type [88], Wood-Saxon [54,92-94], Rosen-Morse [64,106], har-

monic oscillator [172] specially on lower dimensions. The solutions are also crucial in

quantum soluble systems. Methods involve in literature are Nikiforov-Uvarov method

[46-55], asymptotic iteration method [58-65], Point-Cannonical transformation [71-75],

Lie algebraic method [173], super symmetry approach [136], factorization method [174]

etc.

Here we use Manning Rosen potential(MRP) [85] to solve the Schrödinger equation

with PDM. These type of potentials are used to describe the quark interactions [175] in

particle and high energy physics, spectroscopy [176] in nuclear physics, binding energy

and inclusive momentum distributions [177] in atomic physics, the inter and intra

molecular interactions and atomic pair correlations in molecular physics/chemistry

[178-179].

S.M.Ikdhair [180] has considered a mass function m = m0

(1−δe
−α(r−r0)

r0 )2
, where m0 is

the rest mass and δ is a free parameter and 0 ≤ δ < 1 to deal with the q-deformed

morse potential. Here we use a similar mass function m = m0

(1−qe−αr)2
, where m0 is the

rest mass and α determines the inverse range of potential. To investigate the behaviour

of MRP within the frame work of Schrödinger equation we use Pekeris approximation

[77] and applying some simple constraints we can construct mass function such that

the equation can be solved by LTA.

One of the most effective and different method to solve Schrödinger equation with

PDM for a hyperbolic potential is Laplace transform method (LTM). LTM is an integral

transform method which has been used by many authors [66-67]. It is a powerful

method and it helps us to solve second order differential equation by converting them

into a simpler form whose solutions may be obtained easily. Thus LTM is a very

effective method to solve the radial equations.

Throughout this chapter we have applied Laplace transform method by converting

the wave equation in suitable form for the method with the help of point canonical
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Chapter 5. Quantum mechanical system with position dependent mass

transformation as well as Pekeris approximation.

5.2 Hamiltonian with position dependent

mass for Manning Rosen Potential:

The most general form of Hamiltonian for the position dependent mass m = m(r), is

given by,

H =
1

4(a+ 1)

{

a
[ 1

m
P2 +P2 1

m

]

+mαPmβPmγ +mγPmβPmα

}

+V(r) (5.1)

where P denotes the momentum operator and V(∇) is an arbitrary potential. also α,

β, γ and a are the ambiguity parameters satisfying the constrain α+ β + γ = −1 and

r is the radial coordinate. The commutation relation by the differentiating properties

of the momentum operator P is,

[P , f(r)] = Pf − fP = −i~df
dr
r̂ (5.2)

where f(r) is the arbitrary function of the radial coordinate r. Using equation (5.2),

(5.1) turns into:

H =
1

2m
P∈ + i~

2

1

m2

dm

dr
P∇ + Uα,β,γ,a(r) (5.3)

where

Uα,β,γ,a(r) = −
~
2

4m3(a+ 1)

[

(α + γ − a)m
d2m

dr2
+ 2(a− α− γ − αγ)(

dm

dr
)2

]

+V(r) (5.4)

Imposing some conventional constrain on ambiguity parameters like (α + γ − a) = 0

and (a− α − γ − αγ) = 0 with two possible solutions: (i) α = 0 and a = γ (ii) a = α

and γ = 0, the effective potential can be reduced to Uα,β,γ,a(r) = V (r). Here, we are

interested in this case where the Schrödinger equation yeilds:

− ~
2

2m

[

∇2 − 1

m

dm

dr
∇
]

ϕ(r) = [E − V(∇)]ϕ(r) (5.5)

The wave function can be separated to the following form :

ϕ(r) =
1

r
ψ(r)Y (θ, φ). (5.6)
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Figure 5.1: Manning-Rosen potential versus r with V2 = 1

3
V1 and V1 = 81 eV for different

values of α

Using equation (5.6) into (5.5), one can easily obtain the radial wave equation as:

[

d2

dr2
− 1

m

dm

dr

( d

dr
− 1

r

)

− l(l + 1)

r2

]

ψ(r) = −2m

~2
[E − V(∇)]ψ(r) (5.7)

To eliminate first derivative term we use the transformation based on point canonical

transformation method[181]:

ψ(r) =
√

m(r)φ(r). (5.8)

Substituting equation (5.8) into equation (5.7) one obtains:

d2φ(r)

dr2
+

[

1

2m

d2m

dr2
− 3

4

( 1

m

dm

dr

)2

+
1

rm

dm

dr
− l(l + 1)

r2

]

φ(r)

= −2m

~2
[E − V(∇)]φ(r) (5.9)

The Manning-Rosen potential is:

V(∇) =
−V1(1 + qe−αr)

(1− qe−αr)
+

V2e
−2αr

(1− qe−αr)2
(5.10)

The range of potential is determined by the dimensionless parameter α, q is the defor-

mation parameter and V1 and V2 are two general potential parameters.

The solution is mainly depending on replacing the orbital centrifugal term of sin-

gularity with the help of a suitable transformation for Pekeris approximation as

r → r − r0
r

(5.11)

Here r0 is the equilibrium position of molecules.
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Chapter 5. Quantum mechanical system with position dependent mass

The centrifugal potential barrier term of equation (5.9) can be written using (5.11)

as:

l(l + 1)

r2
=
l(l + 1)

r02
1

(1 + r)2

∼= l(l + 1)

r02

[

C0 + C1
e−αr

(1− qeαr)
+ C2

e−2αr

(1− qeαr)2

]

(5.12)

where,

C0 = 1− 1

α
(1− q)(3 + q) +

3

α2
(1− q)2;C1 =

2

α
(1− q)2(2 + q)− 6

α2
(1− q)3;

C2 = −
1

α
(1− q)3(1 + q) +

3

α2
(1− q)4 (5.13)

taking q → 0,

C0 = 1− 3

α
+

3

α2
;C1 =

4

α
− 6

α2
;C2 =

3

α2
− 1

α
(5.14)

In the same way, we expand the term 1
rm

dm
dr

in equation (5.9) as follows:

1

rm

dm

dr
=

1

r0m

dm

dr

1

(1 + r)
∼= 1

r0m

[

B0 +B1
e−αr

(1− qeαr)
+B2

e−2αr

(1− qeαr)2

]

(5.15)

B0 = 1− 2(1 + q)

α(1 + 2q)
+

(1 + q)

α2(1 + 4q)
− (1 + q)

2α(1 + 2q)
;

B1 =
2

α(1 + 2q)
− 2

α2(1 + 4q)
;B2 = −

1

2α(1 + 2q)
+

1

α2(1 + 4q)
(5.16)

taking q → 0,

B0 = 1 +
1

α2
− 3

2α
;B1 =

2

α
− 2

α2
;B2 = −

1

2α
+

1

α2
(5.17)

By substituting equation (5.10) -(5.12) and equation (5.15) to equation (5.9) and tak-

ing,

y = e−αr (5.18)

we have,

[

y2
d2

dy2
+ y

d

dy
+ Λ

]

φ =
l(l + 1)

α2r02

(

C0 + C1y + C2y
2

)

φ (5.19)
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Figure 5.2: Graphical representation of mass distribution for q = 0.9

where,Λ is as follows:

Λ =
y2

2m

d2m

dy2
− 3

4

y2

m2
(
dm

dy
)2

+
y

m

dm

dy

[

1

2
− 1

αr0
(B0 +B1y +B2y

2)

]

m

m0

(P 2 +Qy +Ry2 (5.20)

where

P 2 = −2(E + V1)m0

α2~2
;Q = −2(2qV1 − V2)m0

α2~2
;R = −4(−qV2 + V1q

2)m0

α2~2
(5.21)

Using the following effective mass distribution:

m =
m0

(1− qy)2
(5.22)

where m→ m0 when q → 0 and m0 is the rest mass.

Considering mass distribution given in equation (5.22) we can convert Λ as follows:

Λ = D0 +D1y +D2y
2 (5.23)

where

D0 = −P 2 ; D1 = −Q ; D2 = −R (5.24)

Substituting equation (5.23) in equation (5.19) we have,

y2
d2φ

dy2
+ y

dφ

dy
− [µ2 − ν2 + η2y2]φ = 0 (5.25)

where

−µ2 = D0 −
l(l + 1)

α2r02
C0; ν

2 = D1 −
l(l + 1)

α2r02
C1;−η2 = D2 −

l(l + 1)

α2r02
C2 (5.26)
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5.3 Bound State solution:

The Södinger equation with position dependent mass for Manning-Rosen Potential

turns into equation (5.25) by using the mass distribution given in (5.22).We consider

the function φ as follows to get finite solutions for large values of y:

φ(y) = y−µf(y) (5.27)

then equation (5.25) turns into,

y2
d2f

dy2
− (2µ− 1)y

df

dy
+ y(ν2 − η2y2)f(y) = 0 (5.28)

By using Laplace Transform[70] equation (5.28) can be transformed into,

(s2 − η2)
dF

ds
+ [(2µ+ 1)s− ν2]F (s) = 0 (5.29)

Therefore the equation given in equation (5.28) transform into a first order differential

equation given in (5.29) and the solutions are in the form

F (s) = N(y + η)−(2µ+1)

(

y − η

y + η

)
ν2

2η
− (2µ+1)

2

(5.30)

where N is a constant.To have a well-behaved wave function we must impose the

condition,

ν2

η
− (2µ+ 1) = 2n, where, n = 0,±1,±2, ..... (5.31)

Here n is positive or negative according as the magnitude of ν2

η
is greater or smaller

than the magnitude of (2µ + 1) .To get the finite solution for large y the parameter

µ needs to be large enough as per equation (5.27). We can get positive value of µ for

sufficiently large values of ν2

η
and for positive or negative values of n. Again we can get

positive value of µ for smaller values of ν2

η
, which is only possible for negative values

of n.

To apply inverse Laplace Transform into (5.30) we expand it in power series as:

F (s) =
∞
∑

m=0

(2η)m

m!

{

N+
(−1)mn!
(n−m)!

(s+ η)−(2µ
++1+m), n > 0

N−
(−1)2m(n+m−1)!

(n−1)! (s+ η)−(2µ
−+1+m), n < 0

(5.32)
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where N± are two integrating constants and µ± corresponds to positive or negative

values of n as given in equation (5.31). Now applying inverse Laplace Transform to

equation (5.32) we have,

f(y) =
∞
∑

m=0

(2η)myme−ηy

m!







N+
(−1)mn!y2µ

+

(n−m)!Γ(2µ++1+m)
, n > 0

N−
(n+m−1)!y2µ−

(n−1)!Γ(2µ−+1+m)
, n < 0

(5.33)

By the series expansion of the confluent hypergeometric function equation (5.33) be-

comes,

f(y) =

{

N+y
2µ+

e−ηy1F1(−η; 2µ+ + 1, 2ηy), n > 0

N−y
2µ−e−ηy1F1(−η; 2µ− + 1, 2ηy), n < 0

(5.34)

Thus using equation (5.27) and (5.34) in the equation (5.8) the solution becomes,

ψ(y) = N
√

m(y)y2µe−ηy1F1(−η; 2µ+ 1, 2ηy) (5.35)

where N is normalizing constant and the mass functionm(y) is given in equation (5.22).

The parameter µ is obtained from equation (5.31) as,

µ =
ν2

2η
− n− 1

2
. (5.36)

where ν and η are given in equation (5.26).

5.4 Energy spectrum:

We get the bound state solution for position dependent Schrödinger equation with the

Manning Rosen Potential via Laplace Transform Approach.We get the energy eigen

function and now we will find out the energy eigen value for that function. Comparing

equation (5.24) and (5.21), we get value of D0. Using this value of D0 and the value

of µ (given by equation (5.36)) into equation (5.26), we get,

E =
α2

~
2

2m0

[

l(l + 1)

α2
C0 −

{

n+
1

2
− 1

2η
(D1 −

l(l + 1)

α2r02
C1)

}2]

− V1 (5.37)

where

η = [
l(l + 1)

α2r02
C2 −D2]

1
2 (5.38)
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Figure 5.3: Energy spectrum for different values of α

5.5 Conclusions:

In this chapter, we have obtained the bound state solutions of the Schrödinger equation

for the Manning-Rosen potential with position dependent mass.The energy equation

have been obtained with the help of LTM, a powerful method to solve second order

differential equation via conversion of it into a more simpler one. The eigen function

have been obtained in terms of confluent hypergeometric function . The out come

of this article is applicable for any kind of mass function for which one can set the

condition Λ = D0+D1y+D2y
2 . One schematic graphical representations for potential

function, mass distribution and energy spectrum are presented in Fig5.1,Fig5.2 and

Fig5.3 respectively.
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Appendix A:

Special functions connecting to relativistic wave equation

Hermite polynomial

The Hermite polynomial of order n is defined by

Hn(x) =

[n
2
]

∑

r=0

(−1)r n!

r!(n− 2r)!
(2x)n−2r (A.1)

Where

[n
2
] =

{

n
2
, n is even

n−1
2
, n is odd

The orthogonality property of the Hermite polynomial is

∫ ∞

−∞
e−x

2

Hn(x)Hm(x)dx =

{

0, if m 6= n
√
π2nn!, if m = n

(A.2)

Laguerre polynomial

The Laguerre polynomial of order n is defined by

Lk
n(x) =

∞
∑

r=0

(−1)r (n+ k)!

(n− r)!(k + r)!r!
xr (A.3)
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The orthogonality property of the Laguerre polynomial is

∫ ∞

0

e−xxkLk
n(x)L

k
m(x)dx =

{

0, if m 6= n
(n+k)
n!

, if m = n
(A.4)

Jacobi polynomial

The Jacobi polynomial of order n is defined by

J (α,β)
n (x) = 2−n

n
∑

r=0

(

n+ α

r

) (

n+ β

n− r

)

(x− 1)n−r(x+ 1)r (A.5)

The Jacobi polynomial of order n can also be expressed as

J (α,β)
n (x) =

Γ(n+ α + 1)

n!Γ(n+ α + β + 1)

n
∑

r=0

(

n

r

)

Γ(n+ α + β + r + 1)

Γ(r + α + 1)

(

x− 1

2

)r

(A.6)

Where
(

n

r

)

= n!
r!(n−r)! =

Γ(n+1)
Γ(r+1)Γ(n−r+1)

The orthogonality property of the Jacobi polynomial is

∫ 1

−1
(1−x)α(1+x)βJ (α,β)

n (x)J (α,β)
m (x)dx =

{

0, if m 6= n
2α+β+1Γ(1+α+n)Γ(1+β+n)
n!(1+α+β+n)Γ(1+α+β+n)

, if m = n

(A.7)

Gauss Hypergeometric Function

The Gauss hypergeometric function is defined by

2F1(α, β; γ; x) =
∞
∑

r=0

(α)r (β)r
(γ)r

xr

r
(A.8)

An important integral formula is given by

2F1(α, β; γ; x) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

t(β−1)(1− t)(γ−β−1)(1− xt)−αdt (A.9)

where Re(α) > Re(β) > 0, | γ |< 1. Now x→ 1. Eq. (A.9) becomes

2F1(α, β; γ; 1) =
Γ(γ)Γ(γ − β − α)

Γ(γ − α)Γ(γ − β)
(A.10)

and

2F1(α, β; β; x) = (1− x)−α (A.11)
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Appendix B:

Deformed hyperbolic functions

The deformed hyperbolic functions are defined as

sinhq x =
ex − qe−x

2
, coshq x =

ex + qe−x

2
, tanhq x =

sinhq x

coshq x
(B.1)

and we use the relations

qsech2
qx+ tanh2

q x = 1, coth2
q x− qcosech2

qx = 1 (B.2)

(tanhq x)
′ = qsech2

qx, (cosechqx)
′ = −cosechqx cothq x,

(cothq x)
′ = −qcosech2

qx (B.3)

where prime denotes the differentiation with respect to x.

coshq(x+ iy) = coshq x cos y + i sinhq x sin y (B.4)

sinhq(x+ iy) = sinhq x cos y + i coshq x sin y (B.5)

sinhq x = 2 sinh√q

(x

2

)

cosh√q

(x

2

)

(B.6)

coshq x = 2 cosh2√
q

(x

2

)

−√q = 2 sinh2√
q

(x

2

)

+
√
q (B.7)

2 coshq(x+ iy) coshq(x− iy) = coshq2 2x+ q cos 2y (B.8)

2 sinhq(x+ iy) sinhq(x− iy) = coshq2 2x− q cos 2y (B.9)

tanhq(x+ iy) =
sinhq x coshq x+ iq sin y cos y

cosh2
q x− q sin2 y

(B.10)

sechq(x+ iy) =
coshq x cos y − i sinhq x sin y

cosh2
q x− q sin2 y

(B.11)

cosechq(x+ iy) =
sinhq x cos y − i coshq x sin y

sinh2
q x+ q sin2 y

(B.12)

cothq(x+ iy) =
sinhq x coshq x− iq sin y cos y

sinh2
q x+ q sin2 y

(B.13)
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Abstract: Relativistic Klein-Gordan equation with Position Dependent Mass has been solved

analytically for the q-deformed modified Eckart plus Hylleraas potential. A generalised series

is used to obtain the bound state solutions of the K-G equation using the Frobenious Method

. The one dimensional K-G equation for the mass dependent modified Eckart plus Hylleraas

potential in absence of scalar potential are studied in this paper. The exactly normalized bound

state wave function and energy expressions are obtained by using N-U method. Also, the bound

state solutions are found for the Hulthén and Rosen-Morse potential.
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1 Introduction

Quantum Mechanical phenomena are described by Schrödinger equation which dictates

the dynamics of quantum systems represented by Hamiltonian Operator. Solutions of

Klein-Gordan Equation for some physical potential have important applications in Molec-

ular Physics, Quantum Chemistry, Nuclear physics, condensed matter Physics, high en-

ergy physics. The study of potentials such as Hulthén [1], Morse [2], Rosen-Morse [3],

Pseudo-harmonic [4], Poschl-Teller [5, 6], Kratzer-Fuez [7], generalized Wood Saxon [8],

ring-shaped Hartmann [9] and the corresponding wave functions has been performed

using various methods.

Recently, there has been renewed interest in solving Quantum Mechanical systems

within the frame work of Nikiforov-Uvarov method[10-14].This technique is successfully

∗ Email: surdebnathju@gmail.com
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used to solve Schrödinger, Klein-Gordan, Dirac and Duffin-Kemmer-Petieu Equqtions.

In nuclear physics, the shape form of the potential also plays an important role partic-

ularly when studying the structure of deformed nuclei or the interaction between them.

Therefore , our aim , in the present work is to investigate analytical bound state so-

lutions of the Klein-Gordon equation with q-deformed modified Eckart plus Hylleraas

potential[15-19] in the Frobenius method [20] as well as in N-U method. Also, we will

show that, when the deformation parameter q takes a particular value (q = 1), the ob-

tained results lead to the solutions of the same problem for modified Eckart plus Hylleraas

potential.

In recent years , the solutions of the non-relativistic wave equation with position-

dependent mass have been a topic of great interest[21-25] , but there are only few papers

that give the solution of the relativistic wave equation with position-dependent mass

in quantum mechanics. Exact solution of the Dirac equation with position-dependent

mass in the Coulomb field [26], Kepler problem in Dirac theory for a particle whose

potential and mass are inversely proportional to the distance from the force center [27],

the approximate solution of the one-dimensional Dirac equations with spatially dependent

mass for the generalized Hulthen potential [28], the exact solution of the one-dimensional

K-G equation with spatially dependent mass for the inversely linear potential [29] are

some papers on relativistic wave equations with position dependent mass.

Our focus is to study the quantum systems with Position Dependent Effective Mass

(PDEM). PDEM Klein-Gordan Equation plays an important role in the study of elec-

tronic properties of semi-conductors in homogeneous crystals,quantum dots,He clusters,

quantum liquids etc. Exact solutions of effective mass Klein-Gordan Equations are dif-

ficult to obtain, as such, approximate numerical techniques are often used. Our work is

generalised as follows:- In section 2 we have discussed the NU method and Frobenious

method . We give a brief discussion of Klein-Gordan Equation with position-dependent

mass in section 3. In section 4 we discuss the solutions of Klein-Gordan Equation by

using both the methods and section 5 is left for conclusion.

2. Overview of Nikiforov-Uvarov and Frobenius Method Method
A. Overview of Nikiforov-Uvarov Method

The N-U method is based on solving a second order linear differential equation by

reducing it to a generalized hypergeometric type. In both relativistic and non-relativistic

quantum mechanics, the wave equation with a given potential can be solved by this

method by reducing the one dimensional K-G equation to an equation of the form :

Ψ′′(x) +
τ̃(x)

σ(x)
Ψ′(x) +

σ̃(x)

σ2(x)
Ψ(x) = 0 (1)

Where σ(x) and σ̃(x) are polynomials of degree atmost 2 and τ̃(x) is a polynomial of

degree atmost 1 . In order to find a particular solution to equation(1) , we set the

following wave function as a multiple of two independent parts

Ψ(x) = Φ(x)y(x) (2)
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Thus equation (1) reduces to a hyper-geometric type equation of the form :

σ(x)y′′(x) + τ(x)y′(x) + λy(x) = 0

Where τ(x) = τ̃(x) + 2π(x) satisfies the condition τ ′(x) < 0 and π(x) is defined as

π(x) =
σ′(x)− τ̃(x)

2
±

√

(
σ′(x)− τ̃(x)

2
)2 − σ̃(x) +Kσ(x) (3)

in which K is a parameter . Determining K is the essential point in calculation of π(x).

Since π(x) has to be a polynomial of degree at most one, the expression under the square

root sign in Eq. (3) can be put into order to be the square of a polynomial of first degree

[10], which is possible only if its discriminant is zero. So, we obtain K by setting the

discriminant of the square root equal to zero . Therefore, one gets a general quadratic

equation for K . By using

λ = K + π′(x) = −nτ ′(x)−
n(n− 1)

2
σ′′(x) (4)

The values of K can be used for the calculation of energy eigenvalues . Polynomial

solutions yn(x) are given by the Rodrigues relation

yn(x) =
Bn

ρ(x)
(
d

dx
)n[σn(x)ρ(x)] (5)

in which Bn is a normalization constant and ρ(x) is the weight function satisfying

ρ(x) =
1

σ(x)
exp

∫

τ(x)

σ(x)
dx (6)

on the other hand , second part of the wave function φ(x) in relation (2) is given by

φ(x) = exp

∫

π(x)

σ(x)
dx (7)

B.Overview of Frobenius Method
This method finds the solutions of a differential equation in the form of series,either a

whole series,a Laurent series, or even a series involving contribute exhibitors. The differ-

ence between these situations is the properties of regularity of the equation coefficients.

To do this you must put the equation in the form:

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0 (8)

Suppose a regular singular point x0,singular functions P(x) and Q(x) and using the Fuck’s

theorem, we can write the solutions of the differential equation in the form:

y(x) =
∞
∑

0

ak(x− x0)
k+r (9)
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The indicial equation is obtained for

r(r − 1) + P (0)r +Q(0) = 0 (10)

For each found values r, we determine the values ak and then the solutions of the differ-

ential equation.

3. Brief discussion of Klein Gordan Equation with position de-
pendent mass

The one dimensional K-G equation for a spinless particle of mass m in the natural

units  = c = 1 can be expressed

Ψ′′(x) + [(E − V (x))2 − (m+ S(x))2]Ψ(x) = 0 (11)

where E , V(x) and S(x) are the relativistic energy of the particle , vector and scalar

potentials respectively. Now considering the q-deformed modified Eckart plus Hylleraas

Potential of the form:

V (x) =
V0

b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2
(12)

Where q is the shape parameter.
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Fig.1.The modified Eckart plus Hylleraas Potential with unit value of α, a, b, q.

We prefer to use the mass function equals to the rest mass along with the vector part

of the potential as

m(x) = m0 +
V0

b

(

a− e−2αx

1− qe−2αx

)

− V1
e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2
(13)

to obtain an exactly solvable Schrödinger-like equation in absence of scalar potential .

The mass function should also be a physical distribution , so we restrict ourself in the
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range 0 ≤ x < ∞ , which gives the finite mass values as follows :

m(x) =











m0 +
V0
b
(a− 1)− V1 + V2 (forq → 0) , x→ 0

m0 +
V0a
b

, x→∞

Actually, this distribution corresponds to shifted scalar potential function in the problem.

Substituting equation (13) in equation (11) we have

Ψ′′(x) +

[

(E2 −m2
0)− 2(E +m0)

{

V0

b

(

a− e−2αx

1− qe−2αx

)

− V1

e−2αx

1− qe−2αx
+ V2

e−2αx

(1− qe−2αx)2

}]

Ψ(x) = 0 (14)

4A.Application of Nikiforov-Uvarov Method

Introducing a new variable s = e−2αx it is straight forward to show that (14) takes

the form:

Ψ′′(s) +
1− qs

s(1− qs)
Ψ′(s) +

1

s2(1− qs)2

[

s2q2(ǫ2 − γ2 − ζ2)

+2qs(γ2 − ǫ2) + (ǫ2 − ω2)

]

Ψ(s) = 0 (15)

Where we use the notations
E2
−m2

0

4α2
= ǫ2 ,γ2 = E+m0

4α2q
{2V1 + 2V0

b
(aq + 1) − 2V2} , ζ2 =

E+m0

4α2q
{(V1+V2)−

V0
b
(aq−1)} and 2V0

b
E+m0

4α2
= ω2 comparing equation (15) with equation

(1) we have

τ̃(s) = 1− qs;

σ(s) = s(1− qs);

σ̃(s) = s2q2(ǫ2 − γ2 − ζ2) + 2qs(γ2 − ǫ2) + (ǫ2 − ω2); (16)

Substituting equation (16) the relation (3) we get

π(s) = −
qs

2
±

√

q2s2(
1

4
+ γ2 + ζ2 − ǫ2 − k1) + qs(k1 − 2γ2 + 2ǫ2) + (ω2 − ǫ2) (17)

where k1 satisfies the relation k = k1q Further the discriminant of the upper expression

under the square root has to be set equal to zero. Therefore, we obtain

∆ = q2(k1 + 2ǫ2 − 2γ2)2 − 4q2(
1

4
+ γ2 + ζ2 − ǫ2 − k1)(ω

2 − ǫ2) (18)

Solving equation (18) for constant k1 , we obtain the double roots as , k1′, k1′′ = 2(γ2 −

ω2)± 2ξη , where ξ2 = ω2 − ǫ2 and η2 = (1
4
+ ζ2 + ω2 − γ2).
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Thus substituting these values for each k1 into equation (17) , we obtain

π(s) = −
qs

2
±











(ξ − η)qs− ξ; for k1′ = 2(γ2 − ω2) + 2ξη

(ξ + η)qs− ξ; for k1′′ = 2(γ2 − ω2)− 2ξη
(19)

By choosing an appropriate value for k in π(s) which satisfies the condition τ ′(s) < 0 ,

one gets π(s) = −qs(ξ + η + 1
2
) + ξ for k = 2(γ2 − ω2)− 2ξη ; giving the function:

τ(s) = 1− 2qs[1 + (ξ + η)] + 2ξ (20)

If we consider λ = k +Π′ defined in (4) we obtain

λ = q[2(γ2 − ω2)− 2ξη −
1

2
− (ξ + η)] (21)

Again using equation (4) , we have:

λn = q[n2 + n+ 2n(ξ + η)] (22)

Using the condition λ = λn one obtains the eigen values of ǫ from the following equation:

ω2 − ǫ2 =

[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(23)

From (6) it can be shown that the weight function ρ(s) is ρ(s) = s2ξ(1 − qs)2η and by

substituting ρ(s) into the Rodrigues relation (5) one gets

yn(s) =
Bn

s2ξ(1− qs)2η
(
d

ds
)n[sn(1− qs)ns2ξ(1− s)2η] =

Bn

s2ξ(1− qs)2η
P (2ξ,2η)n (s) (24)

where P
(2ξ,2η)
n (s) stands for Jacobi polynomial [30] and Bn is the normalizing constant.

The other part of the wave function is simply found from (7) as ,

φ(s) = sξ(1− qs)(
1

2
+η) (25)

Finally , the wave function is obtained as follows

ψ(s) = Bns
−ξ(1− qs)(−η+

1

2
)P (2ξ,2η)n (s) (26)

4B.Application of Frobenius Method

consider the same Klein-Gordan equation and the same Eckart plus modified Hylleraas

Potential given in section 3. After development , we get the following equation:

ψ′′(s) +
1

s
ψ′(s) +

1

s2

[

ǫ2 − 2β2

{

V0

b

a− s

1− qs
− V1

s

1− qs
+ V2

s

(1− qs)2

}]

Ψ(s) = 0 (27)
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where we use the notations
E2
−m2

0

4α2
= ǫ2 and E+m0

4α2
= β2

Comparing (27) with the equation (8) we have, P (s) = 1 and

Q(s) =

[

ǫ2 − 2β2

{

− V1
s

1−qs
+ V0

b
a−s
1−qs

+ V2
s

(1−qs)2

}]

Putting these values the equation (27) becomes ,

ψ′′(s) +
P (s)

s
ψ′(s) +

Q(s)

s2
ψ(s) = 0 (28)

By using Fuck’s theorem , we can write :

ψ(s) =
∞
∑

k=0

aks
k+r, with a0 6= 0 (29)

Differentiation gives us:

ψ′′(s) =
∞
∑

k=0

(k + r − 1)(k + r)aks
k+r−2 and ψ′(s) =

∞
∑

k=0

(k + r)aks
k+r−1 (30)

Putting equation (30) in equation (28) one obtains:

∞
∑

k=0

aks
k{[(k + r)2 + ǫ2 − 2

V0

b
aβ2] + s2[q2{(k + r)2 + ǫ2} − 2qV1β

2 − 2q
V0

b
β2]

+s[−2q(k + r)2 − 2qǫ2 + 2V1β
2 + 2

V0

b
(qa+ 1)β2 − 2V2β

2]} = 0 (31)

By effecting a change of variable we obtain:

a0[(q
2 + 1)(r2 + ǫ2)− 2qV1β

2 − 2
V0

b
β2(a+ q)] +

∞
∑

n=1

sn[an{(q
2 + 1){(n+ r)2 + ǫ2}

−2V1β
2q − 2

V0

b
β2(a+ q)}+ an−1{2V1β

2 + 2
V0

b
(aq + 1)β2 − 2V2β

2

−2q{(n+ r − 1)2 + ǫ2}}] = 0 (32)

By solving the indicial equation I = a0[(q
2 + 1)(r2 + ǫ2) − 2qV1β

2 − 2V0
b
β2(a + q)] ,we

obtain

(q2 + 1)(r2 + ǫ2)− 2qV1β
2 − 2

V0

b
β2(a+ q) = 0

i.e. r = ±

√

−ǫ2(q2 + 1) + 2qV1β2 + 2V0
b
β2(a+ q)

q2 + 1
= ±ν (33)

For r = ν we have:

an =
n
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2 − 2V0

b
(aq + 1)β2 + 2V2β

2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2 − 2V0
b
(a+ q)β2

a0 , n = 1, 2, ....(34)
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So it gets a representation of the solution

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2 − 2V0

b
(aq + 1)β2 + 2V2β

2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2 − 2V0
b
(a+ q)β2

a0 , k = 1, 2, .......(35)

Using the relations (33) and (23) , we obtain the energy eigenvalue associated with

the wave function. We can express the solutions obtained based on the Jacobi poly-

nomial [31]:this result is more accurate.The coefficients of the solution being assessed

explicitly,we seek the bounded solutions.We will only retain the negative value .

5. Discussion

In this subsection we consider some special cases of the potential in consideration: (I)

Hulthen Potential:

If we set V0 = V2 = 0 and a = 0 and b = 1 ,the potential in (12) reduces to

V (x) = −V1
e−2αx

1− qe−2αx
(36)

which is the Hulthen potential.

-4 -2 0 2 4
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Fig.2.The Hulthén Potential with unit value of α, q.

Furthermore we get the eigen values ǫ from the equation

ǫ2 = −

[

8γ2 − (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(37)

and the eigen function is

ψ(s) = Bns
−ξ(1− qs)(−η+

1

2
)P (2ξ,2η)n (s) (38)

where γ2 = 2ζ2, ω2 = 0, η2 = (1
4
− ζ2), ξ2 = −ǫ2 .

Again, applying Frobenius method we obtain

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V1β
2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V1qβ2
a0 , k = 1, 2, .... (39)

(II) Rosen-Morse Potential:
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If we set V1 = V2 = 0 and a = −1 and b = 1 ,the potential in (12) reduces to

V (x) = −V0
1 + e−2αx

1− qe−2αx
(40)

which is the Rosen-Morse potential.

-4 -2 0 2 4
-4

-2

0

2

4

Fig.3.The Rosen-Morse Potential with unit value of α, q.

Furthermore we get the eigen values ǫ from the equation

ǫ2 = ω2 −

[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(41)

and the eigen function is

ψ(s) = Bns
−ξ(1− qs)(−η+

1

2
)P (2ξ,2η)n (s) (42)

where γ2 = 2V0(aq+1)
b

E+m0

4α2q
,ζ2 = −V0(aq−1)

b
E+m0

4α2q
, ω2 = 2V0

b
E+m0

4α2q
, η2 = (1

4
+ ω2 + ζ2 − γ2)

, ξ2 = ω2 − ǫ2 .

Again, applying Frobenius method we obtain

ak =
k
∏

i=1

2q{(i+ ν − 1)2 + ǫ2} − 2V0
b
(aq + 1)β2

(q2 + 1){(i+ ν)2 + ǫ2} − 2V0
b
(a+ q)β2

a0 , k = 1, 2, .... (43)

(III) shape parameter q = 1 :

For N-U method we have the wave function as

ψ(s) = Bns
−ξ(1− s)(−η+

1

2
)P (2ξ,2η)n (s) (44)

one obtains the eigen values of ǫ from the following equation:

ω2 − ǫ2 =

[

8(γ2 − ω2)− (2n+ 1)2 − 1− 2η(2n+ 1)

4(2n+ 1) + 2η

]2

(45)

For Frobenius method, we have

ak =
k
∏

i=1

{(i+ ν − 1)2 + ǫ2} − V1β
2 − V0

b
(a+ 1)β2 + V2β

2

{(i+ ν)2 + ǫ2} − V1β2 −
V0
b
(a+ 1)β2

a0 , k = 1, 2, .... (46)
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5. Conclusion

In this article , the exact solution of the effective mass K-G equation for the modified

Eckart plus Hylleraas potential in absence of Lorentz scalar potential. The eigen values

and eigen functions are obtained using the Frobenius method as well as Nikiforov-Uvarov

method. We gave a schematic graphical representation of the modified Eckart plus Hyller-

aas potential with a shape parameter ‘q’ and also the graphical representation of Hulthén

and Rosen-Morse Potential. The eigen values of the potential reduces to that of well

known potentials viz., Hulthén Potential in equation (36) and Rosen-Morse Potential in

equatioon (40), when we make appropriate choices of parameter a, b, V0, V1, V2 . Finally

we also obtain the wave function which is expressed in terms of the Jacobi Polynomials.
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Massive Dirac Particle in Generalized Asymmetric Manning-Rosen Potential 

S. Sur , S. Debnath

Department of Mathematics, Jadavpur University, Kolkata-700 032, India

The one-dimensional Dirac Equation with position dependent mass has been solved in terms of the hyper-

geometric functions for generalized asymmetric Manning-Rosen Potential containing different type of physical 

potential. Considering one-dimensional electric current density for the Dirac particle the transmission and the 
reflection coefficients are obtained. The expression for the energy-eigen values is obtained by using continuity 

conditions of the wave functions. 

1. Introduction   

     In recent years the study of Quantum Mechanical 

Systems within the framework of position dependent 

mass (PDM) has received much attention in the 

literature [1-5]. Quantum particles with PDM constitute 

useful models for the study of many physical problems, 

for example determination of electronic properties of 

semiconductor hetero-structure [6], various properties 

of hetero-junctions , quantum dots [7] ,
3
He clusters , 

metal clusters, and the density of energy in many body 

problems. The investigation of relativistic effect is 

important in the study of heavy atoms or heavy ions [1]. 

For this type of particles Dirac equation, where the 

mass becomes a function, plays an important role. 

     Dirac equation has been used for the study of 

relativistic heavy ion collisions, heavy ion 

spectroscopy, laser-matter interaction, and especially in 

higher energy physics and condensed matter physics 

[8]. In physics, it is very important to understand the 

structure of nucleus, atoms, molecules and the material 

objects. In order to get complete information about a 

quantum mechanical system, it is needed to study the 

scattering and the bound states. The scattering and 

bound states in non-relativistic and relativistic quantum 

mechanics with a potential are studied in order to 

describe the behavior and the interaction between atoms 

and particles. Thus it is important to create a model 

which contains potential concepts. Some potentials that 

describes the interaction between nuclei and nuclei-

particle and the structures of diatomic and poly-atomic 

molecules are Kratzer-Fuez [9], Rosen-Morse [10], 

Wood-Saxon [11], Morse [12], Hulth��n [13], Cusp 

[14], Deng-Fan, and Eckart potentials [15-16]. 

In this article, we have considered generalized 

asymmetric Manning-Rosen (GAMR) potential [17], 

the GAMR potential was first proposed by Manning 

and Rosen in 1933 to define the vibrational behavior of 

diatomic molecules. After that it has been used to 

describe the interaction between two atoms of a 

diatomic molecule. Some types of potentials can be 

generalized to describe interactions consisting of more 

than one process. 

        The GAMR potential taken for our study is of the 

following form 

���� � ���	� 
� �
��������
������
���������� � �
�������

������
���������� �
�����������	� 
� �
����������

��������
������������ � �
���������
��������
������������    (1)�

Where, �(x) is the Heaviside step-function and all the 

parameters are real. 

     The shape of GAMR potential varies according to 

the values of the parameters. It becomes a potential 

barrier if A, B, C and D are positive and it becomes a 

potential well if A, B, C and D are negative. 

*surdebnathju@gmail.com 
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Fig.1 The generalized asymmetric Manning-Rosen 

potential for   � � � � � �! � �"! � #� $� � �%� � �&� ��'� � �#� ( � � (�� � )*#� and +� � �)*� +, � � �)*-  (for 

smaller values of ��!and��"!) 

Fig.2 The generalized asymmetric Manning-Rosen 

potential for � � � � . �! � �"! � �� $� � �%� � �&� ��'� � �#� ( � # (�� � #)� and +� � ��*. +, � � �-*.  (for 

larger values of ��! and��"!) 

The mass function is chosen here as m(x) = m0 + f(x), 

where f(x) =V(x) and m0 is the rest mass. 

     Our work is generalized as follows. In section 2, we 

have discussed the relativistic Dirac equation with 

position dependent mass. In section 3, we discuss the 

scattering state solutions of Dirac equation for GAMR 

potential. We give a brief discussion about the scattering 

state solutions in section 3. Transmission and reflection 

coefficients are obtained in section 4 and the bound state 

condition for energy-eigen values is obtained in section 5. 

Finally, section 6 is kept for concluding remark. 

2. Dirac equation with position dependent mass 

   The Dirac equation for relativistic free-particle [18] (in 

natural units /=c=1) is as 

��0121�����	
�3�	
���
� ��
�

Where, m(x) is the Dirac particle mass, which depends 

on one spatial coordinate, x. To obtain the one-

dimensional Dirac equation for the external potential 

V(x) we consider the gamma matrices 04 and 0! in 

terms of Pauli matrices 56���and56�7�, respectively. 

89) ## ): ;;4 � <= � ����> 9# )) �#: �
?��� 9# )) #:@ A BCD���CE���F � )         (3) 

Where, U1(x) and U2(x) are decomposed into upper and 

lower components of the two-component wave function 3(x) and Eqn. (3) turns into the following two-coupled 

differential equations. 

From equations (6) and (7) for �(x) and �(x), we get the 

following two distinct second order differential equations 

as follows GCD���G� � �<?��� � �=�H ������>CE�������������������GCE���G� � �<?��� � �= � ������>CD������������I�
According to FlJK gge [19], the following expressions are 

obtained

L�	� � CD�	� � �MNE�	������������������������������������������������O�	� � � CD�	� � � �MNE�	���������������������������������������.��
By putting (5) into (4) we get the following                

equations GL�	�G� � 5<�=�H ������>L�	� � 5?���O�	����������P�GO�	�G� � �5<�=�H ������>O�	� � 5?���L�	��������Q��
From equations (6) and (7) for �(x) and �(x) we get the 

following two distinct second order differential equations 

as follows 

;���R�;4� � DS�4� ;S�4�;4 ;��R�;4 � 8T�=�H ������UE?���E �
�����5 ;V�R�;4 � 5T�=�H ������U DS�4� ;S�4�;4 @��	� � )�������������W�  

;�X�R�;4� � DS�4� ;S�4�;4 ;X�R�;4 � 8T�=�H ������UE?���E �
������5 ;V�R�;4 � 5T�=�H ������U DS�4� ;S�4�;4 @ O�	� � )������������Y�  

The mass function for the Dirac particle is chosen as 

?��� � � ?! � � �Z���[�������������������������������������������#)�
Where, the function f(x) is given by 

  \�	� � ����	� 
� �
��������
������
���������� � �
�������

������
���������� ���� �
��	� 
� �
����������

��������
������������ � �
���������
�������� 
�������������
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Fig.3.The mass variation for Generalized Asymmetric 

Manning Rosen Potential for � � � � .(for larger values 

of  ��!  and  ��"!) , �! � �"! � # , $� � �%� � �&� � �'� ��# ,  (� � � (, � � �)*�  and  +� � �)*- +, � � �)*. � � � ���, (for smaller values of  ��!  and  ��"! ) and taking ?! � #, the rest mass for the Dirac particle. Therefore, the 

derivative term of the mass function m(x) is ignored in (8) 

and (9). 

So the equations (8) and (9) becomes respectively as 

GE��	�G�E � ]<�=�H ������>E?���E � �����5 G��	�G� ^��	� � )���##��
GE��	�G�E � ]<�=�H ������>E?���E � ������5 G��	�G� ^��	� � )���#��

3. Scattering State Solution of Dirac Equation 

As we have to find out the solutions for region � _ ) and � ` ) so we consider a new variable a � � ��
�� b��R�R�� in 

Eqn. (11) for region� _ ). Then the equation (11) 

becomes 

  �EaE ;��c�d�;e� ��Ea ;�c�d�;e � 8�=E � ?!E� � ��=�� 9 fe�
���Dge�� �

he��Dge�:@�i�j� � � )������������������������������������������������������������������#-�
We consider a trial wave function 

�i�j� � ak�# � a�lm�a��������������������������������������������#I�
Then equation (13) reduces to the Gaussian Differential 

Equation [20] given in following equation 

a�# � a� GEmGaE � n# � �k � ��k � �l � #�ao GmGa� �k � l � p��k � l � p�m � )����#.�
The parametersk, l and p are given by 

k � qrs , where t � u=E � ?!E
l � DE � vEf�w�S��s��� � Dx
p � v� �w�gS���s� � E�w�S���s� yf� � %z������������������������������#P�

    The solution of Eqn. (15) is found in the form of hyper-

geometric function as  

m�a� � {D����E|D�k � l � p k � l � p # � �k[ a� �{Ea�gE}�E|D��k � l � p �k � l � p # � �k[ a�������#Q�
Then the whole left-hand solution of equation (11) i.e. the 

solution of equation (13) becomes 

�i�j� � {#ak�# � a�l�|#�k � l � p k � l � p # � �k[ a�� {�a�k�# � a�l�|#��k � l � p �k� l � p # � �k[ a������������������������������#W�
Now we choose a new variable 7 � � ��

�� �g~�RgR" ��� for 

equation (11) for region x > 0 and then equation (11) 

becomes 

  �E7E ;�������;�� � �E7 ;�����;� � 8�=E � ?!E� � ��= �
?!� 9 &7�

����#�7�� � ��
���#�7�:@ �� �7� � )�����������������������������������#Y��   

We consider a trial wave function 

����� � 7k��# � 7�l� ��7������������������������������������������������������)�
Then equation (19) reduces to the Gaussian Differential 

Equation given in following equation 

7�# � 7� GE�G7E � �# � �k, � ��k, � �l, � #�7� G�G7� �k, � l, � p"��k, � l, � p"�� � )������#�
The parameters k,� l,����G�p"  are given by  k, � qr� �  m������t � u=E � ?!E��  

l, � � #� � ��&�= � ?!�
�E�"� � #I

p"  =v� �w�gS����� � E�w�S������ y�
�� � 'z������������������������������������

The solution of Eqn. (21) is found in the form of hyper-

geometric function as 

��7� � {�����E|D�k, � l, � p" k, � l, � p" # � �k,[ 7�� {x7�gE}� �E|D��k, � l, � p" �k, � l,� p" # � �k,[ 7��������������������������������-�
Then the whole right-hand solution of equation (11) i.e. 

the solution of equation (19) becomes 

  

����� � {-7k� �# � 7��l� �|#�k� � l� � p� k� � l� � p� # ��k�[ 7� � �{I7�k��# � 7��l� �|#��k� � l� � p� �k� � l� � p� # ��k�[ 7����������������������������������������������������������������������������������������I�
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4. Transmission and Reflection Coefficient for Electric 

Current Density 

By using the asymptotic behaviours as �� � � ��� and as �� � � �� for the solutions given in equation (18) and 

equation (24), we get the transmission (T) and 

reflection(R) coefficients. 

As x � - � the left-hand solution i.e., equation (18) 

becomes 

�i�	� � {# ��(�
5t� ���t� �5t����)�

� {� ��(�
�5t� ��t� ��5t����)��������.�

And, as �� � � �� the right hand solution i.e., equation 

(24) becomes, 

���	� � {I ���(��
�5t� ��t� �5t�����)����������������������������P�

So to find the electric current density J(x) for Dirac 

particle 

���� � #� <�L�	��E � ������E>������������������������������Q�
By putting equations (25) and (26) in equation (6), we 

have the asymptotic behavior for the left hand solution,  ����� become  

�����
� {D B�(Fqrs �g�rs �qr�4�4�� �= � t�?���
� � {E B�(Fgqrs ��rs �gqr�4�4�� �= � t�?��� ��������������������W�

and the asymptotic behaviors for right hand solution ����� becomes 

���	� � {x ���(,�
gqr� ��r� �qr�4g4"�� �= � t�?��� ���������Y�

Using equations (25), (26), (28) and (29) in equation (27) 

we get left hand value of J(x) i.e. ����� and the right hand 

value of J(x) i.e. �����. 

    From ����� and  ����� we can calculate the value of ���� ¡(transmitted current), �q ¢(incident current) and ��£¤(reflected current) .Finally the reflection coefficient 

(R) and the transmission coefficient (T) are found as the 

following equations, respectively as 

¥ � ��£¤�q ¢ � ¦{E{D¦E = � t= � t �x�rs �������������������������������������������-)�
§ � ���� ¡�q ¢ � ¦{x{D¦E �E�rBDs�D�F��������������������������������������������-#��

Where ¥ and § satisfy the condition: ¥� � �§� � �#. For the 

clear view of the coefficients, we have to use continuity 

condition 

���� � )� � �� �� � )������������������������������������������������������-��
  ¨G��G� ¦4©! � ¨G��G� ¦4©! �������������������������������������������������������������--�
Using the continuity condition we obtain the following 

result:- ªxªD � � �E«E<�¬D � ¬E��D � ¬��x> � �D«D<�¬x � ¬­��E � ¬®�­>�E«E<�¬¯ � ¬°��� � ¬±�®> � ��«�<�¬x � ¬­��E � ¬®�­>����������
ªEªD � � �D«D<�¬¯ � ¬°��� � ¬±�®> � ��«�<�¬D � ¬E��D � ¬��x>��«�<�¬x � ¬­��E � ¬®�­> � �E«E<�¬¯ � ¬°��� � ¬±�®>��-I�
Where, the abbreviations are given below 

6 � � �(
6" � � ��(,²D � 6}�s}4��# � 6�s4��³²E � 6g}�gs}4��# � 6�s4��³
²� � 6"g}� �g�}� 4"��# � 6"��4"��g³�'D ������E |D�k � l � p k � l � p # � �k[ 6�s4��'E ������E |D��k � l � p �k � l � p # � �k[ 6�s4��'� ������E |D��k, � l, � p" �k, � l, � p" # � �k,[ 6"��4"��'x ������E |D�k � l � p � # k � l � p � # � � �k[ 6�s4��'­ ������E |D��k � l � p � # �k � l � p � # �� �k[ 6�s4��'® ������E |D��k, � l, � p" � # �k, � l, � p" � # �� �k,[ 6"��4"��¥D � 6}��k��s}4��# � 6�s4��³¥E � 6�}�D���l���s�}�D�4��# � 6�s4��³gD
¥� � 6}�s}4��# � 6�s4��³ �k � l � p��k � l � p��# � �k�¥x � 6g}���k��gs}4��# � 6�s4��³¥­ � 6�g}�D���l���gs�Dg}�4��# � 6�s4��³gD
¥® � 6g}�gs}4��# � 6�s4��³ ��k � l � p���k � l � p��# � �k�¥¯ � 6"g}� ��k,��g�}� 4"��# � 6"��4"��g³�
¥° � 6"�g}�D�́��l,��g��}µgD�4"��# � 6"��4"��g³�
¥± � 6"g}� �g�}� 4"��#

� 6"��4"��g³� ��k, � l, � p"���k, � l, � p"��# � �k,�
5. Bound State and Ground State Solution for Energy 

Eigen Value 

Case I. Solution for Negative Region(x < 0) 

    We put V (x) � −V (x) in equation (1) to obtain the 

shape of the potential as a potential well and for the 

potential well we get the bound states solution. Thus we 
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���

�

consider a new variable a � � ��
�� b��R�R�� in (11) for 

region� _ ). Then the equation (11) becomes 

�EaE ;��c�d�;e� ��Ea ;�c�d�;e � 8�=E � ?!E� � ��= �
?!� 9 fe�

���Dge�� � he��Dge�:@�i�j� � � )����������������������������������������-.�
We consider a trial wave function, 

�i�j� � ak#�# � a�l#¶�a��������������������������������������������-P�
Then equation (35) reduces to the Gaussian Differential 

Equation given in following equation 

a�# � a� ;�·;e� � n# � �kD � ��kD � �lD � #�ao ;·;e ��kD � lD � pD��kD � lD � pD�¶ � )�����������������������������-Q�
The parameterskD, lD and pD are given by 

kD � qrs , where t � u=E � ?!E
lD � DE � vgEf�w�S��s��� � Dx
pD � v� �w�gS���s� � E�w�S���s� ygf� � %z������������������������-W�
The solution of (37) is found in the form of hyper-

geometric function as  

¶�a� �  D��E|D�kD � lD � pD! kD � lD � pD! # � �kD[ a��  EagE}¸E|D��kD � lD � pD! �kD � lD� pD! # � �kD[ a������������������������������-Y�
Then the left-hand solution of equation (11) i.e., the 

solution of equation (36) becomes 

  

�i�j� �  #ak#�#� a�l#�|#�k# � l# � p#! k# � l# �p#! # � �k#[ a�� �a�k#�#� a�l#�|#��k# � l# �p#! �k# � l# � p#! # � �k#[ a����������������������������������������I)�
Case II. Solution for Positive Region(x > 0) 

Now we choose a new variable 7 � � ��
�� �g~�RgR"��� for 

equation (11) for region x > 0 and then equation (11) 

becomes 

  �E7E ;�������;�� � �E7 ;�����;� � 8�=E �?%E� � ��= �
?%� 9 &7�

����#�7�� � ��
���#�7�:@���7� � )�����������������������������������I#��   

We consider a trial wave function 

����� � 7k�#�#� 7�l�#¹�7���������������������������������������������������I��
Then equation (41) reduces to the Gaussian Differential 

Equation given in following equation 

  

7�# � 7� ;�º;�� � �# � �k,D � ��k,D � �l,D � #�7� ;º;� ��k,D � l,D � p"D��k,D � l,D � p"D�¹ � )�������������������������������I-�
The parameters k,D�! l,D����G�p"D  are given by k,D � qr� � ! m������t � u=E �?%E��  
l,D � �#� � ���&�= �?%��E�"� � #I
p"D  =v� �w�gS����� � E�w�S������ yg��� � 'z���������������������������II�
The solution of (43) is found in the form of hyper-

geometric function as 

¹�7� �  �����E|D�k,D � l,D � p"D! k,D � l,D � p"D! # � �k,D[ 7��  x7�gE}�¸�E|D��k,D � l,D � p"D! �k,D� l,D � p"D! # � �k,D[ 7��������������������I.�
Then the whole right-hand solution of equation (11) i.e. 

the solution of equation (42) becomes 

����� �  -7k�#�#� 7��l�#�|#�k�# � l�# � p�#! k�# � l�# � p�#! #� �k�#[ 7�� � I7�k�#�#� 7��l�#�|#��k�# � l�#� p�#!�k�# � l�# � p�#! # � �k�#[ 7���������IP�
By the boundary condition i.e. as �� � �»��! a� � �) and 7� � �) and the wave functions go to zero at infinity we 

get from equation (40) and (46) E � � � x �� �) . 

Then equation (40) becomes 

�i�j� �  #ak#�# � a�l#�|#�k# � l# � p#! k# � l# � p#! #� �k#[ a��������������������������������������IQ�
And, the equation (46) becomes 

����� �  -7k�#�#� 7��l�#�|#�k�# � l�# � p�#! k�# � l�# � p�#! #� �k�#[ 7���������������������������������������IW�
Case III. Solution for Ground state(x = 0) 

Then by using the continuity condition given by 

���� � )� � ���� � )������
¨G��G� ¦4©% � ¨G��G� ¦4©%���������������������������������������������������������
We obtain now from equations (47) and (48), the 

expression for the energy eigen-values given by 

  <�&­ � &®�&D � &¯&�>&DD&D � <�&° � &±�&E �&D%&x>&DE&E � )�������������������������������������������������������IY�
Where, the abbreviations are 
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�

¼ � ��(
¼, � � ��(,&D ������E |D�kD � lD � pD! kD � lD � pD! # � �kD[ ¼�s4��&E ������E |D�k,D � l,D � p"D! k,D � l,D � p"D! # � �k,D[ ¼,��4"��&� ������E |D�kD � lD � pD � #! kD � lD � pD � #!�� �kD[ ¼�s4����&x ������E |D�k,D � l,D � p"D � #! k,D � l,D � p"D � #!�� �k,D[ ¼,��4"��&­ � ¼}¸��kD��s}¸4��# � ¼�s4��³¸&® � ¼�}¸�D��lD���s�}¸�D�4��# � 6�s4��³¸gD
&¯ � ¼}¸�s}¸4��# � ¼�s4��³¸ �kD � lD � pD��kD � lD � pD��# � �kD�&° � ��k,D¼,}�¸��}�¸½���# � ¼,��½���g³�¸&± � �l,D¼,}�¸���}µ¸�D�½���# � ¼,��½���g³�¸gD
&D% � ¼,}�¸��}�¸½���# � ¼,��½���g³�¸ �k,D � l,D � p"D��k,D � l,D � p"D��# � �k,D�&DD � ¼}¸�s}¸4��# � ¼�s4��³¸&DE � ¼,}�¸��}�¸½���# � ¼,��½���g³�¸

6. Conclusion 

The scattering state and the bound state solutions for the 

one-dimensional Dirac equation with position dependent 

mass for GAMR potential is obtained. Solving the 

equation for the positive and negative region, we get the 

wave function in terms of the hyper-geometric functions. 

Bound state and ground state solutions are also obtained. 

For the solution at x = 0 we use continuity condition and 

finally an expression for energy eigen-value is obtained. 

Transmission (T) and reflection (R) coefficients for 

electric current density for this equation are found and the 

unitary condition ¥ � §� � �# is preserved for PDM case. 

For bound states, we get the discrete spectrum for GAMR 

potential well with effective PDM, finding an exact

condition for the energy eigen-values. Here, we gave a 

schematic graphical representation of the GAMR potential 

and the mass distribution. 
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Abstract. In this article Klein-Gordon equation is studied for Double
Ring Shaped Coulomb Potential by Asymptotic Iteration Method. The
bound state solution is obtained for inverse square potential from Radial
part in terms of confluent hypergeometric function. Energy eigen value
for isotropic harmonic oscillator and ring shaped oscillator with its solu-
tion in terms of Gauss hypergeometric function are also obtained from
the angular part.

Keywords: Klein-Gordon (KG) equation · Double ring shaped
Coulomb Potential · Asymptotic Iteration Method (AIM)

1 Introduction

It is well known that the relativistic part of the Schrödinger equation describ-
ing free particles is the Klein-Gordan (KG) equation. In relativistic quantum
mechanics solution of KG-equation plays an important role for some physical
potential. It has been created a line of great interest to solve KG-equation by
equating scalar and vector potential for some typical central and non-central
potential such as Hulthen [1], Morse [2], Ring shaped Hartmann [3], Kratzer
Fuez [4], Pösch-Teller [5], Coulomb [6], Harmonic Oscillator [7] etc.

Particularly the Coulombic ring shaped Potential is introduced by Hartmann
et al. [8] in Quantum Chemistry. The double ring shaped Coulomb potential is
a 3-dimensional Coulomb potential surrounded by a double ring shaped inverse
square potential. Mainly the double ring shaped Coulomb potential is a non-
central potential in spherical coordinate and can be written as:-

V (r, θ) = −
A

r
+

B

r2sin2Θ
+

C

r2cos2Θ
(1)

where, A = ησ2e2, B = �
2η2σ2

2µ
, C = �

2

2µ
a where, a ≥ 0 µ is the mass of the

particle, η and σ are positive real parameters which range from 1 to 10 and r and
Θ are the spherical coordinates. In Eq. (1) when we put B = 0 and C = 0 then
V(r) reduces to coulomb potential and when B = 0 then V(r) reduces to ring
shaped Hartmann potential. Specially the ring shaped non central potentials

c© Springer Nature Switzerland AG 2020
O. Castillo et al. (Eds.): ICITAM 2019, SCI 863, pp. 725–733, 2020.
https://doi.org/10.1007/978-3-030-34152-7_55
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are used to describe the molecular structure [9] and the interaction between the
deformed nuclie [10] and specially the molecular structure of benzene [11].

The methods considered to solve KG-equation are Super Symmetric Approxi-
mation Method (SUSY) [12], Nikiforov Uvarov Method (NU) [13], WKB Approx-
imation Method [14], Variational, Functional Analysis etc. The Asymptotic Iter-
ation Method (AIM) [15], proposed by Ciffce et al. gives more accurate and effi-
cient results for the spectrum of many particles in relativistic and non-relativistic
Quantum Mechanics compared to the other techniques.

In this paper we solve the 3-dimensional KG-equation for the double ring
shaped Coulomb potential considering equal scalar and vector potential by using
AIM. This paper is as follows: In Sect. 2, we give a brief description about AIM
method. Section 3 gives the stationary radial and angle dependent part of the
KG equation. In Sect. 4 we found the solution of the Radial part of the KG
equation. Section 5 gives the solution of the Angular part of the Kg equation.
Section 6 is left for the conclusion.

2 Overview of Asymptotic Iteration Method

The AIM method is based on solving a second order differential equation of the
form:

f ′′
n (x) = λ0(x)f ′

n(x) + s0(x)fn(x) (2)

Where λ0(x) �= 0 and the prime denotes the derivative with respect to x.
The variables, s0(x) and λ0(x) are sufficiently differentiable. To find a general
solution to this equation, we differentiate (1) with respect to x and find

f ′′′
n (x) = λ1(x)f ′

n(x) + s1(x)fn(x) (3)

Where λ1(x) = λ′
0(x) + s0(x) + λ2

0(x),

s1(x) = s′
0(x) + s0(x)λ0(x). (4)

Similarly, the second derivative of (1) yields

f4
n(x) = λ2(x)f ′

n(x) + s2(x)fn(x), (5)

Where

λ2(x) = λ′
1(x) + s1(x) + λ0(x)λ1(x),

s2(x) = s′
1(x) + s0(x)λ1(x). (6)

Equation (1) can be easily iterated up to (k + 1)th and (k + 2)th derivatives,
k = 1, 2, 3, ... Therefore, we have the recurrence relations

f (k+1)
n (x) = λk−1(x)f ′

n(x) + sk−1(x)fn(x),

f (k+2)
n (x) = λk(x)f ′

n(x) + sk(x)fn(x), (7)



Klein-Gordon Equation with Double Ring Shaped Coulomb Potential 727

Where

λk(x) = λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x),

sk(x) = s′
k−1(x) + s0(x)λk−1(x). (8)

From the ratio of the (k + 2)th and (k + 1)th derivatives, we have

d

dx
ln[f (k+1)

n (x)] =
f

(k+2)
n (x)

f
(k+1)
n (x)

=
λk(x)[f ′

n(x) + sk(x)
λk(x)fn(x)]

λk−1(x)[f ′
n(x) + sk−1(x)

λk−1(x)fn(x)]
. (9)

For sufficiently large k, if

sk(x)

λk(x)
=

sk−1(x)

λk−1(x)
= α(x) (10)

which is the “asymptotic” aspect of the method, then, (8) reduces to

d

dx
ln[f (k+1)

n (x)] =
λk(x)

λk−1(x)
, (11)

which yields

f (k+1)
n (x) = C1exp(

∫

λk(x)

λk−1(x)
dx) = C1λk−1(x)exp(

∫

[α(x) + λ0(x)]dx),(12)

where C1 is the integration constant and the right hand side of (11) is obtained by
using (9) and (10). By inserting (11) into (6), the first-order differential equation
is obtained as

f ′
n(x) + α(x)fn(x) = C1exp(

∫

[α(x) + λ0(x)]dx). (13)

This first-order differential equation can easily be solved and the general
solution of (1) can be obtained as:

fn(x) = exp(−

∫
x

α(x1)dx1)[C2 + C1

∫
x

exp(

∫
x1

[λ0(x2) + 2α(x2)]dx2)dx1] (14)

For a given potential, the radial Klein-Gordon equation is converted to the
form of (1). Then, s0(x) and λ0(x) are determined and sk(x) and λk(x) param-
eters are calculated by the recurrence relations given by (7). The termination
condition of the method in (9) can be arranged as

∆k(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0, (15)

where k shows the iteration number. For the exactly solvable potentials, the
energy eigenvalues are obtained from the roots of (15) and the radial quantum
number n is equal to the iteration number k for this case. For nontrivial poten-
tials that have no exact solutions, for a specific n principal quantum number,
we choose a suitable x0 point, determined generally as the maximum value of
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the asymptotic wave function or the minimum value of the potential and the
approximate energy eigenvalues are obtained from the roots of (15) for suffi-
ciently great values of k with iteration for which k is always greater than n in
these numerical solutions.

The general solution of (1) is given by (13). The first part of (13) gives us the
polynomial solutions that are convergent and physical, whereas the second part
of (13) gives us non-physical solutions that are divergent. Although (13) is the
general solution of (1), we take the coefficient of the second part (C1) as zero,
in order to find the square integrable solutions. Therefore, the corresponding
eigenfunctions can be derived from the following wave function generator for
exactly solvable potentials:

fn(x) = C2exp(−

∫ x sn(x1)

λn(x1)
dx1), (16)

where n represents the principal quantum number.

3 Stationary Radial and Angle-Dependent Klein-Gordon

Equation with Equal Scalar and Vector Potential

The stationary 3D K-G equation with the coupling of a vector potential V(r)
and a scalar potential S(r) for a particle of rest mass m0 in the natural units
� = c = 1 can be expressed as

∇2Ψ(r, θ, φ) + [(E − V (r, θ, φ))2 − (m0 + S(r, θ, φ)2)]Ψ(r, θ, φ) = 0 (17)

where, E, V(r) and S(r) are the relativistic energy of the particle, vector and
scaler potentials, respectively. Assuming V(r) = S(r) we get from Eq. (17),

∇2Ψ(r, θ, φ) + [(E2 − m0
2) − 2(E + m0)V (r, θ)]Ψ(r, θ, φ) = 0 (18)

Now considering the double ring shaped Coulomb potential the KG-equation
reduces to,

∇2Ψ(r, θ, φ) + [(E2 − m0
2) − 2(E + m0){−

A

r
+

B

r2sin2Θ
+

C

r2cos2Θ
}]Ψ(r, θ, φ) = 0 (19)

To separate the variables for the stationary wave function we assume,

Ψ(r, θ, φ) =
R(r)

r

Θ(θ)

sin
1

2 θ
Φ(φ) (20)

By following the standard procedure of separation of variables we get the
component equations as follows:-

d2R

dr2
+ (δ2 +

λA

r
−

α2

r2
)R(r) = 0 (21)

d2Θ

dθ2
− [

λB

sin2θ
+

λC

cos2θ
−

1

4
−

1

4sin2θ
− α2 +

β2

sin2θ
]Θ(θ) = 0 (22)
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d2Φ

dφ2
= −β2Φ(φ) (23)

where, λ = 2(E + m0), δ2 = (E2 − m0
2), represents the relativistic energy of a

particle and α2 and β2 are separation constants. Putting α2 = l(l + 1), which
we often encounter in various Schrödinger quantum systems, with the orbital
angular momentum l = 0, 1, 2,... and the magnetic quantum number β = 0, ±1,
±2,... .

The solution of Eq. (23) is the azimuthal angle solution and it is,

Φ(φ) = Deiβφ (24)

The Eq. (21) is radial equation and Eq. (22) is angle-dependent equation for
the KG equation. For these two equations we use AIM in our next parts.

4 Solution for Radial Part of KG Equation

To solve the Eq. (21) with AIM for l �= 0, we should transform Eq. (21) to the
form of Eq. (2). For bound state solution of the Eq. (21) we consider R(0) = 0 and
R(∞) = 0. Therefore for the physically acceptable radial solution we consider
the radial wave function as follows:

R(r) = r(l+1)e−iδf(r) (25)

Thus by substituting y = −2iδr and taking R(r) as in Eq. (21) the wave
function reduces to,

d2f

dy2
− 2(

1

2
−

l + 1

y
)
df

dy
− (

l + 1

y
−

iξA

yδ
)f(y) = 0 (26)

where, ξ = λ
2 and λ0(y) = 2(1

2 − l+1
y

) and S0(y) = l+1
y

− iξA
yδ

. After calculating

λn(y) and Sn(y) we get,

λ0(y) = 2(
1

2
−

l + 1

y
)

S0(y) =
l + 1

y
−

iξA

yδ

λ1(y) =
2(l + 1)

y2
+

(l + 1) − a

y
−

4(l + 1)

y
+

4(l + 1)2

y2

S1(y) =
(l + 1 − a)(y − 2l − 3)

y2

λ2(y) = 1 −
2(a − 2l + 2)

y
+

(a + 3l + 3) − 2(l + 1)(l + a)

y2
−

4(l + 1)(2l2 + 9l + 8)

y3

S2(y) =
1

y3
[(l + 1 − a){y2 − y(a + 3l + 4) + (4l2 + 16l + 15)}]...etc. (27)
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where, a = iξA
δ

combining these results with the condition given in Eq. (10)
yields:

S0

λ0
=

S1

λ1
⇒

[

iξA

δ

]

n=0

= (l + 1) (28)

S1

λ1
=

S2

λ2
⇒

[

iξA

δ

]

n=1

= 2(l + 1) (29)

. . .

Sn

λn

=
S(n+1)

λ(n+1)
⇒

[

iξA

δ

]

n

= (n + 1)(l + 1) (30)

Thus the generalised term in Eq. (30) gives the energy spectrum of the KG-
equation with double ring shaped Coulomb potential, where n is radial quantum
number (n = 0, 1, 2, ..).

For A = 0 in Eq. (21) we get a singular solution which corresponds to the
inverse square potential which gives bound state only if the separation constant
is negative specially less than − 1

4 . The bound states are determined by potential
well type and hence the quantum number n is limited by the study of potential
well.

Equation (26) satisfies the confluent hypergeometric function and the solution
of the differential equation given in (26) can be written as,

f(r) = 1F1(l + 1 −
iξA

δ
, 2l + 2;−2iδr) (31)

Thus the radial part of the wave function can be written as,

R(r) = N1r
(l+1)e−iδ1F1(l + 1 −

iξA

δ
, 2l + 2;−2iδr) (32)

where N1 is the normalizing constant.

5 Solution for Angular Part of KG Equation

The angular part of the KG equation for double ring shaped coulomb potential
is given by Eq. (22). We consider l̃ = l + 1

2 and l(l + 1) = l̃2 − 1
4 and the Eq.

(22) becomes,

d2Θ

dθ2
−

[

λC

cos2θ
+

λB − 1
4 + β2

sin2θ

]

Θ = −l̃2Θ(θ) (33)

Defining P and Q as follows,

P = −
1

2
±

√

λB + β2 and (34)
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Q = −
1

2
±

√

λC +
1

4
(35)

Equation (33) reduces to,

d2Θ

dθ2
−

[

Q(Q + 1)

cos2θ
+

P (P + 1)

sin2θ

]

Θ = −l̃2Θ(θ) (36)

To solve this equation by AIM with boundary conditions i.e. θ(0) and θ(π)
are finite we consider the following wave function,

Θ(θ) = sinP+1θcosQ+1θf(θ) (37)

By using this wave function in Eq. (36) we get the second order homogeneous
differential equation as,

d2f

dθ2
= 2{(Q + 1)tanθ − (P + 1)cotθ}}

df

dθ
+ [(P + Q + 2)2 − (l +

1

2
)2]f (38)

Now by using AIM method we have,

s0 = [(P + Q + 2)2 − (l +
1

2
)2] (39)

λ0 = 2{(Q + 1)tanθ − (P + 1)cotθ} (40)

s1 = 2[(P + Q + 2)2 − (l +
1

2
)2]{(Q + 1)tanθ − (P + 1)cotθ} (41)

λ1 = 2{(Q + 1)sec2θ + (P + 1)cosec2θ} + [(P + Q + 2)2 − (l +
1

2
)2] +

4[{(Q + 1)tanθ − (P + 1)cotθ}]2 (42)

and so on. Thus combining these results with the condition given by Eq. (10)
we have,

S0

λ0
=

S1

λ1
⇒ l̃2 = (P + Q + 2)2 (43)

S1

λ1
=

S2

λ2
⇒ l̃2 = (P + Q + 4)2 (44)

....etc. (45)

and finally we get the generalised form as,

l̃2 = (P + Q + 2n + 2)2 for n = 0, 1, 2, 3, ... (46)
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By putting the value of P , Q and l̃2 into the Eq. (46) we get value of l,

l =
√

λB + β2 +

√

λC +
1

4
+ 2n +

1

2
(47)

now by inserting the value of l into the generalised form of energy eigen value for
the radial part of the KG-equation with double ring shaped coulomb potential
given by Eq. (30), we get the relativistic energy spectrum for a bound electron
from the following equation,

[

iξA

δ

]

n

= (n + 1)(
√

λB + β2 +

√

λC +
1

4
+ 2n +

1

2
+ 1) (48)

By putting B = C = 0 into the above equation we get the energy eigen value
for isotropic harmonic oscillator[] and by putting B = 0 and C �= 0 into the
above equation we get the eigen values for the ring shaped oscillator.

For the eigen function of the angular part we substitute cos2(θ) = x in the
Eq. (38) and it reduces to the form:

x(1 − x)
d2f

dx2
+ [(Q +

3

2
) − (P + Q + 3)x]

df

dx
+

1

4
[(P + Q + 2)2 − (l +

1

2
)2]f = 0 (49)

The solution of the above differential equation is of the form of Gauss hyper-
geometric function given by,

f(θ) = 2F1(−n, P + Q + 2 + n,Q +
3

2
; cos2(θ) (50)

Therefore, using the value of f(θ) in the Eq. (37) and we get the eigen function
for the angular part as follows:

Θ(θ) = N2sin
P+1θcosQ+1θ2F1(−n, P + Q + 2 + n,Q +

3

2
; cos2(θ)) (51)

where N2 is the normalizing constant.

6 Conclusion

In this paper we have solved the KG-equation for the Double Ring Shaped
coulomb Potential via Asymptotic Iteration Method. Using this method we get
the general expression of the energy spectrums and the corresponding wave
function in terms of confluent hypergeometric function multi-dimensional space.
From the solution of the radial part we get the bound state solution of the inverse
square potential by equating A = 0 in Eq. (21) and we also get a solution of
the bound state of potential well type. From the solution of angular part we get
the energy eigen values for isotropic harmonic oscillator and for the ring shaped
oscillator by equating the coefficients in Eq. (48) with appropriate values. The
Double Ring Shaped Potentials have many applications in the field of nuclear
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physics and quantum chemistry which are mainly used to describe the interac-
tion between the deformed pair of nuclei in Physics and to describe the molecular
structure of benzene in chemistry. Thus the non-central potential named dou-
ble Ring Shaped Coulomb Potential is used to find the quantum information in
chemical and Molecular Physics.

References

1. Talukdar, B., Yunus, A., Amin, M.R.: Continuum states of the Klein-Gordon equa-
tions for vector and scalar interactions. Phys. Lett. A 141, 326–330 (1989)

2. Meyur, S., Debnath, S.: Non-Hermitian Hamiltonian with gauge-like transforma-
tion. Bul. J. Phys. 35, 22–32 (2008)

3. Biswas, B., Debnath, S.: Relativistic scattering state solutions of the K-G equation
for a ring shaped Hartman potential. Afr. Rev. Phys. 8(0018), 113–118 (2013)

4. Biswas, B., Debnath, S.: Bound states of the Dirac-Kratzer-Fues problem with spin
and pseudo spin symmetry via LTA. Bul. J. Phys. 43, 89–99 (2016)

5. De, R., Dutta, R., Sukhatme, U.: J. Phys. A Math. Gen. 25, L843 (1992)
6. Dominguez-Adame, F., Rodriguez, A.: A one dimensional relativistic screened

Coulomb potential. Phys. Lett. A 198, 275–278 (1995)
7. Su, R.K., Ma, J.Q.: Confinement properties for the Dirac equation with scalar-like

and vector-like potentials. J. Phys. A Math. Gen. 19, 1739 (1986)
8. Hartmann, H., Schuch, D.: Int. J. Quantum Chem. 18, 125 (1980)
9. Quesne, C.: A new ring-shaped potential and its dynamical invariance algebra. J.

Phys. A Math. Gen. 21(14), 3093–3101 (1988)
10. Eshghi, M., Meheraban, H., Ikhdair, S.M.: The relativistic bound states of a non-

central potential. Pramana J. Phys. 88, 73 (2017)
11. Ikhdair, S.M., Hamjavi, M.: Approximate relativistic solutions for a new ring

shaped Hulthén potential. Z. Naturforsch. 68a, 279–290 (2013)
12. Aktas, M.: A novel SUSY energy bound-states treatment of the Klein-Gordon

equation with PT-symmetric and q-deformed parameter Hulthén potential. EPL
121(1), 10005 (2018)

13. Sur, S., Debnath, S.: Relativistic KG-equation with position dependent mass for
q-deformed Eckart Plus Hylleraas potential. EJTP 14(37), 79–90 (2018)

14. Chen, G.: Phys. Scr. 69, 257 (2004)
15. Biswas, B., Debnath, S.: Analytical solutions of the KG-equation with posi-

tion dependent mass for generalised Hulthén potential via AIM. Afr. Rev. Phys.
8(0030), 195–199 (2013)


