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1
Introduction

“The most difficult thing is the decision to act, the rest is merely tenacity. The fears are paper

tigers. You can do anything you decide to do. You can act to change and control your life; and

the procedure, the process is its own reward." - Amelia Earhart

"We are free to choose our paths, but we can’t choose the consequences that come with them."

— Sean Covey

“Making good decisions is a crucial skill at every level." - Peter F Drucker

In psychology, decision-making is consider as a cognitive process that involves choos-

ing a course of belief or action among the various possible alternatives. It can be logical

or irrational. Decision making is inevitable in our personal, professional or social lives

on a day-to-day basis depending upon the situation we are in, especially faced with a

crisis. There may be situations where decision is forced to be taken instantly. At the

time of taking decision, there is no right decision or wrong decision.

Decision making is the study of identifying and choosing options based on its decision

values and preferences. Making a decision means that alternatives can be considered,

and, in this case, we want to not only identify as many of these options as possible

but also choose the most appropriate to our goals, objectives, aspirations, values and

so on. It is a process of selecting a single option from a set of available choices in a

systematic and logical way.

1



Chapter 1: Introduction 2

The steps involved in decision making are referred to as the decision making process.

We discuss the decision making process with the following steps (Baker et al., 2001;

Fülöp, 2005).

Define the decision problem: Decision makers should be fully aware of the problem

of decision making. It is important to identify, understand and define the prob-

lem before making a decision. This process must be able to identify the root cause

by carefully limiting the assumptions.

Identify the criteria: Identifying and defining criteria that will differentiate between

options must be based on goals. Problems with a decision that have a large num-

ber of criteria are especially helpful for developing better alternatives. An ideal

set of criteria should be effective and meaningful.

Identify alternatives: A major part of decision making involves the analysis of a lim-

ited set of alternatives. All available alternatives are compared with the selected

aspects and then any aspect that fails to meet is eliminated until only one option

remains so that the desired goal can be achieved.

Allocate importance weights to each criteria: The weights of the criteria are allocated

accordingly and comparative comparisons are applied.

Score the criteria for each of the alternatives: A matrix is formed by scoring criteria

for each option and this matrix is applied to the decision rules.

Apply the decision rules: Criteria must be applied based on the weight and the in-

put of the score of each option decision to determine possible and appropriate

options.

Evaluate alternatives against criteria: After evaluation, the decision-making tool can

be applied to rank options or to choose more promising options from a set of

defined options.

Identify the best alternative: Appropriate alternatives of the final stage of the deci-

sion model is identified with the help of evaluation and thus the goal is achieved.



Chapter 1: Introduction 3

1.1 Multi-criteria decision making

Multi-criteria decision making (MCDM) is very intuitive when considered with sin-

gle criterion issue, since we only have to choose the option with the highest preferred

rating. However, when decision makers evaluate options with multiple criteria, many

issues such as the weight of the criteria, the dependence on the choice, and the conflict

between the criteria complicate the issues which need to be solved more sophisticat-

edly.

In order to deal with multiple criteria decision-making problems, the first step is to fig-

ure out how many attributes or criteria exist in the problem and how to grasp the way

of the problems (i.e., identifying the problems). Next, we need to collect the appro-

priate data or information in which the preferences of decision maker can be correctly

reflected upon and considered (i.e., constructing the preferences). Further work builds

a set of possible alternatives or strategies in order to guarantee that the goal will be

reached (i.e., evaluating the alternatives). Through these efforts, the next step is to se-

lect an appropriate method to help us evaluate and outrank or improve the possible

alternatives or strategies (i.e., finding and determining the best alternative).

It is very important to make a distinction between the cases where we have a single cri-

terion or multiple criteria. When a decision problem has a single criterion or a single

aggregate measure, the decision can be made implicitly by determining the alterna-

tive with the best value of the single criterion or aggregate measure. When a decision

problem has a finite number of criteria or multiple criteria, and the number of feasible

alternatives is infinite, then the decision problem belongs to the field of multiple crite-

ria optimization. Also, techniques of multiple criteria optimization can be used when

there are a finite number of feasible alternatives, but are given only in implicit form.

Hwang and Yoon (1981) suggested that MCDM problems can be classified into two

main categories based on the different purposes and different data types:

Multi-attribute decision making (MADM): In this problem, the number of criteria

(attributes) and alternatives are finite where the alternatives are explicitly given.

The decision space of MADM is primarily discrete.

Multiple objective decision making (MODM): In this problem, the number of crite-

ria is finite but the number of feasible alternatives is infinite. The decision space

of MODM is often continuous.
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1.1.1 Some important multi-criteria decision making techniques

Over the past few years, some well-known MCDM methods are commonly used to

analyze the problem and find the desired alternative. Those are Techniques for Or-

der Preference by Similarity to Identical Solution (TOPSIS) (Hwang and Yoon, 1981),

Compromise ranking method (VIKOR) (Opricovic and Tzeng, 2004), Grey Relational

Analysis (GRA) (Julong et al., 1989), Analytical Hierarchy Process (AHP) (Saaty, 1980),

Elimination Et Choice Translating REality(ELECTRE) (Figueira et al., 2016), Preference

Ranking Organization Method for Enrichment of Evaluation (PROMETHEE) (Brans

et al., 1986), and Decision-Making Trial and Evaluation Laboratory (DEMATEL) (Gabus

and Fontela, 1972). Here we discuss some classical techniques for MCDM.

TOPSIS Method:

TOPSIS method is used to determine the best alternative from the concept of com-

promise solution. The best compromise solution should have the shortest Euclidean

distance from the ideal solution and the farthest Euclidean distance from the negative

ideal solution. The procedures of TOPSIS can be described as follows:

Let A= {A1, A2, . . . Am} be the set of alternatives , C= {C1, C2, . . . , Cn} be the set of

criteria and D= {dij}, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, be the performance ratings with

the criteria weight vector W = {wj|j = 1, 2, . . . , n}. TOPSIS method is presented with

these following steps:

Step 1. Normalization of the decision matrix : The normalized value dNij is calculated

as follows:

• For benefit criteria (larger the better), dNij=(dij−d−j )/(d+
j −d−j ), where d+

j = max
i

(dij)

and d−j = min
i

(dij) or setting d+
j is the aspired or desired level and d−j is the worst

level.

• For cost criteria (smaller the better), dNij=(d−j − dij)/(d−j − d+
j ).

Step 2. Calculation of weighted normalized decision matrix : In the weighted nor-

malized decision matrix, the modified ratings are calculated in the following way:

vij = wj × dNij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (1.1)

where wj is the weight of the j-th criteria such that wj ≥ 0 for j = 1, 2, . . . , n and∑n
j=1 wj = 1.
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Step 3. Determination of the positive and the negative ideal solutions : The positive

ideal solution (PIS) and the negative ideal solution(NIS) are derived as follows:

PIS = A+ =
{
v+

1 , v
+
2 , . . . v

+
n ,
}

(1.2)

=

{(
max
j
vij|j ∈ J1

)
,

(
min
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
and

NIS = A− =
{
v−1 , v

−
2 , . . . v

−
n ,
}

(1.3)

=

{(
min
j
vij|j ∈ J1

)
,

(
max
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
where J1 and J2 are the benefit and cost type criteria, respectively.

Step 4. Calculate the separation measures for each alternative from the PIS and the

NIS : The separation values for the PIS can be measured by using the n-dimensional

Euclidean distance which is given as:

D+
i =

√√√√ n∑
j=1

(
vij − v+

j

)2
i = 1, 2, . . . ,m. (1.4)

Similarly, separation values for the NIS is

D−i =

√√√√ n∑
j=1

(
vij − v−j

)2
i = 1, 2, . . . ,m. (1.5)

Step 5. Calculation of the relative closeness coefficient to the positive ideal solution:

The relative closeness coefficient for the alternative Ai with respect to A+ is

Ci =
D−i

D+
i +D−i

for i = 1, 2, . . . ,m. (1.6)

Step 6. Ranking the alternatives : According to relative closeness coefficient to the

ideal alternative, larger value of Ci indicates the better alternative Ai.
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Grey relational analysis (GRA):

Grey relational analysis (GRA) is an important section of grey system theory which

was proposed by Julong et al. (1989). GRA is mainly used to conduct relational anal-

ysis of uncertainty of a system having incomplete information. This method is appli-

cable to discrete sequence for co-relational analysis of such sequence with processing

uncertainty, multi-variate input and discrete data. GRA method has been successfully

applied for MCDM problems. The method can be described as given below (see also

Figure1.1):

FIGURE 1.1: A schematic diagram of the GRA Method

• Grey relational generating

Translate all the alternatives to comparability sequence. This process is called

grey relational generating.

• Define ideal target sequence

Define the ideal target of the sequence of each alternative.

• Calculate Grey relational coefficient

Calculate the grey relational coefficient between ideal target sequence and com-

parability sequence.
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• Determine Grey relational degree

If an alternative achieves the maximum grey relational degree between the ideal

target sequence and itself then that alternative is the optimal choice of alterna-

tive.

PROMETHEE Method:

PROMETHEE method is an outranking method for MCDM, which was developed

by Brans et al. (1986). This method can handle multiple and complex criteria and it

depends only on two types of information:

1. Weight of criteria.

2. Information regarding the preference of the decision maker.

The classical PROMETHEE method (Brans et al., 1986) can be described by the follow-

ing steps:

Step 1. Construct the evaluation matrix

In MCDM problem, if there are m alternatives A and n criteria of each alternative

C = {C1, C2, ....Cn} then the evaluation matrix is of the form X = (α)m×n, where α is

the ratting value of the alternatives with respect to the corresponding criteria.

Step 2. Pairwise comparison of the alternatives

In this step, the deviation values are calculated based on pairwise comparison as given

below:

dj(α, β) = cj(α)− cj(β)

where dj(α, β) denotes the difference between the assessments of the alternatives with

respect to the criteria cj .

Step 3. Calculate the preference function

This step determines the preference function between each pair of alternatives with

the function

Pj(α, β) = fj[dj(α, β)], ∀ α, β ∈ A.

where fj , the preference function which converts dj(α, β) into a preference degree, lies

between 0 and 1. Six types of preference function fj , proposed by Brans et al. (1986),

are as follows:
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1. Usual criterion preference function

Pk(α, β) =

{
0, dk(α, β) ≤ 0 (indifference)

1, dk(α, β) > 0 (strict indifference)

2. U -shape criterion preference function

Pk(α, β) =

{
0, dk(α, β) ≤ p (indifference)

1, dk(α, β) > p (strict indifference)

3. V - shape criterion preference function

Pk(α, β) =


0, dk(α, β) ≤ 0 (indifference)
dk(α, β)

p
, 0 < dk(α, β) ≤ p

1, dk(α, β) > p (strict indifference)

4. Level criterion preference function

Pk(α, β) =


0, dk(α, β) ≤ q (indifference)
1

2
, q < dk(α, β) ≤ p

1, dk(α, β) > p (strict indifference)

5. V -shape criterion function with indifference area

Pk(α, β) =


0, dk(α, β) ≤ q (indifference)
dk(α, β)− q

p− q
, q < dk(α, β) ≤ p

1, dk(α, β) > p (strict indifference)

6. Gaussian criterion function

Pk(α, β) =


0, dk(α, β) ≤ 0

1− e
−
d2
k(α, β)

s2 , dk(α, β) > 0

Step 4. Determine the aggregated preference degree

LetW = {w1, w2, ...., wn} be the weight of the criteria where 0 ≤ wj ≤ 1 for j = 1, 2, ....n

and
n∑
j=1

wj = 1. These weights can be considered by the decision maker when the
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number of criteria is not large. Then the aggregated preference function is defined by

Π(α, β) =
n∑
j=1

wjPj(α, β).

Step 5. Calculate the positive and the negative outranking flows

In this step, leaving flow or positive outranking flow is calculated to decide the strength

of the alternatives, and entering flow or negative outranking flow is calculated to de-

cide the weakness of the alternatives. The positive outranking flow is calculated as

Φ+ =
1

m− 1

∑
γ∈A

Π(α, γ)

and the negative outranking flow is calculated as

Φ− =
1

m− 1

∑
γ∈A

Π(γ, α)

Step 6. Calculate the net outranking flow

The positive and the negative outranking flows show the best alternative performance.

This is demonstrated via PROMETHEE I (partially) and PROMETHEE II (completely).

In PROMETHEE I, if an alternative α is better than the alternative β then the following

relation holds:

αPβ if Φ+(α) > Φ+(β) and Φ−(α) < Φ−(β)

or, if Φ+(α) > Φ+(β) and Φ−(α) = Φ−(β)

or, if Φ+(α) = Φ+(β) and Φ−(α) < Φ−(β)

If an alternative α is identical to the alternative β, then

αIβ if Φ+(α) = Φ+(β) and Φ−(α) = Φ−(β).

Otherwise, the alternatives are incomparable i.e, αRβ.

PROMETHEE II gives a complete ranking and the procedure to compute the net out-

ranking flow can be done from the following:

Φ(α) = Φ+(α)− Φ−(α)
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Then a complete rank of the alternatives is obtained according to net outranking flow

for each alternative.

DEMATEL Method:

DEMATEL method is framed on the basis of the graph theory (Gabus and Fontela,

1972). This method enables analysis and resolves problems by visualization technique.

DEMATEL method investigates and visualizes direct and indirect relationships be-

tween components of researching system according to their criteria. By analyzing the

relationship level among the whole system’s factors, all the elements are categorized

into cause group and effect group. DEMATEL method produces a better understand-

ing of relation, and observes the ideal solution of the problem of a complex system.

The steps of DEMATEL method are described as follows:

Step 1: Defining the dominant feature in the research methodology, the linguistic mea-

surement scale is set for pairwise comparison among all characteristics. The initial di-

rect relation matrix D = [dij]n×n is obtained by pairwise comparison between criteria,

in which dij denotes the degree to which the criterion i affects the criterion j.

Step 2: This step defines the normalization of direct relation matrix. On the basis of

direct relation matrix D, the normalized direct relation matrix can be obtained as

S = k ×D, (1.7)

where, k =
1

max
1≤i≤n

∑n
j=1 dij

.

Step 3: The total relation matrix is determined as given below:

T = S(I − S)−1,where I is the n× n identity matrix. (1.8)

Step 4: Construct the DEMATEL map with respect to the total relation matrix. The

sum of rows and the sum of columns are denoted by vectors Rj (j = 1, 2..., n) and Di

(i = 1, 2, ..., n), respectively within the total relation matrix T = [tij]n×n and are given

by

Rj =
[ n∑
j=1

tij

]
1×n

(1.9)

Di =
[ n∑
i=1

tij

]
n×1

(1.10)
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where Di + Rj is a horizontal axis vector or ‘prominence’ which indicates the relative

importance of the criterion, and the vertical axis Di − Rj represents ‘relation’. If the

value of Di−Rj is positive then the criterion is formed into the cause group, and if the

value of Di −Rj is negative then the criterion is formed into the effect group.

Step 5: The sum of each column of the total relation matrix is 1 by normalized method,

which gives the inner dependency of the matrix.

1.2 Motivation

Classical MCDM methods usually assume that all criteria and their respective weights

are expressed in crisp values, and for that reason, the rating and the ranking of the

alternatives can be carried out without any problem. In a real-world decision mak-

ing situation, the application of the classical MCDM method may consider practical

constraints from the criteria perhaps containing indeterminacy, or uncertainty in the

information. The indeterminacy and uncertainty may come from different sources

(Chen and Hwang, 1992).

Unquantifiable information: The price of a new laptop can be easily determined while

the quality or look of a laptop is not quantifiable. Quality or look is usually

expressed in linguistic terms such as good, fair, poor, etc. known as qualitative

data.

Incomplete information: The speed of a fast moving object can be measured by some

equipments as "about 50 kmph" but not "exactly 50 kmph." Such data type may

be termed as an incomplete information.

Non-obtainable information: Sometimes crisp data are obtainable but the cost is too

high, and the decision maker may wish to get an "approximation" of that crisp

data. When the data are very sensitive (i.e., government’s top secret, an individ-

ual’s wealth amount, etc.), some "approximated" data or linguistic descriptions

are used.

Partial ignorance: Sometimes uncertainty is attributed to partial ignorance of the phe-

nomenon, as a part of the facts can only be known.

Fuzzy set (Zadeh, 1965) is useful and effective for presenting different types of inde-

terminant or uncertain information, it handles with a kind of uncertainty known as
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“fuzziness”. Each real value of the interval [0, 1] represents the membership degree of

an element of a fuzzy set. If µA(x) ∈ [0, 1] is the membership degree of an element x of

a fuzzy set A, then 1− µA(x) is assumed to be the non-membership degree of that ele-

ment. The fuzzy information is related to three valued logic:true, false and ambiguous,

which can be depicted by 1.2.

FIGURE 1.2: The structure of the fuzzy information

Generally this does not hold for an element with incomplete information. Atanassov

(1986) developed the idea of intuitionistic fuzzy set (IFS). In IFS, two membership

functions are expressed by the membership degree and non-membership degree of

elements in the universe to the set. If µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] then 0 ≤ µA(x) +

νA(x) ≤ 1. Therefore, it provides a flexible mathematical framework to incomplete

and uncertainty information. The intuitionistic fuzzy information is related to a tetra-

valued logic where the information could be: true, false, ambiguous and unknown.

The information presented by intuitionistic fuzzy sets can be depicted by the Fig. 1.3:

FIGURE 1.3: The structure of the intuitionistic fuzzy information
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However, it can only handle incomplete and uncertainty information but not the usual

real situation where the indeterminate and inconsistent information can occur. For

example, when an expert gives the opinion about a certain statement, he or she may

say that the possibility of the statement being true is 0.5, the degree of false statement

is 0.6, and the possibility for not sure is 0.2. A further example relates to the field of

medicine. Sometimes it is difficult for a doctor to make a certain diagnosis when a

patient is suffering from a disease. Therefore, she/he will often give an analysis with a

degree of truth and falsity, as well as indeterminacy, such as 60% of “yes”, 30% of “no”

and 20% of “not sure”. These issues are beyond the scope of the FSs and IFSs.

For this purpose, Smarandache (1999b) developed neutrosophic logic and neutrosophic

sets (NS). The NS is a set where each element of the universe has a degree of truth, in-

determinacy and falsity and which lies in the nonstandard unit interval. Single valued

neutrosophic set (SVNs) (Wang et al., 2010) is a special type of neutrosophic set. In

neutrosophic set, the membership function value can be greater than 1. If one element

of neutrosophic set is appreciated more then the truth membership value in that par-

ticular case can be greater than 1. However, in single-valued neutrosophic set, this

does not happen because the membership value of single valued neutosophic set lies

in [0, 1] and the sum of membership values lies in [0, 3].

Yager (2013)and Yager and Abbasov (2013) introduced Pythagorean fuzzy sets(PFS)

which is the extension of IFS. In IFS, the membership function µ and non-membership

function ν satisfy the condition 0 ≤ µ + ν ≤ 1, for µ ∈ [0, 1] and ν ∈ [0, 1]. Note

that an element having membership degree µ ∈ [0, 1] and non-membership degree

ν ∈ [0, 1] does not necessarily belong to IFS. For example, if the membership value and

non–membership value of an alternative are 0.8 and 0.3 respectively, then the sum of

membership and non-membership values of the alternative is greater than 1, which

invalidates the criteria for being an IFS. On the other hand, PFS can easily handle

this situation because PFS considers the condition µ2 + ν2 ≤ 1, which is clearly satis-

fied as 0.82 + 0.32 < 1. This indicates that PFS has an edge over IFS as well as FS in

decision-making process under uncertainty. The geometric interpretation of fuzzy set

(FS), intuitionistic fuzzy set (IFS), Pythagorean fuzzy set (PFS) and neutrosophic set

(NS) are shown in Fig 1.4.

In many cases, it is difficult for decision-makers to definitely express preference in

solving MCDM problems with inaccurate, uncertain or incomplete information. Un-

der these circumstances, neutrosophic sets, SVNs and Pythagorean fuzzy sets charac-

terized by their independent membership degree can play an effective role for solving
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MCDM problems.

Recently, MCDM under neutrosophic environment is gaining popularity among the

researchers. Therefore, there is an opportunity to develop new methods and/or to ex-

tend some popular methods in uncertain environment. Development of some meth-

ods of MCDM under neutrosophic set and Pythagorean fuzzy set are the main moti-

vation of the thesis.

FIGURE 1.4: Geometric representation of FS, IFS, PFS and NS

1.3 Aims and objectives

The primary aim of the thesis is to develop some MCDM models in uncertain envi-

ronment to deal with real-life decision making problem. The specific objectives of the

thesis are as follows:

• To study MADM problem, where the rating values of the attributes are SVTrNNs

and weight information is partially known or completely unknown.
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• To define a new distance measure of SVTrNN and study some of its properties.

• To develop optimization models to determine the weights of attributes.

• To extend GRA method for solving SVTrNN based MADM problem using a new

distance measure.

• To propose TOPSIS method for MADM problem based on interval valued trape-

zoidal neutrosophic number.

• To develop the model where the rating values of the attributes are ITrNN and

weight information is completely known, partially known and completely un-

known.

• To formulate SVNHFS based MADM problem, where the weight information is

incompletely known and completely unknown.

• To determine the weights of attributes given in incompletely known and com-

pletely unknown forms using deviation method.

• To extend TOPSIS method for solving SVNHFS based MADM problem using

the proposed optimization model and further extend the proposed approach in

INHFS environment.

• To extend the PROMETHEE method for MCDM with Pythagorean fuzzy set.

• To apply the Pythagorean fuzzy PROMETHEE method for a medical diagnosis

problem.

• To develop DEMATEL method with Pythagorean fuzzy sets. and solve the pro-

posed method by using trapezoidal Pythagorean fuzzy number (TrPFN).

• To apply the Pythagorean fuzzy DEMATEL method in sustainable supply chain

management.

• To define the spherical neutrosophic number weighted averaging aggregation

(SNNWAA) operator to solve MCDM problem.

• To calculate the performance of the alternatives with respect to the criteria using

SNNWAA operator.
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1.4 Preliminaries

In this section, we review some preliminaries regarding fuzzy sets, intuitionistic fuzzy

sets, neutrosophic sets, Pythagorean fuzzy sets, and spherical neutrosophic sets.

1.4.1 Fuzzy sets

Definition 1.1. (Zadeh, 1965) A fuzzy set Ã in a universe of discourse X is defined by

Ã={〈x, µÃ(x)〉 |x ∈ X}, where, µÃ(x): X → [0, 1] is called the membership function of

Ã and the value of µÃ(x) is called the degree of membership for x ∈ X .

The α−cut of the fuzzy set A is the crisp set Aα given by Aα = {x ∈ X : µA(x) ≥ α},
α ∈ [0, 1].

Definition 1.2. (Dubois and Prade, 1983; Heilpern, 1992) A fuzzy number Ã is called

a trapezoidal fuzzy number(TrFN), if its membership function is defined by

µÃ(x) =



x− a1

a2 − a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3

a4 − x
a4 − a3

, a3 ≤ x ≤ a4

0, otherwise.

The TrFN Ã is denoted by the quadruplet Ã=(a1, a2, a3, a4) where a1, a2, a3, and a4

are real numbers and a1 ≤ a2 ≤ a3 ≤ a4. The value of x at [a2, a3] gives the maxi-

mum of µÃ(x), i.e., µÃ(x) =1; it is the most probable value of the evaluation data. The

value of x outside the interval [a1, a4] gives the minimum of µÃ(x), i.e., µÃ(x) = 0; it

is the least probable value of the evaluation data. Constants a1 and a4 are the lower

and upper bounds of the available area for the evaluation data. The α−cut of TrFN

Ã=(a1, a2, a3, a4) is the closed interval

Aα = [Lα(Ã), Rα(Ã)]

= [(a2 − a1)α + a1,−(a4 − a3)α + a4], α ∈ [0, 1].

Definition 1.3. (Dubois and Prade, 1983; Heilpern, 1992) A generalized trapezoidal

fuzzy number is an extension of trapezoidal fuzzy number which is denoted by
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A = (a1, a2, a3, a4;w) with membership function µA given by

µA(x) =



(x− a1)w

a2 − a1

, a1 ≤ x < a2

w, a2 ≤ x ≤ a3

(a4 − x)w

a4 − a3

, a3 < x ≤ a4

0, otherwise.

where a1, a2, a3, a4 ∈ R and w is called membership degree.

Definition 1.4. (Torra, 2010) Let X be a universe of discourse. A hesitant fuzzy set

(HFS) on X is symbolized by

A = {〈x, hA(x)〉 | x ∈ X}, (1.11)

where hA(x), referred to as the hesitant fuzzy element, is a set of some values in [0, 1]

denoting the possible membership degree of the element x ∈ X to the set A.

From the mathematical point of view, a HFS A can be seen as a FS if there is only one

element in hA(x). For notational convenience, we assume h as hesitant fuzzy element

hA(x) for x ∈ X .

Definition 1.5. (Torra, 2010) Let h = hA(x) be a hesitant fuzzy element for x ∈ X to the

set A. Then the score function of h is defined as follows:

S(h) =
1

lh

∑
γ∈h

γ (1.12)

where, lh is the number of the elements in a hesitant fuzzy element h.

Definition 1.6. (Chen et al., 2013) Let X be a non-empty finite set. An interval hesitant

fuzzy set on X is represented by

E =
{
〈x, h̃E(x)〉|x ∈ X

}
,

where h̃E(x) is a set of some different interval values in [0, 1], which denote the possible

membership degrees of the element x ∈ X to the set E. h̃E(x) can be represented by

an interval hesitant fuzzy element h̃ which is denoted by {γ̃|γ̃ ∈ h̃}, where γ̃ =[γL, γU ]

is an interval number.
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Definition 1.7. (Kutlu Gündoğdu and Kahraman, 2019) Let X be a universe of dis-

course. A spherical fuzzy set A is an object having the form

A = {(x, (µ(x), ν(x), π(x))) : x ∈ X}

where µ(x) : X → [0, 1], ν(x) : X → [0, 1] and π(x) : X → [0, 1] and satisfy the

following relation:

0 ≤ (µ(x))2 + (ν(x))2 + (π(x))2 ≤ 1

1.4.2 Intuitionistic fuzzy sets

Definition 1.8. (Atanassov, 1986) Let a set X be fixed. An intuitionistic fuzzy set A in

X is defined as

A = {〈x, µA(x), νA(x)〉 |x ∈ X}

which assigns to each x a membership degree µA(x) and a non-membership degree

νA(x), where µA(x), νA(x) ≥ 0 with the condition 0 ≤ µA(x) + νA(x) ≤ 1, for all x ∈ X .

In addition πA(x) = 1 − µA(x) − νA(x) is called hesitancy degree of x to X , which

represents the degree of indeterminacy degree of x to X . For simplicity, each pair of

(µA(x), νA(x)) is called an intuitionistic fuzzy number (IFN).

Definition 1.9. (Atanassov, 2012) Let A=(µA(x), νA(x)) and B=(µA(x), νA(x)) be two

IFNs, then the basic operations of IFNs are presented as follows:

1. A⊕B = (µA(x) + µB(x)− µA(x)µB(x), νA(x)νB(x))

2. A⊗B = (µA(x)µB(x), νA(x) + νB(x)− νA(x)νB(x))

3. λA =
(

1− (1− µA(x))λ ,
(
νλB
))
, λ > 0

4. (A)λ =
((
νλB
)
, 1− (1− µA(x))λ

)
, λ > 0

1.4.3 Neutrosophic sets

A neutrosophic set (Smarandache, 1999b) is characterized by a truth membership de-

gree, an indeterminacy membership degree and a falsity membership degree indepen-

dently. An important feature of NS is that every element of the universe has not only

a certain degree of truth (T) but also a falsity degree (F) and indeterminacy degree (I).
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This set is a generalization of crisp, fuzzy set, interval-valued fuzzy set, intuitionistic

fuzzy set, interval-valued intuitionistic fuzzy set, etc. NS is difficult to apply directly

in real engineering and scientific applications. In order to deal with difficulties, Wang

et al. (2010) introduced a subclass of NS called single-valued neutrosophic set (SVNS)

characterized by truth membership degree, an indeterminacy membership degree and

a falsity membership degree. SVNS can be applied quite well in real scientific and

engineering fields to handle the uncertainty, imprecise, incomplete, and inconsistent

information.

Definition 1.10. (Smarandache, 1999b)

Let X be a universe of discourse, with a generic element of X denoted by x. A neutro-

sophic set A ⊂ X is characterized by a truth-membership function TA(x), an indeter-

minacy membership function IA(x) and a falsity-membership function FN (x). TA(x),

IA(x) and FA(x) are real standard or non-standard subsets of [0−, 1+], so that all three

neutrosophic components TA(x)→ [0−, 1+], IA(x)→ [0−, 1+] and FA(x)→ [0−, 1+].

The sum of three independent membership degrees TA(x), IA(x) and FA(x) have no

restriction such that (Wang et al., 2010)

−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+

Definition 1.11. (Wang et al., 2010) Let X be a universe of discourse with a generic

element in X denoted by x. A single valued neutrosophic sets A in X is characterized

by truth membership function TA(x), an indeterminacy membership function IA(x)

and a falsity membership function FA(x). The set is denoted by

Ã = {x, 〈TA(x), IA(x), FA(x)〉 |x ∈ X}

where TA(x), IA(x) and FA(x) are real subsets of [0, 1] and 0 ≤ TA(x)+IA(x)+FA(x) ≤ 3.

For convenience, a SVNS Ã can be denoted by Ã =〈TA(x), IA(x), FA(x)〉 for all x ∈ X

Definition 1.12. (Wang et al., 2005) Let X be a non empty finite set. Let D[0, 1] be the

set of all closed sub intervals of the unit interval [0, 1]. An interval neutrosophic set

(INS) Ã in X is an object having the form:

Ã = {〈x, TÃ(x), IÃ(x), FÃ(x)〉|x ∈ X} (1.13)

where TÃ : X → D[0, 1], IÃ : X → D[0, 1], FÃ : X → D[0, 1] with the condition

0 ≤ TÃ(x) + IÃ(x) + FÃ(x) ≤ 3 for any x ∈ X . The intervals TÃ(x), IÃ(x) and FÃ(x)
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denote respectively, the degree of truth, the indeterminacy and the falsity membership

degree of x to Ã. Then for each x ∈ X , the lower and upper limit points of closed

intervals TÃ(x), IÃ(x) and FÃ(x) are denoted by TL
Ã

(x), TU
Ã

(x), IL
Ã

(x), IU
Ã

(x), TL
Ã

(x),

TU
Ã

(x), respectively. Thus INS Ã can also be presented in the following form:

Ã =
{
〈x, [TL

Ã
(x), TU

Ã
(x)], [IL

Ã
(x), IU

Ã
(x)], [FL

Ã
(x), FU

Ã
(x)]〉|x ∈ X

}
,

where, 0 ≤ TU
Ã

(x) + IU
Ã

(x) +FU
Ã

(x) ≤ 3 for any x ∈ X . For convenience of notation, we

consider that Ã = 〈[TL
Ã
, TU

Ã
], [IL

Ã
, IU
Ã

], [FL
Ã
, FU

Ã
]〉 as an INS, where, 0 ≤ TU

Ã
+ IU

Ã
+FU

Ã
≤ 3

for any x ∈ X .

Definition 1.13. (Subas, 2018; Ye, 2017) Let α be a single-valued neutrosophic trape-

zoidal number (SVNTrN). Then its membership functions are given by

Tα(x) =



(x− a)tα
b− a

, a ≤ x < b

tα, b ≤ x ≤ c
(d− x)tα
d− c

, c < x ≤ d

0, otherwise.

Iα(x) =



b− x+ (x− a)iα
b− a

, a ≤ x < b

iα, b ≤ x ≤ c
x− c+ (d− x)iα

d− c
, c < x ≤ d

0, otherwise.

Fα(x) =



b− x+ (x− a)fα
b− a

, a ≤ x < b

fα, b ≤ x ≤ c
x− c+ (d− x)fα

d− c
, c < x ≤ d

0, otherwise.

where Tα is truth membership function, Iα is indeterminancy membership function

and Fα is falsity membership function, and they all lie between 0 and 1 and satisfy

the condition 0 ≤ Tα(x) + Iα(x) + Fα(x) ≤ 3 where a, b, c, d are real numbers. Then

α = ([a, b, c, d]; tα, iα, fα) is called a neutrosophic trapezoidal number.
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Definition 1.14. (Biswas et al., 2018a) Let α̃ be interval trapezoidal neutrosophic num-

ber (ITrNN). Then its membership functions are given by

Tα̃(x) =



(x− a)tα̃
b− a

, a ≤ x < b

tα̃, b ≤ x ≤ c
(d− x)tα̃
d− c

, c < x ≤ d

0, otherwise.

Iα̃(x) =



b− x+ (x− a)iα̃
b− a

, a ≤ x < b

iα̃, b ≤ x ≤ c
x− c+ (d− x)iα̃

d− c
, c < x ≤ d

0, otherwise.

Fα̃(x) =



b− x+ (x− a)fα̃
b− a

, a ≤ x < b

fα̃, b ≤ x ≤ c
x− c+ (d− x)fα̃

d− c
, c < x ≤ d

0, otherwise.

where Tα̃ is truth membership function, Iα̃ is indeterminancy membership function

and Fα̃ is falsity membership function and tα̃, iα̃, and fα̃ are subsets of [0,1] and 0 ≤
sup(tα̃) + sup(iα̃) + sup(fα̃) ≤ 3. Then α is called an interval trapezoidal neutrosophic

number and it is denoted by α̃ = ([a, b, c, d]; tα̃, iα̃, fα̃). We take tα̃ = [
¯
t, t̄], iα̃ = [i, i] and fα̃ =

[
¯
f, f̄ ]

Definition 1.15. (Biswas et al., 2018a) An interval trapezoidal neutrosophic number

(ITrNN) α̃ = ([a, b, c, d]; [t, t], [i, i], [f, f ]) is said to be positive ITrNN if a ≥ 0 and one of

the four values of a, b, c, d is not equal to zero.

Definition 1.16. Let α̃ = ([a1, b1, c1, d1]; [
¯
t1, t̄1], [

¯
i1, ī1], [

¯
f1, f̄1]) and

β̃ = ([a2, b2, c2, d2]; [
¯
t2, t̄2], [

¯
i2, ī2], [

¯
f2, f̄2]) be two ITrNNs. Then the following operations

are valid:

1. α̃
⊕

β̃ =

(
[a1 + a2, b1 + b2, c1 + c2, d1 + d2];

[
¯
t1 +

¯
t2 −

¯
t1t2, t̄1 + t̄2 − t̄1t̄2], [

¯
i1

¯
i2, ī1ī2], [

¯
f1

¯
f2, f̄1f̄2]

)
;

2. α̃
⊗

β̃ =


([a1a2, b1b2, c1c2, d1d2]; [

¯
t1

¯
t2, t̄1t̄2],

[
¯
i1 +

¯
i2 −

¯
i1

¯
i2, ī1 + ī2 − ī1ī2],

[
¯
f1 +

¯
f2 −

¯
f1

¯
f2, f̄1 + f̄2 − f̄1f̄2]

 ;
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3. λα̃ =

( [
λa1, λb1, λc1, λd1

]
;
[
1− (1−

¯
t1)λ, 1− (1− t̄1)λ

][
(
¯
i1)λ, (̄i1)λ

]
,
[
(
¯
f1)λ, (f̄1)λ

] )
, λ ≥ 0;

4. (α̃)λ =


[
(a1)λ, (b1)λ, (c1)λ, (d1)λ

]
;
[
(
¯
t1)λ, (t̄1)λ

]
,[

1− (1−
¯
i1)λ, 1− (1− ī1)λ

]
,[

1− (1−
¯
f1)λ, 1− (1− f̄1)λ

]
 , λ ≥ 0.

Definition 1.17. (Ye, 2015c)

Let X be a fixed set. Then a N on X is defined as

N = {〈x, t(x), i(x), f(x)〉 | x ∈ X} (1.14)

in which t(x), i(x) and f(x) represent three sets of some values in [0, 1], denoting re-

spectively the possible truth, indeterminacy and falsity membership degrees of the

element x ∈ X to the set N . The membership degrees t(x), i(x) and f(x) satisfy the

following conditions:

0 ≤ δ, γ, η ≤ 1, 0 ≤ δ+ + γ+ + η+ ≤ 3

where, δ ∈ t(x), γ ∈ i(x), η ∈ f(x), δ+ ∈ t+(x) =
⋃

δ∈t(x)

max t(x), γ+ ∈ i+(x) =
⋃

γ∈t(x)

max i(x)

and η+ ∈ f+(x) =
⋃

η∈f(x)

max f(x) for all x ∈ X .

n(x)=〈t(x), i(x), f(x)〉 is called as single valued neutrosophic hesitant fuzzy element

(SVNHFE) denoted by n=〈t, i, f〉. The number of values for possible truth, indeter-

minacy and falsity membership degrees of the element in different SVNHFEs may be

different.

Definition 1.18. (Liu and Shi, 2015)

Let X be a non-empty finite set. Then an interval neutrosophic hesitant fuzzy set on

X is represented by

ñ =
{
〈x, t̃(x), ĩ(x), f̃(x)〉|x ∈ X

}
where t̃(x)=

{
γ̃|γ̃ ∈ t̃(x)

}
, ĩ(x)=

{
γ̃|γ̃ ∈ ĩ(x)

}
and f̃(x)=

{
γ̃|γ̃ ∈ f̃(x)

}
are three sets

of some interval values in real unit interval [0, 1], which denotes the possible truth,

indeterminacy and falsity membership hesitant degrees of the element x ∈ X to the

set N . These values satisfy the limits:

γ̃ = [γL, γU ] ⊆ [0, 1], δ̃ = [δL, δU ] ⊆ [0, 1], η̃ = [ηL, ηU ] ⊆ [0, 1]
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and 0 ≤ γ̃++δ̃++η̃+ ≤ 3, where γ̃+=
⋃

γ̃∈t̃(x)

sup t̃(x), δ̃+=
⋃

δ̃∈t̃(x)

sup ĩ(x) and η̃+=
⋃

η̃∈t̃(x)

sup f̃(x).

Then ñ=
{
t̃(x), ĩ(x), f̃(x)

}
is called an interval neutrosophic hesitant fuzzy element

(INHFE) which is the basic unit of the INHFS and is represented by the symbol ñ={
t̃, ĩ, f̃

}
for convenience.

1.4.4 Pythagorean fuzzy sets

Yager (2013); Yager and Abbasov (2013) proposed Pythagorean fuzzy sets which is

generalization of intutionistic fuzzy set.

Definition 1.19. (Yager, 2013; Yager and Abbasov, 2013) Let X be a universe of dis-

course. Then Pythagorean fuzzy set defined on X is of the form

P = {< x, µp(x), νp(x) > |x ∈ X}

where µp : X → [0, 1] and νp : X → [0, 1] are, respectively, the membership and the

non-membership functions which satisfy the condition

0 ≤ (µp(x))2 + (νp(x))2 ≤ 1, ∀x ∈ X

and the degree of indeterminacy membership is denoted by πp(x) and is defined by

πp(x) =
√

1− (µp(x))2 − (νp(x))2

Zhang and Xu (2014) considered β =< µp, νp > as a Pythagorean fuzzy number (PFN)

where µp ∈ [0, 1] and νp ∈ [0, 1] are membership and non-membership values, respec-

tively and πp =
√

1− µ2
p − ν2

p and 0 ≤ µ2
p + ν2

p ≤ 1.

Definition 1.20. (Zhang and Xu, 2014) Let α1 =< µp1 , νp1 > and α2 =< µp2 , νp2 > be

two PFNs. Then the ordering between these two PFNs is described as follows:

α1 ≥ α2 ⇔ µp1 ≥ µp2 and νp1 ≤ νp2

Definition 1.21. (Xian et al., 2018) A trapezoidal pythagorean fuzzy number (TrPFN)

is represented as

A = 〈(a1, a2, a3, a4);µ, ν〉

with the parameters a1, a2, a3, a4 are such that a1 ≤ a2 ≤ a3 ≤ a4 and the membership

and the non-membership degrees µ and ν satisfy the condition µ2 + ν2 ≤ 1. Then the
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membership function µA and the non-membership function νA are given by

µA(x) =



(x− a1)µ

a2 − a1

, a1 ≤ x < a2

µ, a2 ≤ x < a3

(a4 − x)µ

a4 − a3

, a3 ≤ x < a4

0, otherwise.

(1.15)

νA(x) =



a2 − x+ ν(x− a1)

a2 − a1

, a1 ≤ x ≤ a2

ν, a2 ≤ x ≤ a3

x− a3 + ν(a4 − x)

a4 − a3

, a3 ≤ x ≤ a4

1, otherwise.

(1.16)

1.4.5 Spherical neutrosophic sets

Spherical neutrosophic set is an integration of single valued neutrosophic set and

Pythagorean fuzzy set. In spherical neutrosophic set, the membership grades are truth

membership (T (x)), indeterminacy membership (I(x)) and falsity membership (F (x)),

each lies in the standard interval [0, 1] and their square sum i.e. T 2(x) + I2(x) + F 2(x)

is less than or equal to 3. Pythagorean fuzzy set has two membership functions and

their square sum is less than 1, while in single valued neutrosophic set, the sum of

membership grades is less than or equal to 3.

Definition 1.22. (Smarandache, 2017a) Let X be a universe of discourse. A spherical

neutrosophic set S is an object having the form

S = {< x, s(T (x), I(x), F (x)) >}

where the function T (x) : X → [0, 1] defines the truth membership, I(x) : X →
[0, 1] defines the indeterminant membership and F (x) : X → [0, 1] defines the fal-

sity membership functions, and for any x ∈ X , they satisfy the following relation:

0 ≤ (T (x))2 + (I(x))2 + (F (x))2 ≤ 3

Definition 1.23. (Smarandache, 2017a) LetX be a universe of discourse. Then a spher-

ical neutrosophic number (SNN) is denoted by A = s(TA, IA, FA) where TA, IA, FA ∈
[0, 1] and 0 ≤ TA

2 + IA
2 + FA

2 ≤ 3.
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It is to be noted that zero of spherical neutrosophic number O and unity of spherical

neutrosophic number U can be defined as follows:

O = s(0, 1, 1), U = s(1, 0, 0)

Needless to say that spherical neutrosophic number (SNN) is an extension of single

valued neutrosophic number (SVN). In SVN, the sum of truth membership, indeter-

minant membership and falsity membership lies between 0 and 3 and, in SNN, the

sum of their squares lies between 0 and 3 i.e., 0 ≤ TA
2 + IA

2 + FA
2 ≤ 3.

1.5 Related literature

MCDM, which identifies the best alternative from a set of available alternatives de-

pends on various criteria. MCDM problem is very common in operations research,

management science, medical diagnosis, data mining, etc. In classical MADM meth-

ods, such as TOPSIS (Hwang and Yoon, 1981), PROMETHEE (Brans et al., 1986), GRA

(Julong et al., 1989), AHP (Saaty, 1980), ELECTRE (Figueira et al., 2016), DEMATEL

(Gabus and Fontela, 1972) the weight of each attribute and ratings of alternatives are

presented by crisp numbers. Lots of research work have been done on MADM prob-

lems, where the ratings of alternatives and/or attribute values are expressed in terms

of crisp numbers (Hwang and Yoon, 1981), interval numbers (Zhang and Liu, 2010),

fuzzy numbers (Chen, 2000), intuitionistic fuzzy numbers (Boran et al., 2009), interval-

valued intuitionistic fuzzy numbers (Nayagam et al., 2011), grey numbers (Wang

et al., 2013; Zhang et al., 2005a), etc. However, in realistic situations, due to time pres-

sure, complexity of real world, lack of information processing capabilities, poor knowl-

edge of the public domain and information make the MCDM less and less possible to

decision makers to give exact evaluations of decision parameters. In such situations,

preference information of alternatives with respect to the attributes provided by the

decision makers may be imprecise or incomplete in nature.

1.5.1 Grey relational analysis method for MCDM

Grey relational analysis (GRA)(Julong et al., 1989) method is one of the accepted MCDM

methods. Researchers have extended the GRA method for MADM problem in differ-

ent environments. Wei (2010) introduced GRA method for intuitionistic fuzzy MADM
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problem with incomplete weight information. Zhang and Liu (2011) proposed GRA

method based on intuitionistic fuzzy multi-criteria group decision making problem

(MCGDM). Pramanik and Mukhopadhyaya (2011) employed GRA method for intu-

itionistic fuzzy MCGDM in teacher selection problem. Dey et al. (2015a) applied GRA

method for intuitionistic fuzzy MCGDM for weaver selection in Khadi institution.

Biswas et al. (2014) proposed GRA method for MADM under single valued neutro-

sophic environment using entropy method. Mondal and Pramanik (2015a) developed

a neutrosophic MADM model for clay-brick selection in construction field and solved

the problem with GRA method. Mondal and Pramanik (2015b) proposed a GRA

method for rough neutrosophic MADM. Biswas et al. (2016b) applied GRA method

for MADM with single valued neutrosophic hesitant fuzzy set. Biswas et al. (2019) de-

veloped NH-MADM strategy in neutrosophic hesitant fuzzy set environment based

on extended GRA.

1.5.2 TOPSIS method for MCDM

In classical MCDM methods, the ratings and weights of the criteria are known pre-

cisely. TOPSIS (Hwang and Yoon, 1981) is one of the classical methods among many

MCDM techniques. Chen (2000) extended the concept of TOPSIS method to develop a

methodology for MCDM problem in fuzzy environment. Boran et al. (2009) extended

the TOPSIS method for MCDM in intutionistic fuzzy sets. Zhao (2014) proposed TOP-

SIS method under interval intutionistic fuzzy number. Liu (2014) proposed TOPSIS

method for MCDM under trapezoidal intuitionistic fuzzy environment with partial

and unknown attribute weight information. Ye (2010) extended the TOPSIS method

with interval valued intutionistic fuzzy number. Xu and Zhang (2013) proposed TOP-

SIS method for MADM under the hesitant fuzzy set with incomplete weight informa-

tion. Chi and Liu (2013) developed TOPSIS method based on interval neutrosophic

set. Ye (2015a) extended the TOPSIS method for single valued linguistic neutrosophic

number. Joshi and Kumar (2016) introduced Choquet integral based TOPSIS method

for multi-criteria group decision making with interval valued intutionistic hesitant

fuzzy set. Fu and Liao (2019) developed TOPSIS method for multi-expert qualitative

decision making involving green mine selection under unbalanced double hierarchy

linguistic term set. Memari et al. (2019) solved sustainable supplier selection process

by fuzzy TOPSIS method. Kutlu Gündoğdu and Kahraman (2019) proposed spherical

fuzzy TOPSIS method to solve MCDM problem.
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1.5.3 PROMETHEE method for MCDM

MCDM, which identifies the best alternative from a set of available alternatives de-

pends on various criteria. Preference Ranking Organization Method for Enrichment

of Evalution (PROMETHEE) (Brans et al., 1986) is a popular method to solve MCDM

problem because it not only determines the degree for which an alternative satisfies

the criteria but also provides a degree for which the alternative dissatisfies the cri-

teria. PROMETHEE method compares the criteria for each pair of alternatives and

preference alternative grade which lies between 0 and 1. PROMETHEE method can

be successfully applied in fuzzy (Zadeh, 1965) environment to solve MCDM problem.

Goumas and Lygerou (2000) extended the PROMETHEE method for decision mak-

ing in fuzzy environment for optimal ranking of the alternative in energy exploita-

tion project. Chen et al. (2011) proposed fuzzy PROMETHEE method for informa-

tion system outsourcing. They used fuzzy number as the rating value of the criteria

with respect to alternative. Abedi et al. (2012) developed PROMETHEE II method in

fuzzy environment for copper exploration. Gul et al. (2018) developed PROMETHEE

method based on fuzzy logic, and used fuzzy number for MCDM problem. However,

MCDM process may contain several uncertainties and indeterminate situations. Liao

and Xu (2014) proposed the PROMETHEE method in intutionistic fuzzy environment.

1.5.4 DEMATEL method for MCDM

DEMATEL (Gabus and Fontela, 1972) is a method which develops mutual relation-

ships of the criteria and their correlated dependencies. This method provides a casual-

effect diagram to describe mutual relationships and influences of the criteria (Wu and

Tsai, 2011). It can analyse total relations among sets of variables to obtain logical re-

lationships and direct impact relationships. The method is well suited to situations

where it becomes necessary to upgrade the evaluation of one criterion by adding new

criterion even if the number of criteria is quite large. The DEMATEL method can also

be applied to solve various complex problems (Govindan et al., 2015b; Huang et al.,

2007; Ren et al., 2013; Shieh et al., 2010).

Wu and Lee (2007) extended DEMATEL method with fuzzy logic for solving problems

of high-tech companies. Lin and Wu (2008) developed DEMATEL method for MCDM

(MCDM) problem in fuzzy environment for R&D project selection. Tseng (2009) pro-

posed grey-fuzzy DEMATEL approach for cause and effect groups of service quality
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expectation. Chang et al. (2011) proposed fuzzy DEMATEL method for supplier se-

lection criteria in supply chain management. Lin (2013) proposed fuzzy DEMATEL

method for green supply chain management. Lin et al. (2014) considered DEMATEL

method with Tw fuzzy sets and applied in the model for green supply chain. Govindan

et al. (2015a) considered DEMATEL method with intuitionistic fuzzy sets for develop-

ing green practices and performances in a green supply chain management. Wu et al.

(2015) provided a fuzzy DEMATEL method to investigate the influence of green sup-

ply chain practices in Vietnamese automobile industry. Lin et al. (2018) developed

approximate fuzzy DEMATEL method to find cause and effect relationships among

the criteria of sustainable supply chain management.

1.5.5 MCDM methods under Pythagorean fuzzy environment

Atanassov (1986) introduced the concept of intutionistic fuzzy set (IFS) which has

both membership and non-membership degrees. The sum of membership and non-

membership degrees of an IFS lies between 0 and 1. IFS has been successfully applied

in MCDM problem (Atanassov et al., 2005; Xu and Yager, 2008; Yager, 2010). How-

ever, in IFS, there are membership function µ and non-membership function ν such

that µ ∈ [0, 1], ν ∈ [0, 1], and 0 ≤ µ + ν ≤ 1. But, if the rating values of alternative

have membership degree 0.9 and non-membership degree 0.3, then the restriction of

sum value to be in [0, 1] for membership degree and non-membership degree for IFS is

not satisfied. Therefore, IFS cannot handle the situation as 0.9 + 0.3 > 1. Pythagorean

fuzzy set (PFS)(Yager, 2013), an extension of intutionistic fuzzy set (IFS), can easily

handle this situation because the set considers the restriction µ2 + ν2 ≤ 1 which gives

0.92 + 0.32 ≤ 1. Yager (2013) introduced Pythagorean membership grades for MCDM

problem and solved the MCDM problem using the aggregation operator. Yager and

Abbasov (2013) proposed the relationship between Pythagorean membership grade

and complex number. They proved that Pythagorean membership grade is one type

of complex numbers (Π− i numbers) and they solved the MCDM problem with aggre-

gation operator of Π− i numbers. Zhang and Xu (2014) extended the TOPSIS method

with PFS and considered the Pythagorean fuzzy number (PFN) to sovle the MCDM

problem. They defined a distance measure of PFN for developing TOPSIS method to

get the optimal result. Recently, many researchers developed the MCDM method with

Pythagorean fuzzy information (Zeng et al., 2016; Zhang, 2016). Garg (2016) developed

a new generalized Pythagorean fuzzy aggregation operator using Einstein operations

and applied to decision making problem. Ren et al. (2016) proposed TODIM method
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under pythagorean fuzzy environment for decision making. Akram et al. (2020) pro-

posed ELECTREI method in Pythagorean fuzzy information for multi-criteria group

decision making problem.

1.5.6 MCDM technique for medical diagnosis problem

Modern medical diagnosis process considers a lot of parameters some of which may

contain incomplete and uncertain information. In practice, some diseases have com-

mon symptoms. Therefore, these symptoms bear an ambiguous information for de-

tecting the exact disease. This type of medical diagnosis problem could be solved by

using MCDM process, where disease and symptom can be set as an alternative and a

criteria, respectively. In this problem, the preference values not only gives the degree

for which the disease satisfies the symptoms but also provides the degree for which

the disease dissatisfies the symptom. Therefore, Pythagorean fuzzy set can be used to

handle uncertain and incomplete information. Medical diagnosis process is success-

fully applied in uncertain environment (Guleria and Bajaj, 2019; Ye, 2011) . Ye (2015b)

introduced the cosine similarity measure for simplified neutrosophhic set in decision

making for medical diagnosis problem.

1.5.7 MCDM technique for supplier selection problem in supply

chain management

Supply chain management (SCM) is the process of managing the movement of a com-

pany’s supplies, products and services in the most efficient and economic way pos-

sible. Sustainable supply chain management considers economic, environmental and

social issues all together. Gilbert (2001) studied green supply chain management to

establish connection between environment concern and business activity. Noci (1997)

was possibly the first who worked on sustainable supply chain management and sup-

plier selection criteria. Zimmer et al. (2016) reviewed the literature on suppler selec-

tion. They considered 143 papers published during the period 1997 to 2014, and high-

lighted the basic criteria of sustainable supplier selection process. Shen et al. (2013)

proposed fuzzy multi criteria approach for evaluating green supplier’s performance

in green supply chain with linguistic preferences. Wu et al. (2015) studied exploring

decisive factors in green supply chain practices under uncertainty. Memari et al. (2019)

solved sustainable supplier selection process by fuzzy TOPSIS method.
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1.5.8 Some other methods for MCDM

Besides the methods of MCDM discussed in the immediate previous subsections, a

number of other methods exist in the literature. We briefly review some of them.

Zavadskas et al. (1994) proposed a method of multi-criteria complex proportional as-

sessment of projects. Xu (2007) developed some aggregation operators on intuition-

istic fuzzy sets such as intuitionistic fuzzy weighted averaging operator, intuitionistic

fuzzy ordered weighted averaging operator, and intuitionistic fuzzy hybrid aggrega-

tion operator. Brauers and Zavadskas (2010) proposed MULTIMOORA method to

solve MCDM problem. Wei (2012) introduced hesitant fuzzy prioritized operators

for solving MADM problem. Wei (2012) developed approaches to manage hesitant

fuzzy linguistic information based on the cosine distance and similarity measures for

HFLTSs and their application in qualitative decision making. Wei et al. (2013) pro-

posed various types of aggregation operator for MCDM problem with hesitant fuzzy

sets. Ye (2014) proposed aggregation operators for simplified neutrosophic set to solve

MCDM problem. Garg (2018) developed MCDM method with neutrosophic set using

prioritized muirhead mean aggregation operator.

1.6 Scope of the thesis

The goal of the thesis is to study MCDM under different uncertain environments. We

develop some models of MCDM, where assessment values of alternatives are consid-

ered as different type of neutrosophic sets and Pythagorean fuzzy sets. We solve the

medical diagnosis problem, supplier selection problem, personnel selection problem

and some real-life decision making problems through the proposed MCDM models.

A brief outline of the thesis is given below. The thesis consists of eight chapters:

• Chapter 1 presents an introduction to the MCDM, some preliminaries of fuzzy

sets, intuitionistic fuzzy sets, neutrosophic sets, and Pythagorean fuzzy sets, a

brief review of the relevant literature, and aims and objectives of the study.

• Chapter 2 presents GRA method for MCDM problem where the rating values of

the attributes are SVTrNNs and weight information is partially known or com-

pletely unknown.
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• Chapter 3 proposes an extended TOPSIS method to solve MADM problem with

ITrNNs and introduces new distance measure of ITrNNs. This chapter devel-

ops the model where the rating values of the attributes are ITrNN and weight

information is completely known, partially known and completely unknown.

• Chapter 4 develops MCDM method with neutrosophic hesitant fuzzy sets. This

chapter formulates SVNHFS and IVNHFS based MCDM problem, where the

weight information is incompletely known or completely unknown. TOPSIS

method has been used to solve the proposed optimization model.

• Chapter 5 introduces PROMETHEE method under Pythagorean fuzzy environ-

ment, provides some basic operations of Pythagorean fuzzy numbers (PFN) and

compares Pythagorean fuzzy sets (PFS) with intuitionistic fuzzy sets (IFS). A

medical diagnosis problem is considered as MCDM problem and solved using

the proposed method.

• Chapter 6 proposes DEMATEL method in Pythagorean fuzzy environment. The

proposed model utilizes the concept of Pythagorean fuzzy sets and trapezoidal

Pythagorean fuzzy number (TrPFN). A supplier selection problem in sustainable

supply chain management has been solved using the proposed method.

• Chapter 7 defines spherical neutrosophic set (SNS), which is a generalized ver-

sion of FS, IFS, NS and PFS. This chapter introduces SNNWAA operator for ag-

gregating spherical neutrosophic number as criteria value of the alternatives and

develops a MCDM method based on SNNWAA operator, which is applied in a

real life decision making problem, namely, personnel selection problem.

• Chapter 8 covers conclusions, main findings, and future scopes of study.

1.7 Chapter summary

This chapter presents an overview of the study carried out in this thesis. It contains

a brief introduction of decision-making, MCDM techniques such as TOPSIS, GRA,

PROMETHEE, DEMTEL etc, and preliminaries of fuzzy sets, intuitionistic fuzzy sets,

neutrosophic sets, and Pythagorean fuzzy sets. It also includes a literature review on

different MCDM models, medical diagnosis problem, supplier selection problem in

sustainable supply chain management, and MCDM problem with Pythagorean fuzzy

sets.





2
Grey Relational Analysis Method for Single
Valued Trapezoidal Neutrosophic Number

2.1 Introduction

Grey relational analysis (GRA) is an important part of grey system theory, which is

used to conduct relational analysis of uncertainty of the system. There are many appli-

cations of this method in different multi-attribute decision making (MADM) problems

(Wei, 2010,1; Zhang et al., 2005b). However, in practice, decision makers face difficul-

ties to collect accurate information of preference values of alternatives in MADM due

to imprecise and incomplete data (Xu, 2015). Single valued trapezoidal neutrosophic

number (SVTrNN) (Subas, 2018; Ye, 2017) is an extension of trapezoidal fuzzy num-

ber. It is presented by a trapezoidal number which has three independent member-

ship functions, the truth membership function, the indeterminate membership func-

tion and the falsity membership function. This number can present incomplete or

indeterminate information effectively with its three membership degrees. Therefore,

it has an advantage over the trapezoidal fuzzy number and the trapezoidal intuition-

istic fuzzy number. Deli and Şubaş (2017) developed a ranking method for single

valued neutrosophic number and employed the method for solving MADM problem.

Biswas et al. (2016b) proposed GRA method for SVTrNN based MADM with value

This chapter is based on the paper published in Granular Computing (2020), 5(4), 561–570

33
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and ambiguity based ranking strategy. Biswas et al. (2018b) developed TOPSIS strat-

egy for SVTrNN based MADM with unknown weight information. However, the GRA

method has not been studied yet to deal with MADM problems with partially known

or completely unknown weight information in the framework of SVTrNN, which can

although play an effective role to deal with uncertain and indeterminate information

in MADM problem. In view of the above facts, the primary objectives of this chapter

are as follows:

• To study MADM problem, where the rating values of the attributes are SVTrNNs

and weight information is partially known or completely unknown.

• To define a new distance measure of SVTrNN and study some of its properties.

• To develop optimization models to determine the weights of attributes.

• To extend GRA method for solving SVTrNN based MADM problem using a new

distance measure.

• To validate the proposed approach with a numerical example.

• To compare the proposed approach with some existing methods including TOP-

SIS.

The structure of the chapter is as follows. In Section 2.2, we present some preliminaries

of single valued trapezoidal neutrosophic number and define a new distance measure.

In Section 2.3, we propose GRA method for SVTrNN based MADM, where the weight

information of attributes is partially known or completely unknown. Section 2.4 deals

with a numerical example to demonstrate the developed model. In Section 2.5, we

conclude the chapter with some remarks.

2.2 Distance measure of SVTrNN

Definition 2.1. (Subas, 2018; Ye, 2017) A single valued trapezoidal neutrosophic num-

ber α is a generalization of trapezoidal fuzzy number and its membership functions
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are given by

Tα(x) =



(x− a)tα
b− a

, a ≤ x < b

tα, b ≤ x ≤ c
(d− x)tα
d− c

, c < x ≤ d

0, otherwise.

Iα(x) =



b− x+ (x− a)iα
b− a

, a ≤ x < b

iα, b ≤ x ≤ c
x− c+ (d− x)iα

d− c
, c < x ≤ d

0, otherwise.

Fα(x) =



b− x+ (x− a)fα
b− a

, a ≤ x < b

fα, b ≤ x ≤ c
x− c+ (d− x)fα

d− c
, c < x ≤ d

0, otherwise.

where Tα, Iα and Fα are truth membership function, indeterminacy membership func-

tion and falsity membership function, respectively, and they lie between 0 and 1 and

their sum lies between 0 and 3 where a, b, c and d are real numbers. Therefore, α =

([a, b, c, d]; tα, iα, fα) is called a single valued trapezoidal neutrosophic number (SVTrNN).

Definition 2.2. Let α̃ = ([p1, q1, r1, s1]; t1, i1, f1) and β̃ = ([p2, q2, r2, s2]; t2, i2, f2) be two
SVTrNNs. Then we define the distance measure between these two numbers as

d(α̃, β̃) =
1

3

(∣∣∣(1− p1 + q1 + r1 + d1

4

)
t1 −

(
1− p2 + q2 + r2 + s2

4

)
t2

∣∣∣
+
∣∣∣(1− p2 + q2 + r2 + s2

4

)
i2 −

(
1− p1 + q1 + r1 + s1

4

)
i1

∣∣∣
+
∣∣∣(1− p2 + q2 + r2 + s2

4

)
f2 −

(
1− p1 + q1 + r1 + s1

4

)
f1

∣∣∣) (2.1)

A real valued function d : X ×X −→ [0, 1] is said to be distance function if it satisfies

the following properties:

1. d(α̃, β̃) ≥ 0

2. d(α̃, β̃) = d(β̃, α̃)

3. d(α̃, γ̃) ≤ d(α̃, β̃) + d(β̃, γ̃) ∀ α̃, β̃, γ̃ ∈ X
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Proof:

1. The distance measure d(α̃, β̃) is non-negative and d(α̃, β̃) = 0 when α̃ = β̃ i.e.,

p1 = p2, q1 = q2, r1 = r2, s1 = s2, t1 = t2, i1 = i2 and f1 = f2. Therefore,

d(α̃, β̃) ≥ 0.

2. It is obvious that d(α̃, β̃) = d(β̃, α̃).

3. d(α̃, γ̃)

=1
3

(∣∣(1−p1+q1+r1+s1
4

)
t1−
(
1−p3+q3+r3+s3

4

)
t3
∣∣ +
∣∣(1−p3+q3+r3+s3

4

)
i3−
(
1−p1+q1+r1+s1

4

)
i1
∣∣

+
∣∣(1− p3+q3+r3+s3

4

)
f3 −

(
1− p1+q1+r1+s1

4

)
f1

∣∣)
= 1

3

(∣∣(1− p1+q1+r1+s1
4

)
t1−
(
1− p2+q2+r2+s2

4

)
t2 +

(
1− p2+q2+r2+s2

4

)
t2−
(
1− p3+q3+r3+s3

4

)
t3
∣∣

+
∣∣(1− p3+q3+r3+s3

4

)
i3−

(
1− p2+q2+r2+s2

4

)
i2 +

(
1− p2+q2+r2+s2

4

)
i2−

(
1− p1+q1+r1+s1

4

)
i1
∣∣

+
∣∣(1− p3+q3+r3+s3

4

)
f3−

(
1− p2+q2+r2+s2

4

)
f2 +

(
1− p2+q2+r2+s2

4

)
f2−

(
1− p1+q1+r1+s1

4

)
f1

∣∣)
≤ 1

3

(∣∣∣(1 − p1+q1+r1+s1
4

)
t1 −

(
1 − p2+q2+r2+s2

4

)
t2

∣∣∣ +
∣∣∣(1 − p2+q2+r2+s2

4

)
i2 −

(
1 −

p1+q1+r1+s1
4

)
i1

∣∣∣
+
∣∣∣(1 − p2+q2+r2+s2

4

)
f2 −

(
1 − p1+q1+r1+s1

4

)
f1

∣∣∣) +
1

3

(∣∣∣(1 − p2+q2+r2+s2
4

)
t2 −

(
1 −

p3+q3+r3+s3
4

)
t3

∣∣∣
+
∣∣∣(1−p3+q3+r3+s3

4

)
i3−
(
1−p2+q2+r2+s2

4

)
i2

∣∣∣ +
∣∣∣(1−p3+q3+r3+s3

4

)
f3−

(
1−p2+q2+r2+s2

4

)
f2

∣∣∣)
= d(α̃, β̃) + d(β̃, γ̃)

Therefore, d(α̃, γ̃) ≤ d(α̃, β̃) + d(β̃, γ̃) ∀ α̃, β̃, γ̃ ∈ X.

2.3 GRA method for MADM based on SVTrNN

Grey relational analysis (GRA) is an important section of grey system theory which

was proposed by Julong et al. (1989). GRA is mainly used to conduct relational anal-

ysis of uncertainty of a system having incomplete information. The method can be

described as given below:

Let A = {A1, A2, ....., Am} be a finite set of alternatives, C = {C1, C2, ....., Cn} be the

set of attributes, and the rating values of attributes be represented by SVTrNNs. Let

xij = ([aij, bij, cij, dij]; tij, iij, fij) be the rating values of Ai, the i-th alternative over the
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attribute Cj . Then the decision matrix is given by

X = (xij)m×n =



C1 C2 . . . Cn

A1 x11 x12 . . . x1n

A2 x21 x22 . . . x2n

...
...

... . . . ...

Am xm1 xm2 . . . xmn

 (2.2)

Let W = {w1, w2, ...., wn} be the weight vector for the attributes and ∆ be the set of

known weight information which can be constructed in the form as given by Park

et al. (2011) and Park (2004); Park et al. (1997):

1. When weak ranking : {wi ≥ wj}, i 6= j;

2. When strict ranking: {wi − wj ≥ εi (> 0)}, i 6= j;

3. The ranking of difference: {wi − wj ≥ wk − wp}, i 6= j 6= k 6= p;

4. The ranking with multiples: {wi ≥ αiwj}, 0 ≤ αi ≤ 1, i 6= j;

5. An interval form: {βi ≤ wi ≤ βi + εi(> 0)}, 0 ≤ βi ≤ βi + εi ≤ 1.

We now propose the GRA method for MADM based on SVTrNN with partially known

and completely unknown weight information. The steps are as follows:

Step 1: Normalize the decision matrix

This step transforms dimensional attributes into non-dimensional attributes which

permit comparison among criteria because different criteria are usually measured in

different units. In general, there are two types of attribute. One is benefit type attribute

and another one is cost type attribute. Let X = (xij)m×n be a decision matrix, where

SVTrNN xij = ([aij, bij, cij, dij]; tij, iij, fij) is the rating value of the alternative Ai with

respect to the attribute Cj .

In order to eliminate the influence of attribute type, we consider the following tech-

nique and obtain the standardize matrix R = (rij)m×n,
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where rij = ([r1
ij, r

2
ij, r

3
ij, r

4
ij]; tij, iij, fij) is SVTrNN. Then we have

rij =
([aij
u+
j

,
bij
u+
j

,
cij
u+
j

,
dij
u+
j

]
; tij, iij, fij

)
, for benefit type attribute. (2.3)

rij =
([u−j
dij
,
u−j
cij
,
u−j
bij
,
u−j
aij

]
; tij, iij, fij

)
, for cost type attribute. (2.4)

where u+
j = max{dij, for i = 1, 2, ....,m} and u−j = min{aij, for i = 1, 2, ....,m} for

j = 1, 2, ..., n.

Step 2: Calculate positive and negative ideal solutions

The positive ideal solution and the negative ideal solution of SVTrNN are P+ and N−,

respectively for the matrix R = (rij)m×n, and those are given below:

• For benefit type attribute,

P+ = {P+
1 , P

+
2 , ......, P

+
n }

where P+
j =

(
[max

i
(r1
ij),max

i
(r2
ij),max

i
(r3
ij),max

i
(r4
ij)];max

i
(tij),min

i
(iij),min

i
(fij)

)
and N− = {N−1 , N−2 , ......, N−n }

whereN−j =
(

[min
i

(r1
ij),min

i
(r2
ij),min

i
(r3
ij),min

i
(r4
ij)];min

i
(tij),max

i
(iij),max

i
(fij)

)
• For cost type attribute,

P+ = {P+
1 , P

+
2 , ......, P

+
n }

where P+
j =

(
[min

i
(r1
ij),min

i
(r2
ij),min

i
(r3
ij),min

i
(r4
ij)];min

i
(tij),max

i
(iij),max

i
(fij)

)
and N− = {N−1 , N−2 , ......, N−n }

whereN−j =
(

[max
i

(r2
ij),max

i
(r2
ij),max

i
(r3
ij),max

i
(r4
ij)];max

i
(tij),min

i
(iij),min

i
(fij)

)
Step 3: Calculate the grey relational coefficient

In this step, we determine the grey relational coefficient of each alternative from posi-

tive ideal solution P+ and negative ideal solution N−, which can be obtained from the

following:

ξ+
ij =

min
1≤i≤m

min
1≤j≤n

d(rij, P
+
j ) + ρmax

1≤i≤m
max
1≤j≤n

d(rij, P
+
j )

d(rij, P
+
j ) + ρmax

1≤i≤m
max
1≤j≤n

d(rij, P
+
j )

(2.5)

ξ−ij =
min

1≤i≤m
min

1≤j≤n
d(rij, N

−
j ) + ρmax

1≤i≤m
max
1≤j≤n

d(rij, N
−
j )

d(rij, N
−
j ) + ρmax

1≤i≤m
max
1≤j≤n

d(rij, N
−
j )

(2.6)
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ρ is the identification coefficient and we consider ρ = 0.5 in this study.

Step 4: Calculate the attribute weight

When the attribute weights are known, calculate the largest degree of grey relation

from positive ideal solution and the smallest degree from negative ideal solution and

determine the best alternative in GRA method. We develop the following models

when the weight information is partially known or completely unknown.

1. Weight information is partially known : If the weight information is partially

known then we develop the following optimization model:

Model–1



min ξ−i =
n∑
j=1

wjξ
−
ij

max ξ+
i =

n∑
j=1

wjξ
+
ij

subject to w ∈ ∆,
n∑
i=1

wj = 1, wj ≥ 0,

for j = 1, 2, ......, n.

Since every alternative is important, therefore, no preference should be given to any

alternative. We can aggregate the above multi-objective optimization model into the

following single objective model with equal weights.

Model–2


min ξ =

n∑
j=1

m∑
i=1

(
ξ−ij − ξ+

ij

)
wj

subject to w ∈ ∆,
n∑
j=1

wj = 1, wj ≥ 0,

for j = 1, 2, ......, n.

We find the optimal solution of Model-2 and use it as weight vector.

2. Weight information is completely unknown

In this case, we have the following single objective model:

Model–3


min ξ =

n∑
j=1

m∑
i=1

(
ξ−ij − ξ+

ij

)
wj

subject to w ∈ ∆,
n∑
j=1

w2
j = 1, wj ≥ 0,

for j = 1, 2, ......, n.
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To solve this model, we construct the Lagrangian function

L(w, θ) =
m∑
i=1

n∑
j=1

(ξ−ij − ξ+
ij) +

θ

2

( n∑
j=1

w2
j − 1

)
(2.7)

where θ ∈ R is the Lagrange multiplier. The first order conditions for optimality of L

give

∂L

∂wi
=

m∑
i=1

(ξ−ij − ξ+
ij) + θwj = 0 (2.8)

∂L

∂θ
=

n∑
j=1

w2
j − 1 = 0 (2.9)

From Eq.(2.8), we get the weight vector of the form

wj =

−
m∑
i=1

(ξ−ij − ξ+
ij)

θ
, j = 1, 2, ...n. (2.10)

Putting this value in Eq.(2.9), we get

θ2 =
m∑
j=1

m∑
i=1

(ξ−ij − ξ+
ij)

2 (2.11)

i.e., θ = −

√√√√ n∑
j=1

m∑
i=1

(ξ−ij − ξ+
ij)

2 for θ < 0 (2.12)

θ =

√√√√ n∑
j=1

m∑
i=1

(ξ−ij − ξ+
ij)

2 for θ > 0 (2.13)

From Eqs.(2.10),(2.12) and (2.13), we get the weight vector of the form

wj =

m∑
i=1

(ξ−ij − ξ+
ij)√

n∑
j=1

m∑
i=1

(ξ−ij − ξ+
ij)

2

for wj > 0 (2.14)

wj = −

m∑
i=1

(ξ−ij − ξ+
ij)√

n∑
j=1

m∑
i=1

(ξ−ij − ξ+
ij)

2

for wj < 0 (2.15)
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Therefore, the normalized weight vector is given by

w̄j =
wj
n∑
j=1

wj

(2.16)

Step 5: Determine the degree of grey relational coefficient

The degree of grey relational coefficient of each alternative Ai from the positive ideal

solution and that from the negative ideal solution with respect to attribute weight can

be obtained, respectively, from the following:

ξ+
i =

n∑
j=1

wjξ
+
ij , i = 1, 2, .....m. (2.17)

ξ−i =
n∑
j=1

wjξ
−
ij , i = 1, 2, .....m. (2.18)

Step 6: Compute the relative closeness co-efficient

In this step, we determine the relative closeness co-efficient ξi of each alternative Ai
with respect to the ideal alternative A+ as

ξi =
ξ+
i

ξ+
i + ξ−i

, for i = 1, 2, ....,m. (2.19)

Step 7: Rank the alternatives

We rank each of alternative Ai with respect to ξi. The greatest value of ξi(i = 1, 2, ....m)

of alternative Ai(i = 1, 2, ....m) is the best alternative.

2.4 Numerical example

To demonstrate the proposed GRA method, we consider the following problem:

In supply chain management, supplier selection is a major issue. Supplier evaluation

is the process to access new or existing suppliers based on their price, production,

delivery, quality of service, etc. Evaluation criteria of supplier is uncertain. Purchasing

department of an overseas multi-national company intends to pick a suitable supplier

to get better development.
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To formulate the problem, suppose that there are four suppliers {A1, A2, A3, A4} and

each supplier has four attributes such as price, quality, delivery and e-commerce capa-

bility. We consider C1, C2, C3, C4 for price, quality, delivery and e-commerce capability,

respectively. The rating values of the attributes are SVTrNN numbers. Then we get the

following decision matrix:

C1 C2

A1

(
[7, 8, 9, 10]; 0.3, 0.4, 0.5

) (
[6, 7, 8, 9]; 0.4, 0.5, 0.6

)
A2

(
[5, 6, 7, 8]; 0.3, 0.4, 0.5

) (
[3, 4, 5, 6]; 0.3, 0.4, 0.5

)
A3

(
[3, 4, 5, 6]; 0.5, 0.6, 0.7

) (
[1, 2, 3, 4]; 0.4, 0.5, 0.6

)
A4

(
[5, 6, 7, 8]; 0.6, 0.7, 0.8

) (
[3, 4, 5, 6]; 0.4, 0.5, 0.6

)
C3 C4

A1

(
[4, 5, 6, 7]; 0.1, 0.2, 0.3

) (
[4, 5, 6, 7]; 0.3, 0.4, 0.5

)
A2

(
[6, 7, 8, 9]; 0.4, 0.5, 0.6

) (
[7, 8, 9, 10]; 0.4, 0.5, 0.6

)
A3

(
[4, 5, 6, 7]; 0.2, 0.3, 0.4

) (
[6, 7, 8, 9]; 0.4, 0.5, 0.6

)
A4

(
[3, 4, 5, 6]; 0.5, 0.6, 0.7

) (
[5, 6, 7, 8]; 0.3, 0.4, 0.5

)
We now determine the best alternative with the help of the proposed GRA method.

For this, we adopt the following steps:

Step 1: Normalize the decision matrix.

In the decision matrix, the first column C1 represents the cost attribute, and second

(C2), third (C3) and fourth (C4) columns represent benefit type of attribute. Then, from
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Eqs.(2.3) and (2.4), we get the standardize decision matrix as given below.

C1 C2

A1

(
[0.30, 0.33, 0.37, 0.42]; 0.3, 0.4, 0.5

) (
[0.66, 0.77, 0.88, 1.00]; 0.4, 0.5, 0.6

)
A2

(
[0.37, 0.42, 0.50, 0.60]; 0.3, 0.4, 0.5

) (
[0.33, 0.44, 0.55, 0.66]; 0.3, 0.4, 0.5

)
A3

(
[0.50, 0.60, 0.75, 1.00]; 0.5, 0.6, 0.7

) (
[0.11, 0.22, 0.33, 0.44]; 0.4, 0.5, 0.6

)
A4

(
[0.37, 0.42, 0.50, 0.60]; 0.6, 0.7, 0.8

) (
[0.33, 0.44, 0.55, 0.66]; 0.4, 0.5, 0.6

)
C3 C4

A1

(
[0.44, 0.55, 0.66, 0.77]; 0.1, 0.2, 0.3

) (
[0.40, 0.50, 0.60, 0.70]; 0.3, 0.4, 0.5

)
A2

(
[0.66, 0.77, 0.88, 1.00]; 0.4, 0.5, 0.6

) (
[0.70, 0.80, 0.90, 1.00]; 0.4, 0.5, 0.6

)
A3

(
[0.44, 0.55, 0.66, 0.77]; 0.2, 0.3, 0.4

) (
[0.60, 0.70, 0.80, 0.90]; 0.4, 0.5, 0.6

)
A4

(
[0.33, 0.44, 0.55, 0.66]; 0.5, 0.6, 0.7

) (
[0.50, 0.60, 0.70, 0.80]; 0.3, 0.4, 0.5

)

Step 2: Calculate the positive and negative ideal solutions.

In the decision matrix, the first column C1 represents the cost attribute, and other

columns represent benefit attribute. Therefore, the positive ideal solution

P+ = {P+
1 , P

+
2 , P

+
3 , P

+
4 } is given by



(
[0.30, 0.33, 0.37, 0.42]; 0.3, 0.7, 0.8

)(
[0.66, 0.77, 0.88, 1.00]; 0.4, 0.4, 0.5

)(
[0.66, 0.77, 0.88, 1.00]; 0.4, 0.2, 0.3

)(
[0.70, 0.80, 0.90, 1.00]; 0.4, 0.4, 0.5

)


and the negative ideal solution N− = {N−1 , N−2 , N−3 , N−4 } is given by



(
[0.50, 0.60, 0.75, 1.00]; 0.6, 0.4, 0.0.5

)(
[0.11, 0.22, 0.33, 0.44]; 0.3, 0.5, 0.6

)(
[0.33, 0.44, 0.55, 0.66]; 0.2, 0.6, 0.7

)(
[0.40, 0.50, 0.60, 0.70]; 0.3, 0.5, 0.6

)


Step 3: Calculate the grey relational coefficient.



Chapter 2: Grey relational analysis method for SVTrNN 44

Grey relational coefficients of alternatives from ideal solutions (positive, negative) are

given by

ξ+ = (ξ+
ij)4×4 =


0.562 1.00 0.80 0.593

0.479 0.567 0.899 1.00

0.428 0.355 0.629 0.753

0.629 0.478 0.389 0.701



ξ− = (ξ−ij)4×4 =


0.625 0.396 0.501 0.961

0.742 0.572 0.513 0.574

0.862 1.00 0.576 0.711

0.427 0.708 0.849 0.761


Step 4: Calculate the attribute weight.

Here we consider two cases for the attribute weights: (1) when information of the

attribute weights is partially known and (2) when information of the attribute weights

is completely unknown.

Case 1: When the information of the attribute weights is partially known. Suppose

that we have the following weight information:

∆ =



0.15 ≤ w1 ≤ 0.20

0.20 ≤ w2 ≤ 0.40

0.30 ≤ w3 ≤ 0.45

0.05 ≤ w4 ≤ 0.15

and w1 + w2 + w3 + w4 = 1

Using Model-2, we construct the single objective programming problem as


min ξ(w) = 0.558w1 + 0.249w2 − 0.278w3 − 0.036w4

subject to w ∈ ∆ and
∑4

j=1 wj = 1, wj > 0,

for j = 1, 2, 3, 4.

Solving this problem with the optimization software LINGO 11, we get the optimal

weight vector as

w̄ = (0.15, 0.38, 0.45, 0.02).

Case 2 : In this case, the attribute weights are completely unknown. Using Model-3

and Eqs. (2.14), (2.15) and (2.16), we get the following weight vector
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w̄ = (0.498, 0.222, 0.248, 0.032).

Step 5: Compute the degree of grey relational coefficient.

Using Eq.(2.17), the degree of grey relational coefficient from positive ideal solution is

obtained as

ξ+
i = {ξ+

1 , ξ
+
2 , ξ

+
3 , ξ

+
4 }which is given in Table 2.1.

TABLE 2.1: Relative closeness co-efficient

ξ+
i Case 1 Case 2

ξ+
1 0.831 0.716

ξ+
2 0.711 0.619

ξ+
3 0.497 0.471

ξ+
4 0.465 0.538

Similarly, using Eq.(2.18), the degree of grey relational coefficient from negative ideal

solution is obtained as ξ−i = {ξ−1 , ξ−2 , ξ−3 , ξ−4 }which is given in Table 2.2.

TABLE 2.2: Relative closeness co-efficient

ξ−i Case 1 Case 2

ξ−1 0.488 0.554

ξ−2 0.554 0.642

ξ−3 0.782 0.816

ξ−4 0.730 0.605

Step 6: Calculate the relative relational degree.

Using Eq.(2.19), the relative closeness co-efficient of each alternative can be obtained

as given in Table 2.3. From Table 2.3, we see that, both in Case 1, the relational degrees

are in the order ξ2 > ξ1 > ξ4 > ξ3.

Step 7: Rank the alternatives

Considering the relative relational degrees, we determine the ranking of the alterna-

tives as follows:

Case 1: A2 � A1 � A4 � A3

Case 2: A2 � A1 � A4 � A3
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TABLE 2.3: Relative relational degree

ξi Case 1 Case 2

ξ1 0.630 0.563

ξ2 0.562 0.490

ξ3 0.388 0.365

ξ4 0.389 0.470

The above shows that the ranking is same in two cases. However, in both the cases,

A2 emerges as the best alternative. In the following, we compare our proposed ap-

proach with the method suggested by Biswas et al. (2018b), because only Biswas et al.

(2018b) is suitable for the considered MADM problem where the preference values of

alternatives take the form of SVTrNN and attribute weights are partially known or

incompletely unknown. We solve the numerical example using Biswas et al. (2018b)

method and obtain the similar ranking result which demonstrates the validity of our

proposed approach. A comparison of the results is shown in Table 2.4.

TABLE 2.4: A comparison of the results

Methods
Weight information

Ranking result
Partially known Unknown

Biswas et al. (2018b)
(0.15, 0.40, 0.43, 0.02) – A2 � A1 � A4 � A3

– (0.215, 0.269, 0.241, 0.275) A2 � A1 � A4 � A3

The proposed method
(0.15, 0.38, 0.45, 0.02) – A2 � A1 � A4 � A3

– (0.498, 0.222, 0.248, 0.032) A2 � A1 � A4 � A3

The proposed GRA method is flexible to deal with MADM problems with SVTrNNs

because the decision maker can analyze solution results by choosing different referen-

tial sequences and distinguishing coefficients. On the other hand, Biswas et al. (2018b)

method is limited because it depends only on distance measure. Therefore, the pro-

posed approach is better than Biswas et al. (2018b) method to deal with MADM prob-

lems. Currently some other methods(Subas, 2018; Ye, 2017) are available for MADM

problem with SVTrNNs, where the weight information of attributes is assumed to be

completely known. These methods can not deal with SVTrNN based MADM prob-

lem with partially known or completely unknown weight information. On the other

hand, our proposed method can handle SVTrNN based MADM problem with known

weight information, partially known weight and completely unknown weight infor-

mation. Therefore, our method is better than the existing methods.
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The proposed method has the following features:

• The method considers the preference values of the alternatives in terms of SVTrNNs

that effectively deal with neutrosophic information in MADM problem.

• The method offers flexible choices for choosing the importance of attribute weights.

• The method only considers relative closeness coefficient obtained from GRA to

rank the alternatives. Therefore, the method is simple and understandable.

• The proposed strategy is free from information loss due to use of any complex

aggregation operator or transformation of SVTrNN based attribute values into

crisp values.

• The method considers a new distance measure for solving MADM problems.

2.5 Conclusion

Single valued trapezoidal neutrosophic number is a well built tool for dealing with in-

determinate and incomplete information exist in real MADM problems. In this chap-

ter, we have extended GRA method for MADM problem based on SVTrNN, where

the weight information is partially known and completely unknown. We have cal-

culated grey relational degrees between every alternative and positive ideal solution,

and between every alternative and negative ideal solution, and then defined relative

relational degrees to determine the ranking of the alternatives. In order to determine

the attribute weights, we have developed two optimization models under the condi-

tion that the attribute weights are partially known or completely unknown. We have

provided a numerical example to demonstrate the developed method. The proposed

model can be utilized in many practical problems like personnel selection, medical di-

agnosis, center location selection (Pramanik et al., 2016), weaver selection (Dey et al.,

2016), etc. under SVTrNN environment.





3
TOPSIS Method for MADM Based on

Interval Trapezoidal Neutrosophic Number

3.1 Introduction

Interval trapezoidal neutrosophic number (ITrNN) (Biswas et al., 2018a) is a gener-

alization of single valued trapezoidal neutrosophic number (SVTrNN) (Subas, 2018;

Ye, 2017). Decision makers may face difficulties to express their opinions in terms of

single valued truth, indeterminacy and falsity membership degrees. In interval trape-

zoidal neutrosophic number, truth, indeterminacy and falsity membership degrees are

interval valued. Therefore, decision makers can express their opinion throughout this

number in a flexible way to face such difficulties. Our objectives in the chapter are as

follows:

• To propose TOPSIS method for MADM problem based on interval valued trape-

zoidal neutrosophic number.

• To develop the model where the rating values of the attributes are ITrNN and

weight information is completely known, partially known and completely un-

known.

This chapter is based on the paper published in Neutrosophic Sets and Systems (2018), 22, 151–167

49
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We organise the chapter as follows: Section 3.2 defines Hamming distance between

ITrNNs. Section 3.3 briefly presents classical TOPSIS method. Section 3.4 presents

TOPSIS method for MADM based on ITrNN. An illustrative example with compar-

ative analysis is given in Section 3.5. Finally, Section 3.6 presents some concluding

remarks.

3.2 Distance between two ITrNNs

Definition 3.1. (Biswas et al., 2018a) Let α̃ = ([a1, b1, c1, d1]; [t̄1,
¯
t1], [̄i1,

¯
i1], [f̄1,

¯
f1]) and

β̃ = ([a2, b2, c2, d2]; [t̄2,
¯
t2], [̄i2,

¯
i2], [f̄2,

¯
f2]) be two ITrNNs. Then the distance between two

numbers is defined as

d(α̃, β̃) =
1

24

(∣∣∣∣∣a1(2 +
¯
t1 −

¯
i1 −

¯
f1) + a1(2 + t̄1 − ī1 − f̄1)

− a2(2 +
¯
t2 −

¯
i2 −

¯
f2)− a2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣b1(2 +
¯
t1 −

¯
i1 −

¯
f1) + b1(2 + t̄1 − ī1 − f̄1)

− b2(2 +
¯
t2 −

¯
i2 −

¯
f2)− b2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣c1(2 +
¯
t1 −

¯
i1 −

¯
f1) + c1(2 + t̄1 − ī1 − f̄1)

− c2(2 +
¯
t2 −

¯
i2 −

¯
f2)− c2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣d1(2 +
¯
t1 −

¯
i1 −

¯
f1) + d1(2 + t̄1 − ī1 − f̄1)

− d2(2 +
¯
t2 −

¯
i2 −

¯
f2)− d2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
)

(3.1)

This distance is called normalized Hamming distance. The normalized Hamming dis-

tance satisfies following properties:

1. d(α̃, β̃) ≥ 0,

2. d(α̃, β̃) = d(β̃, α̃),

3. d(α̃, γ̃) ≤ d(α̃, β̃) + d(β̃, γ̃), where α̃, β̃ and γ̃ are ITrNNs.

3.3 TOPSIS method for MADM

TOPSIS method is based on the concept that the chosen alternative should have the

shortest geometric distance from the positive ideal solution and the longest geometric
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distance from the negative ideal solution. LetA= {Ai|i = 1, . . . ,m} be the set of alterna-

tives, C= {Cj|j = 1, . . . , n} be the set of criteria and D= {dij|i = 1, . . . ,m : j = 1, . . . , n}
be the performance ratings with the criteria weight vectorW= {wj|j = 1, 2, . . . , n}. The

idea of classical TOPSIS method can be expressed in a series of following steps:

Step 1. Normalize the decision matrix.

The normalized value d̄ij is calculated as follows:

d̄ij =
dij√∑m
i=1(dij)2

, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2. Calculate the weighted normalized decision matrix.

In the weighted normalized decision matrix, the modified ratings are calculated as

given below:

vij = wj × d̄ij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (3.2)

where wj is the weight of the j-th attribute such that wj ≥ 0 for j = 1, 2, . . . , n and∑n
j=1 wj = 1.

Step 3. Determine the positive and the negative ideal solutions.

The positive ideal solution (PIS) and the negative ideal solution (NIS) are determined

as follows:

PIS = A+ =
{
v+

1 , v
+
2 , . . . v

+
n

}
(3.3)

=

{(
max
j
vij|j ∈ J1

)
,

(
min
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
;

NIS = A− =
{
v−1 , v

−
2 , . . . v

−
n

}
(3.4)

=

{(
min
j
vij|j ∈ J1

)
,

(
max
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
,

where J1 and J2 are the benefit type and the cost type attributes, respectively.

Step 4. Calculate the separation measures for each alternative from the PIS and the

NIS.
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The separation values for the PIS can be measured using the n-dimensional Euclidean

distance measure as follows:

D+
i =

√√√√ n∑
j=1

(
vij − v+

j

)2
, i = 1, 2, . . .m. (3.5)

Similarly, separation values for the NIS can be measured as

D−i =

√√√√ n∑
j=1

(
vij − v−j

)2
, i = 1, 2, . . .m. (3.6)

Step 5. Calculate the relative closeness coefficient to the positive ideal solution.

The relative closeness coefficient for the alternative Ai with respect to A+ is calculated

as

Ci =
D−i

D+
i +D−i

for i = 1, 2, . . .m. (3.7)

Step 6. Rank the alternatives.

According to relative closeness coefficient to the ideal alternative, the larger value of

Ci reflects the better alternative Ai.

3.4 TOPSIS for multi-attribute decision making based

on ITrNN

In this section, we put forward a framework for determining the attribute weights and

the ranking orders for all the alternatives with incomplete weight information under

neutrosophic environment.

For a multi-attribute decision making problem, let A = (A1, A2, ....., An) be a discrete

set of alternatives and C = (C1, C2, ...., Cn) be a discrete set of attributes. Suppose that

D = [ãij] is the decision matrix, where ãij = ([a1
ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is ITrNN for

alternative Ai with respect to attribute Cj and t̃ij, ĩij and f̃ij are subsets of [0, 1] and 0 ≤
sup t̃ij+sup ĩij+sup f̃ij ≤ 3 for i = 1, 2, ...,m and j = 1, 2, ...., n. Here t̃ij denotes interval

truth membership function, ĩij denotes interval indeterminate membership function,
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and f̃ij denotes interval falsity membership function. Then we have the following

decision matrix:

D = (ãij)m×n =



C1 C2 . . . Cn

A1 ã11 ã12 . . . ã1n

A2 ã21 ã22 . . . ã2n

...
...

... . . . ...

Am ãm1 ãm2 . . . ãmn

 (3.8)

Now, we develop this method when attribute weights are completely known, partially

known and completely unknown. The steps of the ranking are as follows:

Step 1: Standardize the decision matrix.

This step transforms various attribute dimensions into non-dimensional attributes which

allow comparison across criteria because various criteria are usually measured in var-

ious units. In general, there are two types of attribute. One is benefit type attribute

and another one is cost type attribute. Let D = (aij)m×n be a decision matrix where

the ITrNN ãij = ([a1
ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is the rating value of the alternativeAi with

respect to the attribute Cj .

In order to eliminate the influence of attribute type, we consider the following tech-

nique and obtain the standardize matrix R = (r̃ij)m×n,

where r̃ij = ([r1
ij, r

2
ij, r

3
ij, r

4
ij]; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]) is ITrNN. Then we have

r̃ij =
([a1

ij

u+
j

,
a2
ij

u+
j

,
a3
ij

u+
j

,
a4
ij

u+
j

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for benefit type attribute (3.9)

r̃ij =
([u−j
a4
ij

,
u−j
a3
ij

,
u−j
a2
ij

,
u−j
a1
ij

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for cost type attribute (3.10)

where u+
j = max{a4

ij : i = 1, 2, ....,m} and u−j = min{a1
ij : i = 1, 2, ....,m} for j =

1, 2, ..., n.

Step 2: Calculate the attribute weight.

The attribute weights may be completely known, partially known or completely un-

known. So we need to determine the attribute weights by maximum deviation method

which is proposed by Yingming (1997). If the attributes have larger deviation, smaller
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deviation and no deviation then we assign larger weight, smaller weight and zero

weight, respectively.

For MADM problem, the deviation values of alternative Ai to the other alternatives

under the attribute Cj can be defined as follows:

dij(w) =
m∑
k=1

d(ãij, ãkj)wj, i = 1, 2, ....,m; j = 1, 2, ....., n,where

d(ãij, ãkj) =
1

24

(∣∣∣∣∣a
1
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a1

ij(2 + t̄ij − īij − f̄ij)

− a1
kj(2 +

¯
tkj −

¯
ikj −

¯
fkj)− a1

kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣a
2
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a2

ij(2 + t̄ij − īij − f̄ij)

− a2
kj(2 +

¯
tkj −

¯
ikj −

¯
fkj)− a2

kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣a
3
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a3

ij(2 + t̄ij − īij − f̄ij)

− a3
kj(2 +

¯
tkj −

¯
ikj −

¯
fkj)− a3

kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣a
4
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a4

ij(2 + t̄ij − īij − f̄ij)

− a4
kj(2 +

¯
tkj −

¯
ikj −

¯
fkj)− a4

kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

=
1

24

4∑
p=1

(∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

The deviation values of all the alternatives to other alternatives for the attributes Cj
can be defined as

Dj(w) =
m∑
i=1

dij(w) =
m∑
i=1

m∑
k=1

d(ãij, ãkj)wj

=
m∑
i=1

m∑
k=1

( 1

24

4∑
p=1

∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣)wj
Therefore, the total deviation value D(w) =

∑n
j=1Dj(w).

In the following, we develop three cases:

Case 1. When the attribute weights are completely known.

In this case, the attribute weightsw1, w2, ........, wn are known in advance and
∑n

j=1 wj =

1, wj ≥ 0, for j = 1, 2, ...., n.

Case 2. When the attributes weights are partially known.

In this case, we assume a non-linear programming model. This model maximizes all
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deviation values of the attributes.

Model 1



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w = 1, wj ≥ 0, for j = 1, 2, ......, n.

Here, the incomplete attribute weight information ∆ is taken in the following form

(Park et al., 2011, 1997):

1. A weak ranking:{wi ≥ wj}, i 6= j;

2. A strict ranking:{wi − wj ≥ εi(> 0)}, i 6= j;

3. A ranking of difference:{wi − wj ≥ wk − wp}, i 6= j 6= k 6= p;

4. A ranking with multiples:{wi ≥ αiwj}, 0 ≤ αi ≤ 1, i 6= j;

5. An interval form:{βi ≤ wi ≤ βi + εi(> 0)}, 0 ≤ βi ≤ βi + εi ≤ 1.

Solving this model, we get the optimal solution which is to be used as the weight

vector.

Case 3. When attribute weights are completely unknown:

In this case, we can establish the following programming model:

Model 2



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w2
j = 1, wj ≥ 0, for j = 1, 2, ......, n.

To solve this model, we construct the Lagrangian function:

L(w, ξ) =
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

+
ξ

48

( n∑
j=1

w2
j − 1

)
(3.11)

where ξ ∈ R is Lagrange multiplier.
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Now, we calculate the partial derivatives of L with respect to wj(j = 1, 2, ....n) and ξ:

∂L

∂wj
=

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

+ ξwj = 0

(3.12)

∂L

∂ξ
=

n∑
j=1

w2
j − 1 = 0 (3.13)

From Eq. (3.12), we get

wj =

−
m∑
i=1

m∑
k=1

4∑
p=1

∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣


ξ
,

j = 1, 2, ....., n (3.14)

Putting this value in Eq.(3.13), we get

ξ2 =
n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(3.15)

ξ = −

√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

, for ξ < 0

(3.16)

From Eq.(3.14) and Eq. (3.16), we get the formula for determining attribute weights

for Cj(j = 1, 2, ..., n) :

wj =

m∑
i=1

m∑
k=1

m∑
p=1

∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣


√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(3.17)
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Now, we can get the normalized attribute weight as

w̄j =
wj∑n
j=1 wj

=

m∑
i=1

m∑
k=1

m∑
p=1

∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣


n∑
j=1

m∑
i=1

m∑
k=1

m∑
p=1

∣∣∣∣∣a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣


(3.18)

Therefore, we get the normalized weight vector w̄ = {w̄1, w̄2, . . . , w̄n}.

Step 3: Determine the positive and negative ideal solutions.

The normalized decision matrix R = (r̃ij)m×n in the interval trapezoidal neutroshopic

number, the positive and negative ideal solutions are defined as follows:

r̃+ = (r̃+
1 , r̃

+
2 , . . . , r̃

+
n ) and r̃− = (r̃−1 , r̃

−
2 , . . . , r̃

−
n ) where,

r̃+
j =([r1+

j , r2+
j , r3+

j , r4+
j ]; [

¯
t+j , t̄

+
j ], [

¯
i+j , ī

+
j ], [

¯
f+
j , f̄

+
j ])

=
(

[max
i

(r1
ij),max

i
(r2
ij),max

i
(r3
ij),max

i
(r4
ij)];

[max
i

(
¯
tij),max

i
(t̄ij)][min

i
(
¯
iij),min

i
(̄iij)], [min

i
(
¯
fij),min

i
(f̄ij)]

)
(3.19)

r̃−j =([r1−
j , r2−

j , r3−
j , r4−

j ]; [
¯
t−j , t̄

−
j ], [

¯
i−j , ī

−
j ], [

¯
f−j , f̄

−
j ])

=
(

[min
i

(r1
ij),min

i
(r2
ij),min

i
(r3
ij),min

i
(r4
ij)];

[min
i

(
¯
tij),min

i
(t̄ij)][max

i
(
¯
iij),max

i
(̄iij)], [max

i
(
¯
fij),max

i
(f̄ij)]

)
(3.20)

The global positive and negative ideal solutions for ITrNN can be considered as

r̃+
j = ([1, 1, 1, 1]; [1, 1], [0, 0], [0, 0])

and

r̃−j = ([0, 0, 0, 0]; [0, 0], [1, 1], [1, 1]).
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Step 4: Calculate the separation measure from ideal solutions.

Now, using Eqs.(3.2), (3.19) and (3.20), we calculate separation measure d+
i from posi-

tive ideal solution and d−i from negative ideal solution as

d+
i =

n∑
j=1

wjd(r̃ij, r̃
+
j )

=
1

24

n∑
j=1

wj

4∑
p=1

 ∣∣∣∣∣r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp+j (2 +
¯
t+j −¯

i+j −
¯
f+
j )− rp+j (2 + t̄+j − ī+j − f̄+

j )
∣∣∣
∣∣∣∣∣
 , i = 1, 2, ....,m.

(3.21)

d−i =
n∑
j=1

wjd(r̃ij, r̃
−
j )

=
1

24

n∑
j=1

wj

4∑
p=1

 ∣∣∣∣∣r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp−j (2 +
¯
t−j −¯

i−j −
¯
f−j )− rp−j (2 + t̄−j − ī−j − f̄−j )

∣∣∣
∣∣∣∣∣
 , i = 1, 2, ...,m.

(3.22)

Step 5: Calculate the relative closeness co-efficient.

We calculate the relative closeness co-efficient of an alternative Ai with respect to the

ideal alternative A+ as

RCC(Ai) =
d−i

d+
i + d−i

, for i = 1, 2, ...., n, (3.23)

where 0 ≤ RCC(Ai) ≤ 1. We then rank the best alternative according to RCC.

Step 6: End.

3.5 An illustrative example

In order to demonstrate the proposed method, we consider the following MADM

problem. Suppose that a person wants to buy a laptop. Let there be four companies

A1, A2, A3, A4 and laptop of each company has three attributes such as cost, warranty,

and quality. We consider C1 for cost, C2 for warranty and C3 for quality type of at-

tribute.

The person evaluates the rating values of the alternatives Ai (i = 1, 2, 3, 4) with

respect to attributes Cj(j = 1, 2, 3). Then we get the neutrosophic decision matrix
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D = (ãij)4×3 =
C1

A1 ([50, 60, 70, 80]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])

A2 ([30, 40, 50, 60]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])

A3 ([70, 80, 90, 100]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])

A4 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([30, 40, 50, 60]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.7])

A2 ([10, 20, 30, 40]; [0.1, .2], [0.3, 0.4], [0.6, 0.7])

A3 ([50, 60, 70, 80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])

A4 ([70, 80, 90, 100]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.8])

C3

A1 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])

A2 ([20, 30, 40, 50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])

A3 ([70, 80, 90, 100]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])

A4 ([30, 40, 50, 60]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])

Now, with the help of the proposed method, we find the best alternative following the

steps given below:

Step 1: Standardize the decision matrix.

In the decision matrix, the first column represents the cost type attribute, and the sec-

ond and the third columns represent benefit type attribute. Then, using Eqs. (3.9) and

(3.10), we get the following standardize decision matrix Rij =

C1

A1 ([0.38, 0.43, 0.50, 0.60]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])

A2 ([0.50, 0.60, 0.75, 1.0]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])

A3 ([0.30, 0.33, 0.38, 0.43]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])

A4 ([0.43, 0.50, 0.60, 0.75]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([0.30, 0.40, 0.50, 0.60]; [0.2, .3], [0.4, 0.5], [0.6, 0.7])

A2 ([0.10, 0.20, 0.30, 0.40]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])

A3 ([0.50, 0.60, 0.70, 0.80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])

A4 ([0.70, 0.80, 0.90, 1.0]; [0.2, 0.3], [0.4, .5], [0.6, 0.8])

C3

A1 ([0.40, 0.50, 0.60, 0.70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])

A2 ([0.20, 0.30, 0.40, 0.50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])

A3 ([0.70, 0.80, 0.90, 1.0]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])

A4 ([0.30, 0.40, 0.50, 0.60]; [0.4, .5], [0.6, 0.7], [0.7, 0.8])

Step 2: Calculate the attribute weight.

Here we assume three cases for the attribute weight.

Case 1 : When the attribute weights are completely known, let the weight vector be

w̄ = (0.25, 0.55, 0.20).
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Case 2 : When the attribute weights are partially known, we select the weight infor-

mation as follows:

∆ =


0.35 ≤ w1 ≤ 0.75

0.25 ≤ w2 ≤ 0.60

0.30 ≤ w3 ≤ 0.45

and w1 + w2 + w3 = 1

Using Model 1, we develop the single objective programming problem as{
max(D) = 45.92w1 + 109.56w2 + 98.20w3

subject to w ∈ ∆ and
∑3

j=1wj = 1, wj > 0 for j = 1, 2, 3.

Solving this problem with optimization software LINGO 11, we get the optimal weight

vector as

w̄ = (0.35, 0.35, 0.30).

Case 3 : When the attribute weights are completely unknown, we use Model 2 and

Eqn. (3.18) and obtain the following weight vector:

w̄ = (0.18, 0.43, 0.39).

Step 3: Determine the positive and negative ideal solutions.

Since the cost of the laptop is cost type attribute, and warranty and quality are benefit

type attributes, therefore, using Eqs. (3.19) and (3.20), we get the following neutro-

sophic positive and negative ideal solutions:

A+ =


(

[0.30,0.33,0.38,0.43];[0.10,0.20],[0.20,0.30],[0.20,0.30]
)(

[0.70,0.80,0.90,1.0];[0.20,0.30],[0.40,0.50],[0.60,0.70]
)(

[0.70,0.80,0.90,1.0];[0.40,0.50],[0.60,0.70],[0.80,0.90]
)


A− =


(

[0.50,0.60,0.75,1.0];[0.60,0.70],[0.40,0.50],[0.40,0.50]
)(

[0.10,0.20,0.30,0.40];[0.10,0.20],[0.30,0.40],[0.60,0.70]
)(

[0.20,0.30,0.40,0.50];[0.10,0.20],[0.30,0.40],[0.70,0.80]
)


Step 4 : Calculate the separation measure from ideal solutions.

Case 1 : From Eq. (3.21), we get the separation measure d+
i of each Ai from A+:
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d+
1 = d(A1, A

+) = 0.179, d+
2 = d(A2, A

+) = 0.425

d+
3 = d(A3, A

+) = 0.106, d+
4 = d(A4, A

+) = 0.325

From Eq. (3.22), we get the separation measure d−i of each Ai from A−:

d−1 = d(A1, A
−) = 0.304, d−2 = d(A2, A

−) = 0.083

d−3 = d(A3, A
−) = 0.485, d−4 = d(A4, A

) = 0.503

Case 2 : From Eq. (3.21), we get the separation measure d+
i of each Ai from A+:

d+
1 = d(A1, A

+) = 0.185, d+
2 = d(A2, A

+) = 0.434

d+
3 = d(A3, A

+) = 0.141, d+
4 = d(A4, A

+) = 0.335

From Eq. (3.22), we get the separation measure d−i of each Ai from A−:

d−1 = d(A1, A
−) = 0.299, d−2 = d(A2, A

−) = 0.084

d−3 = d(A3, A
−) = 0.479, d−4 = d(A4, A

) = 0.381

Case 3 : From Eq. (3.21), we get the separation measure d+
i of each Ai from A+:

d+
1 = d(A1, A

+) = 0.167, d+
2 = d(A2, A

+) = 0.429

d+
3 = d(A3, A

+) = 0.126, d+
4 = d(A4, A

+) = 0.307

From Eq.(3.22), we get the separation measure d−i of each Ai from A−:

d−1 = d(A1, A
−) = 0.604, d−2 = d(A2, A

−) = 0.094

d−3 = d(A3, A
−) = 0.554, d−4 = d(A4, A

) = 0.467

Step 5: Calculate the relative closeness co-efficient.

In this step, using Eq.(3.23), we calculate the relative closeness coefficient of the alter-

natives A1, A2, A3, A4 and obtain the following results (see Table 3.1):

TABLE 3.1: Relative closeness co-efficient

RCC(Ai) Case 1 Case 2 Case 3

RCC(A1) 0.629 0.618 0.783

RCC(A2) 0.163 0.162 0.180

RCC(A3) 0.819 0.773 0.814

RCC(A4) 0.607 0.532 0.603
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From the above table, we see that RCC(A3) ≥ RCC(A1) ≥ RCC(A4) ≥ RCC(A2) in

all cases. Therefore, we conclude that

A3 � A1 � A4 � A2

where A3 is the best alternative.

Step 6: End.

3.5.1 Comparative analysis

The study made by Liu (2014) presents TOPSIS method for MADM based on trape-

zoidal intuitionistic fuzzy number and does not include indeterminate type informa-

tion in the decision making process. The preference value considered in this chapter

is interval trapezoidal neutrosophic number, which deals with indeterminate type in-

formation effectively along with truth and falsity type information. The method pre-

sented by Ye (2017) and Subas (2018) discusses some aggregation operators of trape-

zoidal neutrosophic number and the decision making method proposed by Biswas

et al. (2018b) presents trapezoidal neutrosophic number based TOPSIS method for

MADM with partially known, and completely unknown weight information. We

know that interval trapezoidal neutrosophic number is a generalization of trapezoidal

neutrosophic number. The approach provided by Biswas et al. (2018a) discusses ITrNN

based MADM with known weight information, whereas our proposed model devel-

ops ITrNN based MADM model with known, partially known, and completely un-

known weight information. Furthermore, the methods suggested by Biswas et al.

(2018b) , Ye (2017), and Subas (2018) are not suitable for the decision making prob-

lem discussed in this chapter. We compare our results with the method Biswas et al.

(2018a) given in Table 3.2

Therefore, our proposed method is more general than the existing methods because

the existing methods cannot deal with ITrNN based MADM with partially known,

and completely unknown weight information.
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TABLE 3.2: A comparison of the results

Method Type of weight information Ranking result

Biswas et al. (2018a) method
Partially known Not Applicable

Completely unknown Not Applicable

Proposed method
Partially known A3 � A1 � A4 � A2

Completely unknown A3 � A1 � A4 � A2

3.6 Conclusion

TOPSIS method is a very popular method for MADM problem and this method has

been extended under different environments like fuzzy sets, intuitionistic fuzzy sets

and neutrosophic sets. In this chapter, we have extended TOPSIS method based on

ITrNN. First, we have developed an optimization model to calculate the attribute

weight with the help of maximum deviation strategy when the weight information

is partially known. We have also developed another model by using Lagrangian func-

tion to determine attributes’ weights for unknown weight information case. With these

weights we have solved MADM problem by TOPSIS method. Finally, we have pro-

vided a numerical example of MADM problem and compared with existing meth-

ods. The proposed strategy can be extended to multi-attribute group decision making

problem with ITrNN. This model can be used in various selection problem like weaver

selection problem (Dey et al., 2015a,1), data mining (Mondal et al., 2016), teacher se-

lection (Mondal and Pramanik, 2014), brick field selection problem (Mondal and Pra-

manik, 2015a), center location selection (Pramanik et al., 2016), etc. under ITrNN envi-

ronment.





4
TOPSIS Method for Neutrosophic Hesitant

Fuzzy Multi-Criteria Decision Making

4.1 Introduction

In decision making problem, decision makers may sometime hesitate to assign a sin-

gle value for rating the alternatives due to doubt or incomplete information. Instead,

they prefer to assign a set of possible values to represent the membership degree for

any element to the set. To deal with the issue, Torra (2010) coined the idea of hesi-

tant fuzzy set, which is a generalization of fuzzy set and intutionsistic fuzzy set. Till

then, hesitant fuzzy set has been successfully applied in decision making problems

(Rodriguez et al., 2011; Xia and Xu, 2011; Xu and Zhang, 2013). Xu and Xia (2011) pro-

posed a variety of distance measures for hesitant fuzzy set. Wei (2012) introduced hes-

itant fuzzy prioritized operators for solving MADM problem. Beg and Rashid (2013)

proposed TOPSIS method for MADM with hesitant fuzzy linguistic term set. Liao

and Xu (2015) developed approaches to manage hesitant fuzzy linguistic information

based on the cosine distance and similarity measures for HFLTSs and their application

in qualitative decision making. Joshi and Kumar (2016) introduced Choquet integral

based TOPSIS method for multi-criteria group decision making with interval valued

intutionistic hesitant fuzzy set.

This chapter is based on the paper published in INFORMATICA (2020), 31, 35-63

65
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However, hesitant fuzzy set can not present inconsistent, imprecise, inappropriate and

incomplete information because the set has only truth hesitant membership degree to

express any element to the set. To handle this problem, Ye (2015a) introduced single

valued neutrosophic hesitant fuzzy sets (SVNHFS). Şahin and Liu (2017) defined cor-

relation coefficient of SVNHFS and applied in decision making problem. Biswas et al.

(2016b) proposed GRA method for MADM with SVNHFS for known attribute weight.

Ji et al. (2018) proposed a projection–based TODIM approach under multi-valued neu-

trosophic environments for personnel selection problem. Biswas et al. (2019) further

extended the GRA method for solving MADM with SVNHFS and INHFS for partially

known or unknown attribute weight.

We have the following objectives in this study:

• To formulate SVNHFS based MADM problem, where the weight information is

incompletely known and completely unknown.

• To determine the weights of attributes given in incompletely known and com-

pletely unknown forms using deviation method.

• To extend TOPSIS method for solving SVNHFS based MADM problem using the

proposed optimization model.

• To further extend the proposed approach in INHFS environment

• To validate the proposed approach with two numerical examples.

• To compare the proposed method with some existing methods.

The remainder of this chapter is organized as follows. Section 4.2 gives preliminaries

for hesitant fuzzy set, SVNHFS, INHFS and also represents score function, accuracy

function and distance function of SVNHFS and INHFS. Section 4.3 and Section 4.4

develop TOPSIS method for MADM under SVNHFS and INHFS, respectively. Section

4.5 presents two numerical examples to validate the proposed method and provides

a comparative study between the proposed method and existing methods. Finally,

conclusion and future research directions are given in Section 4.6 .
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4.2 Preliminaries

Definition 4.1. (Torra, 2010) Let X be a universe of discourse. A hesitant fuzzy set on

X is symbolized by

A = {〈x, hA(x)〉 | x ∈ X}, (4.1)

where hA(x), referred to as the hesitant fuzzy element, is a set of some values in [0, 1]

denoting the possible membership degree of the element x ∈ X to the set A.

From mathematical point of view, a HFS A can be seen as a FS if there is only one

element in hA(x). For notational convenience, we assume h as hesitant fuzzy element

hA(x) for x ∈ X .

Definition 4.2. (Chen et al., 2013) Let X be a non-empty finite set. An interval hesitant

fuzzy set on X is represented by

E =
{
〈x, h̃E(x)〉|x ∈ X

}
,

where h̃E(x) is a set of some different interval values in [0, 1], which denote the possible

membership degrees of the element x ∈ X to the set E. h̃E(x) can be represented by

an interval hesitant fuzzy element h̃ which is denoted by {γ̃|γ̃ ∈ h̃}, where γ̃ =[γL, γU ]

is an interval number.

Definition 4.3. (Ye, 2015a) Let X be a fixed set. Then a N on X is defined as

N = {〈x, t(x), i(x), f(x)〉 | x ∈ X} (4.2)

in which t(x), i(x) and f(x) represent three sets of some values in [0, 1], denoting re-

spectively the possible truth, indeterminacy and falsity membership degrees of the

element x ∈ X to the set N . The membership degrees t(x), i(x) and f(x) satisfy the

following conditions:

0 ≤ δ, γ, η ≤ 1, 0 ≤ δ+ + γ+ + η+ ≤ 3

where, δ ∈ t(x), γ ∈ i(x), η ∈ f(x), δ+ ∈ t+(x) =
⋃

δ∈t(x)

max t(x), γ+ ∈ i+(x) =
⋃

γ∈t(x)

max i(x)

and η+ ∈ f+(x) =
⋃

η∈f(x)

max f(x) for all x ∈ X .



Chapter 4: TOPSIS method for neutrosophic hesitant fuzzy MADM 68

n(x)=〈t(x), i(x), f(x)〉 is called as single valued neutrosophic hesitant fuzzy element

(SVNHFE) denoted by n=〈t, i, f〉. The number of values for possible truth, indeter-

minacy and falsity membership degrees of the element in different SVNHFEs may be

different.

Definition 4.4. (Liu and Shi, 2015) Let X be a non-empty finite set. Then an interval

neutrosophic hesitant fuzzy set on X is represented by

ñ =
{
〈x, t̃(x), ĩ(x), f̃(x)〉|x ∈ X

}
where t̃(x)=

{
γ̃|γ̃ ∈ t̃(x)

}
, ĩ(x)=

{
γ̃|γ̃ ∈ ĩ(x)

}
and f̃(x)=

{
γ̃|γ̃ ∈ f̃(x)

}
are three sets

of some interval values in real unit interval [0, 1], which denotes the possible truth,

indeterminacy and falsity membership hesitant degrees of the element x ∈ X to the

set N . These values satisfy the limits:

γ̃ = [γL, γU ] ⊆ [0, 1], δ̃ = [δL, δU ] ⊆ [0, 1], η̃ = [ηL, ηU ] ⊆ [0, 1]

and 0 ≤ γ̃++δ̃++η̃+ ≤ 3, where γ̃+=
⋃

γ̃∈t̃(x)

sup t̃(x), δ̃+=
⋃

δ̃∈t̃(x)

sup ĩ(x) and η̃+=
⋃

η̃∈t̃(x)

sup f̃(x).

Then ñ=
{
t̃(x), ĩ(x), f̃(x)

}
is called an interval neutrosophic hesitant fuzzy element

(INHFE) which is the basic unit of the INHFS and is represented by the symbol ñ={
t̃, ĩ, f̃

}
for convenience.

4.2.1 Score function, accuracy function and distance function of SVN-

HFEs and INHFEs

Definition 4.5. (Biswas et al., 2016b) Let ni=〈ti, ii, fi〉(i = 1, 2, . . . , n) be a collection of

SVNHFEs. Then the score function S(ni), the accuracy functionA(ni) and the certainty

function C(ni) of ni (i = 1, 2, . . . , n) can be defined as follows:

1. S(ni)=1
3

[
2 + 1

lt

∑
γ∈t

γ − 1
li

∑
δ∈i
δ − 1

lf

∑
η∈f

η
]
;

2. A(ni)= 1
lt

∑
γ∈t

γ − 1
lf

∑
η∈f

η;

3. C(ni)= 1
lt

∑
γ∈t

γ.

Example 4.1. Let n1= 〈{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}〉 be an SVNHFE, and then by Defini-

tion 4.5, we have
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1. S(n1) = 1
3

[
2 + 1.2

3
− 0.1− 0.7

2
] = 0.65;

2. A(n1) = 1.2
3
− 0.7

2
= 0.05;

3. C(n1) =1.2
3

= 0.4.

Definition 4.6. (Biswas et al., 2016b) Let n1=〈t1, i1, f1〉 and n2=〈t2, i2, f2〉 be two SVN-

HFEs. Then the following rules can be defined for comparison purpose:

1. If s(n1) > s(n2), then n1 is greater than n2, i.e., n1 is superior to n2, denoted by

n1 � n2.

2. If s(n1) = s(n2) and A(n1) > A(n2), then n1 is greater than n2, i.e., n1 is superior

to n2, denoted by n1 � n2.

3. If s(n1) = s(n2) and A(n1) = A(n2), and C(n1) > C(n2), then n1 is greater than

n2, i.e., n1 is superior to n2, denoted by n1 � n2.

4. If s(n1) = s(n2) and A(n1) = A(n2), and C(n1) = C(n2), then n1 is equal to n2, i.e.,

n1 is indifferent to n2, denoted by n1 ∼ n2.

Example 4.2. Let n1= 〈{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}〉 and

n2= 〈{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}〉 be two SVNHFEs, and then by Definition 4.5, we have

S(n1) = 0.65, A(n1) = 0.05, C(n1) = 0.40

S(n2) = 0.75, A(n2) = 0.40, C(n2) = 0.65.

Since S(n2) > S(n1), therefore, we have n2 � n1 from Definition 4.6. We take another example

to compare SVNHFEs.

Example 4.3. Let n1= 〈{0.5, 0.6}, {0.2}, {0.2, 0.3}〉 and

n2= 〈{0.7, 0.8}, {0.3}, {0.3, 0.4}〉 be two SVNHFEs. Then by Definition 4.5, we have

S(n1) = 0.70, A(n1) = 0.30, C(n1) = 0.55

S(n2) = 0.70, A(n2) = 0.40, C(n2) = 0.75.

Since S(n2) = S(n1) and A(n2) > A(n1) we have n2 � n1 from Definition 4.6.

Definition 4.7. (Biswas et al., 2016b) Let ñi = 〈t̃i, ĩi, f̃i〉(i = 1, 2, . . . , n) be a collection of

INHFEs. Then the score function S(ñi), the accuracy function A(ñi) and the certainty

function C(ñi) of ñi(i = 1, 2, . . . , n) can be defined as follows:
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1. S(ñi)=1
6

[
4 + 1

lt

∑
γ∈t

(γL + γU)− 1
li

∑
δ∈i

(δL + δU)− 1
lf

∑
η∈f

(ηL + ηU)
]
;

2. A(ñi)=1
2

[
1
lt

∑
γ∈t

(γL + γU)− 1
lf

∑
η∈f

(ηL + ηU)
]
;

3. C(ñi)=1
2

[
1
lt

∑
γ∈t

(γL + γU)
]
.

Example 4.4. Let ñ1 = 〈{[0.3, 0.4], [0.4, 0.5]}, {[0.1, 0.2]}, {[0.3, 0.4]}〉 be an INHFE, and

then by the above definition, we have

1. S(ñ1)= 1
6

[
4 + 1

2
(0.7 + 0.9)− (0.1 + 0.2)− (0.3 + 0.4)

]
= 0.63;

2. A(ñ1)=1
2

[
1
2
(0.7 + 0.9)− (0.3 + 0.4)

]
= 0.05;

3. C(ñ1)= 1
2

[
1
2
(0.7 + 0.9)

]
=0.4.

Definition 4.8. Let n1=〈t1, i1, f1〉 and n2=〈t2, i2, f2〉 be two INHFEs. Then the following

rules can be defined to compare INHFEs:

1. If s(ñ1) > s(ñ2), then ñ1 is greater than ñ2, denoted by ñ1 � ñ2.

2. If s(ñ1) = s(ñ2) andA(ñ1) > A(ñ2), then ñ1 is greater than ñ2, denoted by ñ1 � ñ2.

3. If s(ñ1) = s(ñ2) and A(ñ1) = A(ñ2), and C(ñ1) > C(ñ2), then ñ1 is greater than

ñ2, denoted by ñ1 � ñ2.

4. If s(ñ1) = s(ñ2) and A(ñ1) = A(ñ2), and C(ñ1) = C(ñ2), then ñ1 is equal to ñ2,

denoted by ñ1 ∼ ñ2.

Example 4.5. Let ñ1 = 〈{[0.3, 0.4], [0.4, 0.5]}, {[0.1, 0.2]}, {[0.3, 0.4]}〉
and ñ2 = 〈{[0.5, 0.6]}, {[0.1, 0.2], [0.2, 0.3]}, {[0.2, 0.3]}〉 be two INHFEs, and then by Defini-

tion 4.7, we have

S(ñ1) = 0.63, A(ñ1) = 0.05, C(ñ1) = 0.40;

S(ñ2) = 0.70, A(ñ2) = 0.30, C(ñ2) = 0.55.

Following Definition 4.8, and the relation S(ñ2) > S(ñ1), we can say n2 � n1.
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Definition 4.9. (Biswas et al., 2018b) Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be two SVN-

HFEs. Then the normalized hamming distance between n1 and n2 is defined as fol-

lows:

D(n1, n2) =
1

3

(∣∣∣∣ 1

lt1

∑
γ1∈t1

γ1 −
1

lt2

∑
γ2∈t2

γ2

∣∣∣∣+

∣∣∣∣ 1

li1

∑
δ1∈i1

δ1 −
1

li2

∑
δ2∈i2

δ2

∣∣∣∣
+

∣∣∣∣ 1

lf1

∑
η1∈f1

η1 −
1

lf2

∑
η2∈f2

η2

∣∣∣∣) (4.3)

where, ltk , lik and lfk are numbers of possible membership values in nk for k = 1, 2.

Example 4.6. Let n1= 〈{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}〉 and n2= 〈{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}〉
be two SVNHFEs, and then by the above definition, the distance measure between n1 and n2 is

given by

D(n1, n2) =
1

3

(∣∣∣∣13(0.3 + 0.4 + 0.5)− 1

2
(0.6 + 0.7)

∣∣∣∣+

∣∣∣∣0.1− 1

2
(0.1 + 0.2)

∣∣∣∣
+

∣∣∣∣12(0.3 + 0.4)− 1

2
(0.2 + 0.3)

∣∣∣∣)
=0.1333

Definition 4.10. (Biswas et al., 2018b) Let ñ1=〈t̃1, ĩ1, f̃1〉 and ñ2=〈t̃2, ĩ2, f̃2〉 be two IN-

HFEs. Then the normalized hamming distance between ñ1 and ñ2 is defined as fol-

lows:

D̃(ñ1, ñ2) =
1

6



∣∣∣∣ 1
lt̃1

∑
γ1∈t̃1

γL1 − 1
lt̃2

∑
γ2∈t̃2

γL2

∣∣∣∣+

∣∣∣∣ 1
lt̃1

∑
γ1∈t̃1

γU1 − 1
lt̃2

∑
γ2∈t̃2

γU2

∣∣∣∣
+

∣∣∣∣ 1
l̃i1

∑
δ1∈ĩ1

δL1 − 1
l̃i2

∑
δ2∈ĩ2

δL2

∣∣∣∣+

∣∣∣∣ 1
l̃i1

∑
δ1∈ĩ1

δU1 − 1
l̃i2

∑
δ2∈ĩ2

δU2

∣∣∣∣
+

∣∣∣∣ 1
lf̃1

∑
η1∈f̃1

ηL1 − 1
lf̃2

∑
η2∈f̃2

ηL2

∣∣∣∣+

∣∣∣∣ 1
lf̃1

∑
η1∈f̃1

ηU1 − 1
lf̃2

∑
η2∈f̃2

ηU2

∣∣∣∣


(4.4)

where, lt̃k , l̃ik and lf̃k are numbers of possible membership values in nk for k = 1, 2.

Example 4.7. Let ñ1 = 〈{[0.3, 0.4], [0.4, 0.5]}, {[0.1, 0.2]}, {[0.3, 0.4]}〉
and ñ2 = 〈{[0.5, 0.6]}, {[0.1, 0.2], [0.2, 0.3]}, {[0.2, 0.3]}〉 be two INHFEs. Using the above

definition, the distance measure between ñ1 and ñ2 is given by

D̃(ñ1, ñ2) =
1

6
(0.15 + 0.15 + 0.05 + 0.05 + 0.10 + 0.10) = 0.10.
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4.3 TOPSIS method for MADM with SVNHFS informa-

tion

In this section, we propose TOPSIS method to find out the best alternative in MADM

with SVNHFSs. Suppose that A= {A1, A2, . . . , Am} be the discrete set of m alternatives

and C= {C1, C2, . . . , Cn} be the set of n attributes for a SVNHFSs based multi-attribute

decision making problem. Also, assume that the rating value of the i-th alternative

Ai(i = 1, 2, . . . ,m) over the attribute Cj(j = 1, 2, . . . , n) is considered with SVNHFSs

xij=(tij, iij, fij), where tij={γij | γij ∈ tij, 0 ≤ γij ≤ 1}, iij={δij | δij ∈ iij, 0 ≤ δij ≤ 1}
and fij={ηij | ηij ∈ fij, 0 ≤ ηij ≤ 1} indicate the possible truth, indeterminacy and

falsity membership degrees of the i-th alternative Ai over the j-th attribute Cj for i =

1, 2, . . . ,m and j = 1, 2, . . . , n. Then we can construct a SVNHFS based decision matrix

X=(xij)m×n which has entries as the SVNHFSs and can be written as

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
... . . . ...

xm1 xm2 · · · xmn

 (4.5)

Now, we extend the TOPSIS method for MADM in single-valued neutrosophic hesi-

tant fuzzy environment. Before going to discuss in details, we briefly mention some

important steps of the proposed model. First, we consider the weights of attributes

which may be known, incompletely known or completely unknown. We develop op-

timization models to determine the exact weights of attributes using maximum devi-

ation method (Yingming, 1997). Following TOPSIS method, we then determine the

Hamming distance measure of each alternative from the positive and negative ideal

solutions. Finally, we obtain the relative closeness co-efficient of each alternative to

determine the most preferred alternative.

We elaborate the following steps used in the proposed model.

Step 1. Determine the weights of attributes.

Case 1a. If the information of attribute weights is completely known and is given as

w = (w1, w2, . . . , wn)T , with wj ∈ [0, 1] and
∑n

j=1 wj = 1, then go to Step 2.
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However, in case of real decision making, due to time pressure, lack of knowledge

or decision makers’ limited expertise in the public domain, the information about the

attribute weights is often incompletely known or completely unknown. In this situa-

tion when the attribute weights are partially known or completely unknown, we use

the maximizing deviation method proposed by Yingming (1997) to deal with MADM

problems. For a MADM problem, Yingming suggested that when the attribute has

larger deviation among the alternatives, a larger weight should be assigned and when

the attribute has smaller deviation among the alternatives, a smaller weight should be

assigned, and when attribute has no deviation, zero weight should be assigned.

Now, we develop an optimization model based on maximizing deviation method to

determine the optimal relative weights of attributes under SVNHF environment. For

the attribute Cj ∈ C, the deviation of alternative Ai to all the other alternatives can be

defined as

Dij(w) =
m∑
k=1

wjD(xij, xkj), for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (4.6)

In Eq.(4.3), the Hamming distance D(xij, xkj) is defined as

D(xij, xkj) =
1

3



∣∣∣∣ 1

ltij

∑
γij∈tij

γij −
1

ltkj

∑
γkj∈tkj

γkj

∣∣∣∣
+

∣∣∣∣ 1

liij

∑
δij∈iij

δij −
1

likj

∑
δkj∈ikj

δkj

∣∣∣∣
+

∣∣∣∣ 1

lfij

∑
ηij∈fij

ηij −
1

lfkj

∑
ηkj∈fkj

ηkj

∣∣∣∣


=

1

3
(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj)) (4.7)

where,

∆T (xij, xkj) =

∣∣∣∣ 1

ltij

∑
γij∈tij

γij −
1

ltkj

∑
γkj∈tkj

γkj

∣∣∣∣;
∆I(xij, xkj) =

∣∣∣∣ 1

lfij

∑
ηij∈fij

ηij −
1

lfkj

∑
ηkj∈fkj

ηkj

∣∣∣∣;
∆F (xij, xkj) =

∣∣∣∣ 1

lfij

∑
ηij∈fij

ηij −
1

lfkj

∑
ηkj∈fkj

ηkj

∣∣∣∣;
and ltij , liij and lfij denote the numbers of possible membership values in xil for l = j, k.
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We now consider the deviation values of all alternatives to other alternatives for the

attribute xj ∈ X(j = 1, 2, . . . , n):

Dj(w) =
m∑
i=1

Dij(wj)

=
m∑
i=1

m∑
k=1

wj
3

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj)) . (4.8)

Case 2a: The information about the attribute weights is incomplete.

In this case, we develop some model to determine the attribute weights. Suppose that

the attribute’s incomplete weight information H is given by

1. A weak ranking: {wi ≥ wj}, i 6= j;

2. A strict ranking: {wi − wj ≥ εi(> 0)}, i 6= j;

3. A ranking of difference: {wi − wj ≥ wk − wp}, i 6= j 6= k 6= p;

4. A ranking with multiples: {wi ≥ αiwj}, 0 ≤ αi ≤ 1, i 6= j;

5. An interval form: {βi ≤ wi ≤ βi + εi(> 0)}, 0 ≤ βi ≤ βi + εi ≤ 1.

For these cases, we construct the following constrained optimization model based on

the set of known weight information H :

M–1.


maxD(w) =

n∑
j=1

m∑
i=1

m∑
k=1

wj

3

∆T (xij, xkj) + ∆I(xij, xkj)

+ ∆F (xij, xkj)


subject to w ∈ H,wj ≥ 0,

n∑
j=1

wj = 1, j = 1, 2, . . . , n.

(4.9)

Solving Model-1, we can obtain the optimal solution w = (w1, w2, . . . , wn)T which can

be used as the weight vector of the attributes to proceed to Step 2.

Case 3a: The information about the attribute weights is completely unknown.

In this case, we develop the following non-linear programming model to select the

weight vector W , which maximizes all deviation values for all the attributes:
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M–2.


maxD(w) =

n∑
j=1

m∑
i=1

m∑
k=1

wj

3

∆T (xij, xkj) + ∆I(xij, xkj)

+ ∆F (xij, xkj)


s.t. wj ≥ 0, j = 1, 2, . . . , n;

n∑
j=1

w2
j = 1.

(4.10)

The Lagrange function corresponding to the above constrained optimization problem

is given by

L(w, λ) =
n∑
j=1

m∑
i=1

m∑
k=1

wj
3

(
∆T (xij, xkj) + ∆I(xij, xkj)

+ ∆F (xij, xkj)

)
+
λ

6

( n∑
j=1

w2
j − 1

)
, (4.11)

where λ is a real number denoting the Lagrange multiplier. The partial derivatives of

L with respect to wj and λ are given by

∂L

∂wj
=

1

3

m∑
i=1

m∑
k=1

(
∆T (xij, xkj) +∆I(xij, xkj)

+∆F (xij, xkj)

)
+
λ

3
wj = 0 (4.12)

∂L

∂λ
=

1

6

( n∑
j=1

w2
j − 1

)
= 0. (4.13)

It follows from Eq. (4.12) that

wj = −
( m∑

i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))

)
/λ, (4.14)

for i = 1, 2, . . . ,m.

Putting this value of wj in Eq. (4.13), we get

λ2 =
n∑
j=1

( m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))
)2 (4.15)

or, λ = −

√√√√ n∑
j=1

( m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))
)2 (4.16)

where λ < 0 and
m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj)), represents the sum

of deviations of all the attributes with respect to the j-th attribute and
n∑
j=1

( m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))
)2, represents the sum of devia-

tions of all the alternatives with respect to all the attributes.
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Then combining equations (4.14) and (4.16), we obtain weight wj for j = 1, 2, . . . , n as

wj =

m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))√
n∑
j=1

( m∑
i=1

m∑
k=1

(∆T (xij, xkj) + ∆I(xij, xkj) + ∆F (xij, xkj))
)2

. (4.17)

We make the sum of wj (j = 1, 2, . . . , n) into a unit to normalize the weight of the j-th

attribute:

wNj =
wj∑n
j=1wj

, j = 1, 2, . . . , n; (4.18)

and consequently, we obtain the weight vector of the attribute as

W = (wN1 , w
N
2 , . . . , w

N
n )

for proceeding to Step-2.

Step 2. Determine the positive ideal alternative and negative ideal alternative.

From decision matrix X=(xij)m×n, we can determine the single valued neutrosophic

hesitant fuzzy positive ideal solution(SVNHFPIS) A+ and single valued neutrosophic

hesitant fuzzy negative ideal solution (SVNHFNIS) A− of alternatives as follows:

A+ =
(
A+

1 , A
+
2 , . . . , A

+
n )

=
{〈

max
i
{γσ(p)

ij },min
i
{δσ(q)

ij },min
i
{ησ(r)

ij }
〉
|i = 1, 2, . . . ,m; j = 1, 2, . . . , n

}
(4.19)

A− =
(
A−1 , A

−
2 , . . . , A

−
n )

=
{〈

min
i
{γσ(p)

ij },max
i
{δσ(q)

ij },max
i
{ησ(r)

ij }
〉
|i = 1, 2, . . . ,m and j = 1, 2, . . . , n

}
(4.20)

Here we compare the attribute values xij by using score, accuracy and certainty values

of SVNHFEs defined in Definition 4.5.

Step 3. Determine the distance measure from the ideal alternatives to each alterna-

tive.

We determine the distance measure between positive ideal alternative A+ and alterna-

tive Ai, as given in the following
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D+
i =

n∑
j=1

wjD(xij, x
+
j )

=
wj
3
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ηij −
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lfkj
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j

η+
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(4.21)

for i = 1, 2, . . . ,m.

Similarly, we can determine the distance measure between negative ideal alternative

A− and alternative Ai(i = 1, 2, . . . ,m) as given in the following:

D−i =
n∑
j=1

wjD(xij, x
−
j )

=
wj
3
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ltij
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γij∈tij

γij −
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lt−j
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j
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+
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liij
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δij∈iij

δij −
1

likj
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δ+j ∈i

−
j

δ−j
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+
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lfij
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ηij∈fij

ηij −
1

lfkj
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η−j ∈f

+
j

η−j

∣∣∣∣


(4.22)

for i = 1, 2, . . . ,m.

Step 4. Determine the relative closeness coefficient.

We determine closeness coefficient Ci for each alternative Ai(i = 1, 2, . . . ,m) with re-

spect to SVNHFPIS A+ as given in the following:

RCi =
D−i

D+
i +D−i

for i = 1, 2, . . . ,m. (4.23)

where 0 ≤ Ci ≤ 1 (i = 1, 2, . . . ,m). We observe that an alternative Ai is closer to the

SVNHFPIS A+ and farther to the SVNHFNIS A− as Ci approaches unity.

Step 5. Rank the alternatives.
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We can rank the alternatives according to the descending order of relative closeness

coefficient values of alternatives to determine the best alternative from a set of feasible

alternatives.

Step 6. End.

4.4 TOPSIS method for MADM with INHFS informa-

tion

In this section, we further extend the proposed model into interval neutrosophic hesi-

tant fuzzy environment.

For a MADM problem, letA=(A1, A2, . . . , Am) be a set of alternatives,C=(C1, C2, . . . , Cn)

be a set of attributes, and W̃=(w̃1, w̃2, . . . , w̃n)T be the weight vector of the attributes

such that w̃j ∈ [0, 1] and
n∑
j=1

w̃j = 1.

Suppose that X̃ = (x̃ij)m×n be the decision matrix where x̃ij be the INHFS for the

alternative Ai with respect to the attribute Cj and x̃ij = (t̃ij, ĩij, f̃ij) where t̃ij, ĩij, andf̃ij
are truth, indeterminacy and falsity membership degrees, respectively. The decision

matrix is given by

X̃ =


x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n

...
... . . . ...

x̃m1 x̃m2 · · · x̃mn

 (4.24)

Now, we develop TOPSIS method based on INHFS when the attribute weights are

completely known, partially known or completely unknown.

Step 1. Determine the weights of the attributes.

We suppose that attribute weights are completely known, partially known or com-

pletely unknown. We use maximum deviation method when the attribute weights are

partially known or completely unknown.

Case 1b. The information of attribute weights is completely known

Assume the attribute weights as w̃ = (w̃1, w̃2, . . . , w̃n)T with w̃j ∈ [0, 1] and
∑n

j=1 w̃j =

1 and then go to Step 2.



Chapter 4: TOPSIS method for neutrosophic hesitant fuzzy MADM 79

For partially known or completely unknown attribute weights, we calculate the devi-

ation values of the alternative Ai to other alternatives under the attribute Cj defined

as follows:

D̃ij(w̃) =
m∑
k=1

w̃jD(x̃ij, x̃kj), for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (4.25)

Using Eq. (4.4), the Hamming distance D̃(x̃ij, x̃kj) is obtained as

D̃(x̃ij, x̃kj)

=
1

6
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=

1

6

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

)
(4.26)

where
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δij
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δij
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∆F̃ (x̃ij, x̃kj) =
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lf̃ij
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η̃ij∈fij

ηij
L − 1

lf̃ij

∑
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ηij
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∣∣∣∣;
and lt̃ij , l̃iij and lf̃ij are numbers of possible membership values in xil for l = j, k.

The deviation values of all the alternatives to the other alternatives for the attribute

Cj(j = 1, 2, . . . , n) can be obtained from the following:

D̃j(w̃) =
m∑
i=1

D̃ij(w̃j)

=
m∑
i=1

m∑
k=1

w̃j
6

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

)
. (4.27)
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Case 2b. The information of attribute weights is partially known

In this case, we assume a non-linear programming model to calculate attribute weights.

M–3.


max D̃(w) =

n∑
j=1

m∑
i=1

m∑
k=1

w̃j

6

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj)

+ ∆F̃ (x̃ij, x̃kj)

)
subject to w̃ ∈ H̃, w̃j ≥ 0,

n∑
j=1

w̃j = 1, j = 1, 2, . . . , n.

(4.28)

where H̃ is the set of partially known weight information.

Solving Model-3, we can get the optimal attribute weight vector.

Case 3b. The information of attribute weights is completely known

In this case, we consider the following model:

M–4.


maxD(w) =

n∑
j=1

m∑
i=1

m∑
k=1

wj

6

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj)

+ ∆F̃ (x̃ij, x̃kj)

)
s.t. w̃j ≥ 0,

n∑
j=1

w̃2
j = 1, j = 1, 2, . . . , n.

(4.29)

The Lagrangian function corresponding to the above nonlinear programming problem

is given by

L̃(w̃, λ̃) =
n∑
j=1

m∑
i=1

m∑
k=1

w̃j
6

(
∆T̃ (x̃ij, x̃kj) +∆Ĩ(x̃ij, x̃kj)

+∆F̃ (x̃ij, ξxkj)

)
+

λ̃

12

( n∑
j=1

w̃2
j − 1

)
, (4.30)

where λ̃ is the Lagrange multiplier. Then the partial derivatives of L̃ are computed as

∂L̃

∂w̃j
=

1

6

m∑
i=1

m∑
k=1

(
∆T̃ (x̃ij, x̃kj) +∆Ĩ(x̃ij, x̃kj)

+∆F̃ (x̃ij, x̃kj)

)
+
λ

6
w̃j = 0 (4.31)

∂L̃

∂λ̃
=

1

12

( n∑
j=1

w̃2
j − 1

)
= 0. (4.32)

It follows from Eq.(4.31) that the weight w̃j for i = 1, 2, . . . ,m is

w̃j = −
( m∑

i=1

m∑
k=1

(
∆T̃ (x̃ij, x̃kj) + ∆I(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

))
/λ̃, (4.33)
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Putting wj in Eq. (4.32), we get

λ̃2 =
n∑
j=1

( m∑
i=1

m∑
k=1

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

))2 (4.34)

or, λ̃ = −

√√√√ n∑
j=1

( m∑
i=1

m∑
k=1

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

))2 (4.35)

where λ̃ < 0 and
m∑
i=1

m∑
k=1

(
∆̃T (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

)
represents the sum

of deviations of all the attributes with respect to the j-th attribute and

n∑
j=1

( m∑
i=1

m∑
k=1

(
∆̃T (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

))2 represents the sum of devia-

tions of all the alternatives with respect to all the attributes.

Then combining Eqs. (4.33) and (4.35), we obtain the weight w̃j(j = 1, 2, . . . , n) as

w̃j =

m∑
i=1

m∑
k=1

(
∆T̃ (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

)
√

n∑
j=1

( m∑
i=1

m∑
k=1

(
∆̃T (x̃ij, x̃kj) + ∆Ĩ(x̃ij, x̃kj) + ∆F̃ (x̃ij, x̃kj)

))2

. (4.36)

We make the sum of wj (j = 1, 2, . . . , n) into a unit to normalize the weight of the j-th

attribute:

w̃Nj =
w̃j∑n
j=1 w̃j

, j = 1, 2, . . . , n; (4.37)

and consequently, we obtain the weight vector of the attribute as

W̃ = (w̃N1 , w̃
N
2 , . . . , w̃

N
n )

for proceeding to Step-2.

Step 2. Determine the positive ideal alternative and negative ideal alternative.

From decision matrix X̃=(x̃ij)m×n, we determine the interval neutrosophic hesitant

fuzzy positive ideal solution(INHFPIS) A+ and interval neutrosophic hesitant fuzzy
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negative ideal solution (INHFNIS) A− of alternatives as follows:

Ã+ =
(
Ã+

1 , Ã
+
2 , . . . , Ã

+
n )

=
{〈

max
i
{γ̃σ(p)

ij },min
i
{δ̃σ(q)

ij },min
i
{η̃σ(r)

ij }
〉
|i = 1, 2, . . . ,m and j = 1, 2, . . . , n

}
(4.38)

Ã− =
(
Ã−1 , Ã

−
2 , ˜. . ., A−n )

=
{〈

min
i
{γ̃σ(p)

ij },max
i
{δ̃σ(q)

ij },max
i
{η̃σ(r)

ij }
〉
|i = 1, 2, . . . ,m and j = 1, 2, . . . , n

}
(4.39)

Here, we compare the attribute values x̃ij by using score, accuracy and certainty values

of INHFSs defined in Definition 4.7.

Step 3. Determine the distance measure from the ideal alternatives to each alterna-

tive.

We determine the distance measure between positive ideal alternative A+ and alterna-

tive Ai(i = 1, 2, . . . ,m) as follows:

D̃+
i =

n∑
j=1
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+
j )

=
w̃j
6
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(4.40)

for i = 1, 2, . . . ,m. Similarly, we determine the distance measure between negative

ideal alternative A− and alternative Ai(i = 1, 2, . . . ,m) as follows:
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D̃−i =
n∑
j=1

w̃jD̃(x̃ij, x̃
−
j )

=
w̃j
6
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(4.41)

Step 4. Determine the closeness coefficient.

In this step, we calculate closeness coefficient Ci for each alternative Ai(i = 1, 2, . . . ,m)

with respect to INHFPIS Ã+ as given below:

R̃Ci =
D̃−i

D̃+
i + D̃−i

for i = 1, 2, . . . ,m. (4.42)

where 0 ≤ C̃i ≤ 1 (i = 1, 2, . . . ,m). We observe that an alternative Ai is closer to the

INHFPIS Ã+ and farther to the INHFNIS A− as C̃i approaches unity.

Step 5. Rank the alternatives.

Finally, we can rank the alternatives according to the descending order of relative

closeness coefficient values of alternatives to choose the best alternative from a set

of feasible alternatives.

Step 6. End.

4.5 Numerical examples

In this section, we consider two examples to illustrate the utility of the proposed

method for single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval hes-

itant fuzzy set (INHFS).
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4.5.1 Example for SVNHFS

Suppose that an investment company wants to invest a sum of money in the following

four alternatives:

• car company (A1)

• food company (A2)

• computer company (A3)

• arms company (A4)

The company considers the following three attributes to make the decision:

• risk analysis (C1)

• growth analysis (C2)

• environment impact analysis (C3)

We assume the ratting values of the alternatives Ai, i = 1, 2, 3, 4 with respect to at-

tributes Cj, j = 1, 2, 3 and get the SVNHFS matrix presented in Table 4.1. The steps to

TABLE 4.1: Single valued neutrosophic hesitant fuzzy decision matrix

C1 C2 C3

A1 〈{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}〉 〈{0.5, 0.6}, {0.2, 0.3}, {0.3, 0.4}〉 〈{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}〉
A2 〈{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}〉 〈{0.6, 0.7}, {0.1}, {0.3}〉 〈{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}〉
A3 〈{0.5, 0.6}, {0.4}, {0.2, 0.3}〉 〈{0.6}, {0.3}, {0.4}〉 〈{0.5, 06}, {0.1}, {0.3}〉
A4 〈{0.7, 0.8}, {0.1}, {0.1, 0.2}〉 〈{0.6, 0.7}, {0.1}, {0.2}〉 〈{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}〉

get the best alternative are as follows:

Step 1: Determine the weights of attributes.

There are three cases for attribute weights:

Case 1 : When the attribute weights are completely known, let the weight vector be

wN = (0.35, 0.25, 0.40).
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Case 2 : When the attribute weights are partially known, the weight information is as

follows:

H =


0.30 ≤ w1 ≤ 0.40

0.20 ≤ w2 ≤ 0.30

0.35 ≤ w3 ≤ 0.45

and w1 + w2 + w3 = 1

Using Model-1, we get the single objective programming problem as{
max(D) = 1.796w1 + 1.164w2 + 1.962w3

subject to w ∈ H and
∑3

j=1 wj = 1, wj > 0 for j = 1, 2, 3.

Solving this problem with optimization software LINGO 11, we get the optimal weight

vector as wN = (0.35, 0.20, 0.45).

Case 3 : When the attribute weights are completely unknown, using Model-2 and Eqs.

(4.17) and (4.18), we obtain the following weight vector:

wN = (0.351, 0.265, 0.384).

Step 2: Determine the positive ideal alternative and negative ideal alternative.

In this step, we calculate the positive and the negative ideal solutions from Eqs. (4.19)

and (4.20), respectively.

A+ = (A+
1 , A

+
2 , A

+
3 )

=

( 〈
{0.7, 0.8}, {0.1}, {0.1, 0.2}

〉
,
〈
{0.6, 0.7}, {0.1}, {0.2}

〉
,〈

{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}
〉 )

(4.43)

A− = (A−1 , A
−
2 , A

−
3 )

=

( 〈
{0.5, 0.6}, {0.4}, {0.2, 0.3}

〉
,
〈
{0.6}, {0.3}, {0.4}

〉
,〈

{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}
〉 )

(4.44)

Step 3: Determine the distance measure from the ideal alternatives to each alternative.

In this step, we determine the distance measure from positive and negative ideal solu-

tions from Eqs. (4.21) and (4.22) as given in Tables 4.2 and 4.3.

Step 4: Determine the relative closeness coefficient.
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TABLE 4.2: Distance measure from positive ideal solution

D+(Ai) Case 1 Case 2 Case 3

D+
1 0.210 0.210 0.201

D+
2 0.037 0.035 0.037

D+
3 0.140 0.145 0.148

D+
4 0.046 0.052 0.044

TABLE 4.3: Distance measure from negative ideal solution

D−(Ai) Case 1 Case 2 Case 3

D−1 0.180 0.164 0.198

D−2 0.176 0.183 0.173

D−3 0.120 0.115 0.102

D−4 0.181 0.182 0.180

We now calculate the relative closeness coefficients from Eq. (4.23) and the results are

shown in Table 4.4.

TABLE 4.4: Relative closeness coefficient

RC(Ai) Case 1 Case 2 Case 3

RC(A1) 0.461 0.438 0.496

RC(A2) 0.826 0.839 0.823

RC(A3) 0.462 0.451 0.408

RC(A4) 0.796 0.778 0.800

Step 5: Rank the alternatives.

From Table 4.4, ranks of the alternatives are determined as follows:

Case 1 : A2 � A4 � A3 � A1

Case 2 : A2 � A4 � A3 � A1

Case 3 : A2 � A4 � A1 � A3

The above shows that A2 is the best alternative for all cases.

Step 6: End.
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4.5.2 Example for INHFS

In order to demonstrate the proposed method for INHFS, we consider the same nu-

merical example for SVNHFS but the ratting values of the attributes are INHFS. The

INHFS based decision matrix is presented in Table 4.5.

TABLE 4.5: Interval neutrosophic hesitant fuzzy decision matrix

C1 C2 C3

A1


{[0.3, 0.4], [0.4, 0.5]}
{[0.1, 0.2]}
{[0.3, 0.4]}



{[0.4, 0.5], [0.5, 0.6]}
{[0.2, 0.3]}

{[0.3, 0.3], [0.3, 0.4]}




{[0.3, 0.5]}
{[0.2, 0.3]}

{[0.1, 0.2], [0.3, 0.3]}


A2


{[0.6, 0.7]}
{[0.1, 0.2]}

{[0.1, 0.2], [0.2, 0.3]}



{[0.6, 0.7]}
{[0.1, 0.2]}
{[0.2, 0.3]}



{[0.6, 0.7]}
{[0.1, 0.2]}
{[0.1, 0.2]}


A3


{[0.3, 0.4], [0.5, 0.6]}
{[0.2, 0.4]}
{[0.2, 0.3]}



{[0.6, 0.7]}
{[0.0, 0.1]}
{[0.2, 0.3]}




{[0.5, 06]}
{[0.1, 0.2], [0.2, 0.3]}
{[0.2, 0.3]}


A4


{[0.7, 0.8]}
{[0.0, 0.1]}
{[0.1, 0.2]}



{[0.5, 0.6]}
{[0.2, 0.3]}
{[0.3, 0.4]}




{[0.2, 0.3]}
{[0.1, 0.2]}

{[0.4, 0.5], [0.5, 0.6]}


Step 1: Determine the weights of attributes.

Here we consider completely known, partially known and completely unknown at-

tribute weights in three cases.

Case 1 : When the attribute weights are known in advance, let the weight vector be

w̄N = (0.30, 0.25, 0.45).

Case 2 : When the attribute weights are partially known, the weight information is as

follows:

H̃ =


0.30 ≤ w̃1 ≤ 0.40

0.20 ≤ w̃2 ≤ 0.30

0.35 ≤ w̃3 ≤ 0.45

and w̃1 + w̃2 + w̃3 = 1

Now, with the help of Model-3, we consider the following optimization problem:
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{
max(D) = 1.7626w̃1 + 1.526w̃2 + 1.848w̃3

subject to w̃ ∈ H̃ and
∑3

j=1 w̃j = 1, w̃j > 0 for j = 1, 2, 3.

Solving this problem with optimization software LINGO 11, we get the optimal weight

vector as

w̄N = (0.35, 0.20, 0.45)

Case 3 : When the attribute weights are completely unknown, using Model-2 and Eqs.

(4.36) and (4.37), we obtain the following weight vector:

w̄N = (0.343, 0.297, 0.360).

Step 2: Determine the positive ideal alternative and negative ideal alternative.

In this step, we calculate the positive and the negative ideal solutions, where the posi-

tive ideal solution is the best solution and negative ideal solution is the worst solution.

From Eqs. (4.19) and (4.20), we get

Ã+ = (Ã+
1 , Ã

+
2 , Ã

+
3 )

=


〈
{[0.7, 0.8]}, {[0.0, 0.1]}, {[0.1, 0.2]}

〉
,〈

{[0.6, 0.7]}, {[0.0, 0.1]}, {[0.2, 0.3]}
〉
,〈

{[0.6, 0.7]}, {[0.1, 0.2]}, {[0.1, 0.2]}
〉
 (4.45)

Ã− = (Ã−1 , Ã
−
2 , Ã

−
3 )

=


〈
{[0.3, 0.4], [0.4, 0.5]}, {[0.1, 0.2]}, {[0.3, 0.4]}

〉
,〈

{[0.4, 0.5], [0.5, 0.6]}, {[0.2, 0.3]}, {[0.3, 0.3], [0.3, 0.4]}
〉
,〈

{[0.2, 0.3]}, {[0.1, 0.2]}, {[0.4, 0.5], [0.5, 0.6]}
〉

 (4.46)

Step 3: Determine the distance measure from the ideal alternatives to each alternative.

In this step, using Eqs. (4.40) and (4.41), we determine the distance measure from

positive ideal solution and negative ideal solution as given in Tables 4.6 and 4.7, re-

spectively.

Step 4: Determine the relative closeness coefficient.

We now calculate the relative closeness coefficient from Eq. (4.42). The results are

shown in Table 4.8.

Step 5: Rank the alternatives.
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TABLE 4.6: Distance measure from positive ideal solution

D̃+(Ai) Case 1 Case 2 Case 3

D̃+
1 0.164 0.168 0.167

D̃+
2 0.032 0.035 0.037

D̃+
3 0.102 0.113 0.104

D̃+
4 0.146 0.139 0.129

TABLE 4.7: Distance measure from negative ideal solution

D̃−(Ai) Case 1 Case 2 Case 3

D̃−1 0.078 0.079 0.063

D̃−2 0.179 0.180 0.168

D̃−3 0.155 0.153 0.148

D̃−4 0.071 0.080 0.082

TABLE 4.8: Relative closeness coefficient

˜RC(Ai) Case 1 Case 2 Case 3
˜RC(A1) 0.322 0.312 0.273
˜RC(A2) 0.848 0.837 0.819
˜RC(A3) 0.603 0.576 0.587
˜RC(A4) 0.327 0.365 0.389

From Table 4.8, we obtain the ranks of the alternatives as follows:

Case 1 :A2 � A3 � A4 � A1

Case 2 :A2 � A3 � A4 � A1

Case 3 :A2 � A3 � A4 � A1

The above shows that A2 is best alternative for all cases.

Step 6: End.

4.5.3 Comparative analysis and discussion:

We divide this section into two parts. Firstly, we compare our proposed method with

the existing methods for multi-attribute decision making under SVNHFS and then for

INHFS.
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4.5.3.1 Comparative analysis of SVNHFS

Ye (2015c) developed the method to find out the best alternative under single valued

neutrosophic hesitant fuzzy environment and Şahin and Liu (2017) proposed correla-

tion coefficient of single valued neutrosophic hesitant fuzzy set for MADM. Rankings

of the alternatives of the above existing method and our proposed method are shown

in Table 4.9. When the attribute weights are known in advance, three methods result

TABLE 4.9: A comparison of the results under SVNHFS

Methods Type of weight information Ranking result

Ye (2015c) method Completely known A2 � A4 � A3 � A1

Şahin and Liu (2017) method Completely known A2 � A4 � A3 � A1

Proposed method Completely known A2 � A4 � A3 � A1

Ye (2015c) method Partially known Not Applicable

Şahin and Liu (2017) method Partially known Not Applicable

Proposed method Partially known A2 � A4 � A3 � A1

Ye (2015c) method Completely unknown Not Applicable

Şahin and Liu (2017) method Completely unknown Not Applicable

Proposed method Completely unknown A2 � A4 � A1 � A3

in the same ranking. However, when the attribute weights are partially known or

completely unknown, the above two methods are not applicable.

4.5.3.2 Comparative analysis of INHFS

Liu and Shi (2015) proposed MADM method for the best alternative under interval

neutrosophic hesitant fuzzy environment. Table 4.10 shows a comparison between

Liu and Shi (2015) method and our proposed method.

The advantages of the proposed method for SVNHFS and INHFS are as follows:

• The existing methods are developed based on aggregation operator, correlation

coefficient and hybrid weighted operator, but our proposed method is developed

on the basis of deviation method.
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TABLE 4.10: A comparison of the results under INHFS

Methods Type of weight information Ranking result

Liu and Shi (2015) Completely known A2 � A3 � A4 � A1

Proposed method Completely known A2 � A3 � A4 � A1

Liu and Shi (2015) Partially known Not Applicable

Proposed method Partially known A2 � A3 � A4 � A1

Liu and Shi (2015) Completely unknown Not Applicable

Proposed method Completely unknown A2 � A3 � A4 � A1

• The proposed method offers more flexible choice of weight information because

it is also applicable to partially known and unknown weight information.

4.6 Conclusion

Neutrosophic hesitant fuzzy set encompasses single valued neutrosophic set, interval

neutrosophic set, hesitant fuzzy set, intuitionistic fuzzy set and fuzzy set. The neutro-

sophic set has three components: truth membership, falsity membership and indeter-

minacy membership functions. Therefore, neutrosophic hesitant fuzzy set is flexible to

deal with imprecise, indeterminate and incomplete information for MADM problem.

In this chapter, we have extended TOPSIS method for solving MADM problem under

SVNHFS and INHFS environments. We have considered three types of weight infor-

mation of attributes, completely known, partially known and completely unknown

weight information. We have developed optimization models for calculating attribute

weights for partially known, and completely unknown weight information with the

help of maximizing deviation method. Finally, numerical examples have been given

to support and illustrate the validation and efficiency of the proposed method. The

proposed strategy can be extended to multi-attribute group decision making problem

as well as the case when weight information is unknown. The developed model can

be applied to many real decision making problems such as pattern recognition, supply

chain management, data mining, etc. For future research, the proposed method can be

extended in MADM problem with plithogenic set (Smarandache, 2017b).





5
PROMETHEE Method with Pythagorean

Fuzzy Sets for Medical Diagnosis Problems

5.1 Introduction

Modern medical diagnosis process considers a lot of parameters some of which may

contain incomplete and uncertain information. In practice, some diseases have com-

mon symptoms. Therefore, these symptoms bear an ambiguous information for de-

tecting the exact disease. This type of medical diagnosis problems could be solved

by using MCDM process, where disease and symptom can be set as an alternative

and a criterion, respectively. In this study, the preference value not only gives the

degree for which the disease satisfies the symptoms but also provides the degree for

which the disease dissatisfies the symptom. Ye (2015b) introduced the cosine similar-

ity measure for simplified neutrosophic sets (Smarandache, 1999a) in decision making

for medical diagnosis problem. Xiao (2018) solved medical diagnosis problem as a de-

cision making problem with hybrid fuzzy soft sets. Preference Ranking Organization

Method for Enrichment of Evalution (PROMETHEE) (Brans et al., 1986) is a popular

method to solve MCDM problem. PROMETHEE method compares the criteria for

each pair of alternatives and preference alternative grade which lies between 0 and

1. Pythagorean fuzzy sets (PFS)(Yager, 2013), an extension of intuitionistic fuzzy sets

This chapter is based on the paper published in Soft Computing (2021), 25(6), 4503-4512
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(IFS), can easily handle incomplete and indeterminant situation of MCDM problem.

Yager (2013) introduced Pythagorean membership grades for MCDM problem and

solved the MCDM problem using the aggregation operator. Yager (2013) proposed

the relationship between Pythagorean membership grade and complex number. They

proved that Pythagorean membership grade is one type of complex numbers (Π − i

numbers) and they solved the MCDM problem with aggregation operator of Π − i

numbers. Zhang and Xu (2014) extended the TOPSIS method with PFS and consid-

ered the Pythagorean fuzzy number (PFN) to solve the MCDM problem. They defined

a distance measure of PFN for developing TOPSIS method to get the optimal result.

Many researchers developed the MCDM method with Pythagorean fuzzy information

(Zeng et al., 2016; Zhang, 2016). In this chapter, we propose PROMETHEE method for

MCDM problem under Pythagorean fuzzy environment and its application to medical

diagnosis problem. The objectives of our study are as follows:

• To extend the PROMETHEE method for MCDM with Pythagorean fuzzy sets.

• To validate the proposed method by comparing with two existing methods.

• To apply the proposed method for a medical diagnosis problem.

The structure of the chapter is as follows. In Section 5.2, we briefly analyze the ba-

sic concept of Pythagorean fuzzy sets and compare the Pythagorean fuzzy sets with

intuitionistic fuzzy sets. In Section 5.3, we explain the PROMETHEE method for

Pythagorean fuzzy sets. In Section 5.4, we provide a numerical example and per-

form comparative analysis between the proposed Pythagorean PROMETHEE method

and the existing MCDM method under Pythagorean fuzzy information. In Section

5.5, a medical diagnosis problem is solved by using the proposed Pythagorean fuzzy

PROMETHEE method. Finally, some concluding remarks are drawn in Section 5.6.

5.2 Basic operations on Pythagorean fuzzy number(PFN)

Definition 5.1. (Yager, 2013) Let X be a universe of discourse. Then a Pythagorean

fuzzy set defined on X is of the from

P = {< x, µp(x), νp(x) > |x ∈ X}
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where µp : X → [0, 1] and νp : X → [0, 1] are membership and non-membership

functions, respectively and satisfy the following relation:

0 ≤ (µp(x))2 + (νp(x))2 ≤ 1 ∀x ∈ X

Then the degree of indeterminacy membership πp(x) is defined as

πp(x) =
√

1− (µp(x))2 − (νp(x))2

Zhang and Xu (2014) considered β =< µp, νp > as a Pythagorean fuzzy number (PFN)

where µp ∈ [0, 1] and νp ∈ [0, 1] are membership and non-membership values, respec-

tively and πp =
√

1− µ2
p − ν2

p and 0 ≤ µ2
p + ν2

p ≤ 1.

Let α1 =< µp1 , νp1 >, and α2 =< µp2 , νp2 > be two PFNs. Zhang and Xu (2014) defined

the following operations :

1. α1 ∪ α2 =< max{µp1 , µp2},min{νp1 , νp2} >

2. α1 ∩ α2 =< min{µp1 , µp2},max{νp1 , νp2} >

3. αc1 =< νp1 , µp1 >

4. α1 ⊕ α2 =<
√
µ2
p1

+ µ2
p2
− µ2

p1
µ2
p2
, νp1νp2 >

5. α1 ⊗ α2 =< µp1µp2 ,
√
ν2
p1

+ ν2
p2
− ν2

p1
ν2
p2
>

6. λα1 =<
√

1− (1− µ2
p1

)λ, (νp1)
λ >, λ > 0

7. αλ1 =< (µp1)
λ,
√

1− (1− ν2
p1

)λ >, λ > 0

Using the above rules of operation, it can be easily shown that the followings are valid.

1. α1 ⊕ α2 = α2 ⊕ α1

2. α1 ⊗ α2 = α2 ⊗ α1

3. λ(α1 ⊕ α2) = λα1 ⊕ λα2, λ > 0

4. λ1α1 ⊕ λ2α1 = (λ1 ⊕ λ2)α1, λ1, λ2 > 0

5. (α1 ⊗ α2)λ = αλ1 ⊗ αλ2 , λ > 0

6. αλ11 ⊗ αλ21 = α
(λ1+λ2)
1 , λ1, λ2 > 0
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Definition 5.2. (Zhang and Xu, 2014) Let α1 =< µp1 , νp1 > and α2 =< µp2 , νp2 > be two

PFNs. Then the ordering between these two PFNs is described as follows:

α1 ≥ α2 ⇔ µp1 ≥ µp2 and νp1 ≤ νp2

Definition 5.3. (Zhang and Xu, 2014) If α =< µ, ν > be a PFN then the score function

of α =< µ, ν > is denoted by s(α) and is defined by

s(α) = µ2 − ν2

Now, the following propositions hold:

1. s(α) ∈ [−1, 1]

2. For two PFNs α1 =< µp1 , νp1 > and α2 =< µp2 , νp2 >, if s(α1) > s(α2) then

α1 > α2.

Definition 5.4. (Zhang and Xu, 2014) Let α1 =< µp1 , νp1 > and α2 =< µp2 , νp2 > be

two PFNs and s(α1) and s(α2) be the score values of α1 and α2, respectively. Then the

following relations hold for the two PFNs:

1. s(α1) < s(α2)⇒ α1 ≺ α2

2. s(α1) > s(α2)⇒ α1 � α2

3. s(α1) = s(α2) ⇒ α1 ∼ α2, where α1 ∼ α2 means that α1 and α2 are not compara-

ble.

For example, let us consider α1 =< 0.9, 0.3 > and α2 =< 0.7, 0.4 > be two PFNs.

Then we have, s(α1) = (0.9)2 − (0.3)2 = 0.72, s(α2) = (0.7)2 − (0.4)2 = 0.33. There-

fore, s(α1) > s(α2)⇒ α1 � α2.

The membership value of IFN satisfies 0 ≤ µI+νI ≤ 1, whereas the membership value

of PFN satisfies 0 ≤ µ2
P + ν2

P ≤ 1. Yager (2013) showed that the space of intuitionistic

fuzzy membership grade is a subspace of the space of Pythagorean membership grade,

which is shown in figure 5.1 . Therefore, every IFN is PFN but converse is not true.

With this advantage, the decision maker can express preference values of alternatives

in a more flexible way with PFN than IFN.
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FIGURE 5.1: Comparison of spaces between IFS and PFS

5.3 Pythagorean fuzzy PROMETHEE method

In this section, we develop PROMETHEE method under Pythagorean fuzzy envi-

ronment. To develop this model, we use Pythagorean fuzzy number (PFN). In a

MCDM problem, let us consider m alternatives A = {A1, A2, ....., Am} and n criteria

C = {C1, C2, ....., Cn}. Then we obtain the Pythagorean fuzzy decision matrix in the

following form:

X = (xij)m×n =



C1 C2 . . . Cn

A1 α11 α12 . . . α1n

A2 α21 α22 . . . α2n

...
...

... . . . ...

Am αm1 αm2 . . . αmn

 (5.1)

where αij =< µij, νij > is a PFN presenting the rating value of the alternative Ai with

respect to criteria Cj for i = 1, 2, ....., n and j = 1, 2, ...,m. We consider the weight

information of the criteria as w = {w1, w2, ......, wn} which is the normalized weight

vector and it satisfies 0 ≤ wj ≤ 1 for j = 1, 2, ..., n and
n∑
j=1

wj = 1.

Now, we discuss the following steps to organize the proposed model.
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Step 1: Determine the performance differences

In this step, we compare each pair of alternatives. Since the rating values of the alter-

natives are PFN, we compare the deviations between any two alternatives over each

criterion with score function of PFN (see Definition 5.3). The difference value of i-th

alternative to other alternatives is given by

dk(αik, αjk) = s(αik)− s(αjk) = µ2
ik − ν2

ik − (µ2
jk − ν2

jk), k = 1, 2, .., n (5.2)

where s(αik) is the score value of αik.

Step 2: Construct the preference function

We consider no preference if difference is negligible, and large preference for larger

difference value. We consider V -shape criterion function with indifference area, which

is defined as

Pk(αik, αjk) =


0, dk(αik, αjk) ≤ q
dk(αik, αjk)− q

p− q
, q < dk(αik, αjk) ≤ p

1, dk(αik, αjk) > p

(5.3)

where p and q are parameters, p is the value of strict preference threshold and q is the

value of indifference threshold. This preference function is shown in Figure 5.2.

FIGURE 5.2: V -shape criterion function with indifference area
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Step 3: Calculate aggregated preference value and construct preference matrix

In this step, we calculate the total preference index for an alternative Ai with respect

to an alternative Aj over all the criteria, which is defined by

π(Ai, Aj) =
n∑
k=1

wkPk(αik, αjk), for all Ai, Aj ∈ A (5.4)

where {w1, w2, ..., wn} are the weights of the corresponding criteria {C1, C2, ..., Cn}.
Therefore, we get the following preference matrix whose entries are aggregated pref-

erence values.



A1 A2 . . . Am

A1 − π(A1, A2) . . . π(A1, Am)

A2 π(A2, A1) − . . . π(A2, Am)
...

...
... . . . ...

Am π(Am, A1) π(Am, A2) . . . −

 (5.5)

The diagonal elements of the above matrix assign no value. Therefore, when we com-

pare the alternative Ai with the same alternative Ai then no preference value is as-

signed.

Step 4: Determine the leaving and the entering outranking flows

From the preference matrix, we see that each alternative Ai is compared with other

(m − 1) alternatives in A = {A1, A2, ..., Am}. Then leaving outranking flow (positive

outranking flow) is determined as follows:

φ+(Ai) =
1

m− 1

∑
X∈A

π(Ai, X), for each Ai (5.6)

i.e, positive outranking flow of the i-th alternative is the average value of the i-th row

of the preference matrix. The entering outranking flow (negative outranking flow) is

determined as follows:

φ−(Ai) =
1

m− 1

∑
X∈A

π(X,Ai), for each Ai (5.7)

and this is the average value of the i-th column for the alternative Ai.



Chapter 5: PROMETHEE method for medical diagnosis problems 100

Positive outranking flow points out the magnitude in which one alternative dominates

other alternatives. Likewise, negative outranking flow points out the magnitude in

which one alternative is dominated by other alternatives.

Step 5: Calculate net outranking flows

In PROMETHEE I, the net outranking flows are not required for ranking the alterna-

tives. In this method, we compare one alternative with another one at a time. There-

fore, PROMETHEE I gives a partial order ranking with the help of positive outranking

flow φ+(Ai) and negative outranking flow φ−(Ai). The preference relation and partial

pre-orders P, I, R are derived as follows:

AiPAj (Ai outranks Aj) if φ+(Ai) > φ+(Aj) and φ−(Ai) < φ−(Aj)

or, if φ+(Ai) > φ+(Aj) and φ−(Ai) = φ−(Aj)

or, if φ+(Ai) = φ+(Aj) and φ−(Ai) < φ−(Aj)

If an alternative Ai is identical to the alternative Aj , Then

AiIAj (Ai is indifferent with Aj) if φ+(Ai) = φ+(Aj) and φ−(Ai) = φ−(Aj)

Otherwise, the alternatives are incomparable i.e, AiRAj .

PROMETHEE II gives complete ranking of the alternatives. In our proposed model,

we mainly focus on this method. To build PROMETHEE II method with PFN, we

calculate the net outranking flow as follows:

φ(Ai) = φ+(Ai)− φ−(Ai) for i = 1, 2, ....,m. (5.8)

Then the complete orders P and I are derived as:

AiPAj (Ai outranks Aj) iff φ(Ai) > φ(Aj)

AiIAj (Ai is indifferent with Aj) iff φ(Ai) = φ(Aj).

Step 6: Rank of the alternatives

In this step, we can rank the alternatives according to the descending order of net

outranking flow of the alternatives using PROMETHEE II method and choose the

best alternative from the set of all alternatives A = {A1, A2, ..., Am}.



Chapter 5: PROMETHEE method for medical diagnosis problems 101

5.4 Comparative analysis using various Pythagorean

MCDM methods

5.4.1 Airlines selection problem

In the following, we consider a numerical example adapted from Zhang and Xu (2014)

for decision making problem to evaluate the best alternative. We solve the problem by

the proposed method and perform a comparative analysis.

The civil aviation administration of Taiwan (CAAT) wants to improve the service qual-

ity of domestic airlines. In order to do so, CAAT builds a committee to establish the

best domestic airline from the four leading airlines, which are UNI AIR (A1), Transa-

sia (A2), Mandarin (A3), and Daily Air (A4). Each alternative choice has four essential

criteria:

1. Booking and ticketing service (C1). This criteria require convenience of buying

or booking ticket, and courtesy of buying or booking ticket.

2. Check-in and boarding procedure (C2). This procedure consists of convenience

check-in, courtesy of employee, etc.

3. Cabin service (C3). Cabin service considers the felicities of cabin in flight.

4. Responsiveness (C4). This criteria consider fair waiting list call, handing of de-

layed flight and missing baggage, etc.

The weight information of the criteria is given by W = (0.15, 0.25, 0.35, 0.25). Assume

that the rating values of the alternative provided by the committee are expressed in

terms of PFNs. Then we obtain the following Pythagorean fuzzy decision matrix:



C1 C2 C3 C4

A1 〈0.9, 0.3〉 〈0.7, 0.6〉 〈0.5, 0.8〉 〈0.6, 0.3〉

A2 〈0.4, 0.7〉 〈0.9, 0.2〉 〈0.8, 0.1〉 〈0.5, 0.3〉

A3 〈0.8, 0.4〉 〈0.7, 0.5〉 〈0.6, 0.2〉 〈0.7, 0.4〉

A4 〈0.7, 0.2〉 〈0.8, 0.2〉 〈0.8, 0.4〉 〈0.6, 0.6〉

 (5.9)

Now, we employ our proposed model to determine the best alternative.
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First, we calculate the difference value between two alternatives using Eq.(5.2). We

consider the V -shape criterion function with indifference area given in Eq.(5.3) and

take q = 0.1 and p = 0.8. Then we get the preference matrix whose entries are the

aggregated preference values calculated by Eq.(5.4). The preference matrix is then

obtained as follows:



A1 A2 A3 A4

A1 − 0.15 0.03 0.11

A2 0.55 − 0.27 0.09

A3 0.51 0.15 − 0.09

A4 0.48 0.14 0.12 −

 (5.10)

We now calculate the leaving outranking flows from the matrix (see Eq. 5.10) and

Eq. (5.6). The results are given in Table 5.1. Similarly, we calculate the entering out-

ranking flows from the matrix (see Eq. 5.10) and Eq. (5.7). The results are given in

Table 5.2.

TABLE 5.1: Leaving outranking flow

φ+(Ai)i Value

φ+(A1) 0.096

φ+(A2) 0.303

φ+(A3) 0.250

φ+(A4) 0.246

TABLE 5.2: Entering outranking flow

φ−(Ai)i Value

φ−(A1) 0.513

φ−(A2) 0.146

φ−(A3) 0.140

φ−(A4) 0.097

Now, we determine net outranking flow by Eq. (5.8) for PROMETHEE II and ranking

alternatives according to the net outranking flow as given in Table 5.3

From Table 5.3, we see that the optimal ranking of the domestic airline is A2 � A4 �
A3 � A1. Therefore, the best alternative is A2 i.e., Transasia.
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TABLE 5.3: Net outranking flow

φ(Ai)i Value Ranking

φ(A1) -0.417 4

φ(A2) 0.157 1

φ(A3) 0.110 3

φ(A4) 0.149 2

5.4.2 Comparative analysis

In this subsection, we compare our proposed method with Yager (2013) method and

Zhang and Xu (2014) method. Yager (2013) proposed a useful method for MCDM

problem based on the PFWA aggregation operator under Pythagorean fuzzy informa-

tion. Zhang and Xu (2014) extended the TOPSIS method to MCDM with Pythagorean

fuzzy sets. To compare the proposed method with the above two methods, we solve

the MCDM problem mentioned above. Rankings of the alternatives of the proposed

method, and Yager (2013) and Zhang and Xu (2014) methods are shown in Table 5.4.

TABLE 5.4: A comparison of the results

Methods Ranking

Yager (2013) A2 � A4 � A3 � A1

Zhang and Xu (2014) A2 � A3 � A4 � A1

Proposed method A2 � A4 � A3 � A1

It can be easily seen from Table 5.4 that the ranking of the four potential alternatives

found in the proposed method is similar to that of Yager (2013) method. Moreover,

Transasia (A2) is the best alternative in all the three methods. While comparing the

result of the proposed method with that of Zhang and Xu (2014) method, it is to be

noted that, in TOPSIS method, the criteria for the alternatives are compared with pos-

itive and negative ideal alternatives but in PROMETHEE method, the criteria for the

alternatives are compared between two alternatives and then the ranking of the alter-

natives is made.
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5.5 Medical diagnosis using Pythagorean PROMETHEE

method

Modern medical diagnosis accommodates a lot of incomplete, inconsistent and uncer-

tain information because the information available to physicians from medical tech-

nologies is increasing day by day. Pythagorean fuzzy sets can handle inconsistent and

uncertain information than fuzzy sets and intuitionistic fuzzy sets.

In some medical diagnosis situations, there are some symptoms which may occur or

may not occur for a particular disease. Hence PFN is an appropriate tool to assign

medical diagnosis problem. In this section, we solve a medical diagnosis problem

with the proposed Pythagorean fuzzy PROMETHEE method.

We now consider the medical diagnosis problem which is adapted from Ye (2015). Let

there be m diseases {D1, D2, ..., Dm} = D and a set of symptoms for each disease be

S = {S1, S2, ..., Sn}. If a patient P has all symptoms then, to determine the appropri-

ate disease of that patient, we consider the MCDM problem for which we assume the

characteristic information as PFN. To emphasize this diagnosis problem, we provide

an example and solve by the Pythagorean fuzzy PROMETHEE method.

5.5.1 Numerical example: Medical diagnosis problem

Now-a-days two detrimental fevers are very common in India. One is due to Dengu

and another one is due to Nipa-virus infection. It is seen that the symptoms of this

fever are similar to the symptoms of usual fevers like Malaria and typhoid. To de-

cide the actual fever of a patient P, we consider the medical diagnosis problem as the

MCDM problem where the fevers indicate the alternatives, and symptoms indicate the

criteria of the considered MCDM problem. We take a sample for the patient P with

symptoms as Pythagorean fuzzy information. We consider the following alternatives

(diseases):

• Nipa-virus infection (D1)

• Dengue (D2)

• Malaria (D3)

• Typhoid (D4)
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and consider the following criteria:

• fever (S1)

• headache (S2)

• vomiting (S3)

• nausea (S4)

The characteristic values of the symptoms are PFN. We have the following decision
matrix for the MCDM problem:

S1(fever) S2(headache) S3(vomiting) S4(nausea)

D1(Malaria) 〈0.4, 0.6〉 〈0.6, 0.1〉 〈0.2, 0.9〉 〈0.1, 0.6〉
D2(Typhoid) 〈0.9, 0.3〉 〈0.2, 0.9〉 〈0.1, 0.7〉 〈0.5, 0.6〉
D3(Dengue) 〈0.7, 0.4〉 〈0.5, 0.6〉 〈0.6, 0.3〉 〈0.5, 0.8〉

D4(Nipa-virus infection) 〈0.2, 0.3〉 〈0.8, 0.3〉 〈0.3, 0.4〉 〈0.3, 0.4〉

We now determine the optimal alternative with the help of our proposed method.

The weight information of the criteria is given by w = (0.40, 0.15, 0.25, 0.20). We solve

the medical diagnosis problem by employing the Pythagorean fuzzy PROMETHEE

method with the following steps:

Step 1: Determine the performance difference.

In this step, we determine the performance difference of one alternative to other alter-

natives using Eq. (5.2). The results are given in Table 5.5.

TABLE 5.5: Performance difference value

S1 S2 S3 S4

d(D1, D2) 0.13 0.46 -1.04 0.04

d(D1, D3) -0.52 1.12 -0.37 -0.24

d(D1, D4) 0.15 -0.20 -0.70 0.20

d(D2, D1) -0.13 -0.46 1.04 -0.04

d(D2, D3) -0.39 -0.88 0.67 -0.28

d(D2, D4) 0.20 -0.66 0.34 -0.32

d(D3, D1) 0.52 -1.12 0.37 0.24

d(D3, D2) 0.39 0.88 -0.67 0.28

d(D3, D4) 0.67 -1.32 -0.33 -0.04

d(D4, D1) -0.15 0.20 0.70 -0.20

d(D4, D2) -0.20 0.66 -0.34 0.32

d(D4, D3) -0.67 1.32 0.33 0.04
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Step 2: Construct the preference function.

There are six types of preference function. In our proposed model, we use the V-

shape criterion function with indifference area. Now, we convert the difference value

with the preference function given in Eq. (5.3) and assume q = 0.1 and p = 0.8. The

performance values lie in [0, 1] as shown in Table 5.6.

TABLE 5.6: Preference function value

S1 S2 S3 S4

d(D1, D2) 0.04 0.51 0.00 0.00

d(D1, D3) 0.00 1.00 0.00 0.00

d(D1, D4) 0.07 0.00 0.00 0.14

d(D2, D1) 0.00 0.00 1.00 0.00

d(D2, D3) 0.00 0.00 0.81 0.00

d(D2, D4) 0.14 0.00 0.34 0.00

d(D3, D1) 0.60 0.00 0.38 0.20

d(D3, D2) 0.41 1.00 0.00 0.25

d(D3, D4) 0.81 0.00 0.00 0.00

d(D4, D1) 0.00 0.14 0.85 0.00

d(D4, D2) 0.00 0.80 0.00 0.31

d(D4, D3) 0.00 1.00 0.32 0.00

Step 3: Calculate the aggregated preference value.

In this step, we calculate the total preference index using the weight information of the

symptoms w = (0.40, 0.15, 0.25, 0.20). Using Eq. (5.4), we get the following preference

matrix:



D1 D2 D3 D4

D1 − 0.092 0.150 0.056

D2 0.250 − 0.20 0.14

D3 0.375 0.364 − 0.324

D4 0.233 0.182 0.230 −

 (5.11)

Step 4: Determine the positive and the negative outranking flows.

Using Eqs. (5.6) and (5.7), we determine the positive outranking flows φ+(Di) and the

negative outranking flows φ−(Di) for the alternatives as given in Table 5.7.

Step 5: Calculate net outranking flows.

In this step, we calculate the net outranking values by using Eq. (5.8). The results

are shown in Table 5.8. From Table 5.8, we see that the ranking of the alternatives
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TABLE 5.7: Positive and negative outranking values

Alternative Positive outranking flows Negative outranking flows

D1 φ+(D1) = 0.099 φ−(D1) = 0.286

D2 φ+(D2) = 0.197 φ−(D2) = 0.212

D3 φ+(D3) = 0.354 φ−(D3) = 0.193

D4 φ+(D4) = 0.215 φ−(D4) = 0.173

TABLE 5.8: Net outranking values and ranking

Alternative Net outranking flows Ranking

D1 φ(D1) = −0.187 4

D2 φ(D2) = −0.015 3

D3 φ(D3) = 0.161 1

D4 φ(D4) = 0.042 2

(diseases) is D3 � D4 � D3 � D1. Thus, the diagnosis result indicates that the patient

P has a Dengue(D3) fever.

5.6 Conclusion

PROMETHEE is one of the classical methods for solving MCDM problem with crisp

number as well as fuzzy and intuitionistic fuzzy numbers. In this chapter, we have ex-

tended the PROMETHEE method under Pythagorean fuzzy environment and solved a

real MCDM problem. We have discussed some basic operations of Pythagorean fuzzy

numbers (PFN) and compared the Pythagorean fuzzy sets (PFS) with intuitionistic

fuzzy sets(IFS). We have derived classical PROMETHEE method for MCDM problem.

We have proposed PROMETHEE method for PFN and calculated the performance

value of the alternatives using the score function of PFN. We have used V -shape crite-

rion function to determine the preference value of the alternative and solved a numer-

ical example to compare the existing methods under Pythagorean fuzzy environment

to ensure the validity of our proposed method. Finally, we have introduced a medical

diagnosis problem as an MCDM problem and solved the problem using our proposed

method.





6
Pythagorean Fuzzy DEMATEL Method for

Supplier Selection in Sustainable Supply
Chain Management

6.1 Introduction

Decision-making trial and evaluation laboratory (DEMATEL) (Gabus and Fontela, 1972)

is a method which develops mutual relationships of the criteria and their correlated

dependencies. This method provides a casual-effect diagram to describe mutual rela-

tionships and influences of the criteria (Wu and Tsai, 2011). It can analyse total rela-

tions among sets of variables to obtain logical relationships and direct impact relation-

ships. The method is well suited to situations where it becomes necessary to upgrade

the evaluation of one criterion by adding new one even if the number of criteria is

quite large. It is well known that if the number of evaluation criteria is not restricted,

then the decision difficulty increases, and the decision quality is degraded for some

decision-making methods such as AHP, TOPSIS, etc. But in the DEMATEL method,

such a situation will not occur as it divides the entire criteria, however large it is, into

two groups cause and effect, and displays casual relationships between criteria visu-

ally.

This chapter is based on the paper published in Expert Systems With Applications (2022), 193,
116396

109
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It is undeniable that gain or loss of a business organization largely depends on sup-

plier selection in its supply chain management system. Many organizations choose

suitable suppliers around the world to make collaborative commerce, and to increase

trade and productivity. Besides supply chain management, they also take a look on en-

vironmental management for special concern in industry. In fact, green image, social

concern and economic policy together are forcing companies to integrate sustainable

supply chain management. Therefore, it is a challenging task to select the proper cri-

teria of the supplier in sustainable supply chain management, because choosing of

various criteria involves assessment and selection of the ideal supplier. Moreover, the

number of criteria for supplier selection may be large and some criteria may contain

incomplete and inconsistent information. In uncertain environment, exact determi-

nation of criteria is quite difficult. However, Pythagorean fuzzy set can effectively

deal with uncertain environment in the decision making process. It is well known

that a fuzzy number can be expressed as a fuzzy set defining a fuzzy interval in real

number. Since the boundary of this interval is ambiguous, the interval is also a fuzzy

set. Generally, a fuzzy interval is represented by two end points and some intermedi-

ary peak points. Among various shapes of fuzzy number, triangular and trapezoidal

fuzzy numbers (Dubois and Prade, 1983) are widely used by researchers. Like trape-

zoidal fuzzy number (TrFN), we have Pythagorean trapezoidal fuzzy number (PTrFN)

in Pythagorean fuzzy set. Therefore, Pythagorean fuzzy set based DEMATEL method

can be considered as a suitable tool to handle supplier selection problem in sustainable

supply chain management. The main objectives of our study are as follows:

• To develop DEMATEL method with Pythagorean fuzzy sets.

• To solve the proposed method by using trapezoidal Pythagorean fuzzy number

(TrPFN).

• To apply the proposed method in sustainable supply chain management.

The remainder of the chapter is organized as follows. In Section 6.2, we discuss pre-

liminaries of classical DEMATEL method and some basics of Pythagorean fuzzy sets.

Section 6.3 is devoted to the proposed Pythagorean fuzzy DEMATEL method. Section

6.4 presents numerical results of a supplier selection problem which is solved using

the proposed method. Section 6.5 analyzes the numerical results. Finally, the chapter

ends with concluding remarks in section 6.6.
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6.2 Preliminaries

In this section, we briefly discuss the classical DEMATEL method and provide some

preliminaries of Pythagorean fuzzy sets.

6.2.1 Classical DEMATEL method

The steps of DEMATEL method are described as follows.

Step 1: Defining the dominant feature in the research methodology, the linguistic mea-

surement scale is set for pairwise comparison among all characteristics. The initial di-

rect relation matrix D = [dij]n×n is obtained by pairwise comparison between criteria,

in which dij denotes the degree to which the criteria i affects the criteria j.

Step 2: This step defines the normalization of direct relation matrix. On the basis of

direct relation matrix D, the normalized direct relation matrix can be obtained as

S = k ×D, (6.1)

where, k =
1

max
1≤i≤n

∑n
j=1 dij

.

Step 3: The total relation matrix is determined as given below:

T = S(I − S)−1,where I is the n× n identity matrix. (6.2)

Step 4: Construct the DEMATEL map with respect to the total relation matrix. The

sum of rows and the sum of columns are denoted by vectors Rj (j = 1, 2..., n) and Di

(i = 1, 2, ..., n), respectively within the total relation matrix T = [tij]n×n and are given

by

Rj =
[ n∑
j=1

tij

]
1×n

(6.3)

Di =
[ n∑
i=1

tij

]
n×1

(6.4)

where Di + Rj is a horizontal axis vector or ‘prominence’ which indicates the relative

importance of the criterion, and the vertical axis Di − Rj represents ‘relation’. If the
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value of Di−Rj is positive then the criterion is formed into the cause group, and if the

value of Di −Rj is negative then the criterion is formed into the effect group.

Step 5: The sum of each column of the total relation matrix is 1 by normalized method,

which gives the inner dependency of the matrix.

6.2.2 The basics of Pythagorean fuzzy arithmetic

Definition 6.1. (Yager, 2013; Yager and Abbasov, 2013) Let X be a universe of dis-

course. Then Pythagorean fuzzy set defined on X is of the form

P = {< x, µp(x), νp(x) > |x ∈ X}

where µp : X → [0, 1] and νp : X → [0, 1] are, respectively, the membership and the

non-membership functions which satisfy the condition

0 ≤ (µp(x))2 + (νp(x))2 ≤ 1, ∀x ∈ X

and the degree of indeterminacy membership is denoted by πp(x) and is defined by

πp(x) =
√

1− (µp(x))2 − (νp(x))2

The membership value and the non-membership value of intuitionistic fuzzy set I

satisfy the condition 0 ≤ µI + νI ≤ 1, whereas the membership value and the non-

membership value of Pythagorean fuzzy set P satisfy the condition 0 ≤ µ2
P + ν2

P ≤ 1.

Definition 6.2. (Dubois and Prade, 1983) A generalized trapezoidal fuzzy number is

an extension of trapezoidal fuzzy number, which is denoted by

A = (a, b, c, d;µ)

and is described by a fuzzy subset of a real number R with membership function µA

given by

µA(x) =



(x− a)µ

b− a
, a ≤ x < b

µ, b ≤ x ≤ c
(d− x)µ

d− c
, c < x ≤ d

0, otherwise.

(6.5)

where a, b, c, d ∈ R and µ is a membership degree.
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Definition 6.3. (Xian et al., 2018) A trapezoidal pythagorean fuzzy number(TrPFN) is

represented as

A = 〈(a1, a2, a3, a4);µ, ν〉

with the parameters a1, a2, a3, and a4 such that a1 ≤ a2 ≤ a3 ≤ a4 and the membership

and the non-membership degrees µ and ν satisfy the condition µ2 + ν2 ≤ 1. Then the

membership function µA and the non-membership function νA are given by

µA(x) =



(x− a1)µ

a2 − a1

, a1 ≤ x < a2

µ, a2 ≤ x < a3

(a4 − x)µ

a4 − a3

, a3 ≤ x < a4

0, otherwise.

(6.6)

νA(x) =



a2 − x+ ν(x− a1)

a2 − a1

, a1 ≤ x ≤ a2

ν, a2 ≤ x ≤ a3

x− a3 + ν(a4 − x)

a4 − a3

, a3 ≤ x ≤ a4

1, otherwise.

(6.7)

Let A1 = 〈(ap1 , ap2 , ap3 , ap4);µp1 , νp1〉, A2 = 〈(bp1 , bp2 , bp3 , bp4);µp2 , νp2〉 be two TrPFNs.

Then the following operations hold good:

1. A1 ⊕ A2 = 〈(ap1 + bp1 , ap2 + bp2 , ap3 + bp3 , ap4 + bp4);
√
µ2
p1

+ µ2
p2
− µ2

p1
µ2
p2
, νp1νp2〉

2. A1 ⊗ A2 = 〈(ap1bp1 , ap2bp2 , ap3bp3 , ap4bp4);µp1µp2 ,
√
ν2
p1

+ ν2
p2
− ν2

p1
ν2
p2
〉

3. λA1 = 〈(λap1 , λap2 , λap3 , λap4);
√

1− (1− µ2
p1

)λ, (νp1)
λ〉, λ > 0

4. A1
λ = 〈(ap1λ, ap2λ, ap3λ, ap4λ); (µp1)

λ,
√

1− (1− ν2
p1

)λ〉, λ > 0

Using the above operations, it can be shown that the following relations are valid.

1. A1 ⊕ A2 = A2 ⊕ A1

2. A1 ⊗ A2 = A2 ⊗ A1

3. λ(A1 ⊕ A2) = λA1 ⊕ λA2, λ > 0
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4. λ1A1 ⊗ λ2A1 = (λ1 + λ2)A1, λ1, λ2 > 0

5. (A1 ⊗ A2)λ = Aλ1 ⊗ Aλ2 , λ > 0

6. Aλ11 ⊗ Aλ21 = A
(λ1+λ2)
1 , λ1, λ2 > 0

Definition 6.4. (Grzegrorzewski, 2003) Let A = 〈(a1, a2, a3, a4);µ, ν〉 be a TrPFN where

a1, a2, a3 and a4 are real numbers. Then the expected value of A is given by

E(A) =
(a1 + a2 + a3 + a4)

4

√
µ2 + ν2 (6.8)

It can be easily shown that if TrPFN isA = 〈(1, 1, 1, 1); 1, 0〉 thenE(A) = 1, and if TrPFN

is B = 〈(0, 0, 0, 0); 0, 1〉 then E(B) = 0.

6.3 Pythagorean fuzzy DEMATEL method

In decision making, decision makers usually make judgement according to their expe-

rience and expertise. Exact evaluation of criteria for DEMATEL method or any other

decision-making method is quite difficult in uncertain environment. Pythagorean

fuzzy set effectively deals with uncertain environment in decision making process.

The proposed method is discussed in the following.

Step 1: Extracting the Pythagorean fuzzy direct relation

We consider Pythagorean fuzzy linguistic scale which is assigned to the corresponding

TrPFN with the view point of the expert to deal with ambiguities of human assessment.

We construct Pythagorean fuzzy direct relation matrix D for the criteria C1, C2, ...., Cn

as

D = [dij]n×n (6.9)

where dij’s are TrPFNs. Govindan et al. (2015a) calculated the expected value of trape-

zoidal intuitionistic fuzzy number(TrIFN). Here we determine the expected value of

each dij and obtain the expected Pythagorean fuzzy direct relation matrix D̃ using

equation (6.8) (Grzegrorzewski, 2003) as

D̃ = [d̃ij]n×n (6.10)

where d̃ij is the expected value of TrPFN dij .
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Step 2: Normalize the expected Pythagorean fuzzy direct relation matrix

This step transforms various criteria into non-dimensional criteria. This allows com-

parison across criteria because various criteria are usually measured in different units.

Hence the normalized expected Pythagorean fuzzy direct relation matrix is obtained

as follows:

X = k × D̃ (6.11)

= k × [d̃ij]n×n

where

k =
1

max
1≤i≤n

∑n
j=1 d̃ij

Then X can be written as

X = [nij]n×n (6.12)

Step 3: Construction of Pythagorean fuzzy total relation matrix

The Pythagorean fuzzy total relation matrix is calculated as

T = X(I −X)−1 (6.13)

where T is an (n×n) Pythagorean fuzzy total relation matrix and I is an (n×n) identity

matrix. Therefore,

T = [tij]n×n. (6.14)

Step 4: Generating casual diagram

Calculate D and R that denote respectively the sum of rows and the sum of columns

of the Pythagorean fuzzy total relation matrix T = [tij]n×n:

R =
[ n∑
j=1

tij

]
1×n

(6.15)

D =
[ n∑
i=1

tij

]
n×1

(6.16)

Here D + R denotes the impact strength index and D − R represents the importance

factor index. The important relation map can be drawn in cause and effect groups by

putting the value in the form of (D − R,D + R). The vertical axis, D − R represents

‘relation’. If the value of D − R is positive then the criterion is grouped into the cause



Chapter 6: Pythagorean fuzzy DEMATEL method for supplier selection 116

group and if the value of D−R is negative then the criterion is grouped into the effect

group. A schematic diagram of the proposed DEMATEL method in Pythagorean fuzzy

environment is depicted in Figure 6.1.

FIGURE 6.1: A schematic diagram of research workflow.
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6.4 Numerical results

In this section, we consider the supplier selection problem in sustainable supply chain

management for numerical illustration of the proposed method. The effective factors

of supplier selection problem in sustainable supply chain management are generally

complex. We use the Pythagorean fuzzy DEMATEL method to simplify the cause and

effect criteria for the supplier. The proposed method is discussed in the following

steps.

Step 1: Based on literature review, the following fifteen criteria of supplier are iden-

tified for sustainable supply chain management: Environmental efficiency (C1), green

image (C2), pollution depletion (C3), green design (C4), safety and health (C5), em-

ployment practices (C6), supplier/customer collaboration (C7), stakeholder relations

(C8), quality (C9), flexibility (C10), cost (C11), technical capability (C12), logistics cost

(C13), rejection ratio (C14), and e-commerce capability (C15). These influential criteria

for the entire system are chosen for interrelation comparison. In Table 6.1, we list the

major criteria and sub-criteria involved in this supplier selection problem.

Human assessments for interrelation comparison between chosen criteria are gener-

ally given by crisp values. However, assessments with preferences are often vague and

difficult to estimate by crisp values. In this case, linguistic assessment is the reasonable

approach for deciding the relationship between two criteria. We use 7-point linguis-

tic rating scale which is described by linguistic term and it’s corresponding TrPFN

(Govindan et al., 2015a) (See Table 6.2). The corresponding expected value of each

TrPFN is calculated using equation (6.8) and is shown in Table 6.2.

We consider an expert team of ten members which includes two professors, four re-

search scholars and four students who work in the relevant field of our study. To

obtain the relationships among the evaluation criteria, we consult with the experts us-

ing a survey instrument with 7-point linguistic rating scale. The linguistic data are

obtained from each individual expert’s assessment. The maximum linguistic rating

value of the corresponding criterion is selected and the initial direct relation matrix is

then obtained, which is shown in Table 6.3.

Step 2: Substituting the TrPFN with the corresponding expected value, we obtain the

expected Pythagorean fuzzy direct relation matrix shown in Table 6.4. The normalized

Pythagorean fuzzy direct relation matrix is performed by using equations (6.1) and
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TABLE 6.1: Criteria and sub-criteria for the supplier selection in sustainable supply
chain

Criteria Sub-criteria

Environmental criteria

environmental efficiency (C1)

green image (C2)

pollution depletion (C3)

green design (C4)

Social criteria

safety and health (C5)

employment practices (C6)

supplier/customer collaboration (C7)

stakeholder relations (C8)

Economic criteria

quality (C9)

flexibility (C10)

cost (C11)

technical capability (C12)

logistics cost (C13)

rejection ratio (C14)

e-commerce capability (C15)

TABLE 6.2: Pythagorean fuzzy linguistic scale

Linguistic variable Influence score Corresponding TrPFN Expected value

Absolutely low (AL) 0 〈(0, 0, 0, 0); 0, 1〉 0

Low (L) 1 〈(0, 0.1, 0.2, 0.3); 0.1, 0.8〉 0.121

Fairly low (FL) 2 〈(0.1, 0.2, 0.3, 0.4); 0.3, 0.7〉 0.190

Medium Low (ML) 3 〈(0.3, 0.4, 0.5, 0.6); 0.5, 0.5〉 0.318

Fairly high (FH) 4 〈(0.5, 0.6, 0.7, 0.8); 0.6, 0.4〉 0.469

High (H) 5 〈(0.7, 0.8, 0.9, 1); 0.8, 0.2〉 0.701

Absolutely high (AH) 6 〈(1, 1, 1, 1); 1, 0〉 1
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TABLE 6.3: Initial direct relation matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 - AH H H FH ML ML L AH ML FH H L L FL

C2 H - H AH H L H ML AH H H FH L L ML

C3 H AH - H H L H L H H H H L L L

C4 AH H FH - AH H H H H FH FH ML ML ML H

C5 H H AH FH - ML L L H H H L L ML L

C6 L L FL L L - H ML FH ML ML ML H L L

C7 H FH ML ML L L - ML H H H H H H FH

C8 ML L L L ML H H - ML ML H H L H H

C9 H H H H L H ML ML - AH AH H L L H

C10 ML H ML FH H L ML L H - H FH ML L FH

C11 H AH H FH H L ML L H H - FH H L FH

C12 ML ML L L FH L ML ML H FH H - H L H

C13 L L L FL FL FL L ML FL L H H - L H

C14 FL FL L L FL L H H FH FH H H L - AH

C15 H H FH L ML L H H AH AH H H H L -

TABLE 6.4: Expected Pythagorean fuzzy direct relation matrix (D)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0.00 1.00 0.701 0.701 0.469 0.318 0.318 0.121 1.00 0.318 0.469 0.701 0.121 0.121 0.190

C2 0.701 0.00 0.701 1.00 0.701 0.121 0.701 0.318 1.00 0.701 0.701 0.469 0.121 0.121 0.318

C3 0.701 1.00 0.00 0.701 0.701 0.121 0.701 0.121 0.701 0.701 0.701 0.701 0.121 0.121 0.121

C4 1.00 0.701 0.469 0.00 0.469 0.701 0.701 0.701 0.701 0.469 0.318 0.318 0.318 0.318 0.701

C5 0.701 0.701 1.00 0.469 0.00 0.318 0.121 0.121 0.701 0.701 0.701 0.121 0.121 0.318 0.121

C6 0.121 0.121 0.190 0.121 0.121 0.00 0.701 0.318 0.469 0.318 0.318 0.318 0.701 0.121 0.121

C7 0.701 0.469 0.318 0.318 0.121 0.121 0.00 0.318 0.701 0.701 0.701 0.701 0.701 0.701 0.469

C8 0.318 0.121 0.121 0.121 0.318 0.701 0.701 0.00 0.318 0.318 0.701 0.701 0.121 0.701 0.701

C9 0.701 0.701 0.701 0.701 0.121 0.701 0.318 0.318 0.00 1.00 1.00 0.701 0.121 0.121 0.701

C10 0.318 0.701 0.318 0.469 0.701 0.121 0.318 0.121 0.701 0.00 0.701 0.469 0.318 0.121 0.469

C11 0.701 1.00 0.701 0.469 0.701 0.121 0.469 0.121 0.701 0.701 0.00 0.469 0.701 0.121 0.469

C12 0.318 0.318 0.121 0.121 0.469 0.121 0.318 0.318 0.701 0.469 0.701 0.00 0.701 0.121 0.701

C13 0.121 0.121 0.121 0.190 0.190 0.190 0.121 0.318 0.190 0.121 0.701 0.701 0.00 0.121 0.701

C14 0.190 0.190 0.121 0.121 0.190 0.121 0.701 0.701 0.469 0.469 0.701 0.701 0.121 0.00 1.00

C15 0.701 0.701 0.469 0.121 0.318 0.121 0.701 0.701 1.00 1.00 0.701 0.701 0.701 0.121 0.00
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(6.12). The normalized Pythagorean fuzzy direct relation matrix is shown in Table 6.5.

Table 6.6 represents Pythagorean fuzzy total relation matrix.

TABLE 6.5: Normalized Pythagorean fuzzy direct relation matrix (Y)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0.00 0.124 0.087 0.087 0.058 0.039 0.039 0.015 0 .124 0.039 0.058 0.087 0.015 0.015 0.024

C2 0.087 0.00 0.087 0.124 0.087 0.015 0.087 0.039 0.124 0.087 0.087 0.058 0.015 0.015 0.039

C3 0.087 0.124 0.00 0.087 0.087 0.015 0.087 0.015 0.087 0.087 0.087 0.087 0.015 0.015 0.015

C4 0.124 0.087 0.058 0.00 0.058 0.087 0.087 0.087 0.087 0.058 0.039 0.039 0.039 0.039 0.087

C5 0.087 0.087 0.124 0.058 0.00 0.039 0.015 0.015 0.087 0.087 0.087 0.015 0.015 0.039 0.015

C6 0.015 0.015 0.024 0.015 0.015 0.00 0.087 0.039 0.058 0.039 0.039 0.039 0.087 0.015 0.015

C7 0.087 0.058 0.039 0.039 0.015 0.015 0.00 0.039 0.087 0.087 0.087 0.087 0.087 0.087 0.058

C8 0.039 0.015 0.015 0.015 0.039 0.087 0.087 0.00 0.039 0.039 0.087 0.087 0.015 0.087 0.087

C9 0.087 0.087 0.087 0.087 0.015 0.087 0.039 0.039 0.00 0.124 0.124 0.087 0.015 0.015 0.087

C10 0.039 0.087 0.039 0.058 0.087 0.015 0.039 0.015 0.087 0.00 0.087 0.058 0.039 0.015 0.058

C11 0.087 0.124 0.087 0.058 0.087 0.015 0.058 0.015 0.087 0.087 0.00 0.058 0.087 0.015 0.058

C12 0.039 0.039 0.015 0.015 0.058 0.015 0.039 0.039 0.087 0.058 0.087 0.00 0.087 0.015 0.087

C13 0.015 0.015 0.015 0.024 0.024 0.024 0.015 0.039 0.024 0.015 0.087 0.087 0.00 0.015 0.087

C14 0.024 0.024 0.015 0.015 0.024 0.015 0.087 0.087 0.058 0.058 0.087 0.087 0.015 0.00 0.124

C15 0.087 0.087 0.058 0.015 0.039 0.015 0.087 0.087 0.124 0.124 0.087 0.087 0.087 0.015 0.00

TABLE 6.6: Pythagorean fuzzy total relation matrix (T)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0.324 0.468 0.359 0.350 0.306 0.202 0.310 0.192 0.511 0.385 0.428 0.392 0.219 0.138 0.290

C2 0.459 0.417 0.405 0.423 0.372 0.209 0.395 0.244 0.575 0.483 0.515 0.418 0.254 0.163 0.349

C3 0.434 0.503 0.305 0.374 0.356 0.192 0.374 0.206 0.516 0.457 0.487 0.419 0.239 0.152 0.306

C4 0.475 0.478 0.365 0.296 0.334 0.269 0.393 0.286 0.532 0.445 0.464 0.399 0.275 0.184 0.386

C5 0.386 0.422 0.379 0.312 0.241 0.191 0.274 0.179 0.457 0.407 0.433 0.312 0.205 0.152 0.264

C6 0.192 0.209 0.173 0.158 0.152 0.092 0.233 0.140 0.274 0.231 0.254 0.221 0.205 0.090 0.174

C7 0.398 0.408 0.310 0.298 0.266 0.177 0.273 0.221 0.479 0.427 0.462 0.404 0.294 0.207 0.336

C8 0.301 0.305 0.240 0.224 0.242 0.215 0.313 0.155 0.370 0.329 0.398 0.349 0.202 0.191 0.314

C9 0.450 0.492 0.397 0.384 0.310 0.267 0.356 0.244 0.462 0.512 0.544 0.444 0.262 0.158 0.390

C10 0.326 0.397 0.287 0.291 0.304 0.160 0.277 0.173 0.434 0.309 0.414 0.332 0.222 0.125 0.293

C11 0.434 0.504 0.387 0.349 0.358 0.192 0.350 0.209 0.518 0.459 0.413 0.400 0.305 0.151 0.347

C12 0.293 0.321 0.237 0.223 0.254 0.145 0.253 0.182 0.398 0.334 0.386 0.256 0.252 0.115 0.301

C13 0.198 0.217 0.171 0.166 0.167 0.115 0.172 0.143 0.252 0.215 0.298 0.264 0.128 0.087 0.241

C14 0.295 0.322 0.245 0.230 0.234 0.153 0.316 0.239 0.395 0.355 0.407 0.357 0.204 0.113 0.354

C15 0.448 0.488 0.371 0.320 0.328 0.204 0.392 0.285 0.572 0.513 0.521 0.451 0.323 0.162 0.316

Step 3: We calculate the total relation matrix from normalized Pythagorean fuzzy

direct relation by using equation (6.13).

To obtain the numerical values as indicated in Steps 2-3, we use Microsoft excel soft-

ware. The instructions for the computation are summarized as follows:

• Find the sum of all elements of each row of the expected Pythagorean fuzzy

direct relation matrix D.

• Find the maximum element from the sums by using ‘max function’.
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• Get the normalized Pythagorean fuzzy direct relation matrix (Y) by dividing ev-

ery element of D by the maximum element.

• Define the identity matrix I .

• Calculate I − Y by using ‘subtraction function’.

• Use ‘inverse function’ to determine (I − Y )−1.

• Determine Pythagorean fuzzy total relation matrix (T ) i.e. Y (I − Y )−1 using ‘m

multiplication function’.

Step 4: The sum of all rows of Pythagorean fuzzy total relation matrix is denoted by D

and the sum of all columns is denoted by R. Then the values of (D + R) and (D − R)

are determined. A criterion is treated as cause category if (D−R) is positive, and effect

category if (D − R) is negative. (D + R) presents horizontal axis of the vector which

is called prominence due to importance of the criteria. Table 6.7 represents the values

of (D + R) and (D − R) for all criteria. The casual diagram of the set (D + R,D − R)

is shown in Figure 6.2. This diagram indicates the discernment about the recognition

of the whole complex system and recognizes significance of supplier in sustainable

supply chain management.

FIGURE 6.2: Cause and effect diagram.
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TABLE 6.7: Values of (D +R) and (D −R) for different criteria

Criteria D R D +R D −R
Environmental efficiency(C1) 4.881 5.418 10.300 -0.537

Green image (C2) 5.687 5.956 11.65 -0.269

Pollution depletion (C3) 5.328 4.638 9.966 0.689

Green design (C4) 5.587 4.405 9.992 1.182

Safety and health (C5) 4.620 4.230 8.851 0.39

Employment practices (C6) 2.804 2.789 5.594 0.016

Supplier/ Customer collaboration (C7) 4.968 4.688 9.656 0.279

Stakeholder relations (C8) 4.155 3.105 7.261 1.045

Quality (C9) 5.678 6.754 12.433 -1.076

Flexibility (C10) 4.351 5.866 10.218 -1.515

Cost (C11) 5.384 6.429 11.814 -1.045

Technical capability (C12) 3.957 5.425 9.382 -1.468

Logistics cost (C13) 2.840 3. 597 6.438 -0.757

Rejection ratio (C14) 4.224 2.196 6.42 2.028

E-commerce capability (C15) 5.700 4.667 10.367 1.039

6.5 Result analysis

From Figure 6.2 and Table 6.7, we see that the criteria for supplier selection are divided

into two groups according to positive and negative values of (D − R). If (D − R) is

positive, then the criterion belongs to cause group and if the value of (D − R) is neg-

ative then the criteria belongs to effective group. Here, the cause group includes the

criterion {C3, C4, C5, C6, C7, C8, C14, C15} and the effective group includes the criteria

{C1, C2, C9, C10, C11, C12, C13}. There are many other hints that can be obtained from

Figure 6.2. We perform detailed analysis on the cause group and the effect group sep-

arately in the following two sub-sections.

6.5.1 Cause criteria analysis

The cause criteria group can have net impact criteria of a supplier in a sustainable

supply chain and its performance can influence much on the whole system. Therefore,

the criteria which belong to cause group can get more attention for supplier selection

in sustainable supply chain management. In our numerical study, out of the fifteen
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criteria, eight criteria are identified as cause group. Those are pollution depletion

(C3), green design (C4), safety and health (C5), employment practices (C6), suppli-

er/customer collaboration (C7), stakeholder relation (C8), rejection ratio (C14), and

e-commerce capability (C15). In the cause group, the ‘rejection ratio’ of the supplier

i.e. C14 has the highest value of (D − R) which means that C14 has more impact on

the whole system. In addition, Table 6.7 shows that the value of (D + R) of C14 is 6.4

which indicates that C14 is a remarkable criterion of the supplier in sustainable supply

chain management. The rejection ratio is the percentage of items with unsatisfactory

quality from the considered delivery. The items supplied by a supplier may not be

100% perfect due to inadequate internal control at supplier’s company, damage due

to packing and/or storage, damage during loading and unloading and transport, etc.

For this reason, rejection ratio is considered to be one of the key indicators of supplier

evaluation.

The criterion for which the value of (D−R) is second highest is ‘green design’ and it’s

corresponding value of (D+R) is also relatively high. Thus the criterion ‘green design’

can dispatch the other criteria in the whole system and therefore, it should attract more

attention of the decision maker while selecting a supplier. A supplier should not only

provide an organization with the adequate raw materials or products at a competitive

price, but also help to improve environmental performance while avoiding hazardous

substances and considering green design. With increasing government regulations

and public awareness in environmental protection, firms should give much attention

to environmental issues for sustainability of their supply chains when selecting sup-

pliers.

The (D − R) values of the criteria ‘stakeholder relations’ (C8) and ‘e-commerce capa-

bility’ (C15) are almost same but the importance degree of (D + R) is relatively high

for C15 than (C8). Hence the criterion ‘e-commerce capability’ is more important than

the criterion ‘stakeholder relation’. A strong relationship between supplier and buyer

can improve communication, responsiveness and overall value of the supply chain. So

stakeholder relation plays an important role in supplier selection. On the other hand,

e-business strategy appears to be a critical component in today’s supply chain. Tech-

nology is being used to enhance communication and move an organization and its en-

tire supplier network toward paperless transactions. This can help improve efficiency

in data transformation and information flow without unnecessary costs. E-commerce

strategy can bring flexibility, effectiveness and efficiency in conducting business activ-

ities, and hence the supplier’s e-commerce capability emerges as a key indicator of its
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quality.

The criterion ‘pollution depletion’ (C3) has positive but relatively low value in com-

parison to the other criteria in the cause group’s other criteria stated above. It’s im-

portance degree of (D + R) is 9.966 which is as high as the whole system. So, there is

no doubt that the criterion ‘pollution depletion’ will enhance the effective criteria of

the supplier in any sustainable supply chain system. Hence it can be suggested that

‘pollution depletion’ is also an important criterion of the supplier.

The criterion ‘employment practices’ (C6) has the lowest value of (D − R) among the

cause group criteria and the value of (D + R) is also relatively low. Therefore, the

criterion ‘employment practices’ does not have enough power to improve the system

and hence it cannot be an importance criterion of the supplier. For similar reasons,

safety and health (C5) and supplier/ customer collaboration(C7) cannot be identified

as vital criteria for supplier selection in sustainable supply chain management.

6.5.2 Effect criteria analysis

In general, the criteria in the effect group are smoothly impacted by other criteria

which make effect criteria unsuitable to a supplier of sustainable supply chain. It is

therefore important to discuss effect group criteria more precisely. Out of the fifteen

criteria considered in the numerical example, seven criteria, namelyC1, C2, C9, C10, C11,

C12, and C13 belong to the effective group. The criterion ‘quality’ (C9) has the highest

(D + R) value 12.433, which indicates that quality is the most important criterion of

supplier in the effect group. Quality level of procured items should be an important

factor in supplier selection as it can directly affect quality of finished product and cus-

tomers’ satisfaction. Figure 6.2 shows that its (D−R) value is less than zero. However,

it’s influential impact index and degree of influenced impact are 5.678 and 6.754, re-

spectively which are relatively high in comparison to all other criteria of this group.

This suggests that ‘quality’ has significant impact on the other criteria of supplier.

Supplier’s environmental performance assessment is one of the most important items

for supplier selection. From Figure 6.2, we observe that the criterion ‘green image’

(C2) is an effective criterion with (D−R) value very close to zero and its (D+R) value

is 11.65. This suggests that ‘green image’ is net receiver and it has an impact on the

other criteria. For the same reason, the criterion environmental efficiency(C1) can be

considered as an important criterion of the supplier too. Both the criteria (green image
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and environmental efficiency) are expected to help enterprises to reduce environmen-

tal risks and impacts for sustainable supply chain.

Another effect criterion ‘logistics cost’ (C13) has negative (D − R) value and it’s (D +

R) value is not enough to label as a criterion of the supplier of sustainable supply

chain management. From Figure 6.2, we also see that the effect group criterion ‘cost’

(C11) has high (D + R) value 11.814 and relatively low (D − R) value. Therefore, it

suggests that C11 has low impact on the whole system but it is susceptible to other

factors. So ‘cost’ cannot be an important criterion of the supplier. There are some

common features of the criteria ‘flexibility’ (C10) and ‘technical capability’ (C12) whose

(D + R) values are relatively low, and (D − R) values are very low. Therefore, these

two criteria cannot have significant impact on the whole system to select the supplier

of a sustainable supply chain.

6.5.3 Discussion

Supplier selection is one of the critical decisions for any organization due to its direct

impact on profitability and organizational competitive position. For a sustainable sup-

ply chain, it is difficult to choose important criteria of supplier. Our numerical study

reveals that out of the fifteen assumed criteria of supplier, rejection ratio (C14), green

design (C4), stakeholder relations (C8), e-commerce capability (C15), pollution deple-

tion (C3), quality (C9), green image (C2), and environmental efficiency (C1) are more

important than others. Among the above eight important criteria, cause criteria group

{C14, C4, C8, C15, C3} can be improved, while the effective criteria group {C9, C2, C1}
can impact the whole system significantly. The rejection ratio of delivered items of

supplier and supplier’s e-commerce capability are emphasized. Besides, green design

and stakeholder relation are found to be of great significance. Pollution depletion is

also recognised as a reasonable criterion of supplier. Moreover, quality from effect

group is observed as a major criterion. The criterion ‘green image’ is found to be

almost equal importance with the criterion ‘environmental efficiency’. In summary,

to be considered for selection in a sustainable supply chain, a supplier is required to

pay attention to quality of delivered items, its e-commerce capability, establishment

of strong relationship with the company, environmental benefit performance and en-

vironmental specification requirements. The proposed Pythagorean fuzzy DEMATEL

method successfully identifies all these important qualities of supplier.
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6.6 Conclusion

This study extended the DEMATEL method in Pythagorean fuzzy environment and

applied it to solve the supplier selection problem in sustainable supply chain man-

agement. The proposed method utilized the concept of Pythagorean fuzzy sets and

trapezoidal Pythagorean fuzzy number (TrPFN). It used Pythagorean fuzzy set to ef-

fectively deal with uncertainty, and linguistic variables defined by TrPFN to rate the

criteria values of supplier. The proposed method provided a cause-effect diagram to

divide the criteria of supplier into two groups and then examined each criterion in

each group for its impact on the whole sustainable supply chain system.



7
Solving A Multi-Criteria Decision Making

Problem with Spherical Neutrosophic Sets

7.1 Introduction

Single valued neutrosophic set (Wang et al., 2010) is a special type of neutrosophic

set. In neutrosophic set, the membership function value can be greater than 1. If one

element of neutrosophic set is appreciated more then the truth membership value of

that particular case can be greater than 1. However, in single-valued neutrosophic set,

this does not happen because the membership value of single valued neutosophic set

lies in [0, 1] and the sum of membership values lies in [0, 3]. In this chapter, we consider

spherical neutrosophic set which is an integration of single valued neutrosophic set

and Pythagorean fuzzy set. In spherical neutrosophic set, the membership grades are

truth membership (T (x)), indeterminacy membership (I(x)) and falsity membership

(F (x)), each lies in the standard interval [0, 1] and their square sum i.e. T 2(x) + I2(x) +

F 2(x) is less than or equal to 3. Pythagorean fuzzy set has two membership functions

and their square sum is less than 1 while, in single valued neutrosophic set, the sum

of membership grades is less than or equal to 3.

This chapter is based on the paper published in OPSEARCH (2022), 1–18

127
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The objectives of our study are as follows:

• To define the spherical neutrosophic number weighted averaging aggregation

(SNNWAA) operator to solve MCDM problem.

• To calculate the performance of the alternatives with respect to the criteria using

SNNWAA operator.

• To show that the proposed method is advantageous in the sense that the spheri-

cal neutrosophic set integrates the theory scientifically, accepts the characteristics

of Pythagorean fuzzy set and neutrosophic set by excluding the criticism of neu-

trosophic set.

The remainder of the chapter is organized as follows. Section 7.2 gives preliminaries

of spherical neutrosophic theory. Section 7.3 presents the spherical neutrosophic ag-

gregation operator. Section 7.4 deals with MCDM method with aggregation operator.

Section 7.5 provides a numerical example of personnel selection problem for valida-

tion of the proposed method. Finally, in section 7.6, the chapter is concluded with

some remarks.

7.2 Precursory

In this section we give some basic of spherical neutrosophic sets.

Definition 7.1. (Yager, 2013) Let X be a universe of discourse. Then a Pythagorean

fuzzy set (PFS) defined on X is of the form

P = {< x, µp(x), νp(x) > |x ∈ X}

where µp : X → [0, 1] and νp : X → [0, 1] are membership and non-membership

functions, respectively and satisfy the following relation:

0 ≤ (µp(x))2 + (νp(x))2 ≤ 1 ∀x ∈ X

Then the degree of indeterminacy membership πp(x) is defined as

πp(x) =
√

1− (µp(x))2 − (νp(x))2.
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Definition 7.2. (Smarandache, 1998) Let X be a universe of discourse. Then the neu-

trosophic set (NS) defined on X is of the form

N = {< x, T (x), I(x), F (x) > |x ∈ X}

where T (x) : X → [0−, 1+], I(x) : X → [0−, 1+] and F (x) : X → [0−, 1+] are truth

membership, indeterminacy membership and falsity membership functions, respec-

tively and

0− ≤ T (x) + I(x) + F (x) ≤ 3+

Definition 7.3. (Wang et al., 2010) Let X be a universe of discourse. Then a single

valued neutrosophic set (SVNS) defined on X is of the form

N̄ = {< x, T (x), I(x), F (x) > |x ∈ X}

where T (x) : X → [0, 1], I(x) : X → [0, 1] and F (x) : X → [0, 1] are truth membership,

indeterminacy membership and falsity membership functions, respectively and

0 ≤ T (x) + I(x) + F (x) ≤ 3

Definition 7.4. (Kutlu Gündoğdu and Kahraman, 2019) Let X be a universe of dis-

course. A spherical fuzzy set A is an object having the form

A = {(x, (µ(x), ν(x), π(x))) : x ∈ X}

where µ(x) : X → [0, 1], ν(x) : X → [0, 1] and π(x) : X → [0, 1] and satisfy the

following relation:

0 ≤ (µ(x))2 + (ν(x))2 + (π(x))2 ≤ 1

Definition 7.5. (Smarandache, 2019) Let X be a universe of discourse. A spherical

neutrosophic set S is an object having the form

S = {< x, s(T (x), I(x), F (x)) >}

where the function T (x) : X → [0, 1] defines the truth membership, I(x) : X → [0, 1]

defines the indeterminant membership and F (x) : X → [0, 1] defines the falsity mem-

bership functions, and for any x ∈ X , they satisfy the following relation:

0 ≤ (T (x))2 + (I(x))2 + (F (x))2 ≤ 3
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A comparison between neutrosophic sets and spherical neutrosophic sets is reflected

in Fig 7.1

FIGURE 7.1: A comparison between NS and SNS

Definition 7.6. (Smarandache, 2019) LetX be a universe of discourse. Then a spherical

neutrosophic number (SNN) is denoted by

A = s(TA, IA, FA)

where TA, IA, FA ∈ [0, 1] and 0 ≤ TA
2 + IA

2 + FA
2 ≤ 3.

It is to be noted that zero of spherical neutrosophic number O and unity of spherical

neutrosophic number U can be defined as follows:

O = s(0, 1, 1), U = s(1, 0, 0)

Needless to say that spherical neutrosophic number (SNN) is an extension of single

valued neutrosophic number (SVN). In SVN, the sum of truth membership, indeter-

minant membership and falsity membership lies between 0 and 3 and, in SNN, the

sum of their squares lies between 0 and 3 i.e., 0 ≤ TA
2 + IA

2 + FA
2 ≤ 3.
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Definition 7.7. (Smarandache, 2019) Let A = s(TA, IA, FA) and B = s(TB, IB, FB) be

two spherical neutrosophic numbers (SNNs). Then the following properties hold:

1. A ⊆ B iff TA ≤ TB, IA ≥ IB and FA ≥ FB.

2. Two spherical neutrosophic numbers A and B are equal i.e. A = B ⇐⇒ A ⊆
B and B ⊆ A.

3. A ∪B = s(max{TA, TB},min{IA, IB},min{FA, FB})

4. A ∩B = s(min{TA, TB},max{IA, IB},max{FA, FB})

5. Ac = s(FA,
√

1− IA2, TA)

Definition 7.8. (Smarandache, 2019) Let A = s(TA, IA, FA) and B = s(TB, IB, FB) be

two spherical neutrosophic numbers (SNNs). Then the Hamming distance between

two numbers is defined as follows:

d(A,B) =
1

6

(
|TA − TB|+ |IA − IB|+ |FA − FB|

)

7.2.1 Some basic operations of SNNS

Let A = s(TA, IA, FA) and B = s(TB, IB, FB) be two spherical neutrosophic numbers

(SNNs) and λ be a real number. Then we can define

1. A+B = s(
√
TA

2 + TB
2 − TA2TB

2, IAIB, FAFB)

2. A⊗B = s(TATB,
√
IA

2 + IB
2 − IA2IB

2,
√
FA

2 + FB
2 − FA2FB

2)

3. λA = s(
√

1− (1− TA2)λ, (IA)λ, (FA)λ)

4. Aλ = s((TA)λ,
√

1− (1− IA2)λ,
√

1− (1− FA2)λ)

Theorem 7.9. LetA = s(TA, IA, FA), B = s(TB, IB, FB) and C = s(TC , IC , FC) be any three

spherical neutrosophic numbers (SNNs). Then the followings properties hold:

(i) A+B = B + A

(ii) A⊗B = B ⊗ A
(iii) (A+B) + C = A+ (B + C)

(iv) (A⊗B)⊗ C = A⊗ (B ⊗ C)

(v) λ(A+B) = λA+ λB, where λ ∈ R and λ > 0.



Chapter 7: MCDM problem with spherical neutrosophic sets 132

(vi) (A⊗B)λ = Aλ ⊗Bλ

(vii) (λ1 + λ2)A = λ1A+ λ2A where λ1, λ2 ∈ R and λ1, λ2 > 0

(viii) Aλ1 ⊗ Aλ2 = Aλ1+λ2

Proof: (i)

L.H.S = A+B

= s(
√
TA

2 + TB
2 − TA2TB

2, IAIB, FAFB)

= s(
√
TB

2 + TA
2 − TB2TA

2, IBIA, FBFA)

= B + A

= R.H.S

(ii)

L.H.S = A⊗B

= s(TATB,
√
IA

2 + IB
2 − IA2IB

2,
√
FA

2 + FB
2 − FA2FB

2)

= s(TBTA,
√
IB

2 + IA
2 − IB2IA

2,
√
FA

2 + FB
2 − FA2FB

2)

= B ⊗ A

= R.H.S

(iii)

L.H.S = (A+B) + C

= s(

√
TA

2 + TB
2 − TA2TB

2, IAIB , FAFB) + s(TC , IC , FC)

= s(

√
(TA

2 + TB
2 − TA2TB

2) + TC
2 − (TA

2 + TB
2 − TA2TB

2)TC
2,

IAIBIC , FAFBFC)

= s(

√
TA

2 + TB
2 + TC

2 − TA2TB
2 − TA2TC

2 − TB2TC
2 + TA

2TB
2TC

2,

IAIBIC , FAFBFC)

R.H.S = A+ (B + C)

= s(TA, IA, FA) + s(

√
TB

2 + TC
2 − TB2TC

2, IBIC , FBFC)

= s(

√
(TA

2 + TB
2 + TC

2 − TB2TC
2)− TA2(TB

2 + TC
2 − TB2TC

2),

IAIBIC , FAFBFC)

= s(

√
TA

2 + TB
2 + TC

2 − TA2TB
2 − TA2TC

2 − TB2TC
2 + TA

2TB
2TC

2,

IAIBIC , FAFBFC)

Therefore, L.H.S = R.H.S
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(iv)

L.H.S = (A⊗B)⊗ C

= s(TATB ,

√
IA

2 + IB
2 − IA2IB

2,

√
FA

2 + FB
2 − FA2FB

2)⊗ s(TC , IC , FC)

= s(TATBTC ,

√
(IA

2 + IB
2 − IA2IB

2) + IC
2 − (IA

2 + IB
2 − IA2IB

2)IC
2,√

(FA
2 + FB

2 − FA2FB
2) + FC

2 − (FA
2 + FB

2 − FA2FB
2)FC

2)

= s(TATBTC ,

√
IA

2 + IB
2 + IC

2 − IA2IB
2 − IA2IC

2 − IB2IC
2 + IA

2IB
2IC

2,√
FA

2 + FB
2 + FC

2 − FA2FB
2 − FA2FC

2 − FB2FC
2 + FA

2FB
2FC

2)

R.H.S = A⊗ (B ⊗ C)

= s(TA, IA, FA)⊗ s(TBTC ,
√
IB

2 + IC
2 − IB2IC

2,

√
FB

2 + FC
2 − FB2FC

2)

= s(TATBTC ,

√
IA

2 + (IB
2 + IC

2 − IB2IC
2)− IA2(IB

2 + IC
2 − IB2IC

2),√
FA

2 + (FB
2 + FC

2 − FB2FC
2)− FA2(FB

2 + FC
2 − FB2FC

2)

= s(TATBTC ,

√
IA

2 + IB
2 + IC

2 − IA2IB
2 − IA2IC

2 − IB2IC
2 + IA

2IB
2IC

2,√
FA

2 + FB
2 + FC

2 − FA2FB
2 − FA2FC

2 − FB2FC
2 + FA

2FB
2FC

2)

Therefore, L.H.S = R.H.S

(v) Let us consider a positive real number λ. Then

L.H.S = λ(A+B)

= λ s(

√
TA

2 + TB
2 − TA2TB

2, IAIB , FAFB)

= s(

√
1− (1− (TA

2 + TB
2 − TA2TB

2))λ, IA
λIB

λ, FA
λFB

λ)

R.H.S = λA+ λB

= λs(TA, IA, FA) + λs(TB , IB , FB)

= s(

√
1− (1− TA2)λ, IA

λ, FA
λ) + s(

√
1− (1− TB2)λ, IB

λ, FB
λ)

= s(

√
1− (1− TA2)λ + 1− (1− TB2)λ − (1− (1− TA2)λ)(1− (1− TB2)λ),

IA
λIB

λ, FA
λFB

λ)

= s(

√
1− (1− (TA

2 + TB
2 − TA2TB

2))λ, IA
λIB

λ, FA
λFB

λ)

Therefore, L.H.S = R.H.S



Chapter 7: MCDM problem with spherical neutrosophic sets 134

(vi) Let us consider a positive real number λ. Then

L.H.S = (A⊗B)λ

= s((TATB)
λ,

√
1− (1− (IA

2 + IB
2 − IAIA)λ),√

1− (1− (FA
2 + FB

2 − FAFA)λ))

R.H.S = Aλ ⊗Bλ

= s((TA)
λ,

√
1− (1− IA2)λ,

√
1− (1− FA2)λ)⊗ s((TB)λ,√

1− (1− IB2)λ,

√
1− (1− FB2)λ)

= s((TATB)
λ,

√
1− (1− (IA

2 + IB
2 − IAIA)λ),√

1− (1− (FA
2 + FB

2 − FAFA)λ))

Therefore, L.H.S = R.H.S

(vii) Let λ1 and λ2 be two positive real numbers and A be a SNN. Then

L.H.S = (λ1 + λ2)A

= s(

√
1− (1− TA2)λ1+λ2 , IA

λ1+λ2 , FA
λ1+λ2)

R.H.S = λ1A+ λ2A

= s(

√
1− (1− TA2)λ1 , IA

λ
1 , FA

λ
1 ) + s(

√
1− (1− TA2)λ2 , IA

λ
2 , FA

λ
2 )

= s(

√
1− (1− TA2)λ1 + 1− (1− TA2)λ2 − (1− (1− TA2)λ1 )(1− (1− TA2)λ2 ),

IA
λ1+λ2 , FA

λ1+λ2)

= s(

√
1− (1− TA2)λ1+λ2 , IA

λ1+λ2 , FA
λ1+λ2)

Therefore, L.H.S = R.H.S

(viii) Let λ1 and λ2 be two positive real numbers and A be a SNN. Then

L.H.S = Aλ1 ⊗Aλ2

= s((TA)
λ1 ,

√
1− (1− IA2)λ1 ,

√
1− (1− FA2)λ1)⊗ s((TA)λ2 ,√

1− (1− IA2)λ2 ,

√
1− (1− FA2)λ2)

= s((TA)
λ1+λ2 ,

√
1− (1− IA2)λ1+λ2 ,

√
1− (1− FA2)λ1+λ2)

= Aλ1+λ2

= R.H.S

Hence the theorem is proved.
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7.2.2 Score, accuracy and certainty functions of SNN

In this sub-section, we define the score function, accuracy function and certainty func-

tion of SNN, and provide a comparison rule of SNN.

Definition 7.10. Let Ak = s(TAk
, FAk

, IAk
) be a spherical neutrosophic number. Then

the score function, accuracy function and certainty function of Ak can be defined as

follows:

Score function, sc(Ak) = 1
3

√
TAk

2 + 1− IAk

2 + 1− FAk

2

Accuracy function, ac(Ak) = TAk
− FAk

Certainty function, cr(Ak) = TAk
.

Let A1 = s(TA1 , IA1 , FA1) and A2 = s(TA2 , IA2 , FA2) be two spherical neutrosophic num-

bers. Then we have the following results:

(i) If sc(A1) > sc(A2) then A1 > A2.

(ii) If sc(A1) = sc(A2) and ac(A1) > ac(A2) then A1 > A2.

(iii) If sc(A1) = sc(A2), ac(A1) = ac(A2) and cr(A1) > cr(A2) then A1 > A2.

(iv) If sc(A1) = sc(A2), ac(A1) = ac(A2) and cr(A1) = cr(A2) then A1 = A2.

7.3 Spherical neutrosophic aggregation operator

In this section, we discuss spherical neutrosophic number weighted averaging aggre-

gation (SNNWAA) operator of spherical neutrosophic number.

Definition 7.11. LetA1, A2, ...., An be n numbers of spherical neutrosophic number(SNN)

and each Ai be of the from Ai = s(TAi
, IAi

, FAi
). Then SNNWAA : (SNN)n → SNN

is defined by

SNNWAA(A1, A2, ...., An) =
n∑
i=1

wiAi,

where w1, w2, ...., wn are the weights of corresponding SNNs of A1, A2, ...., An and each

wi ≥ 0 and
n∑
i=1

wi = 1.
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Theorem 7.12. Let Ai = s(TAi
, IAi

, FAi
), i = 1, 2, ...., n be the collection of SNNs. Then

SNNWAA(A1, A2, ...., An) = s
(√√√√1−

n∏
i=1

(1− T 2
Ai

)wi ,

n∏
i=1

(IAi
)wi ,

n∏
i=1

(FAi
)wi
)

where {w1, w2, ...., wn} is the weight vector of A1, A2, ...., An and wi ≥ 0 and
n∑
i=1

wi = 1.

Proof. We prove this theorem by the principle of mathematical induction. For n = 2,

we have

w1A1 = s(

√
1− (1− TA1

2)w1 , (IA1)
w1 , (FA1)

w1)

w2A2 = s(

√
1− (1− TA2

2)w2 , (IA2)
w1 , (FA2)

w1)

Then

SNNWAA(A1, A2) = w1A1 + w2A2

= s(

√
1− (1− TA1

2)w1 , (IA1
)w1 , (FA1

)w1) + s(

√
1− (1− TA2

2)w2 , (IA2
)w1 , (FA2

)w1)

= s(

√
(1− (1− TA1

2)w1) + (1− (1− TA2

2)w2)− (1− (1− TA1

2)w1)(1− (1− TA2

2)w2),

(IA1
)w1 · (IA2

)w1 , (FA1
)w1 · (FA2

)w1)

= s
(√√√√1−

2∏
i=1

(1− T 2
Ai
)wi ,

2∏
i=1

(IAi)
wi ,

2∏
i=1

(FAi)
wi
)

which implies,

SNNWAA(A1, A2) = s
(√√√√1−

2∏
i=1

(1− T 2
Ai

)wi ,
2∏
i=1

(IAi
)wi ,

2∏
i=1

(FAi
)wi
)

Therefore, the theorem is true for n = 2.

Let us assume that the theorem is true for n = m. Then we have

SNNWAA(A1, A2, ...., Am) = s
(√√√√1−

m∏
i=1

(1− T 2
Ai

)wi ,

m∏
i=1

(IAi
)wi ,

m∏
i=1

(FAi
)wi
)
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Now, we will show that this result is true for n = m+ 1. We have

SNNWAA(A1, A2, ...., Am, Am+1) =

m∑
i=1

wiAi + wm+1Am+1

= s
(√√√√1−

m∏
i=1

(1− T 2
Ai
)wi ,

m∏
i=1

(IAi
)wi ,

m∏
i=1

(FAi
)wi
)

+s(
√
1− (1− T 2

Am+1
)wm+1 , (IAm+1

)wm+1 , (FAm+1
)wm+1)

= s
(√√√√(1−

m∏
i=1

(1− T 2
Ai
)wi) + (1− (1− T 2

Am+1
)wm+1)− (1−

m∏
i=1

(1− T 2
Ai
)wi)(1− (1− T 2

Am+1
)wm+1),

m∏
i=1

(IAi)
wi · (IAm+1)

wm+1 ,

m∏
i=1

(FAi)
wi · (FAm+1)

wm+1
)

= s
(√√√√1−

m+1∏
i=1

(1− T 2
Ai
)wi ,

m+1∏
i=1

(IAi
)wi ,

m+1∏
i=1

(FAi
)wi
)

This shows that the result given in the theorem is true for n = m+1. Thus the theorem

which is assumed to be true for n = m is found to be true for n = m + 1. Hence the

theorem is true for any natural number n.

Properties:

SNNWAA operator satisfies the following properties:

1. Idempotency : Let Ak = s(TAk
, IAk

, FAk
) where k = 1, 2, ...., n be n numbers of

SNNs. If all Ak’s are identical i.e. Ak = A = s(TA, IA, FA) for k = 1, 2, ..., n then

SNNWAA(A1, A2, ...., Ak) = A

2. Boundedness : LetAk = s(TAk
, IAk

, FAk
) be any collection of SNNs assuming that

A+
k = s(max

k
TAk

,min
k
IAk

,min
k
FAk

) , A+
− = s(min

k
TAk

,max
k
IAk

,max
k
FAk

). Then,

A−k ⊆ SNNWAA(A1, A2, ...., Ak) ⊆ A+
k

3. Monotonicity : Let Āk = s(TĀk
, IĀk

, FĀk
) be any collection of SNNs. If it satisfies

that Āk ⊆ AK for all k ∈ N then

SNNWAA(Ā1, Ā2, ...., Ān) ≤ SNNWAA(A1, A2, ...., An)



Chapter 7: MCDM problem with spherical neutrosophic sets 138

7.4 Multi-criteria decision making using SNNWAA

operator

Suppose that a MCDM problem contains uncertainty, inconsistent and incomplete in-

formation. To handle the problem, we propose a MCDM method with spherical neu-

trosophic aggregation operator. Let A = {X1, X2, ...., Xm} be a finite set of alternatives

and C = {C1, C2, ...., Cn} be the set of criteria. We assume that the criterion value of the

corresponding alternative is a spherical neutrosophic number. Letw = {w1, w2, ...., wn}
be the weight vector and

n∑
j=1

wj = 1. Then we can get spherical neutrosophic decision

matrix D = (αij)m×n of the from

D = (αij)m×n =



C1 C2 . . . Cn

X1 α11 α12 . . . α1n

X2 α21 α22 . . . α2n

...
...

... . . . ...

Xm αm1 αm2 . . . αmn

 (7.1)

where αij = s(Tij, Iij, Fij) is a spherical neutrosophic number. Now, we solve the

MCDM problem following the steps given below.

Step 1: In MCDM problem, there are two types of criterion − one is cost type criterion

and other one is benefit type criterion. Therefore, decision matrix D = (αij)m×n needs

to be normalized and it can be converted into the normalized spherical neutrosophic

decision matrix R = (α̃ij)m×n where

α̃ij =


s
(Tij
Pi
,
Iij
Pi
,
Fij
Pi

)
, for benefit type criterion.

s
( Pi
Tij

,
Pi
Iij
,
Pi
Fij

)
, for cost type criterion

(7.2)

where Pi = max
ij
{Tij, Iij, Fij} for j = 1, 2, ..., n.

Step 2: We calculate the aggregated value of SNNs and use SNNWAA operator dis-

cussed in Theorem 7.12 .
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Step 3: After calculating aggregation value, we determine the values of score, accuracy

and certainty functions to compare the alternatives.

Step 4: Finally, we get the ranking order of the alternatives in ascending order and

choose the best alternative.

7.5 Numerical example

In this section, we provide a numerical example to illustrate our proposed approach.

Let us consider a personnel selection problem in which selection to be made so that

the selected person’s skills mostly match for a particular position. This problem can

be solved as a MCDM problem. Suppose that candidates are evaluated by alternatives

and every alternative has several criteria like communication skill, working experi-

ence, general aptitude, etc. In indeterminate and uncertain environments, the selec-

tion of proper employees for the particular positions becomes difficult because the

selection process involves subjective assessment. Fuzzy sets, intuitionistic fuzzy sets

and neutrosophic sets are some excellent tools for dealing with these environments.

Moreover, we see that the decision maker faces many difficulties to select the criteria

value. So, it would be better to introduce spherical neutrosophic sets and aggregation

operator to determine the optimal solution.

Suppose that a company has to select an employee for a particular position. Four can-

didates {X1, X2, X3, X4} enter the final round of interview after preliminary elimina-

tion process. The expert interviews and evaluates the candidates under the following

criteria:

1. Communication skill (C1)

2. Working experience (C2)

3. General aptitude (C3)

The weight vector of criteria w = {0.35, 0.25, 0.40} is known. Now, the spherical neu-

trosophic decision matrix is given by
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C1(Communication skill) C2(Working experience) C3(General aptitude)

X1 s(0.9, 0.3, 0.2) s(1.0, 0.7, 0.5) s(0.8, 0.3, 0.4)

X2 s(0.4, 0.8, 0.9) s(0.7, 0.8, 0.1) s(0.9, 1.0, 0.3)

X3 s(0.7, 0.3, 0.5) s(0.7, 0.1, 0.5) s(0.9, 0.5, 0.2)

X4 s(0.3, 0.7, 0.9) s(1.0, 0.3, 0.4) s(0.7, 0.3, 0.5)

The steps for finding the solution by SNNWAA operator are as follows:

Step 1: In this problem, all the criteria are of benefit type. Then, using Eq. (7.2), we get
the following normalized decision matrix:

C1 C2 C3

X1 s(0.9, 0.3, 0.2) s(1.0, 0.7, 0.5) s(0.8, 0.3, 0.4)

X2 s(0.4, 0.8, 0.9) s(0.7, 0.8, 0.1) s(0.9, 1.0, 0.3)

X3 s(0.7, 0.3, 0.5) s(0.7, 0.1, 0.5) s(0.9, 0.5, 0.2)

X4 s(0.3, 0.7, 0.9) s(1.0, 0.3, 0.4) s(0.7, 0.3, 0.5)

Step 2: We aggregate the criteria values of the alternatives by SNNWAA operator:

SNNWAA(A1, A2, ...., An) = s
(√√√√1−

n∏
i=1

(1− T 2
Ai

)wi ,
n∏
i=1

(IAi
)wi ,

n∏
i=1

(FAi
)wi
)

Then we get SNNWAA(X1) = s(1.0, 0.37, 0.33)

SNNWAA(X2) = s(0.76, 0.87, 0.33)

SNNWAA(X3) = s(0.81, 0.28, 0.34)

SNNWAA(X4) = s(1.0, 0.40, 0.58)

Step 3: We calculate in Table 7.1 the score, accuracy and certainty values of the alter-

natives, which are discussed in subsection 7.2.2.

TABLE 7.1: Score, accuracy and certainty values

Score value Accuracy value Certainty value

sc(X1) = 0.92 0.63 1.0

sc(X2) = 0.57 -0.11 0.76

sc(X3) = 0.82 0.53 0.81

sc(X4) = 0.83 0.60 1.0
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Step 4: Since sc(X1) > sc(X4) > sc(X3) > sc(X2), the ranking order of the four candi-

dates is obtained as

X1 � X4 � X3 � X2

Therefore, the best candidate is X1.

7.5.1 Discussion

The above numerical study considers three criteria viz. communication skill, working

experience and general aptitude for selecting the appropriate candidate for the posi-

tion. More importance is given to general aptitude and then communication skill and

lastly working experience. Aggregation operator is chosen as it is a useful tool in order

to summarize different criteria from different sources. Here, the SNNWAA operator

aggregates all criteria values by different alternatives and selects the best alternative.

X1 is found to be the best candidate for that particular position because SNNWAA

value of X1 is s(1.0, 0.37, 0.33) and the score value of X1 is greater than other can-

didates’ score values. Based on the score values of the candidates, the rank of the

alternatives is obtained as

X1 � X4 � X3 � X2

7.6 Conclusion

Spherical neutrosophic set (SNS) is a generalized version of FS, IFS, NS and PFS ap-

plied in real life decision making problems. It is a suitable tool to handle uncertain, in-

complete and indeterminant information in MCDM. In this study, we have proposed

SNNWAA operator for aggregating spherical neutrosophic number as criteria value

of the alternatives and developed a MCDM method based on SNNWAA operator. Fi-

nally, we have solved a numerical example of MCDM problem, namely, personnel

selection problem to examine the efficiency of the proposed method. There are many

avenues for further research on our work. Alternative score, accuracy function and ag-

gregation operator can be developed in SNS. Other MCDM methods such as TOPSIS,

VIKOR, PROMETHEE, and AHP can be extended in SNS environment.





8
Conclusions

This chapter presents a summary of the most important contributions of the thesis

together with suggestions for future scope of work. The proposed research work has

concentrated on developing some methods for solving MCDM problems in uncertain

environment.

8.1 Major contributions

• In Chapter 2, we have solved GRA method for MCDM problem where the rating

values of the attributes are SVTrNNs and weight information is partially known

or completely unknown.

• In Chapter 3, we have extended TOPSIS method to solve MADM problem with

ITrNNs. We have introduced a new distance measure of ITrNNs. We have devel-

oped the model where the rating values of the attributes are ITrNN and weight

information is completely known, partially known and completely unknown.

• In Chapter 4, we have studied MCDM method with neutrosophic hesitant fuzzy

sets. We have formulated SVNHFS and IVNHFS based MCDM problem, where

the weight information is incompletely known and completely unknown. TOP-

SIS method been used to solve the proposed optimization model.

• In Chapter 5, we have extended the PROMETHEE method under Pythagorean

fuzzy environment and solved a real MCDM problem. We have discussed some
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basic operations of Pythagorean fuzzy numbers (PFN) and compared Pythagorean

fuzzy sets (PFS) with intuitionistic fuzzy sets (IFS). We have introduced a medi-

cal diagnosis problem as an MCDM problem and solved the problem using our

proposed method.

• In Chapter 6, we have proposed DEMATEL method in Pythagorean fuzzy envi-

ronment. Here the concept of Pythagorean fuzzy sets and trapezoidal Pythagorean

fuzzy number (TrPFN) is utilized. The proposed method has been applied to

solve supplier selection problem in sustainable supply chain management.

• In Chapter 7, we have introduced spherical neutrosophic set (SNS) as a gener-

alized version of FS, IFS, NS and PFS and applied it in real life decision making

problems. We have proposed SNNWAA operator for aggregating spherical neu-

trosophic number as criteria value of the alternatives and developed a MCDM

method based on SNNWAA operator. We have solved numerically a MCDM

problem, namely, personnel selection problem to examine the efficiency of the

proposed method.

The primary contributions of the study conducted in this thesis are to find solutions

of various real-world decision-making problems, such as supplier selection, project

selection, medical diagnosis, pattern identification, employee selection, data mining,

clustering analysis, etc.

8.2 Future scopes of work

MCDM problems generally take place in a complex environment and usually con-

nected with imprecise data and uncertainty. Therefore, MCDM/MADM with fuzzy

sets, intutionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets, neu-

trosophic sets, and spherical neutrosophic sets have received much attention to the

researchers.

Based on the works carried out in this thesis, some observations for potential future

research directions are indicated below.

• GRA method of MCDM can be extended to multi-criteria group decision mak-

ing problem in SVTrNN environment and also weight vector of criteria can be

considered as incompletely known or completely unknown.
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• GRA, AHP, VIKOR, PROMETHEE and other MCDM methods can be developed

with ITrNNs.

• The developed models based on SVNHFS and IVNHFS can be applied to many

real-life decision making problems such as pattern recognition, supply chain

management, data mining, etc. The proposed method can be extended in MADM

problem with plithogenic set (Smarandache, 2017b).

• TOPSIS, GRA, PROMETHEE, and DEMATEL methods can be developed using

the following sets:

– spherical neutrosophic set (Smarandache, 2019)

– neutrosophic soft set (Maji, 2013)

– interval valued neutrosophic hesitant fuzzy set (Liu and Shi, 2015)

– hesitant Pythagorean fuzzy sets (Liang and Xu, 2017)

– triangular fuzzy neutrosophic set (Biswas et al., 2016a)

• The proposed DEMATEL method would be useful to solve MCDM problem con-

taining a large number of criteria as well as vague, incomplete and inconsistent

information.

• The supplier selection problem of sustainable supply chain management can be

solved by other MCDM techniques besides DEMATEL method.

• Medical diagnosis problem can be considered as MCDM problem and solved

with uncertain environment.

• Alternative score, accuracy function and aggregation operator can be developed

in SNS. Other MCDM methods such as TOPSIS, VIKOR, PROMETHEE, and

AHP can be extended in SNS environment.

We hope that the concept presented in this thesis will open up new avenue of research

in practical problems involving personal selection in academia, project evaluation,

data mining, portfolio selection, risk analysis, and many other areas of management

systems.
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TOPSIS Method for MADM based on Interval Trapezoidal
Neutrosophic Number
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Abstract: TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a very common method for
Multiple Attribute Decision Making (MADM) problem in crisp as well as uncertain environment. The interval trape-
zoidal neutrosophic number can handle incomplete, indeterminate and inconsistent information which are generally
occurred in uncertain environment. In this paper, we propose TOPSIS method for MADM, where the rating values
of the attributes are interval trapezoidal neutrosophic numbers and the weight information of the attributes are known
or partially known or completely unknown. We develop optimization models to obtain weights of the attributes with
the help of maximum deviation strategy for partially known and completely unknown cases. Finally, we provide a
numerical example to illustrate the proposed approach and make a comparative analysis.

Keywords: Interval trapezoidal neutrosophic number, Multi-attribute decision making, TOPSIS, Unknown weight
information.

1 Introduction
Multi-attribute decision making (MADM) is a popular field of study in decision analysis. MADM refers

to making choice of the best alternative from a finite set of decision alternatives in terms of multiple, usu-
ally conflicting criteria. The decision maker uses the rating value of the attribute in terms of fuzzy sets [1],
intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], and neutrosophic sets [4].

In classical MADM methods, the ratings and weights of the criteria are known precisely. TOPSIS [5] is
one of the classical methods among many MADM techniques like Preference Ranking Organization METHod
for Enrichment of Evaluations (PROMETHEE) [6], Vlse Kriterijuska OptimizacijaI Komoromisno Resenje
(VIKOR) [7], ELimination Et Choix Traduisant la REalit (ELECTRE) [8], Analytic Hierarchy Process (AHP)
[9], etc. MADM problem has also been studied in fuzzy environment [10–14] and intuitionistic fuzzy envi-
ronment [15–18]. Researchers have extended the TOPSIS method to deal with MADM problems in different
environment. Chen [19] extended the concept of TOPSIS method to develop a methodology for MADM prob-
lem in fuzzy environment. Boran et al. [20] extended the TOPSIS method for MADM in intutionistic fuzzy
sets. Zhao [21] proposed TOPSIS method under interval intutionistic fuzzy number. Liu [22] proposed TOP-
SIS method for MADM under trapezoidal intuitionistic fuzzy environment with partial and unknown attribute
weight information.

Compared to fuzzy set and intutionistic fuzzy set, neutrosophic set [4] has the potential to deal with
MADM problem because it can effectively handle indeterminate and incomplete information. Hybrids of

Bibhas C. Giri, Mahatab Uddin Molla, and Pranab Biswas : TOPSIS Method for MADM based on Interval
Trapezoidal Neutrosophic Number

Neutrosophic Sets and Systems, Vol. 22, 2018

University of New Mexico
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Grey relational analysis method for SVTrNN based multi-attribute
decision making with partially known or completely unknown weight
information
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Abstract
Single-valued trapezoidal neutrosophic number (SVTrNN), an extension of single-valued neutrosophic set, effectively

deals with indeterminate and incomplete information in multi-attribute decision making (MADM) problem. In this paper,

we extend the grey relational analysis (GRA) method for solving SVTrNN based MADM problem, where the weight

information of attributes is partially known or completely unknown. Following the classical GRA method, we define grey

relational co-efficient using a new distance measure. We develop two optimization models to determine the weights of the

attributes. We calculate grey positive and negative relational degrees and define the relative closeness co-efficient of each

alternative to determine the best alternative. We take a numerical example to validate the proposed approach and compare

the proposed method with other exiting methods. It is observed from the numerical study that the proposed GRA method

has an advantage over the existing methods for solving SVTrNN based MADM problem with partially known or com-

pletely unknown attribute weight information.

Keywords Multi-attribute decision making � Single-valued trapezoidal neutrosophic number � Grey relational analysis �
Unknown weight information

1 Introduction

Grey relational analysis (GRA) is an important part of grey

system theory, which is used to conduct relational analysis

of uncertainty of the system. There are many applications

of this method in different multi-attribute decision making

(MADM) problems (Zhang et al. 2005; Wei 2011; Wei

et al. 2011). However, in practice, decision makers face

difficulties to collect accurate information of preference

values of alternatives in MADM due to imprecise and

incomplete data (Xu 2015).

During the past several years, fuzzy sets (Zadeh 1965),

intuitionistic fuzzy sets (Atanasso 1986), and neutrosophic

sets (Smarandache 1999) have gained much attention from

the researchers to deal with uncertain information in

decision making problems. Fuzzy sets is used in various

optimization techniques (Chen and Wang 1995; Chen and

Tanuwijaya 2011; Chen and Chang 2011; Cheng et al.

2016; Lee and Chen 2008; Chen and Huang 2003. Intu-

itionistic fuzzy set is useful to handle various MCDM

problems (Chen and Chang 2015; Chen et al. 2016a, b, Liu

and Chen 2018a; Liu et al. 2017). Recently, MADM

method is being developed under hesitant fuzzy sets and

type-2 fuzzy sets (Mishra et al. 2018; Qin 2017). GRA

method is one of the accepted MADM methods among

TOPSIS (Hwang and Yoon 1981), VIKOR (Opricovic and

Tzeng 2004), PROMETHEE (Brans et al. 1986), AHP

(Wind and Saaty 1980), etc. Researchers have extended the

GRA method for MADM problem in different environ-

ments. Wei (2010) introduced GRA method for intuition-

istic fuzzy MADM problem with incomplete weight

information. Zhang and Liu (2011) proposed GRA method
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TOPSIS Method for Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision Making
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Abstract. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a very com-
mon and useful method for solving multi-criteria decision making problems in certain and uncertain
environments. Single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval neutrosophic
hesitant fuzzy set (INHFS) are developed on the integration of neutrosophic set and hesitant fuzzy
set. In this paper, we extend TOPSIS method for multi-attribute decision making based on single
valued neutrosophic hesitant fuzzy set and interval neutrosophic hesitant fuzzy set. Furthermore,
we assume that the attribute weights are known, incompletely known or completely unknown. We
establish two optimization models for SVNHFS and INHFS with the help of maximum deviation
method. Finally, we provide two numerical examples to validate the proposed approach.
Key words: hesitant fuzzy set, neutrosophic set, single valued neutrosophic hesitant fuzzy set,
interval neutrosophic hesitant fuzzy set, multi-attribute decision making, TOPSIS.

1. Introduction

Decision making is a popular field of study in the areas of Operations Research, Man-
agement Science, Medical Science, Data Mining, etc. Multi-attribute decision making
(MADM) refers to making choice of an alternative from a finite set of alternatives. For
solving MADM problem, there exist many well-known methods such as TOPSIS (Hwang
and Yoon, 1981), VIKOR (Opricovic and Tzeng, 2004), PROMETHEE (Brans et al.,
1986), ELECTRE (Roy, 1990), AHP (Satty, 1980), DEMATEL (Gabus and Fontela,
1972), MULTIMOORA (Brauers and Zavadskas, 2006, 2010), TODIM (Gomes and
Lima, 1992a, 1992b), WASPAS (Zavadskas et al., 2014), COPRAS (Zavadskas et al.,
1994), EDAS (Keshavarz Ghorabaee et al., 2015), MAMVA (Kanapeckiene et al., 2011),
DNMA (Liao and Wu, 2019), etc. Wu and Liao (2019) developed consensus-based proba-
bilistic linguistic gained and lost dominance score method for multi-criteria group decision
making problem. Hafezalkotob et al. (2019) proposed an overview of MULTIMOORA for
multi-criteria decision making for theory, developments, applications, and challenges. Mi
et al. (2019) surveyed on integrations and applications of the best worst method in decision
making. Among those methods, TOPSIS method has gained a lot of attention in the past

*Corresponding author.
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METHODOLOGIES AND APPL ICAT ION

Extended PROMETHEEmethod with Pythagorean fuzzy sets
for medical diagnosis problems

Mahatab Uddin Molla1 · Bibhas C. Giri1 · Pranab Biswas1

© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Pythagorean fuzzy sets, a generalization of intuitionistic fuzzy sets, can effectively handle uncertain, incomplete and incon-
sistent information involved in real-life multi-criteria decision making (MCDM) problems. Preference ranking organization
method for enrichment of evaluation (PROMETHEE) is one of the popular methods for solving MCDM problem. In this
paper, we extend the PROMETHEE method with Pythagorean fuzzy sets. We illustrate the proposed model with a numerical
example and compare the method with some existing Pythagorean fuzzy sets-based methods. We also solve a medical diag-
nosis problem using the proposed Pythagorean fuzzy PROMETHEE method and highlight some advantages of the proposed
method.

Keywords Pythagorean fuzzy sets · Multi-criteria decision making · PROMETHEE · Medical diagnosis

1 Introduction

Multi-criteria decisionmaking (MCDM)which identifies the
best alternative from a set of available alternatives depends
on various criteria. MCDM problem is very common in
operation research, management science, medical diagnosis,
data mining, etc. Preference ranking organizationmethod for
enrichment of evaluation (PROMETHEE) (Brans et al. 1986)
is a popularmethod amongTOPSIS (Hwang andYoon1981),
VIKOR (Opricovic and Tzeng 2004), AHP (Satty 1980),
ELECTRE (Roy 1990) and MULTIMOORA (Brauers and
Zavadskas 2010) to solve MCDM problem. PROMETHEE
method compares the criteria for each pair of alternatives
and preference alternative grade which lies between 0 and
1. PROMETHEE method can be successfully applied in
fuzzy environment (Zadeh 1965) to solve MCDM problem.
Goumas and Lygerou (2000) extended the PROMETHEE
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method for decisionmaking in fuzzy environment for optimal
ranking of the alternative in energy exploitation project. Chen
et al. (2011) proposed fuzzy PROMETHEEmethod for infor-
mation system outsourcing. They used fuzzy number as the
rating value of the criteria with respect to alternative. Abedi
et al. (2012) developed PROMETHEE II method in fuzzy
environment for copper exploration. Gul et al. (2018) devel-
oped PROMETHEE method based on fuzzy logic and used
fuzzy number for MCDM problem. Feng et al. (2020) devel-
oped an extension of PROMETHEE method with fuzzy soft
sets. However, MCDM process may contain several uncer-
tainties and indeterminate situations. It not only determines
the degree for which an alternative satisfies the criteria but
also provides a degree for which the alternative dissatis-
fies the criteria. Atanassov (1986) introduced the concept
of intuitionistic fuzzy sets (IFS) which has both member-
ship and non-membership degrees. The sum of membership
and non-membership degrees of an IFS lies between 0 and
1. IFS has been successfully applied in MCDM problem
(Yager 2010; Xu and Yager 2008; Atanassov et al. 2005).
Ali et al. (2019) developed graphical method for ranking
intuitionistic fuzzy value with uncertainty index and entropy.
Feng et al. (2019a, b) proposed lexicographic orders of intu-
itionistic fuzzy values and their relationships for decision
making problem. Feng et al. (2019a, b) proposed another
view on generalized intuitionistic fuzzy soft sets and related
multi-attribute decisionmakingmethods. Liao andXu (2014)
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Pythagorean fuzzy DEMATEL method for supplier selection in sustainable
supply chain management
Bibhas Chandra Giri ∗, Mahatab Uddin Molla, Pranab Biswas
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A R T I C L E I N F O

Keywords:
DEMATEL method
Pythagorean fuzzy sets
Supplier selection
Sustainable supply chain management

A B S T R A C T

The fuzzy DEMATEL (Decision Making Trial and Evaluation Laboratory) method is one of the accepted decision-
making methods in uncertain environment. The Pythagorean fuzzy set is a generalized concept of fuzzy set
and intuitionistic fuzzy set. In this paper, we develop the Pythagorean fuzzy set based DEMATEL method
and apply it to solve the supplier selection problem in sustainable supply chain management. We consider
the Pythagorean fuzzy set for handling uncertain and incomplete information while selecting the criteria of a
supplier and dealing with ambiguity of human decisions. Considering the independence of the criteria, we put
forward the proposed method which gives mutual relationships among the criteria, and identifies cause–effect
components of the system. The proposed method is illustrated numerically based on data collected from a
group of professional personnel.

1. Introduction

Fuzzy sets (FS) (Zadeh, 1965) and intuitionistic fuzzy sets (IFS)
(Atanassov, 1986) are some excellent tools for dealing with uncertain-
ties, including indeterminate and inconsistent information. An exten-
sion of intuitionistic fuzzy set is Pythagorean fuzzy set (PFS) (Yager,
2013a, 2013b). In IFS, the membership function 𝜇 and non-membership
function 𝜈 satisfy the condition 0 ≤ 𝜇 + 𝜈 ≤ 1 for 𝜇 ∈ [0, 1] and
𝜈 ∈ [0, 1]. Note that an element having membership degree 𝜇 ∈ [0, 1]
and non-membership degree 𝜈 ∈ [0, 1] does not necessarily belong
to IFS. For example, if the membership value and non-membership
value of an alternative are 0.8 and 0.3, respectively, then the sum of
membership and non-membership values of the alternative is greater
than 1, which invalidates the criteria for being an IFS. On the other
hand, PFS can easily handle this situation because PFS considers the
condition 𝜇2 + 𝜈2 ≤ 1 which is clearly satisfied as 0.82 + 0.32 < 1. This
indicates that PFS has an edge over IFS as well as FS in decision-making
process under uncertainty.

Yager (2013a) introduced Pythagorean membership grades and
solved multi-criteria decision making (MCDM) problem using the ag-
gregation operator. Zhang and Xu (2014) extended the TOPSIS method
with PFS and considered Pythagorean fuzzy number (PFN) to solve an
MCDM problem. They defined a distance measure of PFN for the TOP-
SIS method to get the optimal result. Recently, many researchers have
developed different MCDM models with PFS. Garg (2016) developed
a generalized Pythagorean fuzzy aggregation operator using Einstein
operations, and applied that operator to decision making problem.

∗ Corresponding author.
E-mail addresses: bcgiri.jumath@gmail.com (B.C. Giri), mahatab.jumath@gmail.com (M.U. Molla), prabiswas.jdvu@gmail.com (P. Biswas).

Ren et al. (2016) proposed TODIM method for decision making in
Pythagorean fuzzy environment. Perez-Dominguez et al. (2018) intro-
duced MOORA method for decision making under Pythagorean fuzzy
set.

Decision-making trial and evaluation laboratory (DEMATEL) (Gabus
& Fontela, 1972) is a method which develops mutual relationships of
the criteria and their correlated dependencies. This method provides a
casual-effect diagram to describe mutual relationships and influences
of the criteria (Wu & Tsai, 2011). It can analyze total relations among
sets of variables to obtain logical relationships and direct impact re-
lationships. The method is well suited to situations where it becomes
necessary to upgrade the evaluation of one criterion by adding new
one even if the number of criteria is quite large. It is well known
that if the number of evaluation criteria is not restricted, then the
decision difficulty increases, and the decision quality is degraded for
some decision-making methods such as AHP, TOPSIS, etc. But in the
DEMATEL method, such a situation will not occur as it divides the
entire criteria, however large it is, into two groups cause and effect,
and displays casual relationships between criteria visually. We often
need a large number of criteria for supplier selection in sustainable
supply chain management. These criteria may contain incomplete and
inconsistent information too. Such a problem can therefore be easily
handled by the DEMATEL method in Pythagorean fuzzy environment.
The DEMATEL method can also be applied to solve various complex
problems (Govindan, Khodaverdi et al., 2015; Govindan, Rajendran
et al., 2015; Huang et al., 2007; Ren et al., 2013; Shieh et al., 2010).
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Abstract
This paper considers spherical neutrosophic sets (SNS) which can be defined as an 
integration of Pythagorean fuzzy sets and single valued neutrosophic sets. In single 
valued neutrosophic sets, the sum of the three membership degrees (truth, indeter-
minacy and falsity) lies between 0 and 3 whereas in spherical neutrosophic sets, the 
sum of the squares of three membership degrees lies between 0 and 3. The basic 
operations of SNS are established and some aggregation operators based on spheri-
cal neutrosophic sets are defined. A solution approach for a multi-criteria decision 
making problem is developed with the help of an aggregation operator of SNS. A 
numerical example is provided for validation of the proposed approach.

Keywords Spherical neutrosophic sets · Aggregation operator · Multi-criterion 
decision making

1 Introduction

The concept of fuzzy set introduced by Zadeh [1] in 1965 has been found to be very 
much applicable in many branches of science and engineering today. Researchers 
have extended the ordinary fuzzy set to some of those discussed in the following. In 
1986, Attansov [2] proposed intuitionistic fuzzy set in which there are membership 
function and non-membership function, and each membership degree lies between 0 
and 1, and the sum of membership and non-membership degrees also lies between 
0 and 1. Intuitionistic fuzzy set has also been successfully applied in many branches 
of science including decision making [3–5]. Later, in 2013, Yarger [6] introduced 
Pythagorean fuzzy set which is further extension of intuitionistic fuzzy set. The 
membership degrees of Pythagorean fuzzy set also lie between 0 and 1 but their sum 
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