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Abstract 
The present thesis explores the physical and chemical behaviour of naturally occurring 

atomic and molecular crystalline solids in the interior of the earth and other extra-terrestrial planets.  
Understanding their physical and chemical properties under extreme thermodynamic conditions, 
e.g., ultra-high pressures and/or temperatures is of vital significance, especially to interpret the 
phase stability, elastic properties, chemical compositions of planetary materials as well as their 
microscale transport properties, e.g., diffusion. This study adopts two major computational 
approaches:  electronic structure calculations in the framework of Density functional theory (DFT) 
and ab-initio molecular dynamics (AIMD) simulations, to elucidate the role of the underlying 
atomic scale mechanisms in governing the macrophysical behaviour relevant to planetary processes 
and natural materials development. 

 A direction of this thesis work focuses on two important nesosilicates: zircon [ZrSiO4] and 
titanite [CaTiSiO5] present in Earth’s crust and mantle. Tetragonal zircon is known as the most 
potential mineral phase to host heavy elements (U, Th, Pu) in their crystal structures, and this 
mineral phase is an outstanding material for nuclear waste immobilization and U-Zr-Pb 
geochronology. Zircon structured coffinite [USiO4] and thorite [ThSiO4] are detected to form solid 
solutions. Using DFT simulations this thesis provides a comprehensive analysis of the pressure 
induced zircon- to reidite-type phase transition of U1-xThxSiO4 (x = 0 to 1 in steps of 0.25) solid 
solution. The phase transition pressure (PT) is shown to vary nonlinearly with increasing Th content 
in the solid solution and attain a minimum value of 6.82 GPa for x = 0.5. The calculated maximum 
compressibility of zircon type U0.5Th0.5SiO4 supports this finding, implying that the phase becomes 
most pressure sensitive (i.e., soft) at this specific U/Th ratio. The thesis also presents a novel 
approach to the analysis of the polyhedral distortions of triangular dodecahedra (snub-disphenoids). 
Two parameters (δ and σ2) have been defined to quantify the longitudinal and angular distortions 
of highly irregular U/ThO8-triangular dodecahedra. The distortion analysis indicates that the 
difference in angular distortions (σU

2 and σTh
2) between the zircon- and reidite-type phases (∆σ2) 

becomes minimum when U and Th occur equally in the solid solution. The concurrence of PT and 
∆σ2 minima indicates that the polyhedral distortion plays a critical role in dictating the zircon- to 
reidite-type transition. The distortions parameters, δ and σ2 are independent of the elements 
occupying the snub-disphenoid space. Also, they are defined without any attribute to external 
parameters. This study hypothesizes that the parameters: δ and σ2 can be used to calculate the 
distortion of similar AB8-type snub-disphenoids in other crystalline phases. 

 The thesis presents a completely new theoretical data set on the mechanical properties of 
monoclinic titanite phase. The theoretical calculations reveal unusual negative values of the elastic 
constant: C36 for C2/c phase and negative pressure gradients of the shear elastic constants, C44, C55 
and C36 for both titanite phases. This study predicts the necessary condition for an elastic constant 
to have a negative pressure gradient. Furthermore, a novel atomic scale mechanism for such 
negative elasticity is reported; the rotational bond kinematics, driven by valence charge 
accumulation on (001) plane during the lattice deformation which causes structural collapse in a 
direction orthogonal to the applied shear strain, resulting in the negative elastic behaviour. 
Dielectric-function analysis predicts an exceptionally strong opacity of the wide band-gap (3.2 eV) 
titanite in the UV region, indicating this crystalline phase as a shield material for UV radiation. It 
is also demonstrated from the theoretical calculations that titanite can be used to develop optical 
devices, such as filters and polarizers.  

 Brucite [Mg(OH)2] is a hydrogen-rich naturally occurring hydroxide phase, especially 
encountered abundantly in subduction zones of Earth’s plates. The presence of two-dimensional 
wells between layers of MgO6-octahedra in P3�-type brucite provides large interstitial space for the 



ii 

hydrogen atoms to diffuse in the lattice framework. A part of this thesis investigates the hydrogen 
or proton diffusion in crystalline P3�-type trigonal brucite in the pressure range 10-85 GPa and in 
the temperature range 1250-2000K using AIMD simulation. The diffusion coefficients of H, 
mediated by the amorphization of the H-sublattice, show an anomalous variation with pressure 
along different isotherm.  The diffusion of H is observed to attain maxima in the pressure range 73-
76 GPa before decreasing in magnitude on further increment of pressure. The present study reveals 
that proton diffusion is highly anisotropic in brucite, with virtually no proton diffusion occurring 
along the crystallographic c-axis. The protonic conductivities are also evaluated and compared with 
the geophysical magnetic satellite observations. The conductivity analysis suggests that brucite can 
occur in appreciable amounts in the lower mantle and mantle transition zone.  The finding explains 
the occurrence of high conductivity zones in deep earth, widely reported in solid earth geophysics. 

Another direction of this thesis deals with the major constituents of the ice giants Uranus 
and Neptune, such as molecular mixtures of methane, water and ammonia. At combined high 
pressure-high temperature conditions these molecular mixtures can contribute to electrical 
conductivity of planetary interiors through superionicity, where protons diffuse through stationary 
heavy atoms in the lattices. Atmospheric abundances of nitrogen and sulphur inferred from 
microwave absorption experiments are found to be anomalous with reference to the solar ratios, 
implying the presence of substantial amounts of H2S in these planets. Using AIMD simulation, a 
line of the thesis work explores the plastic and superionic natures of the ammonia monosulphide 
[NH3:H2S -1:1] phases. The calculated phase diagram from AIMD simulations shows that the 
ambient phase (Space Group-P4/nmm) preferentially melts from the solid state at 500K, where the 
rest high-pressure phases undergoe plastic deformation (or rotational states), followed by superionic 
states before the onset of melting at higher temperatures. The simulations also reveal a sharp 
increase of the melting points from the P4/nmm phase at 500K in ambient condition to Cc phase at 
2250K and 20 GPa, which reaches a maximum of 2500K at 40 GPa. For the high-pressure P21/m 
and Abm2 phase the melting point remains fixed at 2500K and then drops to 2250K for the Cmma 
phase at 167 GPa. The thermal corrections to pressure for the phases beyond 40 GPa decrease 
following melting.  The melts are thus denser than their solid counterparts at the elevated pressures 
mentioned above. The steep slope in the melting curve at lower pressure has potential implications 
for planetary science and points towards the possible existence of solid NH3-H2S mixture in the 
shallow mantle region of Uranus and Neptune. Barring the ambient phase, the phase diagram 
demarcates a zone of fast hydrogen diffusion, in the presence of stable sulphur and nitrogen 
sublattice. This fast proton transport results in superionicity in ammonia monosulphide. An analysis 
of the pair distribution function is presented to identify the formation of short-lived H2, S2 molecules 
and other chemical motifs like H2NS and HSNH at elevated pressure and temperature, triggered by 
rapid movement of constituting atoms. The density of states calculation confirms the low-pressure 
phases as wide band-gap semiconductor (1.0 to 3.5 eV), apart from the Abm2 and Cmma phase. 
The band-gap is reduced on increasing temperatures, and the reduction is most prominent for the 
Cc phase at 20 GPa, 2.86 eV at 500K to 0.8 eV at 2250K.   

Overall, this present thesis provides a distinctive description of the effect of elevated 
pressure and/or temperature as well as of the ultra-active chemical environment on the physical and 
microscale transport properties of crystalline solids from an atomistic point of view. These key 
properties are pertinent for the composition of planetary interiors together with an outlook on novel 
characteristics of materials. 
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1.1 First principles material physics 

The phrase ‘First principles’ refer to those calculations based on the 

fundamental laws of nature, where no empirically adjustable parameter is 

invoked. The only parameters that are allowed are the fundamental constants 

of physics. To be exact, since the aim is to investigate the properties of matter, 

the pertinent basic laws of physics are those describing the interactions 

between nuclei and electrons, that is, those of the quantum mechanics. The 

major objective of first principles calculations is to explore the structure-

composition-physical property correlation, that are often hidden in plain sight, 

by employing computational techniques. Majority of these techniques are 

formulated in the framework of Density Functional Theory (DFT). Way back 

in 1964-1965, Hohenberg and Kohn[1] and, Kohn and Sham[2] realized the 

difficulty in tackling the complex wave function of a many-particle system 

containing N particles, which is a function of 3N spatial variables and N spin 

variables. Thus, they conceptualized the DFT approach to solve quantum 

mechanical equation in an attempt to calculate the ground state properties of 
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a system which later proved by Mermin [3] to be useful for finite temperature 

properties, too. In their revolutionary and efficient methodology, Hohenberg 

and Kohn proposed the use of electron density as the principal quantity, 

capable of fully describing the properties of a system, in place of the 

complicated many-body electronic wave function. However, implementation of 

DFT is not straight forward. The cost to pay for this enormous simplification is 

a modification of the basic equations of quantum mechanics with introducing 

a few new terms, one of which, is called exchange-correlation (XC) energy. The 

principal limitation in DFT can be attributed to the choice of the exact 

functional for XC energy owing to their unknown description for many-body 

systems. To overcome this limitation, this theoretical approach evokes a 

number of approximations, e.g., local density approximation (LDA) which was 

put forward by Kohn and Sham [2] themselves, and generalized gradient 

approximation (GGA) [4,5] , providing sufficient accuracy in calculated 

physical properties. The accuracy of DFT driven results can vary from nominal 

to considerable upon changing the preferred approximations. The LDA 

formalism assumes a uniform density everywhere which in turn overestimates 

the correlation energy and undervalues the exchange one. Since the errors 

rising out from the exchange and the correlation parts are antipodal in nature, 

they tend to compensate each other to a reasonable extent. To rectify this bias 

of LDA, the inhomogeneous distribution of the actual electron density is 

addressed by considering a gradient dependent form of the density. This 

incorporates the spatial variation of electron density, which is tackled by GGA 

to enumerate the ground state energies with better accuracy.  



Introduction 

5 

The past few decades have witnessed an overwhelming popularity of the 

increasing application of DFT, as this efficient tool is successfully employed to 

predict the electronic structures of atoms, molecules and later expanded to 

crystalline solids and clusters [6–9]. This growing popularity owes mainly to 

its advantage over computation with high accuracy, as compared to other 

methods, e.g., many-particle methods. Furthermore, the first principles 

method can also be implemented to handle systems containing large number 

of atoms, as generally required in several fields of research, ranging from 

condensed matter system, nanotechnology to pharmaceutical science and 

biological systems. This has inspired several researchers to employ the recently 

developed ab-initio or first principles structure searching method such as 

USPEX [10,11], AIRSS [12] and CALYPSO [13] to investigate the evolution of 

novel material phases under ultra-high pressure which were previously 

unknown [14–22]. The unique application of DFT in the field of new materials 

research has enabled scientists to identify materials demonstrating 

industrially demanding physical properties, such as super conductivity, 

superionic behaviour, high corrosion and thermal resistance and exciting opto-

electronic behavior.  

Understanding physical as well as chemical behavior of solids under 

extreme conditions is one of the major challenges in physics and, particularly, 

in materials sciences. Creating such extreme physical conditions in laboratory 

is often hindered by the requirement of expensive technological devices. 

Furthermore, direct measurements of targeted physical properties are not 

always straight forward and rely on other parameters of interest, the values of 
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which are mostly unknown at those corresponding high-pressure and -

temperature regime. To overcome this hurdle, scientists have adopted the 

electronic structure calculation DFT and ab-initio molecular dynamics (AIMD) 

method, which is comparatively less expensive and convenient.  Motivated by 

the application of first principles calculations,  geoscientists in the early 90’s 

and 2000’s have adapted the electronic structure based first principles 

approach to explore different physical properties of the major constituent 

mineral phases of the Earth at exceptionally high pressure and temperature 

conditions expected in the mantle and core [23–31]. Following the same line of 

research other ab initio studies have later predicted the high-pressure phase 

transitions and elasticity of several crust, mantle and core forming mineral 

phases as function of pressure, temperature and chemical environment, e.g., 

compositions and defects[32–41].  

1.2 Natural atomic and molecular crystalline solids 

Naturally occurring atomic and molecular crystalline phases have 

attracted the attention as they can be engineered to attain desired physical and 

chemical performance making them industrially demanding. A range of 

silicates are observed to find significant utility in novel material development. 

Silicates and oxides are the most dominant mineral phases of the Earth. They 

constitute almost 95% the crust and more than 80% of the mantle[42–45]. Their 

resistance to ultra-high pressure and temperature and appropriate physical 

properties makes them suitable candidates for applications in extreme 

conditions. The typical crystal structures of different silicates are dictated by 

specific arrangement of SiO44- tetrahedra, which can appear either in isolation 
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or polymerize by sharing their corners or edges or faces[45]. This 

polymerization phenomena leads to the formation of numerous silicate 

structures, e.g., chain silicates, ring silicates and three-dimensional framework 

silicates or sheet silicates. Oxygen atoms occurring at the corners of SiO44- 

tetrahedra play a major role in these silicates to coordinate between different 

cations. Nesosilicates are the most common silicate that features SiO4

tetrahedral polymerization. Here the isolated tetrahedra leaves the octahedral 

interstitial spaces to be occupied generally by bivalent cations e.g., Fe2+, Mg2+

and Cr2+
 etc. Some examples of naturally occurring nesosilicates are olivine 

[(Mg,Fe)2SiO4]; zircon [ZrSiO4] (Figure 1.1); coffinite [USiO4]; thorite [ThSiO4]; 

titanite [CaTiSiO5] and garnet [X3Y2(SiO4)3]. Here, X and Y sites are usually 

occupied by divalent and trivalent cations in octahedral/tetrahedral 

framework. As the degree of polymerization increases, the number of corner 

Figure 1.1: Crystallline structure of tetragonal zircon representative of the nesosilicate 

class. The grey and blue polyhedra are ZrO8 and SiO4 ployhedra respectively. The red 

spheres are oxygen atoms. 
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sharing oxygen also multiplies ranging from 1 to 4. Ring or single chain silicate 

structures are formed when two oxygen atoms belonging to two neighboring 

SiO4 tetrahedra are shared. Pyroxene [(Mg,Fe)2Si2O6] and Beryl [Be3Al2Si6O18] 

(Figure 1.2a) are common chain and ring silicates, respectively, which are 

found in abundance in the Earth’s crust. The chain structures often show their 

polymerization by sharing three oxygen atoms and constitute a double chain 

silicate structure which are termed as inosilicates. Amphibole 

Figure 1.2: Crystalline structures of silicate mineral phases in ascending order of 

polymerization of the SiO4 tetrahedral units (shown in blue). 
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[(Mg,Fe)7Si8O22(OH)2] (Figure 1.2b) is one of the most notable silicates 

demonstrating double chain structure. Silicates can also polymerize to form 

ring structures called cyclosilicates. Often these ring structures coordinate via 

oxygen atoms to give rise to adjoining rings on a plane resulting in sheet-like 

polymerization. They are termed as termed as phyllosilicate or sheet silicate. 

Muscovite [KAl3Si3O10(OH)2] and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] (Figure 

1.2c) are the most abundant phyllosilicates in crustal rocks. Sometimes all the 

four oxygen atoms of SiO4 tetrahedra are shared leading to the extreme 

polymerization to form a framework structure, which is called tectosilicate. 

Quartz [SiO2] and feldspar [KAlSiO3O8 – NaAlSi3O8 – CaAl2Si2O8] (Figure 

1.2d) are some of the notable silicates belonging to the class of tectosilicates. 

 Olivine and its high-pressure polymorphs viz. wadsleyite and 

ringwoodite are often observed to house nominal amount of water. Their 

stability in mantle of the Earth establishes them as phases to cycle water from 

crust to mantle. Two other classes of mineral phases called the dense hydrous 

mineral silicates (DHMS)[46–51] and nominally anhydrous minerals 

(NAMs)[52–56] also contribute to this recycling of water and light elements in 

the mantle.  This housing of nominal amount of water or light elements bring 

forth drastic alteration in their physical properties.  Dense hydroxides are 

another important class of minerals which are observed to be capable of 

recycling appreciable amount of water through their crystalline structures. 

Portlandite [Ca(OH)2] (Figure 1.3) and brucite [Mg(OH)2]  are the most notable 

among them. Contrary to the silicates, these phases are characterised by 

layered structures where hydrogen atoms reside between planes formed by 
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cationic octahedra. Together with recycling of water, these phases also show 

pressure induced dynamic/static proton disorder. This proton disorder forces 

the generation of free protons and enhances their mobility under high pressure 

temperature condition. Increasing number of mobile hydrogens lead to a 

significant rise in their electrical conductivity contributing towards the 

observed conductivity of the mantle. 

The crystalline structure discussed so far are covalent and atomic in type 

where each atom is covalently bonded with its nearest neighbour. However, 

molecular crystalline structures are also prevalent in nature.  Solid 

methane, hot ices of water, dense crystalline hydrogen sulphide, pressurized 

metallic hydrogen, Ammonia-water, ammonia-hydrogen sulphide molecular 

Figure 1.3: Crystal structure of ambient phase of portlandite [Ca(OH)2]. The grey 

polyhedra is the CaO6 polydera. Red and pink spheres are oxygen and hydrogen atom 

respectively. 
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crystals (Figure 1.4) are a few to name which are abundant in extraterrestrial 

gas giant and ice giant planets. Under extreme condition they show exotic new 

physics and chemistry and are often associated with unexpected superionic and 

superconducting behavior.  They generally consist of a central atom belonging 

to a molecule or ligand at the lattice sites of the crystal which are organized 

together by relatively weak intermolecular forces. For polar crystals this force 

may be dipole-dipole force whereas in case of non-polar crystals it can 

dispersion forces. There is another range of molecular crystals, such as 

molecular ices where the molecules are held together by hydrogen bonds. They 

also demonstrate a range of structural transitions in response to elevated 

pressure. Being held together by weak bonds, in ambient condition the melting 

point of these crystalline phases are observed to be low compared to covalent 

crystals. Nevertheless, the melting point increases with pressure and in ultra-

Figure 1.4: Ammonia mono sulphide in ambient P4/nmm phase. Blue, Yellow and grey 

spheres are N, S and H atoms respectively. 
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high pressure regime often surpasses the melting points of their covalent 

counterpart.  

 First principles calculations have been fruitfully employed to explore 

various facets of the physical properties of the silicates, hydroxides and 

molecular ices described above. A branch of recent materials research focused 

upon their morphology and behavior under extreme thermodynamic conditions 

and ultra-active chemical environments. An atomic level understanding of 

their material properties is thus necessary to predict a range of their 

macroscopic applications, e.g., structural transition, band gap modulation, 

variation in magnetic moments, elasticity, mechanical strength, diffusive 

behaviour and electrical conductivity etc. The next section highlights some of 

the major first-principles studies under extreme environment to establish my 

motivation for studying material properties under such conditions and the 

eminence of DFT and AIMD in predicting the responses of materials in 

elevated pressure-temperature regime.   

1.3 First principles calculations in extreme environments  

Pressure and temperature are regarded as the set of crucial 

thermodynamic parameters that can transform matter, leading to the 

evolution of atomic structures and the formation of high-pressure materials 

with different physical properties to their low-pressure phases. Perhaps the 

most prolific practitioner of high-pressure and -temperature is the nature 

herself. Gaseous hydrogen becoming metallic liquid in Jupiter’s core and the 

physico-chemically heterogeneous interior of the Earth are a few of the 

manifestations of such extreme pressure-temperature conditions. This section 
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provides a synoptic description of the application of the previously mentioned 

quantum chemical DFT and AIMD tool in mineral physics to portray the 

computational proficiency of these computational approaches.  

A comprehensive understanding of the response of materials under 

extreme environments has profound implications in mineral physics. For 

example, the core of our planet consists of a solid sphere i.e., the inner core, 

separated at the inner core boundary (ICB) from a surrounding molten 

spherical shell, called the outer core. The pressure at the Earth’s core ranges 

from 136 GPa at the core-mantle boundary to 364 GPa at the heart of the inner 

core. Reproducing such a pressure in laboratory set-up is dauting as well as 

expensive. Iron is the main constituent of the core or more specifically Fe-Ni 

alloy[57–59]. At ICB solid and liquid iron coexist is equilibrium. Convection of 

molten Fe in outer core is crucial for generating the Earth’s magnetic field. 

Several geoscientists thus attempt to investigate the possible physical state of 

iron under such exceptionally high pressure [28,60–63]. First principles studies 

based on DFT have been extensively employed to predict how pressure can 

affect spin transition and the phase transitions of BCC to HCP Fe[64–66]. 

Using the solid-liquid phase coexistence approach Alfe et al.[67] Belonoshko et 

al.[68] and Wu et al. [69] has determined the melting point of pure Fe at ICB 

pressure. Subsequent first principles studies have also determined the melting 

curve of other pure metals like Copper [70], Nickel [71] and Molybdenum [72] 

etc. at exceptionally high pressures. Ab-initio simulations [61,73] and 

experimental studies  reveal that assuming a pure Fe or Fe-Ni alloy core 

results in an overestimation of core density (ρ) and a deficit in the speed of 
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compressional (Vp) and shear waves (Vs). Several DFT studies have predicted 

the presence of small amount light elements in Earth’s core, such as S (~ 1.7 

wt%), O (1-2.5 wt%) and Si (~ 6 wt%), to account for the overestimation of core 

density [57,59,74–77]. First-principles study of Alfe et al. [78] reveals that O 

favours strong partitioning from solid to liquid Fe at ICB conditions whereas 

Si exhibits no such preference. A similar study on carbon indicates that, at core 

conditions, substitutional C in hcp-Fe is thermodynamically more stable than 

interstitial C[41]. The incorporation of light elements induces changes in 

transport properties of iron which are computationally investigated by Pozzo 

et al. [77,79] and Ritterbax and Tsuchiya [80].

The mantle of the Earth is characterized by two consecutive seismic 

discontinuity at the depths of ~410 km and ~520 km. Seismic studies have 

showed discontinuous jumps in seismic velocities at those depths. Over the last 

few decades earth sciences have witnessed significant growth in the application 

of DFT, especially to characterize the silicates and their phase transitions at 

varying depth. The studies reveal consecutive structural transitions in silicates 

e.g. olivine →  wadsleyite at 410 km and wadsleyite → ringwoodite at 520 km

which explained the discontinuity in seismic profile[35,81,82]. A further 

transition to a perovskite structure at 670 km depth in Earth’s mantle has also 

been reported [83–85]. Several geoscientists have employed DFT calculations 

to unravel intriguing geophysical phenomena like pressure dependent 

electronic spin transition in ferropericlase [(Mg,Fe)O][86,87] and the micro 

physics of water in silicates. DHMS, NAMs and transition zone silicates like 

wadsleyite and ringwoodite often host nominal to appreciable amount of water. 
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Presence of H2O, even in nominal amount, can drastically alter their chemical 

interaction [88,89] seismic velocities [90], atomic diffusivity [91], electrical 

conductivity [92–94]. It also drastically reduces the elastic moduli of 

olivine[95]. While olivine and pyroxene and their high-pressure polymorphs 

accommodate light elements like H and C, and take part in their recycling into 

the subduction zones and further deep interior of  the Earth, zircon, titanite 

and beryl type silicates are observed to host large radionuclides. Natural zircon 

often contains radionuclides and lead as impurities. The superior 

hydrothermal[96] and chemical resistance of zircon is widely utilized in nuclear 

energy sector for safe disposal of nuclear waste[97–99] as well as titanite[100] 

. Zircon based U-Th-Pb geochronology is also extensively used to date the time 

signature of crust and mantle forming rocks[101–103].  

The present thesis focus also on Jovian planets of the solar system where 

extreme environment exposes unusual and intriguing physics and chemistry of 

materials. Elements like H and He[104–106] together with individual and 

mixtures[107] of several high-pressure phases of molecular ices of water[108], 

ammonia[109], and methane[110] are the major constituents of the mantle 

regions of ice giant planets  where the pressure can reach up to several Mbar. 

First principles based structure searching algorithm have successfully 

predicted the stability of ammonia rich hydrate (NH3:H2O – from 1:2 to 4:1) in 

the mantle region of those planets and also in large icy moons [111]. In a 

parallel first-principles study Li et al. [112] has demonstrated the transition 

and stabilization of novel phases of metallic nitric sulphur hydrides under 

extreme pressure. These phases are also observed to demonstrate superionic 
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behavior in elevated p-T condition. DFT study of Teerachandran and Hermann 

[113] have explored novel phases of gas hydrates at around 100GPa and 

computed their structural transitions and phase diagram. The high-pressure 

phases of water ice have always been the ‘holy grail’ for high pressure research. 

First principles study of Takii et al. [114]has shown that hydrogen bonded 

water ice can also exhibit a plastic phase. From first principles based 

evolutionary structures, Hermann et al. [115] recognized a sequence of new 

stable and meta-stable structures of the ground state of water ice in the 1–5 

TPa pressure. Previously, it was postulated that an orthorhombic Pbcm 

structure is stable near 1 TPa. However, according to Hermann et al., it is 

superseded by a Pmc21 phase 930 GPa, followed by a transition to a P21 crystal 

structure at 1.3 TPa.  This phase characteristically shows a higher coordination 

of H with O, and remains stable even at 4.8 TPa pressure.  

1.4 Thesis outline 

 The present doctoral thesis employs two major computational 

approaches: 1) first-principles electronic structure calculations in the 

framework of DFT and 2) ab-initio molecular dynamics simulations, to 

investigate the following issues on natural crystalline materials: mechanical 

and electronic properties; effects of doping and characterization of pressure and 

temperature induced phase transitions; diffusion behavior of elements in 

crystalline lattice and the diffusion mediated electrical conductivities. The 

thesis is systematically organized in eight chapters. The next chapter is 

dedicated to present a theoretical premises of density functional theory 

starting from the many-body Schrödinger equation. Here, I have described the 
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Born-Oppenheimer approximation and its application to decouple the nuclear 

degrees of freedom from the electronic degrees of freedom. This is followed by 

a detailed description of the density function theory and several other 

approximations rendering excellent simplification towards its practical 

implementation across different computational methods. Different types of 

exchange-correlation functionals are discussed with their limitations along 

with their connection to pseudopotential description of elements. Then, the 

thesis introduces the fundamentals of Ab-initio Molecular Dynamics (AIMD) 

simulation where the previously decoupled electronic and nuclear degrees of 

freedom are treated simultaneously to study the evolution of atomic and 

molecular systems over time. A major direction of this thesis work aims to 

calculate crucial physical properties of planetary materials using static DFT as 

well as AIMD simulations. Chapter 3 first provides a detailed description of 

the theoretical foundations of the computational methods for the calculations. 

The computational results are then systematically presented in the remaining 

chapters. Chapter 4 deals with the DFT calculations for radioactive 

Uranothorite [U1-xThxSiO4] solid solutions, providing a comprehensive analysis 

of the pressure induced zircon-to reidite-type phase transition of U1-xThxSiO4 

(x = 0 to 1 in steps of 0.25) solid solution. The phase transition pressure is 

shown to vary nonlinearly with increasing Th content in the solid solution to 

attain a minimum value of 6.82 GPa for x = 0.5. A major focus of this chapter 

is to present a novel approach to the analysis of the polyhedral distortions of 

triangular dodecahedra (snub-disphenoids). Two geometrical parameters (δ 

and σ2) have been introduced to quantify the longitudinal and angular 
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distortions of highly irregular U/ThO8-triangular dodecahedra. These 

parameters are then correlated with the anomalous phase transition pressures. 

A number of crystalline phases are observed to display negative elasticity. 

However, an atomistic explanation for such unusual remained unexplored in 

literature. Chapter 5 is dedicated to  address the problem of negative elasticity 

of monoclinic titanite [CaTiSiO5], which is an important nesosilicate mineral 

phase in Earth. A novel atomic scale mechanism is provided to explain such 

exceptional elastic behaviour. This study also shows its opto-electronic 

properties, and suggests that the mineral phase can be utilized as a shield 

material for UV radiation. Chapter 6 comprises AIMD simulation results to 

discuss the modes of proton diffusion in dense hydroxide brucite [Mg(OH)2]. 

This study addresses the high-pressure proton frustration in brucite and its 

effect on protonic conductivity at temperatures 1250-2000K and pressures 10-

85 GPa. The diffusion of H in brucite demonstrates an anomalous behavior 

reaching a maximum at ~70 GPa. The calculated proton diffusion constants are 

utilized to enumerate the electrical conductivities at elevated pressures and 

temperatures, relevant to the Earth’s mantle. Chapter 7 describes the findings 

on the superionic nature of the molecular mixture of NH3-H2S phases and their 

impact on ionic conductivities in extra-terrestrial planetary interior. In 

addition, a p-T phase diagram of the ammonia mono sulphide mixture is 

constructed from the AIMD simulations to show  the plastic and superionic 

states along with their melting curve. Different chemical motifs are also 

identified at different pressure-temperature conditions. This investigation is 

extended to demonstrate the band gaps as a function of pressure and 
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temperature. The final chapter (Chapter 8) synthesizes the main outcomes of 

my thesis work, highlighting the principal conclusions.  
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CHAPTER 

 2 
First principles approach: 
A theoretical background

2.1 Preamble 

The theoretical discussions in this chapter need to begin with the most 

fundamental equation in quantum mechanics, the Schrödinger equation. The 

single particle Schrödinger equation in its time dependent form is  

2
2 ( , )( , ) ( ) ( , )

2
r tr t V r r t i

m t
ψψ ψ ∂

− ∇ + =
∂


 

 , (2.1) 

where ( , )r tψ


 is the wave function for the particle and V(r) is the effective 

potential experienced by the particle. Contrary to the classical mechanics, the 

solution to Eq. 2.1 gives us the wave function which reveals only the probability 

of finding the particle in a particular interval of space, rather than the accurate 

position and momentum of the particle. The quantum description of a particle 

owes its peculiarity to the uncertainty in simultaneously determining non-

commutative physical 
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observables. In essence, this uncertainty is fundamental, inherent, and 

irremovable characteristic of quantum mechanics. By invoking the separation 

of variables technique, the spatio-temporal nature of this equation can be 

further simplified. The decoupling of the space and time coordinates leads to 

the formation of two independent partial differential equations: one in 3-D 

space and the other in time. The time-independent equation involving the 

spatial wave function  𝜓𝜓 (𝑟𝑟) reads as:  

𝐻𝐻�𝜓𝜓(𝑟𝑟) = 𝐸𝐸 𝜓𝜓 (𝑟𝑟) (2.2) 

where  𝐻𝐻� is the well-known Hamiltonian Operator expressed as: 

𝐻𝐻� = − ℏ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉(𝑟𝑟) (2.3) 

The eigen value of the Hamiltonian obtained by solving Eq. 2.3 represents the 

energy of the system. The final solution appears as a product of  𝜓𝜓 (𝑟𝑟) and  𝜓𝜓 (𝑡𝑡) 

, the later of which is the solution of the time dependent part, represented by 

an imaginary exponential function of time. 

However, it is very unlikely to encounter a single particle system in real 

scenario. Most of the real-world systems consists of multiple atom or molecules. 

Thus, an extension of the single particle to many-body systems are often 

required. The time independent Schrödinger equation for an isolated N-

electron many-body quantum system is represented by 

𝐻𝐻�𝜓𝜓𝑖𝑖(𝑥𝑥1���⃗ , 𝑥𝑥2����⃗ , . . . , 𝑥𝑥𝑁𝑁����⃗ ,𝑅𝑅1����⃗ ,𝑅𝑅2����⃗ , . . . ,𝑅𝑅𝑀𝑀�����⃗ ) = 𝐸𝐸𝑖𝑖𝜓𝜓𝑖𝑖(𝑥𝑥1���⃗ ,𝑥𝑥2����⃗ , . . . , 𝑥𝑥𝑁𝑁����⃗ ,𝑅𝑅1����⃗ ,𝑅𝑅2����⃗ , . . . ,𝑅𝑅𝑀𝑀�����⃗ )  (2.4) 

where, iψ  depicts the wave function of the ith state of the system, which in turn 

is a function of 3N spatial coordinates and the N spin coordinates of the 
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electrons, which are collectively termed as { }ix


and the 3M spatial coordinates 

of the nuclei { }AR


. For such an isolated system in the absence of any external 

force field, in the non-relativistic approximation, the Hamiltonian is expressed 

as:  

 2 2

1 1 1 1

1 1 1 1

1 1 1 1
2 2 2

1

N M N M
A

i A
i A i AA i A

N N M M
A B

i j A Bi j A B

ZH
M r R

Z Z
r r R R

= = = =

= > = >

= − ∇ − ∇ −
−

+ +
− −

∑ ∑ ∑∑

∑∑ ∑∑
(2.5) 

For clarity Eqn. 2.5 is written by adapting the so-called system of atomic units, 

which allows us to drop the mass, charge etc. of the electron along with the 

Planck’s constant and dielectric constant of the free space by setting them to 

unity. i, j run over the N electrons and A, B run over the M nuclei respectively 

with MA being the mass of Ath nuclei. The first two terms represent the kinetic 

energy of the electrons and the nuclei, respectively. The last three terms signify 

the potential energy arising from the electrostatic interaction between 

electron-nucleus; repulsive interactions between electron-electron and 

nucleus-nucleus interactions separately. ZA and ZB are the charges of the Ath 

and Bth nuclei.  

In order to gain an insight about the system under consideration, it is 

mandatory to solve the Schrödinger equation. But solving the Schrödinger 

equation is cumbersome for real system larger than the hydrogen or helium 

atom themselves, let alone any system which contains two or more electrons. 

Nevertheless, the condition is not as desolate as it appears to be. Realistic 
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physical intuitions enable one to put forward a few assumptions and 

approximations aimed at simplifying the Hamiltonian. 

2.2 Born-Oppenheimer approximation 

One of the first approximation made in the endeavor to reduce the 

Schrödinger equation to a tractable form is the Born-Oppenheimer 

approximation, also frequently called the adiabatic or the clamped nuclei 

approximation. Here we recognize that the masses of the nuclei exceed the 

mass of the electron by a large amount; even for the lightest atom hydrogen, 

its nucleus is almost 2000 times heavier than the electron. Being lighter, the 

electrons move on a faster timescale compared to the nucleus. Born and 

Oppenheimer utilized this significant mass differences into practical 

implementation. They postulated that the time required for changes to take 

effect at the electronic degrees of freedom are much lower than that of those 

nuclei, in a sense that the nuclei can be considered stationary, and the electrons 

can be essentially thought of moving through the swarm of fixed nuclei. This 

means that in Eq. 2.5 the kinetic energy of the nuclei reduces to null and the 

energy of interaction of various nuclei becomes essentially constant. Thus, 

without much loss of scientific precision, Eq. 2.5 can be replaced by an all- 

electron Hamiltonian as:  

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� = −
1
2
�𝛻𝛻𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

−��
𝑍𝑍𝐴𝐴

𝑟𝑟𝑖𝑖 − 𝑅𝑅𝐴𝐴

𝑀𝑀

𝐴𝐴=1

𝑁𝑁

𝑖𝑖=1

+ ��
1

𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗

𝑁𝑁

𝑗𝑗>1

𝑁𝑁

𝑖𝑖=1

= 𝑇𝑇𝑒𝑒� + 𝑉𝑉𝑁𝑁𝑒𝑒� + 𝑉𝑉𝑒𝑒𝑒𝑒�   (2.6) 
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The solution to the Schrödinger equation with all-electron hamiltonian 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�  is 

the electronic wave function elecψ  with corresponding electronic energy eigen 

value of elecE . elecψ  is a function of the electron coordinates, while the nuclear 

coordinates do not explicitly appear in elecψ  and it depends on the positions of 

the nuclei only parametrically. The total energy of this all-electron system totE

is thus expressed as the sum of elecE  and nuclear repulsion term, the latter of 

which is constant. 

2.3 Thomas-Fermi Model 

The most notable among the conventional methods to solve the all-

electron Schrödinger equation is the Hartree and the Hartree-Fock 

approximations. The latter approximation is essentially based on variational 

method to solve differential equations. The criticality here lies in the 

substitution of the wave function by a single Slater determinant, which takes 

into account the prerequisite of the orthonormality of the wave functions by 

default. Minimization of the Hartree-Fock energy then yields orthonormal 

single electron orbitals. But like the previous ones the Hartree-Fock method is 

also based on mathematically theorizing the wave function itself, which 

depends on 3N spatial and N spin variables. Extending this method to study 

real world system where the number of electrons is very large becomes 

unmanageable very quickly. Mathematical operations on a wave function to 

extract physical observables thus outstretch to an astronomically large 

dimension, and they become computationally extravagant. Theoretical 
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physicists and chemists thus always strived to find an alternative route which 

can reduce the intricate and complex nature of wave function formalism.  

 The pioneering work of Thomas and Fermi [1], published in 1927, is 

regarded as the first attempt to hypothesize a physical quantity leaving out the 

wave function itself. They proved that the electron density is just as competent 

as the wave function to fully characterize a system of electrons. They 

considered a fictitious statistical quantum system of interacting electrons with 

a constant electron density ( )rρ


. Their model accounts for only the kinetic 

energy with a quantum mechanics approach, considering the electron-electron 

and nuclear-electron interactions in the framework of classical mechanics. 

According to these considerations, their model arrived at the following 

approximated energy of an atom: 

( )2/32 5/33[ ( )] 3 ( )
10

( ) ( )( ) 1
2

TF

1 1
1 2

12

E r r dr

r rr                                    Z dr dr
r r

ρ π ρ

ρ ρρ

=

− +

∫

∫ ∫∫

  

 
 

 
   (2.7) 

Despite the brute-force simplification and crude approximation of the Thomas-

Fermi model, which does not incorporate the exchange and correlation 

energies, its significance can be appreciated by perceiving that the energy is 

totally quantifiable in terms of electron density, without any additional 

physical attributes. The expression of total energy in this form has stimulated 

further introspection along this direction and reinforced the pathway for the 

development of the density functional theory with time.   
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2.4 Density Functional Theory 

 In the last five decades the density functional theory (DFT) has paved 

its own way from the fringe to the podium in each of the major science 

disciplines- quantum chemistry, solid state physics and material science. 

Furthermore, the computationally less expensive method of DFT has enabled 

researchers to corroborate experimental outcomes with theoretical 

calculations. It is a remarkable success of DFT to explore phenomena of 

macroscopic importance from the viewpoint of an atomistic description.  

 The section  and the following sections  provide an outline of the 

conceptual framework of DFT. DFT is a popular quantum chemical modelling 

method extensively used in computational study of real systems in diverse 

fields of scientific research. This method is specifically aimed to study the 

electronic structures at the ground state of many-particle systems employing 

only the electron density ( )rρ


 of single electron system together with the 

correlation and exchange energy of the electrons. Hohenberg and Kohn [2] first 

conceptualized the fundamental theorems of density functional theory, which 

was later proved by Kohn and Sham[3]. These two theorems laid the 

foundation of DFT.  

2.4.1 Hohenberg and Kohn theorems 

Theorem #1: The external potential ( )extv r , hence the total energy is a unique 

functional of the ground state electron density ( )rρ


. 
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The many-body wave function for the ground as well as excited states can be 

determined once the Hamiltonian of the system is fully known. Since the 

number of electrons N is determined by ( )rρ


, and since N and the external 

potential ( )extv r  constitute the fix Hamiltonian of the system, it turns out that 

the electron density is capable alone to completely determine all the ground-

state electronic properties of the system. Later, it was proved by Mermin[4] 

that not only the properties of ground state but finite temperature properties 

can also be determined from ( )rρ


. 

Theorem #2: A universal functional of the energy, [ ]E ρ , can be defined in 

terms of the density alone. The exact ground state is the global minima of the 

functional. 

This theorem states that ground state electron density of the system is the one 

that minimizes [ ]E ρ , and the minimum of [ ]E ρ  is equal to the ground-state 

energy. In essence, DFT is effectively a ground state theory. 

Hohenberg and Kohn proved that the ground state electron 

density ( ) ( )0 0, ,x  y  z rρ ρ=  uniquely determines the wave function, energy of the 

ground state and all other ground state electronic properties for systems 

having non-degenerate ground state.  Theorem #1 states that the ground state 

energy 0E  is a functional of 0ρ . The non-degenerate ground-state wave function 

can be represented as a unique functional of the ground-state density, 

𝜓𝜓0(𝑟𝑟1, 𝑟𝑟2, . . . 𝑟𝑟𝑛𝑛) = 𝜓𝜓[𝜌𝜌0(𝑟𝑟)]. (2.8) 
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Let us assume P to be a physical observable. Then as a consequence of Theorem 

#1 the expectation value of P will also be a functional of the electron density of 

the system under study in its ground state. Mathematically,  

𝑃𝑃0 = 𝑃𝑃[𝜌𝜌0] = ⟨𝜓𝜓[𝜌𝜌0(𝑟𝑟)]|𝑃𝑃|𝜓𝜓[𝜌𝜌0(𝑟𝑟)]⟩ ≡ ⟨𝜓𝜓[𝜌𝜌0]|𝑃𝑃|𝜓𝜓[𝜌𝜌0]⟩.    (2.9) 

Thus, the energy eigenvalue of a system in its ground state can be expressed 

as an expectation value of the ground state Hamiltonian of the system.  

𝐸𝐸𝑣𝑣,0 = 𝐸𝐸𝑣𝑣[𝜌𝜌0] = ⟨𝜓𝜓[𝜌𝜌0(𝑟𝑟)]|𝐻𝐻𝑒𝑒|𝜓𝜓[𝜌𝜌0(𝑟𝑟)]⟩,     (2.10) 

𝐻𝐻𝑒𝑒 obeys the variational property, i.e.,  

𝐸𝐸𝑣𝑣[𝜌𝜌0] ≤ 𝐸𝐸𝑣𝑣[𝜌𝜌′].        (2.11) 

where ρ0 is the ground state density in effect of the external potential Vext, and 

'ρ  is some arbitrary density other than that of the ground state one. The 

expectation value of the Hamiltonian with respect to some random wave 

function different from the wave function of the ground state will always lead 

to a higher energy than the exact ground state energy itself. Thus, 

mathematical representation of Theorem 2 confirms that  

𝐸𝐸𝑣𝑣,0 = 𝐸𝐸𝑣𝑣[𝜓𝜓0] = ⟨𝜓𝜓0|𝐻𝐻𝑒𝑒|𝜓𝜓0⟩ ≤ ⟨𝜓𝜓′|𝐻𝐻𝑒𝑒|𝜓𝜓′⟩ = 𝐸𝐸𝑣𝑣[𝜓𝜓′].   (2.12) 

The density functional expression of energy is given by  

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷[𝜌𝜌0(𝑟𝑟)] = 𝑇𝑇𝑠𝑠[𝜌𝜌0(𝑟𝑟)] + 𝐸𝐸𝑛𝑛𝑒𝑒[𝜌𝜌0(𝑟𝑟)] 

                                                                           + 𝐸𝐸𝑥𝑥𝑒𝑒[𝜌𝜌0(𝑟𝑟)]𝐽𝐽[𝜌𝜌0(𝑟𝑟)], (2.13)   

where the first term on the right-hand side is the kinetic energy of the non-

interacting electron of identical density, 𝐸𝐸𝑛𝑛𝑒𝑒[𝜌𝜌0(𝑟𝑟)]is the energy rising from the 
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interaction of electrons and ionic cores and 𝐸𝐸𝑥𝑥𝑒𝑒[𝜌𝜌0(𝑟𝑟)] represents the exchange 

and correlation energy. If we equate the exact energy of the system with the 

one obtained from DFT, the part that remains after subtraction gives an 

estimate of the exchange-correlation energy expressed as  

𝐸𝐸𝑥𝑥𝑒𝑒[𝜌𝜌0(𝑟𝑟)] = (𝑇𝑇[𝜌𝜌0(𝑟𝑟)]− 𝑇𝑇𝑠𝑠[𝜌𝜌0(𝑟𝑟)]) 

                                                                       + (𝐸𝐸𝑒𝑒𝑒𝑒[𝜌𝜌0(𝑟𝑟)]− 𝐽𝐽[𝜌𝜌0(𝑟𝑟)]) (2.14) 

Here, the bracketed term appearing first on the right-hand side is the kinetic 

correlation energy followed by the potential exchange and correlation energy. 

                    
Figure 2.1: Self-consistent and non-self-consistent cycle as practically implemented in DFT 
simulation.   
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 Hohenberg-Kohn theorems assert that, it is possible to calculate all the 

ground state properties of the many-particle system if the ground state electron 

density 𝜌𝜌0(𝑟𝑟) is known.  Kohn and Sham also suggested a practical method for 

implementation of the DFT by finding the ground-state density of electrons, 

𝜌𝜌0(𝑟𝑟), and the energy E0 as a functional of 𝜌𝜌0(𝑟𝑟). Figure 2.1 illustrates a 

schematic diagram of the series of steps, cumulatively known as the self-

consistent cycle, to consistently approach the ground state electron density and 

further to calculate the desired physical properties from DFT simulation.   

2.5 Exchange-correlation functionals  

In principle, the density functional theory is exact. If we know 𝐸𝐸𝑥𝑥𝑒𝑒[𝜌𝜌0(𝑟𝑟)] 

, the energy of the system will turn out to be exact electronic free energy. 

Unfortunately, the exact form of the exchange-correlation energy is not yet 

known. Since the Kohn-Sham equation contains this unknown functional, one 

needs to find some approximate approach to define 𝐸𝐸𝑥𝑥𝑒𝑒[𝜌𝜌0(𝑟𝑟)]. 

A major branch, dedicated to the refinement of DFT involves 

constructing approximate empirical or semi-empirical functional forms of the 

exchange-correlation energy. By definition, these functional must be able to 

account for the kinetic correlation energy, which is the difference between the 

kinetic energy of the fictitious system of non-interacting electrons and the real 

one as well as the exchange energy associated with the anti-symmetry. The 

Kohn-Sham total energy also incorporates the correction to self-interaction 

energy and the Coulombic correlation term. A well-defined exchange 
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correlation functional is capable of determining all these energies with a 

minimum uncertainty.    

2.5.1 Local density approximation (LDA)  

 Kohn and Sham (1965) also provided an approximate functional 

expression for the exchange correlation, called the local density approximation 

or LDA. Inspired by Thomas-Fermi model, in LDA the exchange correlation 

energy per electron at a point r is considered the same as that for a 

homogeneous electron gas that has the same electron density at the point r. 

Here, the dependence of the functional on the electron density has the 

mathematical form  

𝐸𝐸𝑥𝑥𝑒𝑒𝐿𝐿𝐷𝐷𝐴𝐴[𝜌𝜌(𝑟𝑟)] = ∫ 𝜌𝜌(𝑟𝑟)𝜀𝜀𝑥𝑥𝑒𝑒[𝜌𝜌(𝑟𝑟)]  dr.       (2.15) 

xcε is the exchange correlation energy per electron of a uniform electron 

gas with electron density ( )rρ . This has been  precisely enumerated using 

Monte Carlo simulations by Ceperley and Alder [5]. In order to express it in 

analytic form, the parameterization has been done by Perdew and Zunger [6] 

,and Perdew and Wang[7]. The functional 𝐸𝐸𝑥𝑥𝑒𝑒𝐿𝐿𝐷𝐷𝐴𝐴is expressed as the sum of 

exchange energy and a correlation energy as, 

𝐸𝐸𝑥𝑥𝑒𝑒𝐿𝐿𝐷𝐷𝐴𝐴 = 𝐸𝐸𝑥𝑥𝐿𝐿𝐷𝐷𝐴𝐴 + 𝐸𝐸𝑒𝑒𝐿𝐿𝐷𝐷𝐴𝐴        (2.16) 

By construction, this approximation gives accurate results if the electron 

density of the system is homogeneous and does not vary rapidly in space to 

yield strong inhomogeneity in density. However, this approximation is found 
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to be effective in theoretical calculations for a wide range of materials, albeit 

with some limitations. For example, in molecules, LDA calculations usually 

yield excellent results for vibrational frequencies and equilibrium distances, 

but they somewhat overestimate the binding energies.  

2.5.2 Generalized gradient approximation (GGA) 

 The exchange-correlation energy of inhomogeneous density differs 

substantially from the homogeneous distribution of density. Such a system is 

better tackled with generalized-gradient approximations (GGA). In this 

approximation the exchange-correlation energy, 𝐸𝐸𝑥𝑥𝑒𝑒𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)] also contains the 

gradient of electron density to compensate for its inhomogeneous variation. 

Mathematically,  

𝐸𝐸𝑥𝑥𝑒𝑒𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)] = ∫ 𝑓𝑓[𝜌𝜌(𝑟𝑟)]𝛻𝛻(𝜌𝜌)  dr,       (2.17) 

 where 𝑓𝑓 is some empirical or semi empirical functional of electron density. Like 

LDA, 𝐸𝐸𝑥𝑥𝑒𝑒𝐺𝐺𝐺𝐺𝐴𝐴[𝜌𝜌(𝑟𝑟)]  can also be represented as the sum of an exchange and a 

correlation part, which are individually handled. 

 

𝐸𝐸𝑥𝑥𝑒𝑒𝐺𝐺𝐺𝐺𝐴𝐴 = 𝐸𝐸𝑥𝑥𝐺𝐺𝐺𝐺𝐴𝐴 + 𝐸𝐸𝑒𝑒𝐺𝐺𝐺𝐺𝐴𝐴.       (2.18) 

GGA are more physically consistent as the true electron density is expected to 

show some gradient dependent variation. The most popular parameterized 

analytic form of GGA was given by Perdew-Becke-Ernzerhof [8]. However, the 

choice of the exchange-correlation is not obvious. It depends entirely on the 
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system under study and, also on the physical properties that one is interested 

to explore.  

2.5.3 Hybrid exchange-correlation functionals 

 Nowadays, a new class of sophisticated functionals is   extensively 

used in DFT simulations due to its higher level of accuracy, compared to other 

functionals mentioned earlier in the discussion . These hybrid functionals 

consists of a portion which is the exact exchange from Hartree-Fock 

calculations; the rest of the exchange-correlation functional is sought from 

other sources, like ab-initio. The exchange energy functional is expressed in 

terms of Kohn-Sham orbitals,  

( ) .Hybrid GGA GGA HF
xc x c xE n r E E bE= + +       (2.19)    

Here GGA
xE and GGA

cE  are the exchange and correlation energies. HF
xE is the 

exact exchange energy from Hartree-Fock controlled by an empirical 

parameter b. The most popular hybrid functional was proposed by Becke et 

al.[9].  

It is important to note that, irrespective of functionals being used, these 

types of calculations are put in the category of first-principles calculations, in 

the sense that they do not involve experimental inputs are, other than the 

fundamental physical constants.  

2.6 Pseudopotential formalism    

 Solutions to the Kohn-Sham equations effectively involve the expansion 
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of the auxiliary Kohn-Sham orbitals in terms of some known basis functions. 

There exist a range of the basis functions that can be chosen for calculations. 

Most of the conventional quantum chemistry tools often utilize Gaussian 

functions. For highly localized orbitals, these functions are found to be an 

excellent choice. In the course of flourishing research, theoretical chemists 

have developed basis sets that are well suited for a wide range of materials. 

The major downside of the Gaussian functions is that the superiority of the 

basis sets depends on the preference of the user. However, their transferability 

and the reproducibility of computational results become a serious issue when 

one deals with diverse systems. 

Plane waves are regarded as an alternative set of functions without any 

undue bias and can also be improved systematically. Plane waves adapted 

naturally to systems with periodic boundary conditions make their use 

advantageous over the Gaussian basis functions. Calculations employing plane 

waves are relatively straightforward, where the forces and the stress tensors 

can be readily evaluated like energy. However, if any system contains well 

localized core orbitals or valence orbitals within the core region of the atom, 

which require to oscillate widely in order to maintain orthogonality with the 

core orbitals, then a substantial number of plane waves is required to describe 

the rapidly varying nature of the orbitals. For this reason, to  deal with a real 

system, it is often crucial to bring forth an extra approximation, known as the 

pseudopotential approximation, to speed up the calculations. Most of the plane 

wave calculations are thus implemented by using pseudopotentials.  
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2.6.1 Norm-conserving pseudopotentials 

The prime objective of pseudopotential approximation is to eliminate the 

electrons near the core from explicit calculations since they do not take part in 

bond formation and correspondingly in determining the physical properties of 

material, at least to the limit where their binding energy exceeds the energy 

involved in the chemical property under study. So, the core electrons are 

assumed to freeze around the nuclei and the system is then reformulated as an 

assembly of valence electrons surrounding a non-polarizable rigid ionic core. In 

this way, theoretically the all-electron atomic potential is replaced by an 

effective approximate potential where pseudo wave functions consisting of very 

few nodes are utilized to describe the valence electrons. The only matter that 

one must be careful about now is the oscillation of the valence wave functions 

in the core since they must be orthogonal to the wave functions representing 

the core electrons. This is achieved by the introduction of a pseudopotential 

which can effectively replace the ionic Coulomb potential in a manner that the 

eigenvalues of the pseudo wave function match the all-electron ones in some 

reference configuration of the atom. The pseudo-wave functions are modelled 

to coincide with the all-electron wave functions beyond a well-defined core 

radius, keeping them as smooth as feasible within the core radius. However, 

the only constraint in this modelling is concerned with the orthogonality of 

wavefunctions. Furhtermore they must be normalized to obtain the 

construction of Norm-conserving pseudopotentials[10]. To satisfy this specific 

condition, the pseudo wave functions must incorporate the angular momentum.  
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Different angular momenta for different pseudo wave functions have 

different eigen values, i.e., they are eigen functions of distinct potentials. But, 

the difference of the pseudo wave functions is limited within the core region as 

the pseudo wave functions beyond the core radius replicate the all-electron 

wave functions. Based on this argument Hamman et al. [11] and Kerker [12] 

arrived at the following form of the pseudopotential:  

𝑉𝑉𝑎𝑎(𝒓𝒓, 𝒓𝒓′) =  𝑉𝑉𝑎𝑎𝑒𝑒𝑙𝑙𝑒𝑒(𝑟𝑟)𝛿𝛿(𝒓𝒓 − 𝒓𝒓′) + ∑ 𝑉𝑉𝑎𝑎,𝑒𝑒(𝑟𝑟)𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥
𝑒𝑒=0 𝑃𝑃𝑒𝑒(𝒓𝒓� ,𝒓𝒓′� )𝛿𝛿(𝒓𝒓 − 𝒓𝒓′)  (2.20) 

where 𝑎𝑎 refers to the atom. 𝑉𝑉𝑎𝑎𝑒𝑒𝑙𝑙𝑒𝑒(𝑟𝑟) is the long-range local part and 𝑉𝑉𝑎𝑎,𝑒𝑒(𝑟𝑟) is 

the short-range part depending on angular momentum. 𝑃𝑃𝑒𝑒(𝒓𝒓� ,𝒓𝒓′� ) i.e., the 

projection operator on the angular momenta 𝑙𝑙 is given by  

𝑃𝑃𝑒𝑒�𝒓𝒓�, 𝒓𝒓′� � =  ∑ 𝑌𝑌𝑒𝑒,𝑚𝑚(𝜃𝜃,𝜙𝜙𝑒𝑒
𝑚𝑚=−𝑒𝑒 )𝑌𝑌𝑒𝑒,𝑚𝑚∗ (𝜃𝜃′,𝜙𝜙′)   (2.21) 

here 𝑌𝑌𝑒𝑒,𝑚𝑚 are the spherical harmonics. 

2.6.2 Ultrasoft pseudopotentials 

In case of the first-row element carbon, the second-row element oxygen 

and nitrogen, the valence orbitals are well localized as shallow core states that 

are even more dominant in the d-orbitals of transition metal elements. The 

principle of norm conservation thus can be a very limiting factor for these 

elements. Since the extraction energies of the shallow lying orbitals are 

comparable to the valence energies, they must be accounted for in calculations. 

In these cases, the norm conservation requirement of pseudopotentials 

demands a huge number of pseudo plane waves to reach acceptable accuracy. 

Vanderbilt [13] provided a general prescription in which the constraint of norm 
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conservation can be removed by constructing smoothly varying wavefunction 

which match with the all-electron one beyond cut-off radius. However, one has 

to compensate for the charge density since the pseudo wave functions are not 

orthonormal anymore. This is achieved by adding an augmentation part. These 

much softer Vanderbilt pseudopotentials or the ultrasoft pseudopotentials 

have much lower cut-off energy than the norm conserving ones and thus yield 

better transferability and reproducibility. Blochl, in 1994, proposed a method 

to reconstruct the all-electron wave function within the core region[14]. This 

particular method, viz. the projected augmented wave (PAW), is closely related 

to the Vanderbilt’s soft pseudopotential formalism, and has been observed to 

be efficient in reproducing effectively identical results of all electron 

calculations. 

2.7 Ab-initio molecular dynamics 

 Standard DFT has become de facto the method of preference to probe the 

static or ground state of matter. Over the years the success enjoyed by DFT can 

largely be attributed to its scalability across different system size and its 

excellent accuracy in reproducing the microscopic ground state properties. One 

can then pose a question- is it possible to combine this electronic-structure 

method with molecular dynamics to obtain an equally accurate description of 

time averaged thermodynamic properties of systems if it features ergodicity?  

This question has been addressed! This section lays out a brief account of the 

ab-initio molecular dynamics method which has been successfully implemented 

to study high-temperature (beyond debye temperature, even beyond melting 
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point) properties of atomic and molecular systems, to explore the dynamics of 

chemical reactions, and also to accurately identify characteristic features of a 

potential energy surface.  

In classical molecular dynamics the system is assumed to be made up of 

point-like rigid and massive nuclei. These nuclei move under the influence of 

forces acting between them which are derived from effective potentials albeit 

empirically devised. Then, it is simply the integration of Newton’s equation of 

motion that provides one with the microscopic trajectory of each individual 

atom of the system under study. Ab-initio molecular dynamics (AIMD) 

modelling is motivated by the same consideration, treating the nuclei of atoms 

as classical point-like particles. The only exception in this approach is that the 

forces acting on the atomic nuclei are quantum mechanical in nature, and 

hence they are calculated within the framework of electronic-structure or more 

specifically the DFT method. However, for the application of this method in 

practice, the Born-Oppenheimer approximation is still imposed, ensuring that 

individual treatments of  the electronic subsystem  remains appropriate.  

Standard DFT enables us to self-consistently arrive at the ground state 

of any chosen ionic configuration and , the forces acting on the individual ions 

can be calculated by Hellmann-Feynman’s [15]  theorem. Once a full account 

of the ionic forces is available, their effect on the evolution of the nuclear 

trajectories in time can be obtained. The first AIMD simulations was performed 

by Car and Parrinello[16] back in 1985. There are various algorithms 
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developed in the domain of classical mechanics based on finite-differences 

approach to solve Newton’s equation of motion, the most notable among them 

is the Verlet algorithm[17]. Figure 2.2 represents the schematic of the 

systematic method to implement AIMD in practice.  

 In this way, all the nuclei move along different trajectories on the much 

strived Born–Oppenheimer surface, i.e., at any instant configuration of the 

nuclei the electrons are guaranteed to be in the ground state. The first two 

steps are taken care by the DFT method. The third step involves iterative 

solution of the classical equation of motion, where Verlet algorithm plays an 

                           

Figure 2.2: Flow chart of the steps as implemented in ab-initio molecular dynamics. 
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important role.  The first and foremost practice to solve the Newton’s equation 

of motion for a swarm of nuclei is to discretize it which is represented by: 

𝑚𝑚𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝐹𝐹𝑖𝑖      (2.22) 

where  𝑚𝑚𝑖𝑖 is the mass of ith nuclei, with  𝑣𝑣𝑖𝑖 and 𝐹𝐹𝑖𝑖 being its velocity and the 

force acting on it respectively. Next the time is divided into several equal time 

steps Δ𝑡𝑡  and the approximate solution to the Newton’s equation of motions of 

the nuclei are obtained using the Verlet algorithm. The positions and velocities 

of the nuclei in the spatio-temporal phase space are updated following this 

algorithm as:   

𝑟𝑟𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡) = 𝑟𝑟𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡)Δ𝑡𝑡 + 1
2𝑚𝑚𝑖𝑖

𝐹𝐹𝑖𝑖(𝑡𝑡)Δ𝑡𝑡2   (2.23) 

𝑣𝑣𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡) + 1
2𝑚𝑚𝑖𝑖

(𝐹𝐹𝑖𝑖(𝑡𝑡) + 𝐹𝐹𝑖𝑖(𝑡𝑡 + Δ𝑡𝑡))Δ𝑡𝑡    (2.24) 

If the time steps in Verlet algorithm are chosen small enough compared to the 

vibrational time period of the system, it conserves the energy to an excellent 

accuracy in both short- and long-time scale.  

 In statistical mechanics, the average of any physical observable is 

calculated as an ensemble average. It is a standard result of statistical 

mechanics that for an ergodic system the time average and ensemble average 

converge to a common magnitude as shown by Gibson et al.[18]. There are two 

major ensembles employed in AIMD simulation. However, the choice of 

ensemble depends on the problem itself and on the physical property under 

observation.  If the number of atoms, N and volume of the simulation cell, V 
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are kept fixed and the system is allowed to evolve in time, the simulation 

generates configurations in the constant energy hypersurface that are spread 

across the phase space according to the microcanonical ensemble or (N, V, E) 

ensemble. Sometimes it is mandatory to resort to ensemble other than the 

microcanonical one, for example the canonical ensemble or the (N, V, T) 

ensemble. In canonical ensemble the thermal averages are calculated at 

constant temperature, T. The numerical prescription to achieve this is to couple 

the system under study to an external heat bath (the degree of freedom of the 

heat bath far exceeds that of the system, so that its temperature remains 

essentially constant), as proposed by Andersen [19] or Nose´ [20] and Hoover 

[21]. In simulation they are termed as Anderson thermostat or Nose´-Hoover 

thermostat. I conclude this chapter by recalling another crucial result of 

statistical mechanics. Irrespective of which ensemble is employed, the thermal 

averages calculated either in the microcanonical or in the canonical ensemble 

converges to each other for a sufficiently large system. The next chapter 

introduces the theoretical premises useful for calculating several physical 

properties of interest.  
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CHAPTER 

 3 
Computational Methodologies

3.1 Foreward 

 The fundamentals of density functional theory (DFT) and ab-initio 

molecular dynamics (AIMD) have been laid out in the previous chapter. In the 

framework of DFT, the total energy of an atomic/molecular system or clusters 

is calculated from the charge density of electrons. The energy arising from the 

motion of the nuclei, treated in a classical manner, are then brought together 

within the domain of Born-Oppenheimer approximation. The total energy from 

the DFT and the kinematic variables from the AIMD are consequently utilized 

to enumerate several static and finite temperature properties of the system 

under study. This chapter provides the theoretical method used to calculate 

such properties. The following table categorically lists a set of the 

importantphysical properties, however, some of them have been evaluated 

from the first-principles calculations mentioned in Chapter 2.  

Table 3.1: Static and finite-temperature properties calculated in the domain of both 
DFT and AIMD simulations. 
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Static properties from 

DFT 

 Finite-Temperature 

properties from DFT 

Finite-Temperature 

properties from AIMD 

Bulk Moduli Thermoelastic constants Diffusion coefficients 

Elastic constants Chemical potentials Electrical conductivity 

Band gap Partitioning Coefficients Viscosity 

Density of states Superconducting temperature Melting points 

Phonon frequencies Thermal Expansivity Superionicity 

3.2 The equation of state for solids 

At zero temperature, the internal energy is the most basic 

thermodynamic variable associated with a system. The preliminary step of a 

DFT calculation is to utilize these internal energies to evaluate the equation of 

state of the system of interest. To begin with, the ionic degrees of freedom for 

a given set of unit cell parameters defining the crystal symmetry of the system, 

must undergo full relaxation. This relaxation procedure considers both the 

atomic positions and the lattice parameters. This allows one to identify the 

most stable configuration of the atoms i.e., the equilibrium structure by simply 

minimizing the total energy with respect to the ionic positions as well as lattice 

parameters. The relaxation of the latter ensures that no external 

stress/pressure is acting on the system. A similar procedure is repeated for a 

set of lattice parameters chosen around the equilibrated one. We are then left 

with a list of different total energies accounting for distinct lattice parameters, 

and the global minimum of the volume is obtained by plotting the total energies 

against the systems’ volumes. This minimum volume corresponds to the system 
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optimized at temperature, T = 0K and pressure, P = 0 GPa. There are several 

equations of state of solids that elucidate the energy-volume or pressure- 

volume relations. The most extensively used equation of state is the 3rd order 

Birch-Murnaghan equation of state[1,2], 

𝑃𝑃(𝑉𝑉) = 3𝐵𝐵0
2
��𝑉𝑉0

𝑉𝑉
�
7
3 + �𝑉𝑉0

𝑉𝑉
�
5
3� �1 + 3

4
(𝐵𝐵0′ − 4) ��𝑉𝑉0

𝑉𝑉
�
2
3 − 1��. (3.1) 

where 𝑉𝑉0 and 𝑉𝑉 are the equilibrium and distorted volumes, P is the deformed 

pressure. The slope of the pressure-volume fit to Eq. 3.1 yields the zero-

pressure bulk modulus which can be expressed as  

𝐵𝐵0 = −𝑉𝑉 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉
�
𝜕𝜕=0

. (3.2) 

The pressure-derivative of the bulk modulus can also be calculated from 

𝐵𝐵0′ = �𝜕𝜕𝐵𝐵
𝜕𝜕𝜕𝜕
�
𝜕𝜕=0

. (3.3) 

Figure 3.1 illustrates such a Birch-Murnaghan equation of state for thorite 

[ThSiO4].  

The Birch-Murnaghan equation considers the variation of volume up to 

3rd order. Rose and Vinet[3] proposed a modified version of the Birch-

Murnaghan equation of state, which is exponential in nature and thus contains 

higher order terms of volume. The Rose-Vinet equation of state is represented 

by  

𝑃𝑃 = 3𝐵𝐵0 �
1−𝜂𝜂
𝜂𝜂2
� 𝑒𝑒𝑒𝑒𝑒𝑒 �3

2
(𝐵𝐵0′ − 1)(1− 𝜂𝜂)�, (3.4) 

where 𝜂𝜂   is the cubic root of the specific volume, 
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𝜂𝜂 = �𝑉𝑉
𝑉𝑉0
�
1
3. (3.5) 

These equations of state are frequently used to determine high-pressure 

structures of the crystalline phases. 

Figure 3.1: The Birch-Murnaghan equation of states of zircon- and reidite-type phases of ThSiO4. The 
inset represents the enlarged equation of state of the reidite-type ThSiO4.  
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3.3 Phase transition 

Crystalline solid phases can undergo structural transitions to new 

ones[4–8] with increasing external pressure. The new structures often belong 

to the same class of Bravais lattice but differing in space group. They can also 

transform to a whole new class of Bravais lattice with lower or higher 

symmetry. Since the atomic configurations of crystalline phases change, the 

corresponding energies also differ from each other. The pressure at which the 

transition occurs can be determined from the slope of the common tangent to 

the energy-volume curves of the parent and daughter structures. However, if 

the system under study demonstrates several consecutive transitions at 

different pressures e.g. as observed in molecular ice of water[9] ammonia-water 

Figure 3.2: Ground state enthalpies of different crystalline phases of water ice relative to the 
Pbcm phase in the pressure range 0.15-2.5 TPa (after Hermann et. al., PNAS, ref. [9]). 
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mixture[10] etc. , an alternative approach, called the ‘Enthalpy crossover’ 

method becomes much easier to employ. The second method has been utilized 

in all the present calculations as the method yields a better accuracy. In this 

method, the point of intersection of the enthalpy-pressure curves for two 

corresponding crystal structures marks the transition pressure. The enthalpy 

of the system can be calculated using first-principles technique by computing 

the internal energy U and pressure P as a function of volume V and then by 

following the relation  

H = U + PV (3.6) 

Calculated enthalpies of two (or more) structures are then plotted 

against pressure to find their point of intersection(s) to identify the transition 

pressure(s). The phase with the lowest enthalpy in a chosen pressure range 

confirms that it is energetically stable, as compared to the others. Figure 3.2 

demonstrates the high-pressure structural transition in crystalline water. In 

the pressure range 0.9-1.3 TPa Pmc21 phase is the most stable one. Beyond 1.3 

TPa, it is succeeded by the P21 phase, which shows its stability up to 2.5 TPa. 

Apart from the structural transition, the enthalpy-crossover method can also 

be used to study pressure induced spin transitions[11–13], often observed in 

mineralogical phases 

3.4 Electronic properties 

3.4.1 Band structures 

DFT is essentially an electronic-structure method, where the electronic 
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degrees of freedom and its charge density are of prime concern. The charge 

density derived from DFT can further be exploited to compute several other 

electronic properties of interest, e.g., the band structures and density of states 

(DOS). The band structure of a solid is a description of the electronic energy 

levels subjected to a periodic potential in terms of a set of continuous energy 

functions.  For band structure calculations, a series of successive k-points are 

chosen to define a path in the first Brillouin zone of the reciprocal space of the 

crystal. The Kohn-Sham equations are then solved at each chosen k-point along 

the k-path. It should be noted that the choice of the k-points greatly influences 

the band structure calculation, since the positions of the k-points in the 

reciprocal space are dictated by crystal symmetry.  The present study followed 

the systematic steps mentioned below to calculate the band structures of a 

number of mineral phases:  

• First, a self-consistent (scf) calculation is performed, followed by the

iterative diagonalization of the Hamiltonian of the system using the

wave functions generated in the previous scf step until one reaches the

user-defined convergence criteria on energy and force. This step of

calculation follows the evaluation of Fermi energy, focusing exclusively

on the occupied bands.

• In the second step, a non-self-consistent (nscf) calculation is performed

by setting a very tight convergence criteria to implement superposition

of the atomic orbitals. Unlike the previous step, the Hamiltonian is

diagonalized only on the chosen k-point defining the k-path as

mentioned in the nscf input file.  The number of bands to calculate are
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set in this step to a higher number than the occupied bands since the 

nscf calculation takes into account the empty bands also.  

• Next, the eigen values of the Hamiltonian, i.e., the energies are

calculated at the neighboring k-points by virtue of the overlapping eigen

vectors, i.e., wave functions. The results are collected to generate the

band-structure plot.

The advantage of the band structure calculation is that apart from the energy 

eigen values, it also assesses the eigen vectors at the given k-points of the 

Brillouin zone. 

3.4.2 Density of states (DOS) 

The band structure of a solid has generally electronic states spread along 

a line of chosen high-symmetry points. There are several electronic properties 

that rely on the distribution of electronic states across the entire Brillouin zone. 

The density of states (DOS) provides a full account of this distribution. The 

method used to calculate DOS is similar to that for band structures, but we 

need a dense k-point grid, instead of a predefined k-path. For an accurate 

description of the DOS, the user needs to employ the improved tetrahedron 

method[14] in order to sample the Brillouin zone, which demands a gamma 

point centered k-point grid. Here also a nscf step follows a scf calculation. The 

number of electronic states vs energy data is then captured in a file for a 

graphical plot. The band structure and DOS calculations can be used further 

to determine a number of electronic and optical properties, such as band gap, 

defect and surface states, dielectric functions, and refractive index. Based on 
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the  band gap,  materials are categorized into conductor, semi-conductor or 

insulator. Additionally, DOS offers the information about the dominant 

orbitals near Fermi level and the state of hybridization of the different 

chemical bonds [15–18]. The density of states of pure zircon (ZrSiO4) with space 

group: I41/amd in ambient condition is illustrated in Figure 3.3 that shows the 

total density of states as well as the orbital decomposed contribution of each 

atomic species. It is clear that the states near the Fermi level are 

predominantly occupied by the p-orbital of O and d-orbital of Zr. The valence 

Figure 3.3: Total and partial density of states of pure zircon.  The up and down arrow represents 
the up and down spin configurations of the electrons. The vertical dashed line denotes the Fermi 
level. 
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bands at low energy levels are mostly populated by the s-orbitals of O and s- 

and p-orbitals of Si. The difference in energy between the valence and 

conduction bands (~3.5 eV) suggests that ZrSiO4 is an insulator.  

3.5 Quasi harmonic approximation 

 The previous sections covered an account of the physical properties 

evaluated at zero temperature. This section is extended to include the 

description of physical properties at finite, albeit low temperatures. For a given 

finite temperature the Helmholtz free energy F gives a relatively more accurate 

account of energy of the system compared to the internal energy U. The 

Helmholtz free energy of the system can be calculated in the regime of so-called 

‘Quasi-harmonic approximation’. First, the free energy of a system, U is 

expanded around positions of the nuclei which are already equilibrated. The 

first term so obtained represents the energy of the system, where the ions are 

located in their equilibrium position,    𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑉𝑉,𝑇𝑇). This energy depends on both 

V and T as the   temperature is finite. The linear term appearing in the 

expansion reduces to zero when the system remains in the minimum-energy 

configuration. If we neglect the 3rd and higher order terms in displacements of 

the nuclei, the quasi-harmonic energy is given by:  

𝑈𝑈ℎ𝑎𝑎𝑝𝑝𝑎𝑎 =  𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 1
2
∑ 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑡𝑡𝑡𝑡 𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑙𝑙′𝑡𝑡𝑡𝑡   (3.7) 

 

where, 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑡𝑡𝑡𝑡 is the force constant matrix,  𝑢𝑢𝑙𝑙𝑙𝑙 is the displacement of the s 

atom in the l unit cell. 𝛼𝛼 𝛽𝛽 denotes the cartesian components. Thus, the quasi-
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harmonic approximation yields the following expression of Helmholtz free 

energy 

𝐹𝐹(𝑉𝑉,𝑇𝑇) =  𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑉𝑉,𝑇𝑇) + 𝐹𝐹ℎ𝑎𝑎𝑝𝑝𝑎𝑎(𝑉𝑉,𝑇𝑇)    (3.8) 

In particular, the 2nd term on the right-hand side of Eq. 3.8 can be explicitly 

written as,  

𝐹𝐹ℎ𝑎𝑎𝑝𝑝𝑎𝑎 =  𝑘𝑘𝐵𝐵𝑇𝑇 ∑ 𝑙𝑙𝑙𝑙�2𝑠𝑠𝑠𝑠𝑙𝑙ℎ(ℏ𝜔𝜔𝑛𝑛 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ )�𝑛𝑛 ,   (3.9) 

the summation runs over the n vibrational modes with frequency  𝜔𝜔𝑛𝑛. The 

periodicity of crystal allows us to define vibrational frequencies associated with 

wave vectors denoted by k where each wave vector possess three independent 

vibrational modes corresponding to each atom constituting the crystal. If 𝜔𝜔𝒌𝒌𝑖𝑖   

denotes the ith  mode’s frequency with wave vector k, Eq. 3.9 can be rewritten 

in terms of wave vectors as  

𝐹𝐹ℎ𝑎𝑎𝑝𝑝𝑎𝑎 =  𝑘𝑘𝐵𝐵𝑇𝑇 ∑ 𝑙𝑙𝑙𝑙�2𝑠𝑠𝑠𝑠𝑙𝑙ℎ(ℏ𝜔𝜔𝒌𝒌𝑖𝑖 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ )�.𝑛𝑛     (3.10) 

Once the quasi-harmonic Helmholtz free energy is available, physical 

conditions, e.g., pressure at different temperatures can be readily calculated 

from the following equation.,  

𝑃𝑃 =  −�𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉
�
𝑇𝑇

= −�𝜕𝜕𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜕𝜕𝑉𝑉

�
𝑇𝑇
− �𝜕𝜕𝜕𝜕ℎ𝑎𝑎𝑝𝑝𝑎𝑎

𝜕𝜕𝑉𝑉
�
𝑇𝑇

    (3.11) 

  

 The last term of Eq. 3.11 is the ionic part of the thermal pressure, which 

is always nonzero since the vibrational frequencies depend on the volume. Eq. 

3.10 indicates that even at zero temperature the harmonic part of the quasi-
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harmonic Helmholtz free energy retains a finite value, called the zero-point 

energy, which indirectly contributes to the thermal pressure. Usually, when the 

volume of a system shrinks, 𝜔𝜔𝒌𝒌𝑖𝑖 increase and results in larger contributions to 

thermal pressure, which is responsible for the thermal expansion of solids.  

3.6 Vibrational frequencies (Phonons) 

 Calculations of vibrational or phonon frequencies and lattice dynamical 

properties in the framework of DFT are implemented in  two different ways: a. 

linear response method, involving finite displacement of atoms [19–21] and b. 

density functional perturbation theory or DFPT [22–24]. The implementation 

relies on the fact that if atomic displacements are small enough, the 

displacements and the forces on the atoms maintain a liner relationship. The 

force constant matrix of Eq. 3.7 is utilized to express this proportionality. The 

force constant matrix 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑡𝑡𝑡𝑡 is mathematically represented by the double-

derivative of the free energy U of the system with respect to atomic 

displacement, 𝜕𝜕2𝑈𝑈 𝜕𝜕𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝜕𝜕𝑢𝑢𝑙𝑙𝑡𝑡′𝑡𝑡� . In practice, it is achieved by displacing a single 

atom t in the unit cell designated by l′ in the cartesian direction, denoted by 𝛽𝛽 

while the rest of the atoms are kept fixed at their equilibrium positions. The 

forces acting on all the atoms thus constitute the elements of  𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑡𝑡𝑡𝑡 for a 

particular set of (𝑙𝑙′𝑡𝑡𝛽𝛽). A repetition of the process to cover the rest of the 𝑙𝑙′𝑡𝑡𝛽𝛽 

thus generates the total force constant matrix.  

 The displacements of the atoms bring forth changes in the external 

potential and in the plane-wave solutions of the Kohn-Sham equation and 
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consequently alters the charge density. In practice, the 2nd order perturbation 

in free energy is thus calculated by expanding the free energy with respect to 

the variation in Kohn-Sham orbitals to 1st order and with respect to the 

variation in external potential up to 2nd order. Thus, the phonon frequencies 

can be calculated by constructing the dynamical matrix for each atom and then 

summing over all the atoms of the system. The dynamical matrix forms an 

eigen equation whose eigenvalues represent the phonon frequencies. The eigen 

equation can be written as  

𝐷𝐷(𝑘𝑘)𝜀𝜀 = 𝑀𝑀𝜔𝜔𝑘𝑘
2𝜀𝜀 (3.11) 

Here D is the dynamical matrix and M is the diagonal matrix containing the 

mass of the atoms. Finite displacement method yields phonon frequencies with 

good accuracies for a wide class of systems. However, crystalline solids 

inherently possess  periodic boundary conditions, and one must ensure that the 

elements of the force constant matrix must reduce to negligible values at the 

boundary. For metals this is readily achieved, but for ionic materials 

convergence can be slow and tricky. Moreover, for polar materials, vibrational 

modes are observed to split parallel and perpendicular to the electric field 

termed as LO-TO splitting. For these materials DFPT is a better choice as it 

considers the Born effective charge tensor of atoms and static dielectric tensor 

at high frequencies to compensate the error.  

The previous sections discussed the computational methods to calculate 

various static and finite temperature properties of crystalline materials. But 

the kinematical properties of an atomic/molecular system, are beyond the 
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regime of standard electronic structure methods. In these scenarios AIMD 

simulations are employed to statistically determine time-averaged kinematical 

properties. A description the AIMD simulations is presented in the previous 

chapter. In the following sections, I will discuss the computational methods for 

evaluating such properties. 

3.7 Diffusion coefficients 

 As discussed in the previous chapter, for the systems featuring 

ergodicity, the thermal averages converge to the time averages for the physical 

properties that shows stochastic variation. Mathematically, both the ergodic 

theory and the diffusion theory   describe microscopic phenomena that  are 

intrinsically stochastic in nature[25]. Diffusion in crystalline phases is a 

subject of great interest in solid state and condensed matter physics as well as 

in material sciences as the process can result in microstructural 

transformations in solids. Interstitial and vacancy defects are mostly 

responsible for diffusion in lattice structures. Line and surface defects, such as 

dislocations, grain boundaries and inner and outer surfaces also induce a 

different kind of diffusion, which are much faster in time scale compared to the 

lattice diffusion. Often, diffusion in crystalline lattice also manifests as an 

effect of the ionic frustrations confined in channels in place of point or line 

defects. However, it is important to note that the phenomenon of diffusion 

occurs due to the random motions of atoms or ions i.e., they are essentially 

statistical in nature without any explicit dependence on the force. For any 

reasonable diffusion of any species to be realized, the diffusing species must 
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overcome the activation energy barrier. In static cases (T=0K), this activation 

enthalpy can be determined by climbing image nudged elastic band (CI-NEB) 

method [26] or its more improvised version viz.  the generalized solid state 

nudged elastic band (G-SS-NEB) method [27] proposed by Henkelmann. 

However, the above methods leave out the effects of finite temperature from 

the calculation accounting only for the hydrostatic pressure. In order to 

evaluate the diffusivity under varying P-T conditions, one must employ AIMD.  

 The change in diffusivity of the ith species in a solid with temperature at 

a specific external pressure can be modelled by the equation 

𝐷𝐷𝑖𝑖 = 𝐷𝐷0,𝑖𝑖  exp (−(𝐺𝐺𝑖𝑖 𝑅𝑅𝑇𝑇⁄ ))     (3.12) 

with  𝐷𝐷0,𝑖𝑖 as the pre-factor and 𝐺𝐺𝑖𝑖 being the Gibb’s free energy of activation. R 

is the universal gas constant. In practice, the Di’s are first evaluated from the 

             Figure 3.4: Mean square displacements of H, N and S at 1750K of the P4/nmm NH3+H2S mixture 
at 10 GPa. 



Chapter 3 

72 
 

mean square displacement (MSD) of the ith species of atoms. The MSD of the 

diffusing species is calculated as a time average as  

𝑀𝑀𝑀𝑀𝐷𝐷 =  〈∑ |𝑟𝑟𝑖𝑖(𝑡𝑡0 + 𝑡𝑡) − 𝑟𝑟𝑖𝑖(𝑡𝑡)|2𝑖𝑖 〉   (3.13) 

Here, 𝑟𝑟𝑖𝑖(𝑡𝑡) is the vector position of the ith species of atom at time t, 〈 . 〉 represent 

the time average at t0.  The MSD (Figure 3.4) are calculated over a sufficiently 

long time, typically much larger than the vibrational time period of the system.  

The calculated MSD’s are plotted against the time to determine its slope 

to find the diffusion coefficient Di. However, care must be taken in this 

operation, allowing adequate time to the system to thermalize so that the 

initial ballistic collisions between the atoms die out and the system reaches an 

equilibrium state. The diffusion coefficient Di can be then obtained from 

Einstein’s relation, 

𝐷𝐷𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀
2𝑛𝑛𝑡𝑡

     (3.14) 

with n = 1, 2, 3 depending on the dimension of the system under study. These 

Di’s are evaluated at a particular pressure for a set of temperatures. Finally, 

they are fitted with Eq. 3.12 to find approximate values of the pre-factor 𝐷𝐷0,𝑖𝑖 

and the Gibb’s free energy of activation Gi. 

3.8 Electrical conductivity 

 Once the diffusion coefficients are evaluated, the calculation of electrical 

conductivity becomes straight-forward. To estimate the contribution of 
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conductivity of the ith species of atom, 𝜎𝜎𝑖𝑖 to the apparent bulk conductivity of 

the system, this study uses the Nernst-Einstein equation,  ,  

𝜎𝜎𝑖𝑖 = 𝜕𝜕2

𝑅𝑅𝑇𝑇
 𝐷𝐷𝑖𝑖𝑞𝑞𝑖𝑖2𝑐𝑐𝑖𝑖 , (3.15) 

where qi is the charge of each individual diffusing atom of ith species and ci is 

its concentration i.e., number of atoms/unit volume. F is the well-known 

Faraday’s constant.  An alternative form of Eq. 3.15, given below is also often 

utilized. 

𝜎𝜎𝑠𝑠 = 1
𝑘𝑘𝐵𝐵𝑇𝑇

𝐷𝐷𝑠𝑠𝑧𝑧𝑠𝑠2𝑒𝑒2𝑐𝑐𝑠𝑠, (3.16)  

where zi  and e are the valence of the diffusing species and charge of an electron 

respectively. kB is the thermodynamic Boltzman constant.  

3.9 Radial and pair distribution function 

Extreme physical conditions, such as high pressures and/or 

temperatures may result in structural amorphization. This amorphization may 

be total or partial in a sense that it can occur across the entire crystalline 

system under study resulting in melting or on a sublattice of it. The latter of 

which is often called sublattice melting. Whereas melting leads to a loss of long-

range order in a crystalline substance retaining only the short-range ones, 

sublattice melting eliminates the long-range periodic configuration of one or 

more lattice components mostly in weakly bound ionic binary or ternary 

crystals upon rise in temperature. Sublattice melting sets in motion of charged 

ions in system which is the central phenomena behind superionic nature of 
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materials. The amorphization, sublattice melting or more generally melting of 

materials are not captured within the application regime of only electronic 

structure methods as the plane-wave pseudopotential method of DFT is limited 

to   crystalline materials with definite periodic boundary conditions. The radial 

distribution function (RDF) and pair distribution function (PDF) calculated 

from AIMD simulations are capable of successfully characterizing the change 

of order due to amorphization or melting ranging up to the nearest, subnearest 

coordination of atoms and further.  

RDF represent the so-called ‘structure’ of a system, i.e., the positioning 

and ordering of atoms. In general, the RDF exploits the local variation in 

particle densities with respect to some reference particle, averaged over its 

local environment in a statistical sense. The RDF is expressed as,  

𝑔𝑔(𝑟𝑟) = 〈𝜌𝜌(𝑝𝑝)〉
𝜌𝜌

, (3.17) 

where 𝜌𝜌(𝑟𝑟) is the local density of particles around some reference particle and 

𝜌𝜌 is the bulk density. Since it leaves counting the reference atom, 𝑔𝑔(𝑟𝑟) starts 

at a value of zero and shows a first peak at a distance where the first shell of 

atoms is located with respect to the reference atom. This shell is called the 1st 

solvation shell. 𝑔𝑔(𝑟𝑟) converges to 1 for large distances in an isotropic material. 

The probability of finding an atom at a distance r in a shell of thickness dr is 

given by  

𝑒𝑒(𝑟𝑟) = 𝑔𝑔(𝑟𝑟)4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 (3.18). 
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Thus, the product  𝜌𝜌𝑔𝑔(𝑟𝑟) on integration over the first peak of the RDF 

gives the total number of atoms within the 1st solvation shell. An extension to 

correlate the positions of two different classes of atoms is obvious. The pair 

distribution function (PDF) 𝑔𝑔𝑋𝑋𝑋𝑋(𝑟𝑟) between atom type X and Y with population 

𝑁𝑁𝑋𝑋 and 𝑁𝑁𝑋𝑋 reads, 

𝑔𝑔𝑋𝑋𝑋𝑋(𝑟𝑟) = 1
𝑁𝑁𝑋𝑋𝑁𝑁𝑌𝑌

∑ ∑ 〈𝛿𝛿(�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗� − 𝑟𝑟〉𝑁𝑁𝑌𝑌
𝑗𝑗=1

𝑁𝑁𝑋𝑋
𝑖𝑖=1   (3.19) 

It effectively counts the number of Y-type of atom, which are located within a 

distance of r around the atom X, in the form of a density. The cumulative PDF 

is calculated from Eq. 3.19 as, 

𝐺𝐺𝑋𝑋𝑋𝑋(𝑟𝑟) = ∫ 𝑔𝑔𝑋𝑋𝑋𝑋(𝑟𝑟′)4𝜋𝜋𝑟𝑟′2𝑑𝑑𝑟𝑟′𝑝𝑝
0  (3.20) 

Figures 3.5 and 3.6 show the PDF of like atoms and unlike atoms in 

Figure 3.5: Pair distribution functions of like atoms in the 100 GPa Abm2 phase of NH3+H2S 
mixture at 2000K. 
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Abm2 type crystalline NH3-H2S mixture at 100 GPa and 2000K. The initial 

peak at ~0.74Å and 1.01Å in Figures 3.5 and 3.6, respectively, indicates the 

hydrogen-bond length of short-lived H2 molecules and typical N-H distances in 

NH4+ motifs. 

Figure 3.6: Pair distribution functions of unlike atoms in the 100 GPa Abm2 phase of 
NH3+H2S mixture at 2000K. 
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CHAPTER 

 4 
Silicates-I: U1-xThxSiO4 solid solution 

4.1 Introductory notes 

        Uranium (U) and thorium (Th) are the most crucial radionuclides in 

governing a range of processes in the interior of terrestrial planets. However, 

their modes of occurrence in crystalline phases, especially at high pressure, in 

terrestrial planetary bodies that contain silicates as the major constituent are 

yet to be fully explored. Many geophysicists have demonstrated potential high-

pressure Mg-Fe silicate phases are capable of housing nominal amount of 

water[1,2] to hypothesize the deep-mantle water reservoir in the Earth[3,4]. 

But, their lattice structures lack efficiency in hosting these radionuclides owing 

to their large ionic radii and contrasting valence configurations. This poses a 

major problem in respect of the residence of U and Th in crustal and mantle 

mineral phases on geological time scales (million years). Zircon (ZrSiO4) has 

been found to be a unique naturally occurring silicate phase, which can 
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substantially house these radionuclides[5–7]. Due to its long-term chemical 

stability and mechanical durability zircon is considered as the most competent 

accessory material for straight disposal of spent nuclear fuel (SNF) and 

immobilization of vitrified nuclear waste in underground repositories[8,9]. 

Zircon structured U-bearing phase, called coffinite (USiO4) is a natural phase, 

and also crystallizes as an alternation product of SNF under low temperature 

silica-rich condition[10]. Its Th-homologue, called Thorite (ThSiO4) occurs in 

the Earth’s crust. These two phases are economically viable ores for extraction 

of nuclear materials and are prospective phases to find immense utility at the 

front-end of the nuclear fuel cycle. Further, precipitation of coffinite from 

uranium dioxide (UO2) under reducing condition[11] can be used to control 

U(IV) concentration in direct environment and thus serve as viable metallic 

waste-form towards the back-end of nuclear fuel cycle[12,13]. They undergo 

pressure dependent structural transition from zircon- (Space Group: I41/amd) 

to reidite- or scheelite- type phase (Space Group: I41/a)[14–16]. The 

accommodation of U and Th in these two phases, their mutual substitution and 

fluctuations in thermodynamic parameters can largely affect the bonding 

characteristics and local polyhedral structure around U/Th and induce 

significant distortion in these coordination polyhedra. It is thus worthwhile to 

study the local geometrical distortions of U/Th coordination polyhedra, and 

their effects on the observable physical properties of these phases. In addition, 

understanding the transformation behaviour of zircon-type U1-xThxSiO4 to 

reidite-type phase under elevated hydrostatic pressure regime is critical to 
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explore their applicability in nuclear industries as well as fundamental science 

issues, such as geochronology[17,18]. 

Earlier and recent experimental studies focused on the techniques of 

synthesizing coffinite and the thermochemical problems encountered 

therein[19–25]. Similar experimental studies were also carried out for 

synthesizing thorite[26,27]. Barring the experimental investigation of Bauer et 

al.[15], Zhang et al.[14] and the computational study of Bose et al.[16], a 

detailed analysis of the crystal chemistry of coffinite and thorite in high 

pressure environments is left unattended. Zhang et al.[14] reported an 

irreversible zircon to reidite type phase transition of USiO4 at 14~17 GPa and 

inferred the possibility of a pressure-induced electron transfer (U4+ to U5+). 

Bauer et al.[15] revisited this transition through high-pressure experiments 

and established it to be thermodynamically reversible. They identified that this 

transition is driven by softening of a silent vibrational raman mode. The 

presence of impurity in the form of UO2 in coffinite samples used by the 

former[14] might hinder the reversibility of the phase transition, which was 

observed in pure samples of the later[15]. Based on a lattice dynamical study, 

Bose et al.[16] predicted such a transition in ThSiO4 at a pressure > 3 GPa. A 

parallel line of computational study dealt with temperature dependent phase 

transition of thorite to huttonite (monoclinic), but without accounting the effect 

of pressure[28]. The same transition was studied employing several different 

experimental techniques by Estevenon et al.[27], Finch et al.[29] and Mazeina 

et al.[30]. All these earlier studies showed the phase transition of pure phases, 

either USiO4 or ThSiO4. However, these two phases have a strong tendency to 
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form a solid solution, as reported from natural samples [19, 31–34] and 

chemical synthesis [22, 24, 35] in zircon-type phase, as initially hypothesized 

by Goldschimdt [36]. But, none of the studies have so far provided any insight 

into the phase transition of U-Th solid solutions from experiments or 

theoretical calculations, and thus it is worthwhile to revisit the phase 

transition behaviour.  Substitution of Th in USiO4 phase or vice-versa can 

cause significant geometric distortions in coordination polyhedra of their unit 

cells, which in turn manifest themselves through convoluted behavior of 

various physical properties. Such geometric distortions can also be a 

consequence of variations in thermodynamic environment. Existing literature 

presents two geometrical methods in quantifying such distortions. Robinson et 

al.[37] proposed that the degree of distortion of coordination polyhedra in terms 

of quadratic elongation (λ) and angular variance (σθ2). Alternatively, 

Makovicky et al.[38] expressed the distortions considering the volume ratio of 

polyhedra and their circumscribed sphere for their real and ideal geometry, 

keeping the number of coordinated atoms fixed. However, both the approaches 

adhere to some limitations in terms of their applicability. Robinson’s[37] 

consideration provides with excellent numerical estimates for two cases of 

regular, convex and uniform polyhedra (tetrahedra (Z= 4), octahedra (Z= 6)) 

and can be generalized to cube, dodecahedron (Z= 8) and icosahedron (Z= 12). 

Later studies[38] improved the analysis by incorporating distortion of an 

additional set of four polyhedra with Z= 12 as cuboctahedra, anticuboctahedra, 

icosahedra and maximum-volume hexagonal prism. These methods, however, 

fail to deal with the distortions of polyhedra, which display strongly irregular 
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and/or non-uniform geometry. To overcome this hurdle, Mursic et al.[39] 

provided an alternative approach to quantify the distortions of ZrO8-triangular 

dodecahedra or snub-disphenoids in zircon (ZrSiO4). He treated the ZrO8-

polyhedron as two interpenetrating ZrO4-tetrahedra, constructed by four edge 

sharing and four corner sharing oxygen respectively. Based on this 

formulation, Marques et al.[40] calculated the geometry of ZrO8-snub-

disphenoid in zircon and reidite phases. However, his calculations suffer from 

a major shortcoming as ZrO8-polyhedra in the reidite phase lack edge sharing 

O atoms. Furthermore, configuring a dodecahedron in terms of two tetrahedra 

leads to a volume incompatibility. To meet this gap, it demands an entirely new 

approach to quantify the longitudinal and angular distortion of 8-coordinated 

snub-disphenoids without manipulating their original geometry.  

Using density functional theory (DFT) calculations this chapter explores the 

mechanism of zircon- to reidite-type phase transformations under hydrostatic 

pressure conditions in coffinite, and thorite and their solid solutions (U1-

xThxSiO4, where, x=0.25, 0.50, 0.75), accounting the effects of local polyhedral 

geometry. The present study develops a novel approach to numerically 

estimate the polyhedral (AO8, A: U, Th) distortions. The observed nonlinear 

variation of phase transition pressures with U:Th ratio is then correlated with 

the distortions of U/Th coordination polyhedra for the two participating phases. 

4.2 Computational methods 

The atomistic calculations have been performed within the framework 

of density functional theory  (DFT) as implemented in Quantum ESPRESSO 
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suite[41–43]. Spin-polarized simulations were performed using projector 

augmented-wave (PAW) method[44]. The exchange-correlation effects of the 

electrons were treated using PBE-GGA, as parametrized by Perdew et al.[45]. 

For U, Th, Si, O atoms the following orbitals were treated as valence states: U 

(6s27s26p66d1.55f2.5), Th (6s27s26p66d15f1), Si (3s23p2), O (2s22p2). The core cut-

off radii for them are 2.1 a.u., 2.1 a.u., 1.9 a.u. and 1.1 a.u. respectively. The 

remaining core electrons along with the nuclei were treated by scalar 

relativistic PAW pseudopotentials incorporating a non-linear core 

correction[46]. The kinetic energy cut-off for each individual members of the 

solid solution was kept at 1700 eV. The BFGS (Broyden–Fletcher–Goldfarb–

Shanno)[47,48] algorithm was used for geometrical optimization to find the 

ground state electronic structure under strict convergence criteria. In both 

cases the convergence threshold for energy and forces were set to 10-8 Ry and 

10-6 Ry/bohr, respectively. For the zircon- and reidite- type phases, the brillouin  

zones were sampled by 7x7x8 and 7x7x4 Monkhorst-Pack[49] k-point grid 

respectively, which gave rise to 50 and 99 irreducible k-points in their brillouin 

zone.  

 Hubbard-U factor in terms of strong Coulomb-like Hartree-Fock 

electrostatic potential is introduced to the system to handle d and f electrons 

of uranium and thorium. This computational study aimed to estimate the 

factor U self-consistently. A set of simulations for the U0.5Th0.5SiO4 

configuration were performed with U varying from 1 to 5 eV, for both uranium 

and thorium. But no changes were observed in the orbital occupancy. Secondly, 

the calculations underestimated the lattice constants, which are 
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incommensurate with experimental data. Thus, the Hubbard-U was not taken 

into account in the rest simulations. 

4.3 Structural parameters 

The tetragonal unit cells of coffinite (USiO4), thorite (ThSiO4) and 

compositionally varying members (U1-xThxSiO4) contain 24 atoms in their 

conventional cell, both in zircon- and reidite-type phases. Both have 4 formula 

units per conventional cell. The former phase crystallizes in Laue group 

4/mmm with I41/amd space group, whereas the later crystallizes in Laue group 

4/m, but with different space group (I41/a). The positions of Si and U/Th atoms 

Figure 4.1: The unit cells of ThSiO4 and the connection and alignment of the Th-dodecahedra 
with respect to Si-tetrahedra in a. zircon type phase and b. reidite type phase. Green polyhedras 
are Th-polyhedra and blue polyhedra are Si-tertrahedra. Red spheres are Oxygen atoms. The 
reidite structure is comparatively open with a hollow tunnel parallel to crystallographic c-axis.  
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are fixed by symmetry; they are located at (0, 1/4, 3/8) and (0, 3/4, 1/8) on the 

4b and 4a Wyckoff sites, respectively.  The 16h Wyckoff sites (0, u, v) are 

occupied by the O-atoms, where u and v are the internal parameters. Here we 

restrict our discussion on the crystal structure of zircon (ZrSiO4) which has 

been extensively studied  [16, 39, 50, 51]. In contrary, our attention focuses 

upon the different structures of U1-xThxSiO4 solid solution, especially on their 

high-pressure polymorphs which are virtually unexplored. They have a chain 

of alternating edge sharing SiO4 tetrahedra and (U/Th)-O8 triangular 

dodecahedra extending parallel to the c crystallographic axis in their zircon-

type phases (Figure 4.1a). On the other hand, the reidite type contains the 

actinide polyhedra and the SiO4 tetrahedra in a zig-zag manner along the c-

axis (Figure 4.1b). 

 During the zircon- to reidite-type transition, the mode of sharing 

between SiO4 and U/ThO8 polyhedra undergoes a dramatic modification 

(Figure 4.1a-b). The reidite-type structure consists of two intercalated diamond 

lattice sites, one occupied with U and/or Th and the other with Si. They are 

coordinated with eight and four oxygen atoms, forming U/ThO8-dodecahedra 

and SiO4-tetrahedra, respectively. However, the two polymorphs show striking 

dissimilarities in the array of U/ThO8-dodecahedra and their nearest 

neighbour Si-tetrahedra. In zircon phase, we find both edge and corner sharing 

between the two types of cationic polyhedra, forming a compact tetragonal cell. 

In contrast, their high-pressure phase (reidite-type) display only corner 

sharing between neighbouring actinide polyhedra and SiO4 tetrahedra (Figure 

4.1). The calculated values of lattice parameters, c/a ratios and unit-cell 
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volumes are presented in Table-4.1 and compared with previous theoretical 

and experimental studies. For coffinite, we obtain a = 7.0303 Å and c = 6.2872 

Å, showing an excellent agreement (within 0.5% to 0.65%) with the reported 

values from computational study of Bauer et al.[15] and experimental 

studies[15,21–23]. For the thorite end member also, our results (a = 7.1839 Å  

Phase 
(Sp. Gr.) 

x a 
(Å) 

c 
(Å) 

c/a Volume 
(Å3) 

Bulk Modulus 
(GPa) 

Transition 
Pressure 
 (GPa) 

 
 
 
 
 
 
 
 
 
 

Zircon 
(I41/amd) 

 
 
 

0.00 

7.0303 
7.0135[21] 
6.981[19] 

6.9862[15] 
6.9842[22] 

6.9904[24] 

6.9936[14] 

6.2872 
6.2669[21] 
6.250[19] 

6.2610[15] 
6.2606[22] 

6.2610[24] 

6.2614[14] 

0.8942 310.75 
- 
- 

305.58[15] 

305.38[22] 

305.94[24] 

- 

181.30 
- 
- 

181[15] 

- 
- 

188[14] 

- 

0.25 7.0758 
7.0105[22] 

7.007[19] 

6.2997 
6.2680[22] 

6.275[19] 

0.8904 315.41 
308.06[22] 

174.49 
- 

- 
- 

0.50 7.1181 
7.039 [19] 

6.3180 
6.294[19] 

0.8876 320.11 167.57 - 

 
0.75 

7.1553 
7.0949[22] 

7.071[19] 

6.3320 
6.3194[22] 

6.314[19] 

0.8849 324.19 
318.10[22] 

173.60 
- 

- 
- 

 
 
 

1.00 

7.1839 
7.1816[22] 

7.1568[24] 
7.133[28] 

7.1439[27] 

7.129[30] 

7.128[19] 
7.1328 [52] 

6.3511 
6.2946[22] 

6.3152[24] 
6.319[28] 

6.3183[27] 

6.319[30] 

6.314[19] 

6.3188[52] 

0.8841 327.75 
324.66[22] 

323.46[24] 
- 

322.46[27] 

321.15[30] 

- 

 321.48[52] 

178.20 
- 
- 
- 
- 
- 

- 

 
 
 

Reidite 
(I41/a) 

 
0.00 

4.9794 
4.9502[15] 

4.8654[14] 

11.2318 
11.0750[15

] 

11.0316[14

] 

2.2557 278.49 
271.39[15] 

261.14[14] 

239.05 
212[15] 

274[14] 

8.52 
15[15] 

14-17[14] 

0.25 4.9915 11.3389 2.2717 282.51 233.60 7.67 
0.50 5.0053 11.4308 2.2837 286.18 230.00 6.82 
0.75 5.0157 11.5241 2.2976 289.92 227.30 7.92 
1.00 5.0251 11.6072 2.3099 293.10 225.64 8.68 

Table 4.1: Optimized lattice parameters, c/a ratios, volumes of unit cells and bulk moduli for U1-

xThxSiO4 solid solutions in both ambient pressure zircon phase and its high pressure polymorphic 
phase viz reidite. 
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and c = 6.3511 Å) hold a good match with the experimental data[22], showing 

a negligible difference (0.02%). They are also in consistent with the theoretical 

results of Shein et al.[28] and other experimental results [19,22,24,27,30,52]. 

The present calculations for the reidite-type phase of coffinite yield cell 

parameters: a= 4.9794 Å and c= 11.2318 Å, closely tracking (~ 0.58%) 

experimental results of synchrotron powder diffraction by Bauer et al.[15]. We 

predict for the first time the lattice parameters of the high-pressure polymorph 

of Thorite: a = 5.0251 Å, c = 11.6072 Å. 

Considering the overestimation of GGA formalism, the results presented 

above suggest that the calculated cell parameters for U-Th solid solution 

phases and their high pressure polymorphs would remain valid, even the 

results could not be verified due to lack of experimental data. Figure 4.2 shows 

the variation of unit cell volumes and c/a ratio normalized for members of each 

phases with respect to the corresponding values of coffinite and its high-

pressure reidite polymorph, respectively. Due to their homologous topology, the 

incorporation of Th by substituting U enforces a linear increase in volume for 

both the phases, consistent with the Vegard’s law. These increments of volumes 

are expected as the atomic radius of Th (0.24 nm) is a little larger than that of 

U (0.23 nm). In particular, the small difference between there atomic radii is 

chemically desirable aiding to the tolerance of the crystal structure for mixing 

ions of different sizes in each site and the genesis of the silicate solid solution. 

On another note, substitution between U and Th preserves the composite 

electrical neutrality of the crystalline aggregate and is commensurate with the 

local charge balance through their coordination environment in their 
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crystallographic site. Having said that, the manner of facilitating the volume 

expansion is markedly distinct for different phases appearing as obvious from 

the variation of c/a ratio (Figure 4.2). The reidite-type phase undergoes a 

monotonic gain in c/a whereas the zircon-type phase exhibits a completely 

antipodal behaviour. This result provide reinforcement to the finding of Dutta 

et. al.[50] who showed that the reidite demonstrates a greater compressibility 

along c-axis compared to a-axis and vice versa in zircon phases. Our analysis 

confirms that the increment along a(c) is more administrative in volume 

change in zircon (reidite) -type phase.  

Figure 4.2: Variation of c/a ratio and unit cell volume of U1-xThxSiO4 in both zircon and reidite 
type phases, where x = Th/(U+Th). For a better comparison all the c/a ratios and volumes have 
been normalized with respect to the corresponding values of USiO4 member of the corresponding 
phase. Notice the distinct nature of undergoing volume change in different phases: c/a increment 
in reidite and opposite in zircon. 
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4.4 Characteristics of the phase transition 

I have theoretically investigated the effect of hydrostatic pressure on the 

unit-cell volumes of U1-xThxSiO4 solid solutions in both zircon- and reidite-type 

phases as a function of U/Th ratio. To obtain the critical hydrostatic pressure 

for zircon- to reidite-type structural transformation, I have used the formalism 

of enthalpy crossover of the two phases for a given U/Th ratio of the solid 

solution. The entire exercise has been performed with the ground state 

enthalpies of the structures at T = 0 K. The pressure-homologue rule[53] 

suggests that the phase with larger cations undergoes structural transition at 

lower pressures, as compared to those with smaller cations. According to this 

rule, the transition pressure (pt) for ThSiO4 should be lower than that of USiO4. 

However, the results predict that pt for the end-member phases hardly differs 

from one another.  The calculations also reveal an atypical variation of pt with 

the radionuclide U and Th concentration (Figure 4.3). The calculated transition 

pressure 8.52 GPa for the U-endmember (Table 4.1) decreases to 7.67 GPa as 

25 at% of U is replaced by Th. The transition pressure then drops to attain a 

minimum value of 6.82 GPa when Th and U occur in equal concentration. 

Further increment of Th reverses the trend of transition pressure variation to 

reach a value of 8.68 GPa for ThSiO4 phase, which is comparable to that for 

USiO4 phase. The pressure transmitting media chosen in experiments by 

Zhang et al.[14] and Bauer et al.[15] are (16/3/1) methanol/ethanol/water 

mixture and neon, respectively. Methanol/ethanol/water mixture exhibits signs 

of nonhydrostacicity at 10-11 GPa, whereas neon does the same at 15 GPa [54]. 

Close to these pressure ranges and beyond it, the media lose their ideal fluid 
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behavior, and start to support shear stress in developing non-hydrostaticity. 

This non-hydeostatic response might be the reason behind the apparent 

disagreement between results of Zhang et al.[14] and Bauer et al.[15]. My 

theoretical value of the transition pressure differs from the experimental 

results of Bauer et al.[15] and Zhang et al.[14] mainly due to two reasons. All 

the calculations are performed at T= 0 K, whereas their experiments were 

carried out at room temperatures (T > 0 K). The non-zero temperature 

condition can lead to a significant increase of the transition pressure, as 

predicted from the positive Clapeyron-slope for a similar phase transition in 

pure ZrSiO4. The coffinite sample used by Zhang et al. for in-situ X-ray 

Figure 4.3: Variation of Zircon→reidite type transition pressure of U1-xThxSiO4, x = Th/(U+Th). 
The transition pressure for end members of this stoichiometric spectrum are almost equal (~ 8.6 
GPa). The lines are guide to the eye. The transition pressure attains a minimum when the 
concentrations of U and Th are equal.  

 



Chapter 4 

94 
 

diffraction and IR measurements contained 5-10 wt% of UO2 mixed with 

coffinite. The presence of such impurity might also influence the transition 

pressure to become different from our calculated value for pure USiO4. It is 

noteworthy that the zircon-reidite phase transition pressure of pure ZrSiO4 

obtained from DFT calculations differs substantially from static pressure and 

shock-wave compression experiments. Timms et al. [55] have provided a 

detailed discussion on this issue. Experimental observations suggest that this 

transition is kinetically sluggish. Hence, the difference in experimental and 

theoretical results can be a consequence of the kinetic effects and the associated 

barrier with it[40]. Coffinite and its high-pressure polymorph are isomorphic 

to zircon and reidite phases, respectively.  I thus consider similar effects to be 

responsible for the underestimation of transition pressure in my theoretical 

calculations. However, the calculated pt for ThSiO4 is consistent with the result 

obtained from the force field study of Bose et al.[16], who predicted pt > 3 GPa. 

 Fitting the E-V curve of coffinite with the third order Birch-Murnaghan 

equation of states yields a bulk modulus of 181.3 GPa, holding an excellent 

agreement with previous experimental values; 188 GPa[14] and 181 GPa[15]. 

To the best of my knowledge, the bulk moduli of the Th-end member and other 

intermediate members of reidite type phases are not reported elsewhere. The 

theoretical results presented in Table-4.1 show a monotonic decrease in the 

bulk moduli of the reidite-type phases with increasing Th content. The zircon-

type phases display distinctly different variations of their bulk moduli with 

U/Th concentrations. Their endmembers have comparable values of the bulk 

moduli (181.3 GPa for USiO4 and 178.2 for ThSiO4). Any departure from the 
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pure phases reduces the values, where it attains a minimum (167.57 GPa) at 

Th at% = U at%. In order to validate my theoretical calculations, we compared 

the value of bulk modulus obtained for the reidite-type phase of USiO4 (239.05 

GPa) with the available experimental data  and found a fairly good agreement 

with the results of Bauer et al.[15].  

The phase transitions we discussed above involve volume collapses (ΔV), 

which are constrained within 10.38% to 10.57% (Table 4.1). ΔV is minimum for 

coffinite, and maximum for thorite. Bauer et al.[15] had reported a volume 

collapse of 11.18% for coffinite from experiments, which matches with our 

theoretical prediction. I have investigated the variation of compressibility for 

both phases with different Th concentrations (Figure 4.4). The compositional 

Figure 4.4: Compressibilities of U1-xThxSiO4, x = Th/(U+Th) in both phases. Note the existence 
of a maximum value of compressibility in U0.5Th0.5SiO4. 
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mid-member of the zircon-type phase has the highest compressibility (5.97×10-

3 GPa-1), implying that U0.50Th0.50SiO4 is the most pressure sensitive in the solid 

solution spectrum. Based on this finding, we can extrapolate that the zircon- 

type phase of this composition will behave as the most compressible phase, and 

thereby undergoes structural transition at the lowest hydrostatic pressure in 

the solid solution series (Figure 4.3). The compressibility of reidite-type phases 

is always lower than the zircon type for any given U/Th concentration. 

However, their compressibility increases monotonically with increasing Th 

content (Figure 4.4). 

4.5 Polyhedral geometry and distortion 

Both the zircon- and the reidite-type phases house U/Th atoms in 8-fold 

coordination with O atoms, forming a distorted polyhedral structure, called 

triangular dodecahedra, which is mathematically described as snub-

disphenoid. An ideal snub-disphenoid has 8 vertices (i.e. the locations of O 

atoms here) and 12 equilateral triangles as its enclosing surfaces. The lines 

between two adjacent O- atoms form 18 edges of the snub-disphenoid. It is 

noteworthy that all the vertices are not equivalent; four of them form the edge 

by assembling with four nearest neighbours, whereas the rest four with five 

nearest neighbours (Figure 4.5). We designate the two non-equivalent sets of 

four O atoms as O4-s and O5-s. In addition, another remarkable feature 

concerns heterogeneity in the type of oxygen atoms in those U/ThO8 polyhedra. 

In case of zircon-type phase, the U/Th polyhedra share an edge with the Si-

tetrahedra; the resulting edge contains two O4 atoms at its extremities, in 
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contrary to a point sharing with Si-tetrahedra, where the position is occupied 

by O5- atom. The reidite-type phase, on the other hand, lacks edge sharing, and 

does not have any constraint in respect of the preference of O-atom in different 

geometrical sites, as observed in the zircon-type phase. This phase 

accommodates the shared O-atoms as either O4 or O5. 

  A snub-disphenoid contains a unique point (X in Figure 4.5), equidistant 

from the four vertices that are connected to four nearest neighbor vertices 

occupied by O4 atoms. Let the distance between X and O4 be 𝑙𝑙4.  Similarly, X is 

also equidistant from the remaining four vertices connected to five nearest 

neighbor vertices occupied by O5 atoms.  Consider their length as  𝑙𝑙5.  The two 

lengths are characteristically unequal (𝑙𝑙4 ≠  𝑙𝑙5).  These types of atomic 

configurations are distinguished based on a purely geometrical consideration, 

which is necessary to form the edges of snub-disphenoid, not to be confused 

with an electronic correspondence to bond formation.  To quantify the 

longitudinal and angular distortions, 𝑙𝑙4, 𝑙𝑙5 and the angles formed by adjacent 

vertices at X, are considered in the cases of ideal snub-disphenoids 

isovolumetric with our calculated ones. 

4.5.1 Theoretical framework for polyhedral distortion 

Consider an ideal snub-disphenoid of unit edge length, as illustrated in 

Figure 4.5. The solutions to the coordinates of vertices are available in Wolfram 

Math library. This analysis, however, develops independently a theoretical 

scheme to obtain a geometrical solution. The theoretical treatment involves 

solving a set of four simultaneous quadratic equations for p,q,r and s; obtained 
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from equating the algebraic expression of each edge lengths to 1. In total, we 

have 8 equations, albeit 4 of them being redundant for solving; but these 

provide an aid to verify the solutions. The solutions for p, q, r and s obtained 

from our calculations follow: 

                                                  p ≈ 0.64458, q ≈ 0.57837,  

                                                  r ≈ 0.98949 and s ≈ 1.56786.  

    To find the coordinate of X, required to calculate the ideal bond length, 

the theoretical treatment adopts the Nelder-Mead optimization scheme, which 

evaluates the coordinates of the centre treating the sum of distances of the 

vertices from X to converge to a global minimum. Using this operation we 

obtain the coordinates of  X as (0, 0, ~ 0.78393), and 𝑙𝑙4 ≈ 0.929809 𝑎𝑎𝑎𝑎𝑎𝑎  𝑙𝑙5 ≈

 

 Figure 4.5: Distribution of coordinates of vertices of an ideal snub-disphenoid of unit edge length. 
The origin lies at the midpoint of the bottom edge, as evident from the chosen coordinates of the 
vertices. The red point (X) inside is the special point as discussed above. The vertices with p and q 
in their coordinates are the position of O5 and the rest are the position of O4. The different type of 
bond angles that can occur with different multiplicities are also shown as α, β and γ.  
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0.676568.  An introspection of this analysis provides a further insight into the 

polyhedral geometry. the z-coordinate of X is s/2 and/or (p+r)/2.  The problem 

of finding the coordinates of vertices and of the special point for an ideal snub-

disphenoid with edge length a, then reduces to a scaling problem. The 

prescription is to multiply p, q, r, s and the coordinate of the special point by 

the factor, a. The ideal edge length of a snub-disphenoid can be calculated from 

its volume via the relation 

                                                    𝑎𝑎 ≈  � 𝑉𝑉
0.8594937

�
1
3                                                      (4.1) 

   The same approach can be followed to find different sets of 𝑙𝑙4 and 𝑙𝑙5 for ideal 

snub-disphenoids of varying volumes. Strikingly, the  𝑙𝑙4 to 𝑙𝑙5 ratio remains a 

constant, L (≈ 1.374302), irrespective of the ideal snub-disphenoid’s volume. A 

similar ratio can be found for distorted U or Th snub-disphenoids, expressed as 

𝑙𝑙𝑈𝑈 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑇𝑇ℎ, respectively. The deviation of 𝑙𝑙𝑈𝑈 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑇𝑇ℎ from L can be treated as a 

measure of distortion of the polyhedra under study. We can define the following 

factors,   

                                            𝛿𝛿𝑈𝑈 =  (𝑙𝑙𝑈𝑈 − 𝐿𝐿)2    𝑎𝑎𝑎𝑎𝑎𝑎  

                                                𝛿𝛿𝑇𝑇ℎ =  (𝑙𝑙𝑇𝑇ℎ − 𝐿𝐿)2                                                                 (4.2) 

   to quantify longitudinal distortions of U and Th-polyhedra, respectively.   

    Now we will deal with an analysis of the polyhedral angles. It is 

necessary to clarify in the beginning that only those angles formed by any two 

adjacent vertices at X should be treated as bond angles, so that the edges of the 

snub-disphenoid lies opposite to the angle under consideration. Since the 
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vertices are of two kinds, the adjacent vertices may or may not be of the same 

kind. Their contrasting configurations can give rise to three geometrically and 

numerically distinct angles with  multiplicity of 2, 4 and 12 respectively:𝑂𝑂4 −

𝑋𝑋 − 𝑂𝑂4(𝛼𝛼),𝑂𝑂5 − 𝑋𝑋 − 𝑂𝑂5(𝛽𝛽)  𝑎𝑎𝑎𝑎𝑎𝑎  𝑂𝑂4 − 𝑋𝑋 − 𝑂𝑂5(𝛾𝛾). For ideal cases, we find that 𝛼𝛼 =

65.061° ,𝛽𝛽 = 95.297° 𝑎𝑎𝑎𝑎𝑎𝑎  𝛾𝛾 = 75.158° from the laws of cosines. Therefore, we 

can consider three different sample angular variances 𝜎𝜎𝛼𝛼2, 𝜎𝜎𝛽𝛽 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝛾𝛾2 or their 

sum 𝜎𝜎2, and express them as, 

                                            𝜎𝜎𝛼𝛼2 =  ∑  2
𝑖𝑖=1 (𝛼𝛼𝑖𝑖 − 65.061)2 

                                          𝜎𝜎𝛽𝛽2 =  1
3
∑  4
𝑗𝑗=1 �𝛽𝛽𝑗𝑗 − 95.297�

2 

𝜎𝜎𝛾𝛾2 =  
1

11
�  
12

𝑘𝑘=1

(𝛾𝛾𝑘𝑘 − 75.158)2 

          And, finally           𝜎𝜎2 =  𝜎𝜎𝛼𝛼2 +  𝜎𝜎𝛽𝛽 2 +  𝜎𝜎𝛾𝛾2   (4.3) 

which will serve as the measure of the total angular distortion. 

4.6 U/ThO8 polyhedral distortions 

 An ideal regular polyhedron always contains a unique point inside, 

equidistant from the vertices. This point represents the position of a cation in 

the polyhedron, whereas the vertices serve as the positions of anions or the 

central atoms of ligands. For an ideal regular polyhedron, the distance between 

this unique point and the vertices defines a longitudinally unique bond. Such 

a regular arrangement gives rise to a unique angle formed at the centre by any 

two adjacent vertices in an undistorted polyhedron. This angle can be treated 

as ideal bond angle. Polyhedral  distortions are then quantified in terms of the 
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ideal bond length and bond angles formed at the centre[37].  But it has been 

observed that, even ideal, but irregular polyhedra can have varying centre to 

vertex lengths. Thus, different bond lengths and bond angles are found to occur 

with varying multiplicity. Consequently, the existing methods employed in 

estimating the polyhedral distortions are untenable. This kind of geometrical 

complexity occurs in many crystalline phases. For example, actinide cantered 

eight-fold coordination polyhedra with snub-disphenoidal shape can be found 

in various  types of structural symmetry, such as, Monoclinic- Monazite, 

CuTh2(PO4)2[56]; Trigonal- Dugganite[57]; Orthorhombic- Vitusite and 

CaU(PO4)2[58]; zircon, reidite, wolframite and fargusonite phases; Hexagonal- 

Rabdophane group of minerals. An analysis of the geometrical peculiarity of 

snub-disphenoids thus merits a discussion to obtain new structural insights. 

In this study, I have dealt with the perplexing geometry of U-Th polyhedra in 

zircon- and reidite-type phases which display an irregular geometry as well as 

distorted shapes. Here I developed a novel approach for the geometrical 

analysis of a non-ideal snub-disphenoid. Two physical parameters are 

accounted to quantify the distortion. The distortion analysis enables us to 

interpret the transition from zircon- to reidite-type phases of uranothorite. 

The discussion explains how co-ordination geometry is responsible for 

the evolution of two types of U/Th-O bonds with varying lengths, each with 

multiplicity 4. In the foregoing description each O atoms will be designated as 

O4 and O5 to express their unique positions (the type of vertices they occupy) 

in the polyhedra (Figure 4.5). Table-4.2 summarizes the calculated bond 

lengths, providing their comparison with the available data in literature.  The 
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U-O4 and U-O5 bond-lengths for coffinite (2.438 and 2.311 Å) are within 0.8% of

the values estimated from both the synchrotron powder measurement and 

DFT+U study of Bauer et.al[15].  These bond lengths are also in excellent 

agreement with the EXAFS measurements of Labs et al.[22] (2.439 and 2.298 

Å, i.e. within 0.5%).  

For the zircon-type ThSiO4, the present calculations yield  Th-O5 bond 

length to be 2.469 Å, which closely tracks the results of Fuchs and Gebert[19] 

(2.47 Å) and Labs et al.[22] (2.467 Å). The shorter bond length (2.384 Å) slightly 

differs from the previous results of Fuchs and Gebert[19] and Labs et al.[22]. 

In zircon type phase the U/Th-O4 bond lengths are not much sensitive to the 

stoichiometric exchange between U and Th. But, U/Th-O5 bond lengths show a 

monotonic increase on increasing Th-content, and this factor plays the key role 

in volume expansion while substituting Th in place of U. In case of the high 

Phase x U-04 (Å) U-O5 (Å) Th-04 (Å) Th-O5 (Å)           Si-O(m) (Å) 

Zircon 

0.00 2.438 
 2.418[15] 
2.439[22] 

2.311 
 2.310[15] 
2.298[22] 

- - 1.647(4) 

0.25 2.440 2.324 2.465 2.347 1.660(2),1.635(2) 
0.50 2.438 2.342 2.469 2.362 1.651(2),1.647(2) 
0.75 2.442 2.357 2.464 2.374 1.655(2),1.647(2) 
1.00 - - 2.469 

2.467[22] 

2.47[52] 

2.384 
2.363[22] 

2.37[52] 

1.650(4) 

Reidite 

0.00 2.424 
2.4304[15] 
2.474[16] 

2.344 
2.389515] 
2.328[16] 

- - 1.660(4) 

0.25 2.421 2.349 2.479 2.385 1.665(2),1.656(2) 
0.50 2.412 2.354 2.476 2.391 1.667(2),1.658(2) 
0.75 2.441 2.359 2.483 2.393 1.662(2),1.657(2) 
1.00 - - 2.487 2.394 1.659(4) 

Table-4.2. Calculated bond lengths of U1-xThxSiO4 in both zircon and reidite phases with 

varying U and Th percentage. The bracket in the last columns succeeding the data is the 

multiplicity of that bond. 
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pressure polymorph of USiO4, the longer U-O4 bond is appreciably closer to the 

DFT+U result of Bauer et al.[15] and the force-field calculation of Bose 

et.al[16]. The shorter U-O5 bond length (2.344 Å) is within 1.8 % of the reported 

values of the earlier studies mentioned above. In contrast to the zircon type, 

the reidite type phase show similar variations, albeit little, of both the bonds 

on stoichiometric exchange between U and Th (Table-4.2). The relatively open 

unit cell of reidite phases permits them to accommodate Th in place of U as it 

does not involve any significant changes in the polyhedral volume and the 

corresponding bond lengths. The SiO4 tetrahedra, being more rigid than the U-

Th polyhedra, do not undergo significant geometrical modifications, leaving Si-

O bond lengths virtually intact (1.635 Å to 1.667 Å). This finding is 

commensurate with the previous studies[15,22]. In Figure 4.2 I have shown an 

inverse relation of the c/a ratio with Th content; the relation is opposite for the 

unit cell volume of zircon type phases.  

I emphasize that, as the U/Th-O5 bonds lie almost parallel to a and b-

axes their length increments have the most effects on increase of the lattice 

parameters along a and b-axes. On the other hand, the U-O4 bonds have little 

influence on the lattice parameter along c. Such contrasting effects of the two 

types of bonds explain the inverse relation of c/a with Th content in zircon-

type phases. We can also find that the U/Th-O4 bond length does not 

significantly change because the O4 atoms form the edge, shared by both the 

U/Th and Si-polyhedra. This edge sharing gives rise to a strong connection 

between the U/Th or Si atoms and O atoms. In contrast, O5 atoms form corner 

sharing between U/Th polyhedra and Si-tetrahedra, and thereby develop, 
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comparatively weaker connections, allowing relatively larger changes in the 

U/Th-O5 bond lengths (See Fig. 4.1). The reidite type phases do not show any 

preferred orientation of the atomic bonds with respect to the unit cell axes. 

Both the U/Th-O4 and -O5 bonds increase their lengths with volume increment, 

associated with enhancement of c/a ratios with increasing Th content. 

 Table-4.3 summarizes the calculated values of 𝛿𝛿𝑈𝑈, 𝛿𝛿𝑇𝑇ℎ,𝜎𝜎𝑈𝑈2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑇𝑇ℎ2 , as 

defined in Eqn. 4.2 and 4.3. This analysis confirms that elemental interchange 

between U and Th has a dramatic effect on the distortion parameters of the 

polyhedra, which enables us to explain why the phase transition pressure (pt) 

drops down to a minimum at U/Th = 1 (Figure 4.3).  The variations of these 

parameters with Th concentration in the unit cell is demonstrated in Figure 

4.6. The bond length distortions, δU and δTh for the zircon-type phases hold 

positive relations with Th concentration. But, for the reidite-type phases, they 

increase to attain a maximum value at U/Th = 1, and then decline with further 

increase of Th.  Interestingly, the presence of such criticality occurs exactly at 

U/Th = 1 for both δU and δTh regressions for the reidite type phases. The 

Phase x δU δTh σU
2 (deg2) σTh

2 (deg2) 
 
 

Zircon 

0 0.10198 - 37.982 - 
0.25 0.10523 0.10497 40.007 38.555 
0.50 0.11110 0.10824 46.984 41.707 
0.75 0.11441 0.11316 42.226 40.923 
1.00 - 0.11468 - 37.732 

 
 

Reidite 

0.00 0.11572 - 128.891 - 
0.25 0.11810 0.11215 115.069 86.555 
0.50 0.12226 0.11475 94.471 76.962 
0.75 0.11523 0.11336 104.038 82.762 
1.00 - 0.11253 - 91.937 

Table-4.3: Distortions of bond lengths and bond angles of U and Th snub-disphenoids in 
compositionally different zircon type structures of U1-xThxSiO4 and in their corresponding reidite 
phase. The subscript in the name of the parameters in heading refers to actinide atomic species at 
the point X inside the snub-disphenoid as shown in Fig. 4.5. 
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corresponding values follow:  δU = 0.12223 and δTh = 0.11478. The angular 

distortion of U-O bonds, 𝜎𝜎𝑈𝑈2, in the reidite-type phase forms a minimum (94.471 

deg2) at U/Th =1, which exactly coincides with the point of maximum (46.984 

deg2) in the regression for the zircon type (Figure 4.6a). A similar, although 

quantitatively different, trend is observed in cases of angular distortion of ThO8 

polyhedra, represented by 𝜎𝜎𝑇𝑇ℎ2 (Figure 4.6b). The variation 𝜎𝜎𝑈𝑈2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑇𝑇ℎ2 are also 

characterized by an indicative maximum (minimum) limit in zircon (reidite)- 

type phases. Evidently, the numerical values of these limits of bond length and 

angular distortions these phases accommodate, depend entirely on the 

competing amount of constituent actinides. With elevation in the hydrostatic 

pressure these zircon type phases have a tendency to reorient and reorganize 

the polyhedral structures, and to overcome the corresponding difference in 

distortions. It is evident from Figure 4.6, the difference in 𝜎𝜎𝑈𝑈2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑇𝑇ℎ2  between 

zircon and reidite type phases becomes minimum when U and Th percentage 

are equal. Therefore, the zircon to reidite-type phase transition occurs at a 

minimum hydrostatic pressure (6.82 GPa) for the phase with the unique 

chemical composition: U0.5Th0.5SiO4. A departure from this unique composition, 

by either a gain or a loss of Th or U, would widen the gap between 𝜎𝜎𝑈𝑈2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑇𝑇ℎ2 , 

which acts as a barrier to the structural transition, and requires higher 

pressures to overcome this barrier. These phase transitions involve a 

reconstructive mechanism in which the triangular dodecahedra break their 

bonds and reorganize them into another new dodecahedra in the high-pressure 

phase. This process proceeds through an intermediate transient cubic phase as 

demonstrated by Smirnov et al.[59]. This theoretical investigation predicts that  
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Figure 4.6: Variation of polyhedral distortions of a. Uranium-snub disphenoid, b. Thorium-snub 
disphenoid in zircon and reidite-type U1-xThxSiO4 with respect to x = Th/(U+Th) i.e. with normalized 
Th concentration. Distortions are quantified in terms of bond angle variance (σ2) and bond length ratio 
contrast (δ). 
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the geometrical difference between the distorted snub-disphenoidal form.s in 

the two states turn to be minimum when U/Th = 1 and facilitates the 

reconstructive phase transition to occur at the lowest pressure. 

 Figure 4.7 provides a quantitative description to show how 𝛿𝛿𝑈𝑈 and 𝛿𝛿𝑇𝑇ℎ 

can vary with hydrostatic stresses in the zircon type phases. Both 𝛿𝛿𝑈𝑈 and 𝛿𝛿𝑇𝑇ℎ 

hold inverse relations with pressure. However, it is quite interesting to note 

that 𝛿𝛿𝑈𝑈 for USiO4 is the lowest in ambient condition, and it increases as more 

and more Th is substituted in place of U, suggesting that the larger element 

Th partly controls the deformation behaviour of U-polyhedra. In case of Th-

polyhedra, 𝛿𝛿𝑇𝑇ℎ is maximum for pure ThSiO4, and the degree of distortion is 

    

Figure 4.7: The pressure dependent variation of δ for both U and Th-polyhedra. The blue lines 
and symbols are for Uranium and the red lines and symbols are for Thorium. The x in legend 
stands for x = Th/(U+Th) like the previous cases. Hence, the square symbols characterize the 
pure U endmember USiO4 (red) and pure Th endmember (blue) ThSiO4 of U1-xThxSiO4 series. 
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reduced with substitution of Th with U in the solid solution phases.  In 

summary, elemental Th has larger influence on the polyhedral distortion than 

elemental U. This analysis reveals that pressure-sensitivity of both 𝛿𝛿𝑈𝑈 and 𝛿𝛿𝑇𝑇ℎ 

drops with increasing pressure. The lower values of 𝛿𝛿𝑈𝑈 and 𝛿𝛿𝑇𝑇ℎ at high 

pressures suggest that hydrostatic pressures counter to the inherent 

polyhedral distortions, and facilitate the polyhedra to achieve an ideal 

structure. At the high pressure regime (beyond 8 GPa) the average  pressure 

derivative  for 𝛿𝛿𝑈𝑈, i.e. ∆𝛿𝛿𝑈𝑈
∆𝑃𝑃

 in USiO4 and 𝛿𝛿𝑇𝑇ℎ in ThSiO4, i.e. ∆𝛿𝛿𝑇𝑇ℎ
∆𝑃𝑃

 are found to be 

1.265×10-3 GPa-1 and  1.324×10-3 GPa-1, respectively. 

I have similarly analyzed the polyhedral distortion for the reidite-type 

phases as a function of hydrostatic pressure. The distortion parameters, 𝛿𝛿𝑈𝑈 and 

𝛿𝛿𝑇𝑇ℎ exhibit similar pressure-dependent behavior; however, they vary with 

pressure at much lower slopes, compared to that observed in zircon phases. 

According to calculations, an ideal geometry of snub-disphenoid (𝛿𝛿𝑈𝑈 = 0 and 𝛿𝛿𝑇𝑇ℎ 

= 0) is possible in reidite type phase at a much higher pressure. Secondly, 

𝛿𝛿𝑈𝑈 and 𝛿𝛿𝑇𝑇ℎ for reidite-type phases are not strongly sensitive to Th content in 

the solid solution. The absence of edge sharing between the U/Th-polyhedra 

and Si-tetrahedra and the presence of large amount of empty spaces in the 

conventional unit cell of reidite phases allows the polyhedra to minimize the 

distortion, and attain a more ideal shape.  

Based on the results and discussion presented above, we now offer an 

outlook of this study. Many materials undergo sequential phase transitions 

under hydrostatic pressure, e.g., zircon→reidite or reidite→wolframite or 
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reidite→fergusonite [50,59–64] . In these transitions the AO8 (A = any cation) 

polyhedra retain their geometrical shape. Some of the previous studies 

reported a unique A-O bond length[28]. But our study reveals that the 

occurrence of such a unique bond length in an AO8 polyhedron is not possible 

due to the geometrical constraint of the polyhedron itself. On the other hand, 

several other studies  [15, 22, 40, 51, 52, 58, 59, 62, 64] have reported one short 

and one longer A-O bond, but without providing any fundamental explanation 

for such contrasting bond lengths. The present polyhedral analysis provides a 

concrete mathematical basis of the two types of bonds, and correlates them 

with the existence of two distinct types of vertices, occupied by O atoms. The 

bond lengths are observed to demonstrate a unique ratio (A-O4 / A-O5 ≈ 

1.374302), irrespective of the volumes of the polyhedra in ideal geometry. In 

addition, my analysis explains why the two types of bonds occur with a 

multiplicity of four. We believe that revisiting the zircon, reidite/scheelite, 

wolframite, fergusonite and other structures with similar kind of actinide 

polyhedra can give rise to newer insights into the dynamics of phase transition 

in terms of polyhedral distortions.  

4.7 Highlights of the results 

Using DFT calculations this study provides a comprehensive analysis of the 

pressure induced zircon- to reidite-type phase transition of U1-xThxSiO4 (x= 0 

to 1 in steps of 0.25) solid solution. The analysis shows that the phase transition 

pressure varies nonlinearly with increasing Th content in the solid solution to 

attain a minimum value of 6.82 GPa for x = 0.5. The calculations presented 
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here also offer an estimate of the compressibility of solid solution phases in 

both ambient and high-pressure conditions. The compressibility of zircon type 

U0.5Th0.5SiO4 phase is found to be maximum (5.97×10-3 GPa-1), implying it as 

the most pressure sensitive (soft) phase. This work theoretically predicts the 

structural parameters of the reidite-type polymorphs of the solid solutions, and 

also enumerates their mechanical properties.  

The present study provides a new interpretation of the phase transition 

pressure (pt) of U1-xThxSiO4, accounting the effects of U/ThO8 polyhedral 

distortion in the cell structures, and also develops a novel approach to the 

analysis of the polyhedral distortions of triangular dodecahedra (snub-

disphenoids).  The following two parameters (δ and σ2) have been defined to 

express the longitudinal and angular distortions of highly irregular U/ThO8-

triangular dodecahedra. The distortion analysis brings out two kinds of 

geometrically distinct vertices of the triangular dodecahedra, occupied by 

oxygen atoms, which explains the occurrence of two types of U/Th-O bonds 

(U/Th-O4 and U/Th-O5) with contrasting lengths. The bond length ratio (U-

O4/U-O5 and Th-O4/Th-O5) remains constant (~1.374302), irrespective of the 

triangular dodecahedral volume. It is worthwhile to note that this theoretical 

framework to quantify the polyhedral distortions of U/Th-snub disphenoids is 

based entirely on geometrical considerations. The distortions parameters, δ 

and σ2 are independent to the elements occupying the snub-disphenoid space. 

Also, they are defined without any attribute to external parameters.  Thus, we 

expect that the parameters: δ and σ2 can be used to calculate the distortion of 

similar AB8-type snub-disphenoid in other crystalline phases. The calculations 
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indicate that the difference in angular distortions (𝜎𝜎𝑈𝑈2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑇𝑇ℎ2 ) between the 

zircon- and reidite-type phases becomes minimum when U and Th occur 

equally in the solid solution. This study also confirms the highest 

compressibility of the zircon type phase for U0.5Th0.5SiO4. The concurrence of 

minima of transition pressure and the difference in σ2 indicates that the 

polyhedral distortion plays a critical role in dictating the zircon- to reidite-type 

transition. 
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CHAPTER 

 5 
Silicates-II: Titanite (CaTiSiO5)

5.1 Introduction 

Titanite is a multifunctional nesosilicate phase[1], well known as a 

versatile host for rare earth elements (REE)[2–5], and also widely used as U-

Pb geochronometer for dating geological events[6]. This crystalline phase, rich 

in TiO2 content, is a demanding material owing to its applications for 

developing strategic matrices for nuclear waste disposal, which is currently a 

challenging and intriguing field of research[2,4]. Various properties of single-

crystal titanite have been investigated in ambient and high-pressure 

environments with high-end laboratory techniques, such as DAC (diamond 

anvil cell) and multi anvil experiments[7–13]. Salje et al.[14] showed the 

softening of shear modulus through annealing in a radiation damaged titanite 

sample. Their estimate of the bulk modulus is found to be much lower than 

that of Angel et al.[15]. However, the literature lacks any reliable experimental
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 or theoretical data for the 2nd order elastic constants of titanite, which are the 

pre-requisite mechanical parameters in order to explore the viability of this 

crystalline phase in extreme industrial applications. My present study provides 

an account of the structural morphology and the physical properties of titanite 

phases (P21/c and C2/c) at elevated pressures, and offers an insight into the 

structural dependence of their elastic properties. The structural analysis 

evaluates the relative rotation of different atomic bonds and subsequent 

changes in the alignment of their corresponding polyhedra under imposed 

strains. 

Elasticity is a remarkable macroscopic mechanical property of solids, 

which can be used to study a wide range of atomic scale phenomena, such as 

lattice instability, spin transitions, lattice dynamics and phonon 

instability[16–18]. An enormous volume of the existing literature deals with 

the elasticity of crystalline phases, but mostly as positive quantities[19–23]. 

Despite a number of existing continuum models[24–27], the elasticity as a 

negative quantity is still an enigma because the underlying atomic scale 

physics for such an unusual mechanical behaviour has remained unexplored. 

Experimental studies suggest that crystalline materials of low as well as high 

symmetry structures may have negative elastic constants, implying that the 

negative elasticity is not a direct consequence of the crystal symmetry[28,29]. 

Although the reports on the negative elastic constants are scanty, experimental 

investigations performed on high symmetry cubic phases confirm the existence 

of this exceptional mechanical behaviour of solids[28–31]. The first principles 

calculations in this chapter predict the negative component (C36) of the elastic 
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constant tensor (Cij) of C2/c titanite, which, to the best of my knowledge, is 

reported for the first time. The present thesis aims to provide an atomic level 

basis of such negative elastic behaviour, taking into account the rotational 

bond kinematics under a given strain to the crystal.  

A recent study by Malcherek and Fischer[32] has compared the phonon 

dispersions of P21/c and C2/c phases of titanite (CaTiSiO5) and mayalite 

(CaSnSiO5), showing negative acoustic branches in C2/c titanite phase along 

the direction [001].  They have proposed that P21/c titanite can be obtained 

from C2/c phase by destabilizing a continuous phonon mode along [001] by 

lowering the temperature. However, high pressure behaviour of P21/c titanite 

is still absent in the literature. Secondly, despite a great demand of titanite for 

its electronic and optical properties in materials engineering, there have not 

been in-depth theoretical and experimental studies to assess these properties. 

A line of the present study predicts titanite as a semi-conductor with an 

electronic band gap of 3.2 eV. The problem motivates me also to investigate the 

anisotropic optical behaviour of this silicate phase on a frequency range 0-60 

eV. Interestingly, the findings provide a new insight into the applicability of 

titanite as UV-shield materials.      

5.2 Computational approach 

 First principle calculations were performed within the framework of 

DFT using the VASP5.3[33]. PAW potentials[34] provided with VASP explicitly 

treat [3p4s], [3d4s], [3s3p] and [2s2p] orbitals for Ca, Ti, Si and O as valence 

states with the core radii 1.746, 1.323, 1.312 and 0.82 Å, respectively. The 

calculations considered the revised GGA (RPBE) scheme for the exchange-
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correlation effects[35]. To account for the electron correlation of Ti d electrons 

we performed GGA+U (on-site correction for Coloumb interaction) calculations 

by incorporating the Hubbard-type term in the density functional following the 

method proposed by Dudarev et al.[36]. Therefore, Coulomb repulsion is 

considered explicitly using Ueffective = U–J, where J = 0. The U value is calculated 

self consistently with varying values ranging from 2 to 8 eV.  U is chosen to be 

4 eV as we get the optimum value of band gap with it.  All the simulations were 

carried out on 32 atom cell for both the titanite phases. The kinetic energy cut-

off was set at 1000 eV. The conjugate gradient algorithm was employed to 

perform geometrical optimization in finding the ground state electronic 

structure under the strict electronic and ionic convergence criteria of 10−6 eV 

and 10−3 eV/atom, respectively.  The sampling of the brillouin zones was 

implemented by 3x2x3 and 4x4x3 Monkhorst–Pack[37,38] k-point grids, which 

gave rise to 10 and 21 irreducible k-points. I used Phonopy[39] for lattice 

dynamical calculation with  2x2x2 supercell. The force constants were 

calculated using DFPT without constraining their symmetry and they were 

interpolated using 17x17x17 q-mesh for the full dispersion curve. Such dense 

q-mesh was required to increase the accuracy of the phonon dispersion. 

5.3 Structural analysis 

 Titanite (CaTiSiO5) crystallizes with monoclinic symmetry (space 

group: P21/c; No. 14) (Figure 5.1a) at ambient condition[9,40,41]. This phase 

undergoes structural transitions with increasing pressure as well as 

temperature. Under ambient pressure it transforms into another monoclinic 

phase with space group A2/a at a temperature of ~500 K[11,41–43]. Kunz et 
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al.[44] predicted the same transition with pressure at 6.9 GPa from DAC 

experiments. Some workers have also reported another phase transition of 

titanite, i.e., P21/c to C2/c (Figure 5.1b) phase at 487 K[11,12,42]. The same 

transition is reported at a hydrostatic pressure of ~3.5 GPa[10], and it is 

inferred to be analogous to the 825 K transition by Kunz et al.[45] from a  

powder diffraction study. Using lattice dynamics this computational study 

predicts that P21/c to C2/c transition to occur within 5 GPa. Figure 5.2 shows 

the phonon dispersion curves for P21/c phase at 0 and 5 GPa along the high 

symmetry points G–Z–B–D–G–A. The optical modes shifts towards higher 

frequency regions, whereas the acoustic modes soften to some negative values 

with increasing pressure. The phonon dispersion at 0 GPa suggest that the 

P21/c phase to be dynamically stable, but it develops a negative acoustic 

branch along G–A at 5 GPa, implying that the P21/c phase becomes 

a. P21/c b. C2/c

Figure 5.1: Monoclinic crystal structures of titanite phases: (a) P21/c, (b) C2/c. TiO6 octahedra 
share their corner oxygen atom, forming  alternate chains along a-axis in P21/c, whereas along the 
c axis in C2/c. The two sides of TiO6 octahedron are shared by edges of two distorted CaO7 
polyhedra. 
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dynamically unstable at 5 GPa. The phonon dispersion analysis is in 

agreement with previous finding of P21/c to C2/c transition at ~3.5 GPa[10].  

 Ca, Ti, Si and O atoms occupy the 4e wyckoff sites in the lattice 

structure of the monoclinic phase (P21/c). Si atoms occur in a four-fold 

coordination with O atoms to constitute SiO4 tetrahedra, which act as a 

building block of the titanite structure. Ti and Ca atoms occur in six- and seven-

fold coordination with O atoms, where the TiO6 octahedra form corner-linked 

Figure 5.2: Phonon dispersion curves for P21/c titanite phase at (a) 0 GPa and (b) 5 GPa. 
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chains along the a axis (Figure 5.1a). These octahedra are tilted in opposite 

directions alternately along the chains, sharing their edges with CaO7

polyhedra arranged in chains parallel to [101]. SiO4 tetrahedra share their 

corners with both TiO6 and CaO7 polyhedra[12,41,46]. A detailed description of 

the crystal structure can be found in Speer and Gibbs’ work[41]. The Ti atoms 

are slightly off-centred in the polyhedra arranged along the a axis at room 

temperature, which results in an anti-ferroelectric distortion pattern, but 

without any net inherent ferroelectric moment. However, the tetrahedral 

geometry remains unaffected even in the presence of any external electric field 

applied along a direction. Zhang et al. predicted that switching of Ti 

displacements is not possible in strong electric fields (at least 35 kV/cm) along 

the a direction in a temperature range of 0 to 500 K [11].  

P a b c β  Ca-O Ti-O Si-O CaO7 TiO8 SiO4 
P21/c 0 6.75771 

7.069* 

6.5723# 

8.83485 

8.722* 

8.8425# 

7.25632 

6.566* 

7.3115# 

114.4897 

113.86* 

114.495# 

2.6989 2.0695 1.6655 21.412 10.582 2.335 

1 6.72548 8.82113 7.22032 114.3361 2.6847 2.065 1.6628 21.087 10.507 2.327 

2 6.69496 8.80710 7.18687 114.1886 2.6744 2.061 1.6601 20.783 10.436 2.319 

3 6.66578 8.79334 7.15516 114.0512 2.6638 2.0568 1.6575 20.492 10.369 2.310 

4 6.63853 8.77969 7.12526 113.9189 2.6543 2.0525 1.6549 20.219 10.308 2.302 

5 6.61207 8.76615 7.09678 113.7922 2.6456 2.0483 1.6526 19.956 10.249 2.295 

C2/c 0 6.76014 

6.7629# 

8.83809 

8.8495# 

7.20586 

7.2289# 

114.2951 

114.250# 

2.6262 2.0643 1.6633 21.288 10.516 2.333 

1 6.72733 8.82342 7.18123 114.1776 2.6254 2.0602 1.6609 20.994 10.456 2.325 

2 6.69641 8.80871 7.15696 114.0673 2.6240 2.0562 1.6586 20.711 10.398 2.317 

3 6.66645 8.79471 7.13312 113.9549 2.6229 2.0521 1.6563 20.438 10.343 2.309 

4 6.63910 8.78017 7.11025 113.8518 2.6211 2.0483 1.6541 20.182 10.289 2.302 

5 6.61300 8.76644 7.08770 113.7521 2.6191 2.0445 1.6519 19.937 10.237 2.295 

*[41] 
#[32] 

Table 5.1: Pressure (GPa) dependent variation of structural parameters (a, b, c in Å, β in 
degree), average bond length (Å) and polyhedral volumes (Å3) of titanite.   
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Table 5.1 presents the pressure dependent variations of the structural 

parameters of both titanite phases (P21/c and C2/c) in the pressure (p) range 

0 to 5 GPa. The cell volume of P21/c phase reduces by ~ 4.53% at p = 5 GPa, 

whereas the lattice parameters, a, b and c, reduce by ~2.15%, 0.77%, 2.19% 

respectively, implying that the P21/c phase has the lowest compressibility 

along the b axis. The C2/c phase shows similar pressure dependent changes in 

a, b and c (~ 2.17%, 0.81% and 1.64%, respectively). However, the c axis of C2/c 

phase shows remarkably higher incompressibility than P21/c phase. I also 

evaluated polyhedral volumes as a function of p. CaO7 polyhedra undergo large 

modifications of their volume with increasing p, whereas SiO4 tetrahedra show 

much smaller pressure-induced modifications for both the titanite phases. In 

case of P21/c phase, Ca–O bond lengths (CaO7 polyhedra) reduce by ~1.97% 

(~10.06%) at p = 5 GPa, which is significantly low in the C2/c phase, ~ 0.27% 

(~ 6.34%).  

5.4 Elastic constant tensor 

The first principles calculations were performed to evaluate the second 

order elastic constant tensors (Cij) of single crystals for both the titanite phases 

(P21/c and C2/c) under hydrostatic pressures up-to 5 GPa. The elastic constant 

tensor (Cij) consists of 13 independent components: C11, C22, C33, C44, C55, C66, 

C12, C12, C23, C16, C26, C36 and C45. Figure 5.3 presents their calculated values 

as a function of p, which, to the best of my knowledge, is completely a new 

theoretical data set. Unfortunately, no experimental data are available to 

validate these findings. The P21/c phase shows increasing magnitudes of the 
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three compressional elastic constants: C11, C22 and C33 with p, where C11 and 

C33 are nearly equal in the entire range of pressure considered for our 

calculations, but C22 is always significantly higher than both C11 and C33. These 

compressional elastic constants are sensitive to p, shown by their large 

pressure derivatives (𝐶𝐶11′ = 8.16, 𝐶𝐶22′ =5.21 and 𝐶𝐶33′ = 6.75). The other elastic 

constants: C66, C12, C13, C23, C16, C26 and C45  hold positive relations with p for 

both the phases. Among them, the elastic constants: C66 and C16 have the 

steepest gradients, where the pressure derivative of C16 (𝐶𝐶16′ = 2.11) is slightly 

higher than that of C66 (𝐶𝐶66′ = 2.06). The other four constants: C12, C13, C23 and 

Figure 5.3: Calculated plots of the 2nd order single-crystal elastic constants of both P21/c (upper 
panel) and C2/c (lower panel) titanite phases as a function of hydrostatic pressure. Notice the 
negative pressure gradients of C44, C55 and C36 for both the phases (dashed lines). It is also 
noteworthy that C36 for C2/c phase exhibits negative values, where the negativity increases with 
increasing pressure. 
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C45 have lower pressure derivatives (𝐶𝐶12′ = 1.89, 𝐶𝐶13′ = 1.67, 𝐶𝐶23′ = 1.89 and 𝐶𝐶45 
′ = 

1.94). C26 is almost unaffected by pressure (𝐶𝐶26′ = 0.15). C13 is the most soft 

elastic constant of P21/c titanite phase, implying that the crystal would exhibit 

least resistance to the deformation along the a direction under a longitudinal 

strain applied in the c direction.  

The C2/c phase shows similar pressure dependent variations of the 

compressional elastic constants with p (𝐶𝐶11′ = 7.79, 𝐶𝐶22′ = 4.69 and 𝐶𝐶33′ = 2.78). C33 

shows less pressure dependent variations in C2/c than P21/c titanite phase as 

the c axis is less compressible in C2/c (Table 5.1). Among the other elastic 

constants: C66, C12, C13, C23, C16, C26 and C45, C16 appears to be the most 

pressure sensitive constant (𝐶𝐶16′ = 2.11, whereas 𝐶𝐶45′ = 1.87, 𝐶𝐶13′ = 1.67, 𝐶𝐶12′ = 1.59, 

𝐶𝐶23′ = 1.58 and 𝐶𝐶66′ = 1.29). In contrast, C26 is virtually pressure independent 

elastic constant (𝐶𝐶26′ = 0.08), as in the P21/c phase. The elastic constant tensor 

shows a large difference between C16 (32.2 GPa) and C26 (6.47 GPa), suggesting 

that the crystal would have contrasting stiffness in the a and b directions under 

a strain applied on the ab plane. It means that the titanite phase has the 

highest degree of anisotropy preferentially on the (001) plane.  

The present calculations lead to a novel finding on the elastic behaviour 

of titanite. Among its 13 elastic constants, the three elastic constants: C44, C55

and C36 show remarkably negative pressure gradients for both titanite phases. 

The crystals can, thus, undergo shear softening at elevated hydrostatic 

pressures, implying that the phase has a tendency to become mechanically 

unstable at higher p. In case of P21/c phase, we obtain the steepest negative 

gradients for C36 (𝐶𝐶36′ = -1.43), whereas the lowest for C55 (𝐶𝐶55′ = -0.56). C44 also 
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has high negative pressure derivatives (𝐶𝐶44′ = -1.03). The pressure derivatives 

of these constants for C2/c phase are: 𝐶𝐶44′ = -0.99, 𝐶𝐶55′ = -0.85 and 𝐶𝐶36′ = -0.14. It 

is noteworthy that C36 is a negative elastic constant (-16.41 GPa at static 

condition), and its magnitude decreases with increasing p. 

Let us now focus upon the physical implications of pressure induced 

shear softening behaviour of titanite phases. The pressure dependent acoustic 

mode softening is consistent with softening of C44 as its softening has indirect 

influence on the structural instability[21].  On the other hand, it should be 

noted that an elastic constant of a crystal can be positive if the energy of its 

strained state is higher than its relaxed state. The elastic constants can be 

calculated from the energy of a strained crystal by expanding it in a Taylor 

series expansion of input strain (δ) as, 

𝐸𝐸(𝑉𝑉, 𝛿𝛿) = 𝐸𝐸(𝑉𝑉0, 0) + 𝑉𝑉0 �∑ 𝜏𝜏𝑖𝑖𝛿𝛿𝑖𝑖6
𝑖𝑖=1 + 1

2
∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝛿𝛿𝑖𝑖 + Ο(𝛿𝛿3)6

𝑖𝑖=1
6
𝑖𝑖=1 � (5.1) 

where 𝐸𝐸(𝑉𝑉, 𝛿𝛿) and 𝐸𝐸(𝑉𝑉0, 0) are the energies corresponding to the strained and 

unstrained state of the crystal, respectively. Assuming the initial stress, δi = 0 

in the unstrained crystal, we can extrapolate the following relation from Eqn. 

(1), 

𝐶𝐶𝑖𝑖𝑖𝑖 ∝  ∆𝐸𝐸
𝑉𝑉0

 (5.2) 

∆E is the energy difference between the strained and unstrained states, given 

by 

 ∆𝐸𝐸 = 𝐸𝐸(𝑉𝑉, 𝛿𝛿) − 𝐸𝐸(𝑉𝑉0, 0)        (5.3) 

Now, let’s consider �𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝1 and �𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝2 are the two values of given elastic 
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constant at pressure p1 and p2, respectively, where 𝑝𝑝1 < 𝑝𝑝2. Using eqn. (2) 

we can write 

�𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝1
�𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝2

= ∆𝐸𝐸𝑝𝑝1
∆𝐸𝐸𝑝𝑝2

(𝑉𝑉0)𝑝𝑝2
(𝑉𝑉0)𝑝𝑝1

(5.4) 

As (𝑉𝑉0)𝑝𝑝1 >  (𝑉𝑉0)𝑝𝑝2 for  𝑝𝑝1 < 𝑝𝑝2, the negative pressure gradient of Cij, i.e., 

�𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝1 > �𝐶𝐶𝑖𝑖𝑖𝑖�𝑝𝑝2 demands, ∆𝐸𝐸𝑝𝑝1 >  ∆𝐸𝐸𝑝𝑝2. From eqn. (3), 

𝐸𝐸𝑝𝑝1�𝑉𝑉𝑝𝑝1,𝛿𝛿� − 𝐸𝐸�(𝑉𝑉0)𝑝𝑝1, 0� > 𝐸𝐸𝑝𝑝2�𝑉𝑉𝑝𝑝2,𝛿𝛿� − 𝐸𝐸((𝑉𝑉0)𝑝𝑝2, 0) 

which simplifies to 

𝐸𝐸((𝑉𝑉0)𝑝𝑝2, 0) −  𝐸𝐸�(𝑉𝑉0)𝑝𝑝1, 0� > 𝐸𝐸𝑝𝑝2�𝑉𝑉𝑝𝑝2,𝛿𝛿� − 𝐸𝐸𝑝𝑝1�𝑉𝑉𝑝𝑝1,𝛿𝛿� 

⇒ ∆𝐸𝐸(𝑉𝑉0, 0)𝑝𝑝2−𝑝𝑝1 >  ∆𝐸𝐸𝛿𝛿(𝑉𝑉𝛿𝛿 ,𝛿𝛿)𝑝𝑝2−𝑝𝑝1 (5.5) 

Figure 5.4: Variations of energy with strains (± 2%) applied to the unstrained titanite crystal (P21/c 
titanite) at p = 0 (black) and 3 (red) GPa. This particular strain [𝑒𝑒={δ2/(1-δ2); 0; 0; 2δ; 0; 0}] was used 
to calculate C44. The solid symbols denote the calculated values and the dotted lines represent 2nd order 
best-fit. p = hydrostatic pressure. 
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The above equation indicates that the energy differences (∆𝐸𝐸(𝑉𝑉0, 0)𝑝𝑝2−𝑝𝑝1) due to 

the pressure difference (p2 – p1) for the unstrained crystals must be higher 

than the strain (δ) induced energy difference (∆𝐸𝐸𝛿𝛿(𝑉𝑉𝛿𝛿 , 𝛿𝛿)𝑝𝑝2−𝑝𝑝1). This is the 

necessary and sufficient condition for an elastic constant to attain a negative 

pressure gradient. Figure 5.4 shows strain–energy curves which are used to 

calculate C44 at 0 and 3 GPa for P21/c titanite phase. The energy difference, 

∆𝐸𝐸(𝑉𝑉0, 0)𝑝𝑝2−𝑝𝑝1 for the unstrained titanite crystal is 0.10478 eV, which is higher 

than any ∆𝐸𝐸𝛿𝛿(𝑉𝑉𝛿𝛿 ,𝛿𝛿)𝑝𝑝2−𝑝𝑝1 of strained crystal for any nonzero value of δ. 

5.5 Negative elasticity 

An elastic constant can be negative, only when ∆𝐸𝐸 (Eq. 5.3) becomes 

negative. It can be asserted that a strained state of titanite crystal has lower 

energy than its relaxed state, which indicates the system is losing some energy 

by acquiring strain, tending to attain a different energy minimum. It suggests 

that the ground state structure is already internally strained (distorted), which 

is also observed by Marcherek and Fischer[32]. On the other hand, an elastic 

constant denotes a ratio between the resistive stresses developed in a body and 

the applied strain. The mechanical action can yield a negative value of the 

elastic constant when a compressive stress (negative quantity) is produced 

under extensional strain (positive quantity) or vice-versa. However, this is not 

a usual mechanical behaviour of solids. Consider an alternative approach to 

demonstrate the physical implication of negative elasticity. An isotropic body 

(which shows positive elasticity) under a uniaxial compression undergoes an 

expansion in directions perpendicular to the compression. In other words, the 
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body compressed in a particular direction develops contractional strain 

(negative) in the applied compression direction, and extensional strain 

(positive) across it. But, a crystal with negative elasticity can develop 

contractional strain both along and across the compression direction. I face 

similar scenario in titanite. The application of positive strains yielded negative 

stresses in C2/c titanite. Such negative elasticity was first experimentally 

reported by Boppart et al.[28] in 1980 from sound velocity measurements, and 

later by Schärer and Wachter[30] from the Brillouin scattering of SmxLa1-xS. 

Both these studies obtained negative values of C12 in cubic phases at room 

temperature. However, they did not provide any specific atomic scale 

mechanism to explain this uncommon elastic behaviour. In fact, their results 

suggest the crystal symmetry is not a key factor to the negative elasticity. In 

this study we take into account the bond kinematics during crystal deformation 

to address this mechanical problem.  

C36 was calculated by applying shear strain 𝜀𝜀12in the monoclinic 

structure of titanite. The stress components along a, b and c directions were 

obtained as a function of input shear strain to find C36. We take the stress 

component σ33 corresponding to the applied shear strain, 𝜀𝜀12. According to this 

study, the shear strain C12 develops compressive stresses: σ11, σ22 and σ33 along 

the three crystallographic directions [100], [010] and [001], respectively. It is 

noteworthy that the crystal gives rise to the negative elastic constants 

essentially under shear deformation. The role of shear strain in lattice scale 

modifications thus appears to be a key in theorizing the mechanical behaviour 

of titanite.  A bond dynamic model is proposed to demonstrate how the lattice 



Titanite (CaTiSiO5) 

133 

collapse by bond rotation can lead to such negative elasticity. This model allows 

us to suggest the bond kinematics as a driving factor for structural contraction 

perpendicular to the compression direction. The rotational kinematics is 

evidently manifested in the relative structural rearrangement of the 

constituent neighbouring polyhedra, which can be quantified by the angular 

relations between two neighbouring polyhedra. The structure can 

accommodate the compressive stress entirely by the rotational motion of rigid 

bonds. Evidently, this rotational kinematics involves complex dynamics of the 

rigid bonds which are supposed to be tangled in a network. They can intricately 

influence one another in their rotational motion. This mode of rotation-

dominated bond kinematics seems to restrict structural expansion 

perpendicular to the direction of applied compression, as in the case of positive 

elasticity. In contrary, it results in contraction perpendicular to the 

compression direction, satisfying the condition required for negative elasticity. 

It follows from this discussion that the rotational bond kinematics is the key 

factor in controlling the negative elasticity in titanite crystals. 

Figure 5.5: Changes of different bond angles in the lattice structure (C2/c  phase) subjected to shear 
strain ε12 at ambient pressure (p = 0 GPa). This particular strain is associated with C36. 
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To support the theoretical interpretation, I performed an analysis of 

bond angles in the unstrained and strained states of the lattice configuration 

of the actual crystal structure of C2/c titanite (Figure 5.5). For a given 

Lagrangian strain (± 2%), the Ca–O–Si bond angle is found to change from its 

initial value of 95.18° to 97.35°, implying a bond rotation by 2.17°. Similarly, 

Ca–O–Ti and Ti–O–Si bond angles are reduced from 111.93° to 109.35° and 

125.81° to 124.29°, respectively. These two bonds thus undergo substantial 

rotations, 2.58° and 1.52°, respectively. These observations confirm that the 

given shear strain is accommodated dominantly by reorienting the angular 

disposition of cationic polyhedra. In case of the elastic constants, C36, the 

applied shear strain (on ab plane in the a-direction) affects the O–O distance 

to a small extent, as measured on that shear plane. For a variation of the shear 

strain  between  -0.02 and  0.02, the O–O distance undergoes negligibly small 

changes (2.737 Å to 2.723 Å). On contrary, the O–Si–O angles in SiO4-

tetrahedra, measured on planes subparallel to the ab-plane are found to reduce 

from 112.035° to 110.891°. The neighbouring Ti-polyhedra also undergo an 

angular rearrangement, while the bridging bond angle of Ti–O–Ti between the 

tetrahedra varies  from 140.958° to 140.682°. Our analysis clearly reveals that, 

in contrary to the natural behaviour of crystals to resist the strain, the 

deformation appears to be faciliated by the crystal itself. This antipodal 

mechanical behaviour of the crystal is a reflection of the negative elastic 

constants. Our analysis of the strain-induced bond angle modifications in 

titanite strongly supports the bond rotation as a mechanism to determine the 

negative elasticity of a crystal. Thus, the bond stretching and bond rotation are 
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recognized as two competing mechanisms in deciding the positive versus 

negative elasticity of crystalline solids. The dominance of bond stretching over 

bond rotation would result in a positive elastic behaviour, as commonly 

described in solid mechanics. However, the opposite bond dynamics, i.e., 

restricted bond stretching will favour the negative elasticity, as in the case of 

titanite phase. It is noteworthy that the negative elastic constant (C36) of C2/c 

titanite increases its magnitudes with increasing pressure (Figure 5.3). This 

pressure-induced enhancement of the negative behaviour warrants our 

interpretation. Increasing pressures generally strengthen atomic bonds in a 

crystal and restrict their stretching during deformation under a deviatoric 

stress field. At elevated pressures the crystal thus prefers to accommodate the 

strain mainly by bond rotation and facilitate its negative elastic behaviour.   

To explain the rotational bond dynamics responsible for the negative C36, 

I have also calculated the valence charge density on the three principal 

crystallographic planes: (100), (010), and (001) (Figure 5.6). The charge 

distribution clearly reveals the anisotropic nature of titanite. In the (001) 

Figure 5.6: Valence charge density of the C2/c titanite phase on the three crystallographic planes: 
(001), (010) and (100). It is noteworthy that the charge density on (001) displays strong covalent 
bonding between Ti and O. Moreover, this crystallographic plane shows a much higher degree of 
anisotropy in charge distribution than the other two planes. 
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plane, Ti–O shows strong covalent bonding with a maximum accumulated 

charge of 8.4148 e/Å3, which is the highest among all other planes. Such a large 

accumulation of the electronic charge gives rise to high bond strength between 

Ti and O atoms, which favours the bond rotation kinematics to dominate over 

bond stretching/shortening under a given shear strain C12. The shear strain is 

eventually accommodated by local rotation of the atom clusters (Ti–O) present 

in this plane, resulting in a contraction of the whole structure, a condition for 

C36 to attain a negative value. Furthermore, the strong Ti–O covalent bond 

produces large resistance to applied strain C22 in the crystal. The charge 

density plot then allows us to explain why C22 turns out to be the numerically 

largest component of the elastic constant tensor Cij of titanite (Figure 5.3). 

5.5.1 Elastic moduli 

The calculated elastic constants are used also to test the mechanical stability 

of the monoclinic titanite phase utilizing the following stability criteria [31], 

𝐶𝐶11 > 0,𝐶𝐶22 > 0,𝐶𝐶33 > 0,𝐶𝐶44 > 0,𝐶𝐶55 > 0,𝐶𝐶66 > 0, 

[𝐶𝐶11 + 𝐶𝐶22 + 𝐶𝐶33 + 2(𝐶𝐶12 + 𝐶𝐶13 +  𝐶𝐶23)] > 0 

(𝐶𝐶33𝐶𝐶66 − 𝐶𝐶362 ) > 0, (𝐶𝐶44𝐶𝐶55 − 𝐶𝐶452 ) > 0, (𝐶𝐶22 + 𝐶𝐶33 − 2𝐶𝐶23) > 0.  

The analysis reveals that the negative elastic constant does not affect the 

mechanical stability of the phase, even at high pressures.  According to the 

standard equations used in the theory of elasticity, the elastic constants (Cij) 

are the fundamental quantities to determine the elastic moduli of a crystal. 

The negative values of the elastic constant can thus influence the bulk 

mechanical properties.  The bulk (B), shear (G) and Young's (E) moduli of both 

titanite phases were evaluated as a function of pressure, considering both the 
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positive and negative elastic constants (Figure 5.7). The calculations yield very 

low shear modulus for both titanite phases, similar to the  results of Salje et 

al.[14] who obtained G ~ 46–52 GPa for undamaged titanite. The calculated G 

values at static condition (T = 0) is, however, slightly higher (~ 63GPa) than 

theirs. B (102 GPa at static condition) of the P21/c phase is found to be the 

most pressure sensitive elastic modulus, where 𝐵𝐵′= 3.63 in the pressure range 

0 to 5 GPa. In contrast, E and G are relatively much less sensitive to pressure 

(E' = 1.9 and G' = 0.52). C2/c phase shows similar pressure dependent 

Figure 5.7: Variation of the elastic moduli: bulk moduli (B), shear moduli (G) and Young’s moduli 
(E) of the titanite phases with hydrostatic pressures (0 to 5 GPa). B is found to be the most sensitive
with pressure.
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behaviour of B and E (B' = 2.98, E' = 0.59), whereas G is less sensitive to 

pressure (G' = 0.06). The static shear and bulk modulus are slightly higher 

than those of P21/c phase (69 and 112 GPa, respectively). The high values of 

bulk modulus indicate the titanite phase can be used as a hard material, 

despite its directional negative single crystal elasticity. The present theoretical 

results also predict titanite as an example of perfectly anisotropic crystal with 

universal anisotropy index[47] of 0.69. A 3D Young’s modulus surface, which is 

also a measure of minimum thermal conductivity, is constructed for C2/c 

titanite to show the degree of elastic anisotropy. Figure 5.8 shows its 

projections on the principal crystallographic planes for C2/c titanite. This 3D 

surface of E vividly reveals strongly anisotropic mechanical behaviour of 

titanite even under static condition, with E1 = 119.48, E2 = 234.29 and E3 = 

186.17 GPa, where E1, E2 and E3 are the Young’s modulus in the a, b and c 

direction, respectively. The average Young’s modulus (E = 173.11) is close to 

E3, implying that the (001) plane plays the most crucial role in determining the 

bulk mechanical behaviour of titanite.  

Figure 5.8: Graphical representations of 3D Young’s modulus surface and its projections on the 
three mutually perpendicular planes: (001), (010) and (100) for C2/c titanite. The anisotropy is 
clearly visible on (001) and it conforms to the valence charge density (See Figure 5.4 and Figure 
5.6). 
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In this study I considered the ratios of E1, E2 and E3 to express as a 

measure of the degree of anisotropy on the three principal crystallographic 

planes: (001), (010) and (100), where E2/E1 = 1.96, E3/E1 = 1.56, and E2/E3 = 

1.17, respectively. The calculated ratios suggest the highest anisotropy on (001) 

and the lowest on (100), which is consistent with the valence charge density 

(Figure 6). The charge distributions show much stronger directionality on (001) 

than the other two planes, resulting in the highest degree of anisotropy in 

Young’s modulus on this plane.    

5.6 Electronic and optical properties 

The electronic density of states determines both intraband and 

interband transition, which influence the optical properties of materials. The 

spin polarized electronic density of states for P21/c titanite is presented in 

Figure 5.9. Fermi level is set to zero of the energy scale. The electronic energy 

gap (Eg) is found to be 3.2 eV, which indicates titanite can be used as 

semiconductor. The valence band is characterized by O-p, Ca-s and Ca-p states. 

The top of the valence band, i.e., closer to Fermi energy, is mainly dominated 

by O-p states. However, Ti-d states are the principal contributor of the bottom 

of the conduction band. Some hybridization between O-p and Ti-d also can be 

observed in the conduction band. 

Using the electronic structure technique, the frequency dependent real 

(𝜀𝜀1)and imaginary (𝜀𝜀2) part of the complex dielectric function of P21/c titanite 

(Figure 5.10) were calculated. These calculations provide a new set of findings 

on the optical properties of this silicate phase. The dielectric function is 
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resolved into three polarization direction [100], [010] and [001], i.e., parallel to 

a, b and c-axis, respectively, as titanite belongs to highly anisotropic monoclinic 

Figure 5.9: Spin polarised orbital projected electronic density of states for P21/c titanite phase. 

Figure 5.10: Polarization dependent optical properties of P21/c titanite phase as a function of 
energy. 
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crystal class. We obtain the static dielectric constant (i.e., at ω = 0) values as 

4.38, 4.29 and 4.94, corresponding to a-, b- and c-axis respectively. Their 

highest peak values, 8.04, 6.43 and 9.47 occur at ~3.36 eV. The real part of the 

dielectric function is strongly anisotropic. 𝜀𝜀1 shows a sharp decrease as we move 

from 3.36 eV to a higher frequency region and 𝜀𝜀1 parallel to c attains a negative 

value at ~4.36 eV, which indicates that most of the incident photon along c will 

be reflected at this point. The result suggests that we can use this metallic 

behaviour of titanite for shielding purpose in a specific frequency region. The 

energy loss of a fast traversing electron can be described by the electron loss 

function. The peaks in the loss function are used to characterize the plasmon 

resonance. These plasmon frequency peaks corresponds to the transition from 

metallic property (𝜀𝜀1< 0) to dielectric property (𝜀𝜀1> 0). The peaks of the loss 

function occur exactly at a point where ε1 switches negative to positive (~ 4.36 

eV). Several peaks occur in the range between 26 to 40 eV. Specially, these high 

frequency peaks in the loss function depict an excellent dielectric property of 

titanite. A decent knowledge of refractive index of a material can help us to 

judge it for its potential optical applications. The calculated refractive indices 

of titanite (2.09, 2.07 and 2.21 for a, b and c, respectively) are fairly in 

agreement with previously reported values [40]. 

The complex part 𝜀𝜀2 is linked with the photon absorption. The optical 

absorption edge is found at ~3.2 eV for all the directions, suggesting the 

threshold for direct optical transition from valence band to conduction band at 

the Gamma point, which is consistent with the electronic band gap (Figure 5.9). 

The highest peak on 𝜀𝜀2 that occurs at 4.8 eV has a value of 11.3, which justifies 
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the reddish brown color of titanite. This peak corresponds to the hybridization 

between Ti-d and O-p states (Figure 5.9). Several peaks in the high frequency 

regions correspond to intra-band transition depending upon the energy of 

incident photon. The calculated absorption spectra have a spread from ~3.2 eV 

to 60 eV. The same spread is also visible in reflectivity spectra with a maximum 

of 0.4 at 4.26 eV. For a better understanding, I have plotted absorption, 

reflectivity and refractive index spectra, covering the IR, visible and UV ranges 

(Figure 5.11). The absorption and reflectivity increase rapidly as incident 

photon frequency crosses the visible spectrum range, especially in the [001] 

direction. These anisotropic optical properties are consistent with our previous 

findings. Extinction coefficient, which is a measure of the capability of light 

absorption of a material, also shows similar behaviour. Our calculated 

extinction coefficient has a peak at 4.26 eV and has a spread up-to 60 eV. These 

results indicate that titanite will behave like an opaque material in the UV 

Figure 5.11: Anisotropic absorption, reflectivity and refractive index of P21/c titanite in infrared 
(IR), visible and ultraviolet (UV) spectra. 
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region due to its high absorption and reflectivity, whereas transparent in the 

visible range (up-to ~3.2 eV). 

5.7 Concluding notes 

To conclude the principal outcomes of this study, this chapter of the 

thesis presents a completely new set of theoretical data on the mechanical 

properties of monoclinic titanite phase. The theoretical calculations reveal 

unusual negative values of the elastic constant: C36 for C2/c phase and 

negative pressure gradients of the shear elastic constants, C44, C55 and C36 for 

both the titanite phase: P21/c and C2/c. A novel atomic scale mechanism is 

proposed to demonstrate the cause of negative elasticity in titanite; the 

rotational bond kinematics, driven by valence charge accumulation on (001) 

plane leads to structural collapse in a direction orthogonal to the applied shear 

strain, resulting in the negative elastic behaviour. Based on strain–energy 

calculations at varying pressures, the calculations allow us to constrain the 

necessary conditions leading to the negative pressure gradients of the shear 

elastic constants. The lattice dynamical analysis confirms the structural phase 

transition from P21/c to C2/c in titanite within 5 GPa.  

The present calculations suggest that wide bandgap (Eg = 3.2 eV) titanite 

shows an exceptionally strong opacity in the UV region.  Based on this fact, I 

propose titanite as a potential shield material for UV radiation. This crystalline 

phase can also be used for developing optical filter/polarizer. Its transparent 

property in the low-frequency region provides an excellent scope for designing 

various optoelectronic devices. 
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 6 
 Dense hydroxide Brucite [Mg(OH)2]  

6.1 Overture 

The presence of small elements and water have significant effect on the 

mineralogical structure, composition and dynamics[1,2] of the Earth’s mantle 

which in turn effects the melting temperature[3,4], elastic properties[5–13], 

electrical conductivity[14–19], viscosity, diffusion of atoms[20–27] in minerals. 

It is widely accepted that the carrier of hydrogen into deep earth are a batch of 

hydrous minerals such as dense hydrous mineral silicates (DHMSs)[28], 

nominally anhydrous minerals (NAMs)[4,29] and δ-AlOOH[30,31]. However, 

apart from phase D most of the hydrous minerals are reported to decompose at 

high pressures corresponding to the cold subducting slabs [32–35]. Electrical 

conductivities of DHMSs are observed to increase with pressure suggesting a 

higher mobility of H atoms. This observation indicates that pressure may act 

as an ally to enhance movement of protons in crystalline minerals. Though rare 

in the mantle of the earth, brucite is an architype hydrous and layered mineral
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 of the MgO-SiO2-H2O ternary system (MSH), which is  most rich in its ability 

to potentially host water and water-derived species in the mantle[36,37]. In 

ambient condition brucite assumes a trigonal crystalline structure (space 

group: P3�m1) where Mg2+ and OH- are arranged in layer. Pressure induced 

proton frustration in trigonal Brucite have been investigated by Raugei et al. 

[38] and Mookherjee and Strixwood[39]. The former experimental study has

showed that under elevated pressure H moves in the ab plane and localize 

separately at three equivalent positions contrary to one in low pressure 

condition. However, at around 1 GPa brucite undergoes a structural transition 

to a lesser symmetric trigonal structure (space group: P3�)[40] leading to a 

change of dynamical positional disorder of proton to a static one[41]. The 

layered structure of P3�m1 brucite have motivated several researchers to study 

the diffusion of proton, resulting electrical conductivities[37,42] and it’s 

dehydration properties[43] whereas the proton diffusion in P3� brucite remains 

unexplored. Static DFT calculation and novel structure searching method have 

demonstrated that P3� brucite has a larger p-T stability field compared to its 

low pressure predecessor and around 19 GPa it transforms to a new tetragonal 

P41212 phase[41]. Nevertheless, this new phase is yet to be experimentally 

verified. They have also reported that P3� brucite decomposes into MgO + H2O 

(liquid) and MgO + ice VII mixtures at high p- high T and high p-low T 

conditions respectively. But barring the ex-situ geophysical survey of Kirby et 

al. [44] and subduction zone thermal models of Bina et al. [45], the presence of 

ice VII phase in the deep interior of the earth remains highly debated. In 

brucite, high pressure x-ray diffraction study of Fei et al. [46] reveals a smooth 
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diffraction pattern, however in the same paper the authors deduced that at 

room temperature brucite would decompose into periclase and water at 27 GPa. 

The apparently contradictory results indicates that the decomposition is 

associated with a high kinetic barrier and brucite is likely to be stable at even 

higher pressures.  Pressure induced enhancement of proton transport in P3�m1 

brucite have been reported by Guo and Yoshino[37] but limited to 13 GPa 

corresponding to the upper mantle regime. Recently, Shaack et al. [47] has 

demonstrated that in P3� brucite nuclear quantum effects play a major role in 

the mobility of H and it reaches a maximum at 67 GPa in room temperature. 

Still, an exhaustive account of the H-diffusion in brucite at high pressure and 

temperature and its implication for the deep earth is still lacking in literature. 

On the other hand, electrical conductivities of DHMS and nominally anhydrous 

minerals (NAMs) like olivine and its high-pressure polymorph ringwoodite and 

wadsleyite cannot account for the high conductivity zones in lower mantle. To 

explain this difference, there should be some other mineral or mineral 

aggregate which can notably account for this. It is important to note that the 

P3� brucite structure consists of hollow 2-D well parallel to the ab-plane which 

are devoid of Mg and O atoms. This channel can offer significant free space for 

the H to move and thereby enhance the electrical conductivity of the mantle. 

This study uses Ab-initio Molecular Dynamics to systematically explore 

the diffusion of H in P3� brucite in the range 10-80 GPa and 1250-2000K. The 

diffusion co-efficient of H is calculated in the chosen p-T conditions which 

reveal an anomalous relation of the diffusion coefficients with pressure along 

the isotherms. The reasons for the differences in diffusivities of H are 
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elucidated. The results demonstrate that the onset temperature of H-diffusion 

in brucite is largely influenced by the confining pressure. This study also deals 

with the anisotropy in H diffusion in brucite. Finally, the proton induced 

electrical conductivity is calculated and compared with deep mantle electrical 

conductivity to find how far the presence of brucite can affect it.   

6.2 Computational methodology 

Static, density‐functional theory calculations were performed to 

obtain structures of P3� brucite at desired pressures up to 80 GPa using the 

Vienna ab initio simulation package (VASP)[48,49]. The local structural 

relaxations calculations were performed using the generalized gradient 

approximation of the Perdew-Becke-Ernzhoff [50] formalism to model 

electronic exchange-correlation effects, together with projector-augmented 

wave (PAW) [51] implementation. The PAW-GGA potentials are used to 

describe the ionic core of H, O and Mg where their valence electronic 

configurations were 1s1, 2s22p4 and 3s23p0, respectively, with core cut-off radii 

of 1.1, 1.52 and 2.0 Å.  The simulations employ an appropriate regular gamma 

centric 5x5x5 grid of Monkhorst-Pack[52] k points to sample the electron 

density in the reciprocal space and a kinetic energy cut-off of 625 eV along with 

a cut-off of 610 eV for the augmented part. These parameters ensured that the 

precision of the energy calculation is typical on the order of 1meV/atom in 

energy and better than 0.5 GPa in pressure. 

To capture the effect of temperature on the motion of atoms, I have 

performed ab-initio molecular dynamics simulations (AIMD) as implemented 
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in VASP. The isokinetic NVT ensembles are chosen at a given temperature, T, 

keeping a fixed volume, V, and the number of atoms, N, in the simulation box. 

The simulations were performed at volumes corresponding to the desired 

pressure. The ionic temperatures during the simulations were kept steady 

employing a Noose-Hoover thermostat[53,54]. Each AIMD simulation was for 

8000-10000 timesteps with each timestep being equal to 1 fs, resulting to a 

total simulation time ranging from 8 to 10 ps. AIMD simulation are typically 

sensitive of the size of the system under study. To account for this size effect, 

all the AIMD simulations were carried out on a 2x2x3 supercell containing 180 

atoms, obtained from the fully relaxed conventional unit cells from the static 

DFT calculations. The fixed gamma point was used to sample the reciprocal 

space of the supercells. The constraint imposed by fixed volume along with 

increasing temperatures affect the resultant pressure. This study considers the 

thermal pressure correction and, observed them to be within 1.5-2.7% of the 

target pressure. The images of the crystal structures are rendered using 

VESTA and the images of the trajectories of H-atoms are extracted from Visual 

Molecular Dynamics (VMD) suite. 

6.3 Crystal structure and equation of state 

The crystal structure of P3�  brucite consists of Mg2+ cations and OH− 

anions arranged in layers, assuming an overall trigonal structure. The protons 

are located in channels in between the edge sharing MgO6 octahedra (Figure 

6.1). The transition from P3�m1 to P3� brucite, the latter being a maximal 
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subgroup of the former, is characterised by the reduction of mirror planes 

owing to the spatial disorder of proton distribution. In the lattice structure the 

Mg atoms occupy two distinct crystallographic positions: Wyckoff site 1a (0, 0, 

0) and 2d (1/3, 2/3, zMg), whereas the O and H atoms occupy general Wyckoff

site 6g and 6i respectively. The most interesting characteristics of the P3� phase 

is the occurrence of two different H-H distances[39], where both of them 

decrease on increasing pressure up to a certain threshold value, beyond which 

one of them starts to stretch as a consequence of increasing O-H---O angle. 

Under ambient conditions, the lattice parameters are calculated as a = b = 

5.48529 Å, c = 4.79506 Å and α= β = 90°, γ =120°; these calculated values are 

in close agreement with previous findings [39,41]. The weak interaction 

between MgO6 layers is responsible for higher compressibility of this phase 

along its c-axis. The 2nd order Birch-Murnaghan equation of state fit (Figure 

6.2) yields a bulk modulus of 46.25 (± 1.7) GPa with a pressure derivative of 

Figure 6.1: Crystal structure of P3 �brucite as seen from perpendicular to a-axis (left) and b-axis 
(right). The brown polyhedra are MgO6 octahedra. Red and Pink spheres are O and H atoms, 
respectively. Note the 2D channel parallel to ab-plane.  
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5.03, which agree well with the DFT results of Hermann and Mukherjee [41]. 

The calculated equilibrium volume per formula unit for this phase, 42.02 Å3 is 

also consistent with their finding. 

6.4 Proton transport mechanisms 

Pressure induced proton frustration and its effect on the mobility of H 

in P3�m1 brucite has been previously studied both computationally[38] and 

experimentally [39,55,56]. Quench experiments are also performed to elucidate 

the phase stability of P3�m1 brucite[40]. Despite those previous studies, the 

migratory behaviour of H in high pressure P3� phase and its effects on the 

electrical conductivities in deep earth remains almost unattended. I have 

Figure 6.2: Second order Birch-Murnaghan equation of state of P3� brucite. 
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performed AIMD simulations to investigate the kinematic behaviour of proton 

Figure 6.3: Mean squared displacements of H-atom at 1250K. Note that a reasonable proton 
diffusion is not observed until the pressure rose to a value near 43GPa at this temperature. 

Figure 6.4: MSD of hydrogen at 1500K. The maximum mobility of H is observed at 74.3 GPa. 
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in P3� brucite at pressures corresponding to lower and upper mantle. The 

diffusion constants are calculated from the slope of the mean squared 

displacement (MSD) vs time curve. It is important to emphasise here that the 

calculated MSD demonstrates different line segments of varying slope (Figure 

6.3-6.8). In order to minimize the error, the final slope was calculated as an 

average of the slopes of the MSD in several non-intersecting time intervals. 

Figure 6.3 shows our calculated MSD of hydrogen atoms at several pressures 

at the temperature of 1250K, where no notable movement of protons were 

observed below 43 GPa, which decreases to 28 GPa when the temperature is 

increased to 1500K (Figure 6.4).  

The onset pressure for proton mobility decreases further to 10.1 and 13.4 

GPa when the temperatures are set to 1750K and 2000K, respectively (Figure 

Figure 6.5: MSD of H atoms at 1750K and up to pressure of 31.2 GPa. 
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6.5, 6.6 and 6.7). However, irrespective of the temperature to which crystalline 

brucite is subjected to, the maximum movement of H-atoms are observed in the 

range 73.6-75.6 GPa. Thus, the MSD’s of hydrogen are observed to display an 

anomalous correlation with confining pressure, decreasing in magnitude upon 

further increment in pressure. The disorder in proton distribution in P3� brucite 

can be categorized into two distinct non-exclusive type: a. dynamic disorder, in 

which each hydrogen jumps from one to another of the three symmetrically 

equivalent sites; b. static disorder, in which each hydrogen atom is stationary, 

in any of the three symmetrically equivalent position[39]. With increasing 

pressure this disorder changes from a dominantly dynamic one to a dominantly 

static one. The OH- interlayer distances are observed to be much more sensitive 

to pressure compared to the intralayer OH- distances. At elevated pressure the 

Figure 6.6: MSD of H atoms at 1750K and high pressures. Note the peak MSD at 75.0 GPa. 



Brucite [Mg(OH)2] 

159 

interactions between OH- becomes much stronger and results to the reversal of 

proton disorder in the hydrogen sublattice. At the same time it brings the 

interlayer H-atoms close to each other to form H-bonds, which are short-lived 

and very weak [38] aiding the protons to hop between O atoms among Mg(OH)2 

layer facing each other. 

The proton diffusion mechanism in brucite is a complicated process, 

influenced by Nuclear Quantum Effects [47], that involves two stages: 1) the 

dissociation of a covalent O-H bond to form another distinct O-H bond, and 2) 

the reorientation i.e., the jump of proton from one of the three equivalent 6i 

sites in order to move from an initial O to the nearest one. Pressure has 

Figure 6.7: MSD of H atoms in brucite at 2000K. For brevity only the MSD’s above 30 GPa are 
shown here. 
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antipodal effect on these two stages. Rising pressure enhances the Nuclear 

Quantum Effect and increases the dissociation of O-H bonds. On the other 

hand, the reorientation process is mostly controlled by temperature where 

pressure is likely to be inclined to localize the proton in a certain orientation, 

making this motion unfavourable. The dissociation of O-H bonds creates a 

quasi 2-D proton layer between adjacent MgO layers. At lower pressures two 

quasi 2-D layers of H atoms are formed near each Mg-O layer and proton move 

back and forth between them and also throughout the layers. However, at 

elevated temperature and at pressure between 73-76 GPa these two layers 

merge and become indistinguishable. We argue that our MSD’s at pressures 

below 75 GPa represent characteristic back and forth movement of proton 

between two such layers as well as thermally activated motion of proton in each 

of these layers. At 73-76 GPa the formation of the one indistinguishable layer, 

populated with large number of mobile protons, enhances the protonic 

movement. Below the onset pressure at each temperature only the 

reorientation occurs and resulting in a back-and-forth motion of H atoms 

leading to negligible net movement. Although these AIMD calculations do not 

take into account the NQE on an explicit term, the results are in good 

agreement with that of Schaack et al.[47] 

6.5 Proton diffusion coefficients 

I have systematically calculated the diffusion coefficient of H (DH) at 

various pressure and temperature conditions. Table 6.1 lists our calculated DH. 
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As the temperature increases the diffusion coefficients also increase. Notably 

at each temperature we found DH to assume maximum value in the pressure  

Temperature (K) Pressure (GPa) Diffusion Coefficient DH(m2/s) 

1250 

42.95 1.7011E-10 

53.16 1.3363E-09 

63.37 6.2678E-09 

73.59 9.6683E-09 

83.82 9.4072E-09 

1500 

28.13 4.20345E-10 

33.19 5.65935E-10 

43.51 1.69786E-09 

53.76 4.55502E-09 

64.02 7.56022E-09 

74.28 1.47315E-08 

84.57 1.07429E-08 

1750 

10.04 6.79615E-10 

15.26 1.71247E-09 

21.32 4.40833E-09 

26.61 8.18315E-10 

31.20 2.50285E-09 

44.0 2.01455E-09 

54.35 4.85519E-09 

64.64 1.39001E-08 

Table 6.1: Calculated diffusion coefficients of H in brucite at temperature 1250-2000K 
and pressures 10-85 GPa. The pressure includes the thermal correction as well. 
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range 73-76 GPa pressure. Figure 6.8 shows the variation of DH with 

reference to the mantle pressure conditions and different zones in mantle. 

Several NAMs and transition zone silicates are experimentally observed to host 

H in their crystalline lattice as substitutional point defects. Olivine aggregates 

which are dominant species in Earth’s lower mantle house nominal amount of 

water and at higher temperature the H atoms are found to diffuse through the 

lattice. Discontinuities in seismic wave velocities establishes that olivine 

undergoes a transition to wadsleyite at 14 GPa and further to Ringwoodite at 

24 GPa. Similar to their low-pressure counterpart these transition zone 

silicates also demonstrate H-mobility at elevated temperatures.  Nevertheless, 

their calculated DH are one to two order lower than what we have observed in 

case of brucite. The reason behind these differences in DH can be attributed to 

their distinctive crystal structure and the different class of mechanisms at play 

74.96 1.45728E-08 

85.28 1.32427E-08 

2000 

13.4 3.3315E-09 

18.7 5.74253E-10 

23.9 4.42703E-10 

29.09 7.94527E-10 

34.22 2.26957E-09 

44.6 6.13043E-09 

54.93 7.61753E-09 

65.27 1.09825E-08 

75.6 2.34688E-08 

85.99 2.28415E-08 
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to promote the H-diffusion process. Olivine and Ringwoodite belong to the 

category of nesosilicates whereas wadsleyite is a sorosilicate. All the former 

minerals are characterised by the presence of Mg/Fe octahedra and Si-

tetrahedra forming a network like structure. In those silicates H must diffuse 

through asymmetric channels formed by the cationic polyhedra. In contrast 

brucite is a layered hydroxide mineral which offers an unhindered motion of 

protons through the layer between MgO6-octahedra. In addition to that, the H-

 

Figure 6.8: Proton diffusion co-efficient at various p-T condition. LM- Lower Mantle, UM- Upper 
Mantle, MTZ- Mantle Transition zone. The black dash-dotted vertical lines at 11 and 24 GPa 
represents the boundary between LM and MTZ and between MTZ and UM respectively. The zone 
between the magenta vertical lines represents the high-pressure zone where maximum H-diffusion 
occurs. For comparison the data of H-diffusion in transition zone silicates i.e., in ringwoodite and 
wadsleyite after Caracas and Panero [27] are also included. Ringwoodite: circle with + sign- 
Mg2+2H+ at 2000K and 2500K, star- Si4+Mg2+ + 2H+ at 2500K, open circle- both Mg2+

 2H+ 
and Si4+ Mg2+ + 2H+ at 2500K, pentagon - Si4+ 4H+ at 2500K; wadsleyite: open square- Mg2+ 
2H+ at 2000K. Note the characteristic large proton diffusion coefficient in brucite at high
pressures.
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diffusion mechanism in both classes of minerals have remarkable differences. 

In silicates a net diffusion of H is realised only when an H atom jumps from 

one substitutional vacancy to the next one. This whole process is thermally 

controlled and relies on simultaneous creation-annihilation of vacancies 

together with probabilistic hopping of H through those vacancies. In contrast, 

the H-diffusion in brucite is initiated and largely regulated by the pressure 

induced amorphization of the H-sublattice. This pressure induced 

amorphization creates a pool of mobile H atoms between adjacent MgO6 layers, 

depleted of any Mg or O atom to restrict H-mobility. The combined effect of the 

structure and mechanism of H-diffusion gives rise to a diffusional free energy 

barrier ranging from 1.66 eV to 3.14 eV for H in ringwoodite and wadsleyite 

[27] respectively. In contrast, the dissociative and rotational free energy

barriers for H in brucite are in the order of 0.01-0.11 eV and 0.03-0.10 eV at 

room temperature [47], which are expected to drop to even lower values when 

the temperature rises. Clearly, this higher migration barrier in silicates makes 

H-diffusion in them kinetically restricted, energetically less favoured and

demands relatively higher temperature to initialize as compared to brucite. 

The apparent free flow of protons and lower migration barrier are thus 

responsible for the observed high DH in brucite phase.  

The initial high value of DH observed in 2000K isotherm in the low- 

pressure regime can be attributed to the incongruent melting of brucite.  Figure 

6.9 and 6.10 shows the variations of MSD’s of Mg and O atoms at several 

pressures along 2000K isotherm. At low pressure of ~13 GPa both the MSD’s 

of Mg and O atoms shoot upwards, together with the MSD of H atom (Figure 
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6.7), indicating that the entire crystalline structure undergoes a melting at this 

pressure and temperature.  

Figure 6.9: MSD of Mg atoms at different pressures while the temperature was kept fixed at 2000K. 
Note the large MSD of Mg atoms at 13.4 GPa indicating the melting of brucite. 

Figure 6.10: MSD of O atoms in brucite at 2000K. The O atom displays a qualitatively similar 
increment in MSD as the Mg atoms at 13.4 GPa. 
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However, at higher pressures the melting point of brucite drops, and the H 

atoms only occur in a mobile state. Figure 6.11 illustrates the MSD of the 

comparatively heavy atoms at 1250K. It is important to note that at 1250K 

both the MSD of Mg and O atoms oscillates around some small value indicating 

the stretching and shortening of Mg-O bonds as the Mg and O atoms execute 

thermally activated vibrational motions.  

6.5.1 Anisotropy in proton diffusion  

The proton diffusion in brucite is highly anisotropic in nature. Figure 

6.12 demonstrates that movements of almost all of the H-atoms are restricted 

within the planes parallel to crystallographic ab-plane, with hardly any out of 

plane motion observed. The MgO6-polyhedral network here act as a barrier to 

restrict motions of H-atoms parallel to c-axis. I have calculated the axis 

decomposed diffusion coefficient along the three axes viz. D[100], D[010] and D[001]. 

Figure 6.11: MSD’s of Mg and O atoms at 1250K. The relatively low MSD’s suggest the vibrational 
movement of Mg and O atoms. 
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Further, they are normalized with respect to DH at corresponding p-T 

conditions as d*[100] = D[100]/DH , d*[010] = D[010]/DH and d*[001] = D[001]/DH , 

respectively.  d*[001] is found to be negligible in magnitude, asserting that proton 

diffusion along c-axis contributes almost null.  The plot of d*[100]/d*[010] ratio as 

a function of pressure in the range 30-90 GPa shows no obvious correlation 

between the d*[100]/d*[010] ratio with pressure-temperature (Figure 6.13). 

Comparable values of d[100] and d[010] are only obtained at some specific p-T eg. 

40GPa-1500K, 70 GPa-1250K, 80 GPa-1500K and 80 GPa-1750K. At those p-T 

points the movements of H along the a- and b-axis are similar in nature. 

d*[100]/d*[010] at 2000K exhibits maximum anisotropy in diffusion on and above 

70 GPa, indicating that protons are much more prone to move along the a-axis 

rather than b-axis. Fig 6.1 shows that the distribution of H-atoms in between 

MgO6 layers are identical when viewed along a- or b-axis. When the pressure 

Figure 6.12: Trajectories of the hydrogen atom (white) in the quasi 2-D layer between MgO6 
octahedra. Red and pink spheres are Mg and O atom respectively. Note that none of the trajectories 
of the H atom crossed the MgO6 layer.  
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induced proton disorder and amorphization of the H-sublattice set in, both a- 

and b-direction becomes relatively less indistinguishable in terms of proton 

mobility. The H-atom diffusion parallel to ab-plane thus becomes asymmetric 

in nature without showing any preferred directional dependence.  

6.6 Electrical conductivity 

The increased proton diffusion in brucite results in an increment in 

electrical conductivity (σ) as both the temperature and pressure are raised 

(Figure 6.14). Electrical conductivity of dry and wet P3�m1 brucite have been 

experimentally calculated by Gasc et al. [42] but up to the pressure of 2 GPa 

only. At these pressures the wet sample is found to show an electrical 

conductivity in the range 10-2 to 10-3 S/m at 1173K, which is reasonably low 

Figure 6.13: Anisotropic character of proton diffusion in brucite. 
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than our calculations. Guo and Yoshino [37] did a similar study on the same 

crystalline brucite and observed a maximum conductivity of 32 S/m at pressure 

11-13 GPa. This value is comparable to the calculated electrical conductivity at

p-T points of 28GPa-1500K, 10GPa-1750K and 18.7 GPa-2000K respectively.

Even much higher values of σ are  observed experimentally in DHMS phase A, 

phase D and the super-hydrous phase B by Guo and Yoshino [57]. Phase A 

features a σ of 55 S/m at 10 GPa in the temperature range 500-900K, phase D 

on the other hand shows an electrical conductivity of 1342 S/m at 22 GPa in 

the same temperature range. I have obtained comparable values of the 

electrical conductivities in P3� brucite but only in the pressure range 50-60 GPa 

and between temperature 1500-2000K. This asserts that such high 

Figure 6.14: Electrical conductivity of P3�  brucite. The black star represents conductivity of P3�m1 
brucite at 11-13 GPa [ref. 37]. 
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conductivities are not unusual. In fact, the removal of the mirror plane and 

lowering of symmetry in pressure induced P3�m1 to P3�  transition in brucite 

allows more space for H to diffuse rapidly. At pressures higher than 60 GPa, 

our calculated values of σ surpass the conductivities of DHMS phases. 

Although the diffusion of H is characterised by a maximum value in the range 

73-76 GPa, for 1250k and 2000K we observed that the maximum σ is attained

beyond this pressure range despite the fall of diffusion coefficients. For the 

other two temperatures the trend of the variation of σ is similar to what we 

observed for DH at those temperatures.  

Figure 6.14 compares the calculated σ values with mantle electrical 

conductivity using magnetic satellite measurements by Constable and 

Constable[58]. At low pressure regime our σ values are in good agreement with 

their data. Their observation shows a seemingly rapid increment of σ at around 

50 GPa, however this study is limited to 60 GPa in pressure. The calculated σ 

also demonstrates a rapid increment in similar range of pressure although they 

don’t converge to a fixed value as the pressure in increased further. Our 

observation together with the identification of high σ in DHMS by Guo and 

Yoshino [57] indicates the presence of proton disordered brucite in lower and 

upper mantle region of the earth. The mean electrical conductivity of the 

mantle ranges from 10-4 to 103 S/m[59] which is lower than our calculated 

conductivities of brucite beyond 60 GPa corresponding to the upper mantle. 

Thus, this study infers that the amount of brucite in shallow mantle could be 

moderate to high but reasonably small in lower mantle and brucite could occur 

as independent pockets at those depths. 
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6.7 Highlights of the outcomes 

This chapter have systematically investigated the proton diffusion 

behaviour in P3�  brucite at high pressure and high temperature regime. The 

study reveals an anomalous behaviour of hydrogen diffusion where the 

diffusion constants increase up to a certain pressure and then exhibit maxima 

in 73-76 GPa pressure range across all the isotherms. At this pressure range 

two separate layers of protons between MgO6 octahedral sheets emerge and 

coalesce with each other. This coalition of proton layers generates high number 

of free protons. At high temperature the hydrogen sublattice amorphized 

leaving the Mg and O atoms static in their lattice sites.   The degree of 

amorphization increases with increasing temperature and thus yields highly 

mobile protons. Beyond this pressure, the coalition of proton layers becomes 

ineffective and thereby reduces the diffusion constant. The arrangement of H 

in layered structure of P3�  brucite is identical along crystallographic a- and b-

axis. The calculated anisotropy in proton migration thus reveals no axial 

preference but indicates towards the random thermal motion of protons, other 

than the fact that no net diffusion of proton is observed along c-axis, which was 

present in P3�m1 brucite[37].  

AIMD calculations are used to evaluate the apparent contribution of the 

protonic conductivities to the electrical conductivities of brucite under varied 

hydro-thermal conditions. While the diffusion constants are observed to 

increase steadily with temperature, the electrical conductivities offer a complex 

variation. For 1500K and 1750K, the maximum of conductivity coincides with 

the same p-T points where the diffusion constant shows maxima, whereas for 
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1250K and 2000K the conductivities are observed to increase further with 

temperature. At pressures corresponding to upper mantle the conductivity 

features very high values comparable to several DHMS phase. Comparison 

with geomagnetic data [58,59] allows us to conclude that apart from 

predominant constituents of the mantle such as silicates and oxides, brucite 

can also be present in the earth’s mantle in small amount.  
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CHAPTER 

 7 
Molecular crystalline NH3-H2S mixtures 

7.1 Motivation 

Hydrogen bonded linear mixtures of dense molecular crystalline phases 

have gained major importance in diverse scientific fields of interest. The ‘ice 

giants’ Uranus and Neptune have gaseous atmospheres, comprised of hydrogen 

and helium predominantly, featuring characteristically small rocky cores, 

leaving out a considerably large mantle region. Their vast mantle regions 

consist mainly of isolated ‘molecular ices’ of water, ammonia and methane and 

also their mixtures. Observations from astronomical campaigns[1–8] suggest 

that these compositions are expected in the interior of their moons and also in 

similar exoplanets like these ice giants.  The thermodynamic environment in 

the mantle region of this ‘ice giants’, dominated by hot-ice layers, are 

characterized by extreme pressure in the range of several hundred gigapascals 

and temperatures up to several thousand kelvin rendering access to the exotic 

regions in the phase diagram of water [9–11], ammonia[12] , methane[13–15]  

and ammonia-water mixtures [16–19]. Under the extreme conditions at the  
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deep planetary interiors, these hot ice mixtures of molecular liquids [1,20] are 

expected to exhibit complicated chemical activities resulting in non-retention 

of molecular structure, formation of superionic states and potential demixing 

etc. [21–23]. The physical and chemical behaviour of the hot dense ices thus 

significantly influence the atmospheric composition, rotational velocities, 

gravitational moments and the internal quasi-homogeneous or heterogeneous 

chemical structures of these celestial bodies and their thermodynamic 

evolution. There have been several experimental studies on the binary 

molecular ices and hydrocarbons at pressure and temperatures relevant to 

interiors of the ice giant planets and exoplanets which revealed unusual 

chemical behaviour with unforeseen reactivity [24,25]. On the other hand, first-

principle studies have explored a range of mixtures of molecular ices and their 

interactions with the two of the most lightest  constituents e.g., H and He and 

predicted a plethora of stable compounds demonstrating exotic physical 

phenomena like plasticity and superionicity [21,22,26–29]. Hydrogen sulphide 

(H2S), despite identified from planetary atmospheric observations as being 

existing in Uranus and Neptune [30–32], received less attention. Their 

composition, miscibility with other molecular ices and physico-chemical 

properties under extreme environment thus demand a systematic study to 

expand our understanding of these planets and develop their realistic models. 

Recently, the first principles study of Li et al. [33] predicted that NH3 indeed 

reacts with H2S and forms a series of novel binary compounds with varying 

stoichiometry.  
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From a material science inspired point of view, H2S is one of the simplest 

compound capable of showing conventional superconductivity above 200K and 

at an elevated pressure of 155 GPa[34–38]. First principles study of Cui et al. 

[39] has recently predicted a metastable superconducting CH4-SH3 hydride

perovskite phase. It is possible to attain such high-TC superconductivity in a 

cubic CSH7 phase at 100 GPa and 180K [40]. The most important recent 

discovery in this line of research was made by Snider et al. [41], who have 

experimentally achieved room temperature superconductivity in a 

carbonaceous sulpher hydride for the first time. All these studies motivate 

further research on dense molecular mixtures of H2S. The interaction of H2S 

with molecular ices in elevated pressure regime merits a systematic 

investigation to find a route towards lowering the pressure required for 

reaching such superconducting state, which is largely unexplored till now.  

In analogy to ammonia water mixtures, Li et al. [33] have 

computationally predicted a number of molecular crystalline phases of NH3-

H2S mixture. Extensive studies dealt with various NH3:H2S ratios and revealed 

that potential mixtures, such as ammonia mono-sulfide (AMS, NH3:H2S=1:1), 

ammonia di-sulfide (ADS, NH3:H2S=1:2), ammonia hemi-sulfide (AHS, 

NH3:H2S=2:1) and ammonia quarter-sulfide (AQS) (NH3:H2S=4:1) can stabilize 

over a wide range of pressure. All of them undergo pressure induced structural 

transitions. Among them, AMS shows the most diverse structural evolution. 

Starting from a tetragonal P4/nmm phase it readily transforms to two 

consecutive monoclinic Cc and P21/m phases at 11 and 50 GPa, respectively. 

Upon further compression the P21/m phase  undergoes serial phase transitions 
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to orthorhombic Abm2 and Cmma phases at 95 and 125 GPa respectively. 

Electron-phonon coupling calculations shows that the Abm2 and Cmma phases 

demonstrate superconductivity at low temperatures of 21.4K and 49.9 K.  

Inspired by AMS’s stability over a diverse pressure range and 

superconducting nature, this phase has been chosen in the present thesis to 

explore the potential superionic character. I employ AIMD simulation to 

investigate the high-pressure high-temperature behaviour of the AMS phases 

starting from the crystalline solid state which is stable at the lowest pressure 

and then going upward in both pressure and temperature to investigate the 

physical changes occurring in the system. Compressed ammonia is reported to 

demonstrate plastic phases[42]; so does water[43,44] and ammonia-water 

mixture[22,26]. Further increase in temperature of these single or binary 

molecular ices result in a transformation into superionic[27] states and 

eventually to a liquid state. The presence of such plastic and superionic phases 

for ammonia water mixture calls for a similar investigation on ammonia sulfide 

mixtures. Here, a pressure-temperature phase diagram of AMS is developed 

with a special emphasis on the dependence of the solid, plastic, superionic and 

liquid phases on temperature. In particular, it will be intriguing to see whether 

the melting curve intersects with the isentropes of Uranus and Neptune which 

would indicate the existence of a partially solid lower mantle in these planets 

characterized by diffusive proton mediated electrical conductivity. I further 

calculate the diffusivity of hydrogen as well as of the nitrogen and sulfur and 

examine the pair distribution functions to analyze whether the liquid phase 

retains its molecular nature or turns atomic on heating.  
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7.2 Computational details 

I have performed Ab-initio molecular dynamics (AIMD) simulation on 

Ammonia mono sulphide (AMS) mixtures (NH3:H2S = 1:1) as implemented in 

VASP[45,46]. The ground state structures are obtained from Li et al. [33] . In 

AIMD, the motion of the atoms is governed by Newtonian dynamics, albeit 

restricted within the crystal. The interatomic forces influencing the atomic 

motion are computed within the framework of density functional theory (DFT). 

I chose the projector-augmented wave (PAW)[47] formalism of the DFT to 

capture electron-ion interactions. The exchange-correlation effect is expressed 

in the functional form as proposed by Perdew-Burke-Ernzerhof [48] of the 

generalized gradient approximation type. The calculations employed a kinetic 

energy cut-off of 600 eV together with a fixed Balderaschi-type k-point to 

sample the reciprocal space. In the AIMD simulations pressure, temperature 

and ionic positions were sampled in every ten time steps. 

The simulations used isokinetic NVT ensembles at the temperature, T, 

at fixed volume, V, and number of atoms, N, in the simulation box. The 

temperature was monitored by a Nose-Hoover type thermostat [49,50]. The 

volumes chosen for the simulations correspond to the desired pressure. Each 

simulation was run for 10000-14000 timesteps, with each timestep of 0.5 fs, for 

supercells of sizes ranging from 180 to 448 atoms. The NVT ensemble, which 

constrains the volume, affects the actual pressure on the system as the 

temperature of the AIMD simulations are increased. I thus considered the 

thermal pressure correction and, found the pressure variation restricted within 

2-5% of the target pressure.  For each AMS phase, a systematic grid of density-



Chapter 7 

186 
 

temperature points are studied (in 250K steps), encompassing their high 

pressure-stability range, and beginning from the most stable crystal structure 

at any given external pressure. The molecular dynamics trajectories of each 

atomic species are analysed via mean square displacements (MSD) and pair 

distribution functions (PDF). The PDF’s were calculated using the Atomic 

Simulation Environment package[51]. Eq. 3.14 has been used to calculate the 

diffusion coefficients from the slope of the MSD versus time plot.  

Structures of different high-pressure and -temperature phases at 

varying timesteps were extracted from the AIMD data. The standard DFT 

implementation in VASP has been utilized to calculate the density of states of 

the phases at various pressure-temperature conditions across the entire 

simulation time.  As the supercells considered in the AIMD simulations contain 

several hundreds of atoms, a gamma centred 3×3×3 Monkhorst-Pack[52] k-

point grid together with tetrahedron method [53] was chosen to calculate the 

density of states and to enumerate the band-gap. 

7.3 AIMD phase diagram 

 The P-T phase diagram for ammonia monosulphide (AMS) mixtures is 

shown in Figure 7.1 starting from the stable structures between the pressure 

range 0-160 GPa and covering up to a temperature T = 3500K. The P4/nmm 

phase at ambient pressure is the only one among the candidate mixtures found 

to undergo a direct transition from a solid state to liquid state upon heating. 

For the rest of the AMS mixtures at high pressure, increasing temperature 

reveals zones of solid phases, plastic or rotating phases followed by superionic 
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states, and eventually liquid states. This categorization of different states is 

based on the analysis of the MSD of different species as illustrated in Figure 

7.2-7.7. The locally excited or the plastic states are characterized by initial 

growth in their MSD which gradually plateaus to a small finite value as 

illustrated in Figure 7.2a and 7.3a. Whereas in the superionic states, the heavy 

atoms (S and N) are stationary at their lattice positions (negligible MSDs) with 

the highly mobile protons diffusing between the sublattice of heavy atoms 

(Figure 7.2-Figure 7.5) Correspondingly, the superionic states are associated 

with a finite proton diffusion coefficients (DH > 0) and non-diffusive heavy 

atoms i.e. DN = DS ~ 0. Finally, in the liquid state, all atoms are mobile 

Figure 7.1: Pressure-temperature phase diagram of NH3+H2S (1:1) mixture along with the 
melting curve. The different symbol represents different states of the molecular crystalline 
material. 
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irrespective of their masses and diffuse throughout the entire simulation cell 

(Figure 7.4 and Figure 7.5c and 7.5d). 

Our studied AMS phases are stable with respect to decomposition into 

individual NH3 and H2S or mixtures of NH3 and H3S + S up to 150 GPa in 

pressure. Beyond 150 GPa, the enthalpy of NH3 and H3S + S mixture becomes 

lower than our high-pressure Cmma phase, thus limiting the high-pressure 

stability of the AMS phase[26]. The ambient pressure P4/nmm phase readily 

Figure 7.2: Mean square displacements of H atoms at different temperatures of the Cc phase 
around 20 GPa as a function of time. 

Figure 7.3: Mean squared displacements of H atoms for the Cc phase at 40 GPa. 
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melts at 500K, however the similar crytalline phase at 10 GPa shows 

intermediate plastic and superionic states which results in an increment of the 

melting point (Figure 7.1). At 20 GPa the Cc phase melts at a temperature 

between 2000-2250K and at 40 GPa it increases further to 2500K. A melting 

point convergence is observed at 2500K for the P21/m and Abm2 phase before 

it drops to 2250K for the Cmma phase stable at the highest pressure. These 

type of anomalous variation of melting point is observed in case of elements 

like Barium, Germanium, and Bismuth, and compounds like KNO2 and 

KH2AsO4. For such materials characterized by falling melting curve at high-

pressure regime are better to be fitted with Kechin equation [54] rather than 

the standard Simon-Glatzel equation[55] which fails to capture the maxima of 

the melting curve. The black line in Figure 7.1 represents the melting curve of 

AMS. The calculated melting curve lies close to the ammonia monohydrate 

(NH3:H2O = 1:1) and ammonia dihydrate (NH3:H2O = 1:2) mixtures[22,26] but 

differs substantially from the ammonia quarterhydrate phase (NH3:H2O = 4:1) 

Figure 7.4: Mean squared displacements of a. N and b. S atoms in the Cc phase at different 
pressures and temperatures. 
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showing much higher melting points. Li. et al. [33] have shown that the partial 

charges on SH- and S2- lies in the range of -0.62 to -0.65, whereas for OH- and 

O2- they are far more negative ranging from -0.68 to -1.3 as calculated by 

Robinson et al.[17].  Consequently, the binding energies of hydrogen bonded 

H2S-ammonia dimers and trimers like HSH---NH3, H3NH---SH and H3NH---S-

--HNH3 are reasonably lower than those of the water-ammonia dimers and 

trimers. We can argue that these lower binding energies require a lower 

temperature for melt generation and thus explain the low melting points of the 

NH3-H2S phases. It is noteworthy that, the isentropes for Uranus and 

 

Figure 7.5: Mean square displacements of H atoms in P21/m phases at a. 60 GPa and b. 80 GPa. 
The same is shown for c. N and d. S atoms in the bottom panels.  
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Neptune[56] do not intersect with our melting curve, but they follow the 

melting curve very closely at pressures under 30 GPa, suggesting that the 

superionic phases of AMS may be present in the shallow mantle region of these 

ice giant planets. The present simulation shows that around 10 GPa, P4/nmm 

phase attains superionicity at 1000K, whereas for the other high pressure 

phases superionic nature does not appear until 1500K. Another important 

observation is the pressure drop in superionic to liquid transition of the P21/m, 

Abm2 and Cmma phases. This indicates that the density of the liquid state of 

these phases are greater than their solid/superionic counterparts. 

7.4 Plastic and superionic phases 

At elevated temperature and pressure NH3 shows a plastic regime in its 

phase diagram which has been experimentally verified [42]. Although there are 

no computational or experimental studies on the superionicity of H2S, its 

pressure induced metallization at 96 GPa have been explored experimentally 

by Sakashita et. al [57]. These plastic phases of molecular crystalline solids 

represent the states with free rotor molecules as the main constituent which 

are constrained to their designated spots in the lattice. They occur as 

intermediate states between solid and the superionic states indicative of the 

partially amorphized sublattice. But for molecular mixture of ices, the case is 

not as straightforward as individual ices of water or ammonia etc. since 

molecular mixtures feature several different chemical and structural motifs as 

well as basins of proton attractors. Their complicated interaction generates 

local excitations where the atoms leave their lattice site without yielding a net 

diffusion. Although the different AMS phases exhibit characteristic 
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orientations of the hydrogen bonded S-H----H-S chains, the remaining chemical 

motif NH4+ are equipped with configurational proton disorder, which suggests 

that these phases should develop plasticity.   

Indeed similar to ammonia, water[43,44] and ammonia-water mixtures, 

this computational investigation reveals that, barring the P4/nmm phase at 

ambient pressure, rest of the AMS mixtures undergo a transition from the 

plastic zone to the superionic region with increasing temperature. Fig 7.6 

shows typical molecular dynamics trajectories of proton in the Abm2 phase at 

a pressure of 100 GPa and a temperature of 1000K.  The protons are mobile in 

nature, but they do not diffuse through the entire simulation cell. In contrast 

to the ammonia hemihydrate AHH phase, where both rotation of NH4+ and 

occasional proton hopping along the H-bonds from NH4+ to O2- ions are 

Figure 7.6: Trajectories of the H-atoms (white lines) around N atoms (blue) and S atoms (yellow) 
of the Abm2 phase at 100 GPa and 1000K. The disjoint motion of H atoms around N and S atoms 
represents vibrational and rotational motions representing the plastic states.  
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effective, the dominant leading local excitations in this case involve individual 

rotations of NH4+ motifs and oscillatory motion of protons along lines of SH- 

chains. The dynamic equilibrium NH4+ + O2- ⇋ NH3 + OH- present in case of 

ammonia hemihydrate is absent here. However, the situation is different for 

the Cc phase at 40 GPa and 1000K. As Figure 7.7 reveals that the plasticity in 

this phase is entirely controlled by a dynamic equilibrium of proton exchange 

between molecular motifs, giving rise to transient S2- ions. The proton MSD’s 

shown in Figure 7.2-7.3 rises continuously up to 2 ps and 1 ps for the low 

temperature Cc phases at 20 GPa and 40 GPa, respectively and finally 

converges to 2 Å2. The distance between the protons in disordered NH4+ units 

are dHH ~ 1.63 Å. Assuming that the local tetrahedral orientation of the NH4+

units remain unaltered, the HMSD thus can approach an approximate value 

Figure 7.7:  Trajectories of H atoms in the surroundings of N and S atoms in the Cc phase at 40 
GPa and 1000k. The colours carry the usual meaning as in Figure 7.6.   
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HMSD = ¾ × d2HH = 1.993 Å2. This indicates that the regime where HMSD 

converges to a finite value (~ 2 Å2) does not produce diffusive protons, but 

causes local excitations resulting in a plastic state.  

The superionic states are identified from the MSD plots of every 

simulation run, based on the following two criteria: 1) the hydrogen atoms are 

significantly mobile, able enough to leave their lattice sites, and 2) the heavy 

atoms of N and S are stationary, forming a stable N-S sublattice, as evident 

from Figure 7.9 for the P21/m phase at 60 GPa and 2250K. A phase is 

considered to be in a superionic state when the MSD of N and S atoms stays 

Figure 7.8: MSD of H atoms in Abm2 phases at a. 100 GPa and b. 120 GPa. The bottom panel 
shows the MSD of c. N atoms and d. S atoms in Abm2 phases at different preesure-temperature. 
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constant as a function of time at a reasonably small value whereas the MSD of 

H exhibits rapid increment as the AIMD simulation progresses. Figure 7.2, 7.3, 

7.5a-b,7.8a-b and 7.10a illustrate the typical MSD of protons of the Cc phase 

at 20 GPa,40 GPa; P21/m phase at 60 GPa, 80 GPa, Abm2 phase at 100 GPa, 

120 GPa and Cmma phase at 150 GPa respectively in both the plastic and 

superionic regime. The onset temperature for superionicity in the P4/nmm 

phase at 10GPa is observed to be 1000K which rises to 1500K at 20 GPa and 

stays the same for the subsequent high-pressure phases. For pure 

ammonia[12], water[10] or  ammonia-water mixture [26], the superionicity for 

the high-pressure phases are observed at a temperature of 2000K and above, 

Figure 7.9: Trajectories of H atoms (white lines) in the superionic state of the P21/m phase at 
60 GPa and 2250K. The yellow and blue spheres are S and N atoms respectively. Here the 
trajectories of the H-atoms are distributed across the entire simulation cell as opposed to the 
plastic states where they revolve around the relatively heavy atoms (Figure. 7.6-7.7). 
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pushing their melting curve upwards. The mixing of ammonia and hydrogen 

sulphide can enforce an enhanced proton transfer between the constituent 

molecular motifs as eminent in the plastic region. This could lead to a much 

moderate P-T requirement to attain superionic behaviour in AMS phases 

compared to pure molecular ammonia. In general, the superionic state is 

spread over a broader temperature regime as the temperature is increased 

reaching a maximum of 2250K for the intermediate high-pressure phases, 

before falling down to 2000K for the Cmma phase. It is important to note here 

that the melting in our simulations were obtained using ‘heat until melting’ 

method. This method has a drawback as it includes superheating, which 

Figure 7.10: MSD of the a. H atoms b. N atoms and c. S atoms in the Cmma phase of AMS. 
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overestimates the melting points. It will be intriguing to determine the 

accurate melting points via the improved methods like solid-liquid phase 

coexistence, thermodynamic integration, annealing or the Z-method and to 

compare the accuracy of our results to have an estimate of the size effects on 

the melting points of the AMS phases.  

7.5 Diffusivity of H, N and S 

As discussed in the earlier sections, the diffusion of the light constituent 

element H is observed in both the superionic and the liquid regime whereas the 

diffusion of the heavy elements N and S are realized only when the system is 

molten. Eq. 3.14 has been used to calculate the diffusion coefficients from the 

slope of the linear region of their respective MSD vs time plot (Figure 7.2-7.5, 

7.8 and 7.10). For the plastic phases mediated by the rotating molecular motifs 

the MSD of H increases initially and then oscillate around some mean value 

where protons are halfway from their maximum displacement. This leads to a 

finite proton MSD, but with a negligibly small slope, i.e., the diffusion 

coefficient reduces to zero. The diffusion coefficients of the solid phases are 

essentially zero. Any diffusion coefficient smaller than 10-9 m2/s are thus not 

considered in the present calculation because they entirely owe to rotational or 

vibrational motions. Table 7.1 lists our calculated proton diffusion coefficients 

DH across the superionic and liquid states of AMS and Figure 7.11 shows the 

variation of DH with respect to increasing pressure. The initial green circle is 

observed to be higher in magnitude even compared to the other values along 

the isotherm of 2250K. This is due to the fact that it belongs to the ambient 
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P4/nmm phase which readily melts at a lower temperature of 500K. Thus, a 

Temperature (K) Pressure (GPa) Proton diffusion coefficient (m2/s) 

1500 

1.63 
 

2.03094E-07 

14.346 1.12363E-08 

25.995 3.63646E-08 

45.785 1.99283E-08 

68.41 1.53756E-08 

87.808 1.67554E-08 

112.315 3.3461E-08 

132.66 2.98279E-08 

163.94 2.02639E-08 

1750 

16.175 2.8531E-08 

27.079 6.03188E-08 

47.015 4.4796E-08 

69.746 2.47312E-08 

89.264 2.3698E-08 

114.879 2.76627E-08 

168.24 3.02622E-08 

2000 

16.875 4.01462E-08 

28.419 1.15565E-07 

48.015 9.32954E-08 

70.178 8.02414E-08 

89.425 8.98081E-08 

115.968 1.0599E-07 

137.02 1.38752E-07 

Table 7.1: Proton diffusion coefficients in AMS mixtures under varied pressure and 
temperature condition. 
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168.06 1.42035E-07 

2250 

17.677 4.39181E-08 

30.016 1.65147E-07 

49.029 1.31747E-07 

69.94 1.30088E-07 

90.032 1.41287E-07 

115.493 1.93197E-07 

136.26 1.92975E-07 

165.38 1.93013E-07 

2500 

50.255 2.15019E-07 

69.941 2.46005E-07 

87.911 2.20018E-07 

115.149 2.54116E-07 

135.08 3.01756E-07 

164.67 3.21171E-07 

3000 

51.097 3.99192E-07 

71.152 4.42337E-07 

88.325 4.30026E-07 

116.543 4.77724E-07 

136.062 4.9045E-07 

166.05 4.55762E-07 

three-fold increment of temperature generates incredibly fast protons. 

Structural motif plays an important role in determining the mobility of the 

proton. This is reflected in the fact that DH for the molten P4/nmm phase at 10 

GPa is comparable to the DH of the superionic states of the high-pressure 

phases along the 1500K and 1750K isotherm. DH along the higher temperature 

isotherms easily supersede the value of the former. DH is observed to decrease 
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at the high-pressure end of the 3000K isotherm. Since the molecular system at 

this temperature contains every kind of constituent mobile atoms, this 

decreasing DH indicates that the presence of larger mobile atoms constrains the 

motion of protons.  

  The situation for DN and DS are a bit different. Figure 7.12 features the 

diffusion of heavy element N and S in the liquid state at 2500K and 3000K. 

The DN and DS for the Abm2 phases at 100 and 120 GPa (initial pressures for 

the AIMD simulation) exhibit very less difference in value. The P21/m phases 

at 60 and 80 GPa on the other hand (initial pressures) shows a very drastic 

variation. Despite being heavier, the diffusion constants of S atoms are 

observed to surpass the diffusion coefficients of N atoms at most of the P-T 

        

Figure 7.11: Diffusion coefficients of H in AMS mixture along different isotherms and at 
different pressures. Note the high DH for 1500K at low pressures where the mixture is in liquid 
state.  
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points, as evident from Figure 7.12. Only the Cmma phase yields similar values 

of DN and DS at 2500K. 

7.6 Analysis of local structures  

 In the previous section, we have determined and categorized the P-T 

space of AMS into different regimes viz. solid, plastic, superionic and liquid, by 

applying a combination visual inspection of the trajectories and MSD’s of all 

the constituent elements. This helped us to identify a selection of intriguing 

behaviors: variation in hydrogen bonded network enforced by rotating S-H or 

N-H covalent bonds, the local disassociation of such bonds to generate 

molecular or purely ionic defects and finally the creation of fully diffusive 

 
Figure 7.12: Diffusion coefficients of nitrogen and sulfur atoms along different isotherm under 
varying pressure. Note the higher temperature required for the diffusion of nitrogen and sulfur atoms 
as compared to the hydrogen ones in Fig. 7.11. 



Chapter 7 

202 

proton within the stable sublattice of the heavy atoms. We will now analyze 

the aforementioned behaviors in light of our calculated PDF, which will assert 

our assignment of different regimes and provide us with a more perceptive 

microscopic picture of the non-solid regions.  

In case of simple systems, the radial distribution function, averaged over 

all constituents presents information about the atomistic condition of the 

system under study. However, a multi-component system  poses additional 

complexity. To overcome this hurdle, I have dealt with individual pair 

distribution functions between like and unlike elements to reveal characteristic 

details. These are shown in Figure 7.13 and Figure 7.14 for the P21/m phase at 

60 GPa and Abm2 phase at 120 GPa, respectively, at various temperatures. At 

1000K, the P21/m phase retains its solid structure. Hence, the PDF is 

associated with a strong peak at 1.05 Å, which indicates the covalent distance 

dNH, while first peak in the S-H PDF is at 1.4 Å implying the hydrogen bonded 

covalent distance dS—NH = 1.4 Å (Figure 7.13b). The second peak in S-H PDF 

rises from the second nearest neighboring S-H pairs. When the molecular 

system enters the superionic domain upon further heating, the second S-H 

peak widens drastically and moves to a large distance, causing the long-range 

ordering to die out (Figure 7.13d and 7.14d). This is a consequence of both the 

rotation of the NH3 or the NH4+ motifs and the proton hopping across the S-H-

---N bonds. In contrast the peak at dNH = 1.05 Å only broadens and diminishes 

in amplitude with increasing temperature, indicating that only the hopping 

away of protons from the NH4+ motifs affect them (7.13d and 7.14d). In the 

liquid state, an exquisite chemistry develops at elevated pressure and 
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temperature. At 3000K we observed the emergence of a peak at 0.74 Å in the 

PDF of hydrogen only, which is consistent with the bond length of a typical H2 

molecule (Figure 7.13e and 7.14e). However, at these high pressures and 

temperatures pure hydrogen is atomic and molecular hydrogen will be very 

 

Figure 7.13: Pair distribution functions (PDF) of like atoms (left panels) and unlike atoms (right 
panel) of the P21/m phase at 60 GPa. Different peaks are identified corresponding to the H-N and 
H-S lengths indicating the formation of different chemical motifs at higher temperatures.  
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short-lived, although the existence of other elements may influence the 

formation of molecular hydrogen and allow it to be present in these hot-ice 

mixtures. It is important to note that the Abm2 phase at 2000K also sports the 

formation of H2 molecule (Figure 7.14c), but the peak in the PDF is very small 

in magnitude and the lifetime of H2 molecules could even be very transient. 

 

Figure 7.14: PDF of like atoms (left panel) and unlike atoms (right panel) in the Abm2 phase at 
100 GPa. 
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The characteristic difference between the molten P21/m phase and Abm2 phase 

can be attributed to the formation of molecules of heavy atoms present in the 

system. The former phase only shows the appearance of S2 molecules, whereas 

the latter gives rise to both the N2 and S2 molecules (Figure 7.13e and 7.14e). 

The peak at the PDF of S-S bond distances appear at around 2 Å, which is 

slightly larger than the bond distance of static disulphur (1.9 Å). Although 

disulphur disintegrates readily when irradiated by sunlight, the dense cloudy 

atmosphere of the ice-giant planets may act as a shield and hence, aid the 

formation of S2 molecules in the mantle of these planets. On the other hand, 

the peak for N-N PDF is located at 1.4 Å. These N–N bonds are longer than the 

N-N bonds in static N2 molecules (1.1 Å) but relatively shorter than single N–

N bonds in polymeric nitrogen (1.6 Å). The bond life-time of these species are 

likely to be very short as the N2 molecules are in rigorous rotation. Unlike 

Robinson and Hermann’s study [26], this investigation does not find any 

molecular species like NS, analogous to NO, although NS and NS+ have been 

detected in stellar clouds and comets [58,59]. Instead, we can recognize a peak 

in the S-N PDF at 1.6-1.7 Å, which can be attributed to the S-N bond distances 

observed in molecular species like H2NS, NSH or HNSH[60] and in Dinitrogen 

sulphide [61]. The relatively smooth and featureless structure of the H-H PDF 

at high pressure and high temperature (Figure 7.14e) indicates that the total 

dissociation of H2 molecules is very likely to happen en route to a plasma.   

7.7 Combined P-T effects on band gap 

The molecular mixtures, by and large, tend not to have a metallic 

character unless enforced by an extreme pressure and/or temperature 
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condition, which leads to a collapse of their wide band gap. H2S and H3S are 

found to metalize at relatively lower pressures around 100 GPa [35]. This 

property of H2S is observed to be carried through the their mixture with 

methane, resulting in a room temperature superconducting material at 250 

GPa[41]. Li et al.[33] have reported the evolution of band gap with hydrostatic 

pressure of the AMS phases. Below 90 GPa, all the phases P4/nmm, Cc and 

P21/m have wide band gaps ranging from 1 to 3.5 eV. However, the Abm2 and 

Cmma phase are reported to gain pressure induced metallic character beyond 

90 GPa. Although the Cmma phase is metallic over its entire pressure range of 

stability, the Abm2 phase undergoes a band gap collapse at 88 GPa, resulting 

in a semiconductor-metallic transition. Thus, the metallization of H2S can be 

expected to occur in its mixture with ammonia at higher temperatures. Barring 

the Cmma phase, the present study investigated the combined effect of 

temperature and pressure on the evolution of the band gap of the rest of the 

stable AMS phases. Figure 7.15 shows that the metallic character at relatively 

low pressures does not develop even at higher temperatures considered in this 

calculation. The relatively high band gap of P4/nmm phases at 10 GPa and 

1000K compared to its low-pressure predecessor is mainly due to the fact that 

the at 0 GPa and 1000K, the P4/nmm phase is already molten whereas at 10 

GPa it demonstrates superionic nature. In Figure 7.15, we can find that the 

collapse of the band gap is the most pronounced in case of the Cc phase at 20 

GPa, as indicated by the steeper slope. In the superionic regime, the Cc phase 

at 20 GPa features a band-gap lower than 1 eV together with the high-pressure 

Cc phase at 40 GPa and P21/m phase. The P21/m phase at 80 GPa has the 
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lowest band gaps of them all, however the band gap of this phase is less 

sensitive to the rise in temperature as evident from its seemingly flat variation 

with temperature. This analysis suggests that the metallization of the Cc phase 

at 20 GPa can be obtained at a very high temperature, albeit lower than the 

temperature required for metallization of the other high-pressure AMS phases.    

7.8 Concluding notes 

 In summary, this chapter presents crucial results from AIMD 

simulations at pressures and temperatures anticipated in the mantle regions 

of the ice giant Uranus and Neptune with new finding on the phase diagram of 

 

Figure 7.15: Variation of band gaps of different AMS phases at different pressures in response to 
elevated temperatures. 
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1:1 molecular mixture of NH3 and H2S Ammonia monosulphide and the 

evolution of their electronic properties. The simulations provide a wide range 

of intriguing physical and chemical properties of the mixtures. This study also 

demonstrates similar transitions of their states on heating, as observed in case 

of pure molecular ammonia, but somewhat different from that in case of H2S. 

In ambient pressure, solid AMS melts fully to form molecular liquid without 

any intermediate plastic or superionic state. But, on and above a pressure of 

10 GPa, a regime of plastic or locally excited states appear, which is triggered 

by the rotation of different molecular motifs. These local molecular motifs are 

found to be chemically and structurally different from the motifs in the 

constituent individual molecular hot ices. This is a consequence of the chemical 

complexity in the AMS mixture. Further increase in temperature results in a 

plastic to superionic transition where highly mobile protons diffuse through the 

heavy atom sublattice. This superionic region covers a major portion of the P-

T phase diagram. The lowering of the onset temperature required for the 

superionic behavior compared to that of the ice of pure ammonia is attributed 

to the complex chemical interaction and dynamic equilibrium between different 

motifs existing in the AMS mixture. The melting curve is obtained via direct 

heating of the superionic states and is found to lie below the melting curve of 

pure ammonia. Although H2S being a minor component of the ice giant 

interiors, a comparison with the isentropes of Uranus and Neptune indicates 

that in the shallow mantle region of these planets H2S can be bound with 

ammonia and the AMS mixture can exist there. 

This chapter has evaluated the diffusion coefficients of protons in both 
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superionic and liquid states while those of the N and S atoms in liquid states 

only. The proton diffusivity is found to increase with temperature but holds a 

non-linear relation with pressure. Sulphur, although heavier in mass, diffuses 

faster than nitrogen in the liquid state. This difference in diffusional behaviour 

is attributed to the superior strength of the N-H bond, compared to the S-H 

bond.  The PDF analysis of the high temperature regime reveals that heating 

favours the existence of molecular species rather than the ionic ones. It is 

reported that in the superionic and the liquid regimes, just near the melting 

points the mixture mostly contains short-lived molecular motifs of both like 

and unlike atoms. However, at much higher temperatures the formation of H2

molecules is indicated. 

This study also provides an account of the effect of temperature on the 

band gap of the AMS phases. The Abm2 and Cmma mixture remain metallic in 

the whole temperature range. The rest of the phases are characterized by a 

closure of the band gap with increasing temperature. Among these phases, the 

band gap of Cc phase at 20 GPa favours the heating the most. To achieve 

metallic character of these phases, further increment of temperature is 

required, which could possibly turn the mixture atomic from molecular.  
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CHAPTER 

 8 
Summary and conclusions

8.1 U1-xThxSiO4: Phase transition & mechanical property 

Zircon type natural silicates are considered to be both industrially and 

geologically demanding. From a material science point of view their mechanical 

stability and endurance to corrosion and extreme thermodynamic environment 

make them ideal candidate for nuclear waste immobilization and disposal of 

spent nuclear fuel. From the geological perspective, zircon type silicates often 

host radionuclides like U, Th, Pu etc. as substitutional defects in place of 

zirconium atom. U-Th-Pb radiogenic gecochronology is thus extensively used 

in geological studies to quantitatively explore the ages of rocks and geological 

events. The present thesis is focused upon the atomistic phenomena involved 

in the zircon- to reidite-type high-pressure phase transition of pure uranium 

and thorium endmember coffinite (USiO4) and thorite (ThSiO4) as well as the 

series of uranothorite solid solutions (U1-xThxSiO4; x = 0 to 1, in steps of 0.25). 

The effect of increasing hydrostatic pressure on the phase transition and 

mechanical properties are concluded below.
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• Using the enthalpy crossover method, the first-principles calculations

suggest the pressure-dependent zircon- to redite-type structural transition to 

take place at 8.52 GPa for the U-end member (coffinite), which is comparable 

to that (8.68 GPa) for the Th-end member (thorite). According to the pressure 

homologue rule, the substitution of U by Th should lower the transition 

pressure (PT). The present thesis, however, reports a non-linear relation of PT 

with Th content in the phase, showing a minimum value (6.82 GPa) for the 

composition with equal U and Th proportions (U0.5Th0.5SiO4).   

• The bulk moduli of the zircon-type uranothorite also features a similar

nonlinear trend with the U/Th ratio, attaining a minimum of 167.6 GPa in the 

solid-solution series at U/Th = 1, where the values for the end-members: 

coffinite and thorite are 181.3 GPa and 178.2 GPa, respectively. In contrast, 

the bulk moduli of the reidite-type phases decrease monotonically (from 239 

GPa to 225.6 GPa) with increasing Th content, but always lying above the 

values for the zircon-type counterpart.  

• Consequently, their compressibility shows contrasting variations with

the Th content; the zircon-type phases yield a maximum compressibility for 

U0.5Th0.5SiO4, whereas the reidite-type continuously increases its 

compressibility. This finding establishes the zircon-type U0.5Th0.5SiO4 as the 

most compressible solid solution phase that explains the lowest PT.  

• The U-Th interchange results in a drastic change in the mode of volume

expansion for the zircon- and reidite-type phases, where the crystallographic 

c/a ratio in the later phase undergoes a steady gain with increasing Th content, 

where the other phase shows a completely opposite relation. The reidite-type 
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phase thus gives rise to higher compressibility along the c-axis than the a-axis, 

as opposed to that for the zircon-type phase. 

8.2 Effect of polyhedral distortion on phase transition 

The uranothorite phases display their lattice structures consisting of 

highly irregular U/ThO8 triangular dodecahedra, and the distortions of these 

dodecahedra significantly influence their zircon to reidite-type transition 

pressure. The present thesis theoretically derives two novel parameters in 

quantifying these distortions. Their analysis leads to the following major 

findings.  

• In U/ThO8 polyhedra the radionuclides occupy the central positions, and

the O atoms occupy two distinct types of vertices with multiplicity 4, resulting 

in two different U/Th-O bond lengths. In their undistorted state, the ratio of 

these two bond lengths assumes a fixed value of ~ 1.374302.  On the other hand, 

each of two adjacent O atoms forms three geometrically different angles at the 

U/Th position, with multiplicity 2, 4 and 12 respectively. The undistorted 

configuration has these angles as 65.061°, 95.297° and 75.158°. This thesis 

provides an analysis of the U/ThO8 polyhedral distortions using two new 

parameters: δ and σ2 to quantify the distortions of bond lengths and angles, 

respectively.  This analysis also explains the two distinct types of U/Th-O bonds 

with contrasting lengths.  

• σU2 and σTh2 for zircon- and reidite-type phases assume a minimum

difference for the intermediate chemical composition (U0.5Th0.5SiO4), 47.487 

and 35.261 in deg2 for UO8 and ThO8 polyhedra, respectively. Interestingly, the 
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transition pressure (PT) is reduced to a minimum at the point of this minimum 

difference in angular distortion. The present thesis offers the following 

explanation. The zircon- to reidite-type transition is reconstructive, where 

U/Th-O bonds completely dissociate and reorganize to form new polyhedra in 

the high-pressure phase.  The minimum difference in polyhedral distortion 

enables this transition to take place at the lowest pressure when U/Th = 1. 

8.3 Elastic property of titanite 

Using first-principles calculations this thesis presents a detailed 

analysis of the mechanical properties of titanite (CaTiSiO5), a naturally 

occurring nesosilicate, extensively utilized to manufacture a range of opto-

electronic devices.  Titanite undergoes a structural transition from P21/c to C2/c 

structure under 5 GPa. The major elastic properties of this phase are 

highlighted below: 

• The 13 elastic constants of titanite (monoclinic) are sensitive to

hydrostatic pressure. In the P21/c phase C44, C55 and C36 shows an inverse 

relation with pressure, implying its negative pressure gradient, whereas the 

rest hold positive relations. The compressional elastic constants C11, C22 and 

C33 have the highest values of their pressure derivatives (𝐶𝐶11′ = 8.16, 𝐶𝐶22′ =5.21 

and 𝐶𝐶33′ = 6.75). In contrast, the other shear elastic constants are less sensitive 

to pressure, where C13 is the softest constant with the lowest pressure 

derivative (𝐶𝐶13′ = 1.67). 

• The present calculations reveal negative elasticity of the C2/c phase,

which is explained here. The shear elastic constant C36 assumes negative 
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values and the negativity increases with pressure. The other elastic constants 

show qualitatively similar pressure dependent variations, as found in its low-

pressure polymorph. This study proposes a rotational bond kinematics 

approach to theorize the origin of such negative elasticity, taking into 

consideration of the changes in bond angles under shear strains (𝜀𝜀12). On 

application of 𝜀𝜀12, the bond angle Ca-O-Si increases by 2.17° while the Ca-O-Ti 

and Ti-O-Si bond angles reduce by 2.58° and 1.52°. These estimates imply that 

the bond rotation accommodates the shear strain by reorienting the angular 

disposition of cationic polyhedra. For the other elastic constants, the crystal, 

on the other hand, resists the strain, except C36 that favours the shear 

deformation.  

8.4 Electronic and optical properties of titanite 

• Spin-polarized calculation of density of states of P21/c titanite yields a 

band-gap of 3.2 eV, implying that this phase can be used as a wide band-gap 

semiconductor.  

• The real (𝜀𝜀1)and imaginary (𝜀𝜀2) parts of the frequency dependent 

complex dielectric function of P21/c titanite indicate that titanite is optically 

anisotropic with the static dielectric constant along crystallographic a-, b- and 

c-axis as 4.38, 4.29 and 4.94. The anisotropic character is stronger for the real 

part, compared to the imaginary part.  𝜀𝜀1 assumes a negative value along c-axis 

at 4.36 eV. Titanite can be thus used as a shielding material at preferred optical 

frequencies. The complex part of the dielectric function (𝜀𝜀2) is related to photon 
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absorption, and the absorption edges lie close to 3.2 eV for all crystallographic 

directions.  

• The absorption, refractive index and reflectivity are calculated across 

the infra-red, visible and ultraviolet region along with the loss function and 

extinction coefficient. The calculated refractive indices of optically anisotropic 

titanite are 2.09, 2.07 and 2.21 along the a-, b- and c-axis, respectively. The 

extinction coefficient peaks at 4.26 eV and its shoulder is spread up to 60 eV.   

The titanite phase is thus transparent in the visible range, but opaque in the 

UV region. Based on this finding, the thesis proposes titanite as a potential UV 

shielding material.  

8.5 H-diffusion in brucite under high pressure   

 Transition zone silicates and dense hydrous mineral silicate phases are 

observed to house nominal to moderate amount of hydrogen and water and aids 

the recycling of water into the earth’s mantle. This doctoral work used ab-initio 

molecular dynamics (AIMD) simulations to study the mobility of hydrogen in 

brucite [Mg(OH)2], which is an outstanding hydroxide phase in Earth’s 

subduction zones. The simulations reveal that the mechanism of hydrogen 

diffusion in brucite markedly different from those in silicates. P3� brucite has a 

layered structure, with H atoms located between two adjoining MgO6-

octahedral layers. The layered structure acts as an ideal passage to facilitate 

the mobility of H atoms. The major outcomes of this study on the hydrogen 

diffusion in brucite are the following: 
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• For a given temperature, this phase shows a sharp transition in the 

mobility of H atoms at a threshold hydrostatic pressure. The MSD of H-atoms 

steadily increases with increasing pressure up to 73-76 GPa but drops with 

further pressure elevation. This finding suggest that the hydrogen diffusivity 

becomes most effective at an optimum pressure.   

• In the brucite phase the H mobility is onset only when a critical 

hydrostatic pressure is attained. Such pressure induced mobility results from 

dynamic disordering of H atoms in the lattice sites between the MgO6 

octahedral layers.  The onset pressure drops with increasing temperature, e.g., 

43.0 GPa at 1250K, which steadily reduces to 28.0 GPa at 1500K, 13.4 GPa at 

1750K and 10.4 GPa at 2000K.  

•  The maximum estimated diffusion coefficient is 2.34688E-08 m2/s for a 

pressure of 75.6 GPa and a temperature of 2000K.  

• In silicates the diffusion of H involves hopping of H atoms between 

substitutional and interstitial defects, whereas the diffusion in brucite phase 

at elevated pressure and temperature takes place in such manner so that the 

process results in amorphization of the H-sublattice, but without disturbing 

the Mg- and O-sublattice structures. This amorphization gives rise to a pool of 

highly mobile H-atoms that can readily diffuse along the channel.  

• The diffusion of H atoms in P3� brucite is highly anisotropic, with almost 

no diffusion along the c-axis. This directional diffusivity is explained in the 

following way. The MgO6 octahedra form a sheet perpendicular to the c-axis, 

and act as an effective barrier to restrict the interlayer motion of H-atoms, and 

facilitate their intralayer motion. The ratio of normalized diffusion constants 
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along a- and b-axis [d*[100]/d*[010]] has been evaluated as function of pressure 

and temperature. This study finds no steady correlation of d*[100]/d*[010] with 

pressure, which is perhaps a consequence of the isotropic configurational 

arrangements of H atoms on the ab-plane. 

8.6 Electrical conductivity of brucite 

• Using the Nernst-Einstein equation, the thesis provides a new insight 

for the apparent contribution of the protonic conductivity in brucite at elevated 

pressures (10 - 86 GPa) and temperatures (1250-2000K). The electrical 

conductivity for different isotherms attains peak values at different pressures 

above 70 GPa. At 1250K and 2000K the phase gains maximum conductivity of 

1.25E+03 S/m and 1.85E+03 S/m at 83.8 GPa and 85.99 GPa, respectively. 

However, the peak values (1.52E+03 S/m and 1.28E+03 S/m) of conductivity at 

1500K and 1750K occur at relatively lower pressures, 74.28 and 74.96 GPa, 

respectively.  

• The calculated values of conductivity are validated with magnetic 

satellite data, which show good agreement at low pressures. However, this 

validation is limited up to 45 GPa as the ex-situ magnetic studies are 

unavailable above this pressure range. The conductivity estimates suggest that 

brucite can be a potential mineral phase in the lower mantle and the mantle 

transition zone. Secondly, brucite can occur as segregated patches between 

dominant constituent silicates and oxides in the upper mantle and explain the 

origin of high electrical conductivity therein.  

 



  Summary and conclusions 
 

225 
 

8.7 Plastic, superionic and melting behaviour of AMS 

 Atmospheric observations indicate that the ice giant planets contain 

several light elements, such as C, N, S and O, in addition to H and He, and that 

their amounts exceed the solar abundance ratios. Hot dense molecular ices of 

ammonia, water, methane are suggested to be major constituents of these 

planetary bodies. A part of this thesis sheds light upon the miscibility and high-

pressure high-temperature behaviour of molecular crystalline mixture (in 1:1 

ratio) of ammonia and hydrogen sulphide viz. ammonia monosulphide (AMS). 

The key outcomes of this study are concluded below. 

•  The thesis develops the total phase diagram of AMS, where the ambient 

pressure P4/nmm phase directly transforms from the solid to liquid state at a 

temperature of 500K. On the other hand, the high pressure phases: P4/nmm 

(10 GPa), Cc (20-50GPa), P21/m (50-90 GPa), Abm2 phase (100-130 GPa) and 

Cmma (150 GPa) show a transformation of solid to plastic or rotational states 

with increasing temperature. The plastic states are characterized by an MSD 

of H atoms, which increases initially, but approach a plateau of small values, 

implying a non-diffusive state of H. The small value of MSD, converged at 

around 2 Å2, indicates the rotation of NH3 molecules or NH4+ motifs. Further 

increase of temperature results in a transformation to superionic states, where 

the H-sublattice melts totally, giving rise to highly diffusive protons. The 

P4/nmm phase at 10 GPa attains the superionic state at 1000K, whereas the 

rest of the high-pressure phases reach a similar state at 1500K.  Heating of the 

superionic states eventually leads to a molecular liquid state.  
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• The melting point of AMS initially increases steeply from 500K to 2250K 

and then converges to 2500K at higher pressure before falling again to 2250K 

at 166 GPa. The melting points at different pressure are fitted with the Kechin 

equation to find the melting curve.  

• The diffusion coefficients of H increase with temperature in the 

superionic regime. In the liquid regime, all the constituent atoms are mobile. 

This study evaluates the diffusion constants of particularly, N and S in the 

liquid state, and reveals that their motion hinders the mobility of H atoms. In 

some of the high-pressure phases, comparable values of proton diffusion 

coefficients are thus obtained from the superionic and liquid regimes. Sulphur, 

in spite of being heavier than nitrogen, is found to diffuse more rapidly in the 

liquid state. The contrasting mobility originates from the superior strength of 

the N-H bonds, as compared to the S-H bonds.   

8.8 Local structure and band-gap of AMS 

• Analysis of the pair distribution functions (PDF) is utilized to identify 

the formation of short- or long-lived molecular motifs in the elevated 

thermodynamic conditions. This study reports that heating facilitates the 

existence of molecular species than ionic ones. In the liquid regime, the H-H 

PDF peaks at 0.74 Å, which is equal to the typical bond-length in H2 molecules. 

However, at this condition hydrogen is atomic in nature and the life-time of H2 

molecule could be very less. In the low temperature regime, the N-H and S-H 

PDF’s show peaks at 1.04 Å and 1.4 Å, where the former length is the typical 

N-H bond length in ammonia and the latter is the S---NH distance. This asserts 
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that the states of the phases are still solid. Upon entering the superionic 

domain, the S---NH peak widens and spreads out suggesting rapid movement 

of hydrogen. The loss of structure of the H-H PDF indicates that in the 

superionic regime H-sublattice has undergone complete melting. The S-N PDF 

shows characteristic peaks at 1.6-1.7 Å on and above 3000K. These peaks are 

most likely to occur because of the formation of molecular species like HSNH 

or H2NS.  

• The high-pressure phases: Abm2 and Cmma are metallic in their ground 

state. The present thesis predicts varying band gaps for the rest of the phases 

at pressures up to 90 GPa and different temperatures. For the Cc phase at 20 

GPa the band gap drops from a value of 2.79 eV at 500K to 0.8 at 2000K. For 

the P21/m phase at 60 and 80 GPa, the band gap is obtained to be 1.139 eV and 

0.711 eV at 1000K. When the temperature is raised to 2000K their band gap 

reduces to 0.59 eV and 0.39 eV respectively. Among the phases, Cc phase at 20 

GPa shows the steepest decrease in band-gap with temperature. This study 

finally concludes that temperature induced metallization is possible in AMS 

mixture. However, this metallization can only be achieved in AMS liquid at 

extremely high temperatures, far exceeding the conditions of the solid or 

superionic states. 

8.9 Future Scope 

 Silicate phases are the building blocks of the heterogeneously stratified 

interior of the Earth. These phases constitute up to 80% of the crust and mantle 

region. Understanding the physico-chemical properties of these silicates under 

extreme thermodynamic and ultra-chemical environment thus carries 
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profound importance from the perspective of earth sciences. Simultaneously, 

the knowledge of such properties can further be valuable to explore their 

prospective utility in several industrial fronts. This present thesis deals with 

two such significant silicate phases: uranothorite and sphene/titanite. These 

studies thus pave the way for the future scope to investigate several other 

silicates, like ring silicates and phyllosilicates. An advancement of this 

research by doping of other heavy radionuclides in zircon structure and 

transition metals in titanite and in other silicates to tune their much-solicited 

physical properties will thus have substantial implications in materials 

engineering as well as from the perspective of geosciences. Nuclear waste 

immobilization is a challenging aspect for the nuclear energy sector. 

Recognizing potential silicates for environment friendly disposal of spent 

nuclear fuel is very important to avoid hazardous incidents. A future line of the 

present effort would target at the applicability of silicate phases, e.g., 

pyrochlore and beryl, as potential host for nuclear wastes.  

 The recycling of water and other light elements into the deep interior of 

earth have always eluded the scientific community and they have found dense 

hydrous mineral silicates as potential host of water. This thesis suggests 

brucite, a proton-rich hydroxide mineral phase as a potential material for 

hydrogen recycling into the mantle region of the Earth. The layered structure 

of brucite has significantly vacant 2-D channel between cationic octahedral 

layers. It would be a challenging move to address the following questions. 1. 

How can the trigonal brucite house other small and light elements, e.g., helium 

and carbon? 2. If it is capable to do so, how much can the concentration of light 
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elements influence the stability and mechanical properties of brucite under 

high pressure? 3. How does the mobility of H change depending on the presence 

of other light elements? 4. Can the other light elements also diffuse through 

the sublattice of Mg and O in significant quantitites? 

 It has been predicted earlier that the ammonia monosulphide mixture 

shows superconductivity at high pressures. A line of this thesis dealt with a 

study of ammonia monosulphide (NH3:H2S = 1:1) in the context of ice giant 

planets, e.g., Uranus and Neptune, with an objective to explore the superionic 

behaviour of this mixture in the ultra-high pressure temperature regime. The 

findings can be further utilized to device practical procedures in lowering the 

pressure required for attaining superconductivity. There is a scope of 

establishing phase diagrams for the molecular crystalline ammonia 

hemisulphide (NH3:H2S = 2:1), ammonia disulphide (NH3:H2S = 1:2) and 

ammonia quartersulphide (NH3:H2S = 1:4) to predict their stability fields. In 

particular, it will be worthwhile to explore the miscibility and stability of the 

ternary molecular mixtures of hot ices like H2O, NH3, CH4 and H2S under the 

pressure temperature conditions as expected in the interiors of the ice giant 

planets. 

 In this thesis the hydrostatic pressure and temperature of investigation 

are limited up to a pressure of 170 GPa and a temperature of 3500K. The 

interior of our planet earth features a much higher temperature and pressure 

reaching 6100°C and 364 GPa at the centre of the core. On the other hand, the 

pressure inside the gas giant planets (Jupiter and Saturn), ice giant planets 



Chapter 8 

230 
 

(Uranus and Neptune) and other extra-terrestrial planets can reach up to 

several terapascals. An effort to study the interior composition of such planets 

including the Earth thus can reveal exotic physics and chemistry of atomic and 

molecular motifs. A line of this study can be extended to evaluate the housing 

and alloying of small elements like H, Si, O and S with iron at the condition of 

the inner core boundary of the earth.  

 The current thesis is focussed mainly on the bulk static and kinematic 

behaviour of atomic and molecular crystalline solids under elevated pressure 

and temperature.  Solid state diffusion is observed to govern several chemical 

reactions and micro structural changes. However, diffusion can also occur 

along line and surface defects which comprise of grain boundaries, dislocations 

etc. These diffusion along linear, planar and surface defects is remarkably 

faster than the diffusion in bulk lattice and they induce dramatic variation in 

the surface properties. The thesis thus opens a potential future opportunity of 

undertaking atomic scale simulations to explore the surface behavior. 
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