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Chapter 1

Background and Objectives

1.1 Introduction

Type II superconductors, when subjected to magnetic fields above a certain thresh-
old, show a variety of magnetic properties due to penetration of quantized flux
inside the superconductors. Field penetration depends on the internal properties
of the superconducting sample like position and distribution of grain clusters, and
external properties like the shape and size of the sample as well as the nature of
the incident magnetic field. Critical current in such samples, is a function of the
internal magnetic field and can be inversely or exponentially dependent on inci-
dent magnetic field. Critical field can also be independent of incident magnetic
field. As it is the maximum loss less current inside the superconducting sample,
numerous numerical studies have been undertaken to map the exact dependence
of critical current on sample geometry and local field inside the sample, in an at-

tempt to maximize critical current. Critical state equation has also been used to



estimate the nature of local field profile inside the sample. Global magnetic prop-
erties of superconductors like complex susceptibility can be obtained from critical

state equation.

1.2 Review

Starting from a critical current whose magnitude is independent of magnitude of
local magnetic field and depends on only the presence of magnetic field inside
the sample, Bean (1) obtained analytic expressions for local field profile inside
superconducting samples. Incident magnetic field is assumed to be perpendicular
to the sample and the negative or positive value of critical current is determined
by change in local magnetic field compared to earlier times. Field penetration is

only important along one sample dimension.

Apart from this field independent critical current model, critical current with
exponential field dependence or inverse field dependence (2) have also been used
to solve for magnetic properties in samples with infinite height and equal length
and breadth (8). Various other ratios of length to breadth are also considered
and field penetration obtained in such cases. A generalized critical current is also

developed by Xu et al (11) which gives the following relation between critical



current density and local field:

Je(H:,T) = Jo(T)/ 1+ H;/Ho(T))° (1.1)

where 3 is a dimensionless constant.

In recent years, samples of arbitrary shapes placed in magnetic field with in
plane non-zero component have also been modelled by using critical state equa-

tions (5; 10) , where flux is not pinned but flux cutting doesn’t occur.

1.3 Objective

Depending on the pinning landscape in superconducting systems the enhancement
in the critical current density is possible. Even though in experimental studies it
is extremely difficult to have an exact idea about the pinning landscape, in nu-
merical studies it is not impossible. Following different theories attempts have
been made to obtain the way of attaining maximum critical current. However,
it is very important to understand how local pinning force density affects critical
current density. Internal field profile in presence of any particular pinning land-
scape governs local current density which is very essential to overall enhancement.
Complex susceptibility and pinning potential are known to be strongly related via
the local field profile. In the present work we have addressed different aspects

of the aforementioned ideas in low anisotropic superconducting systems in which
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pinning potentials are known to be very strong. Critical state model is known to
be very successful in finding the local field profile in a superconducting system
(2). We have proposed that the pinning force density depends not only on tem-
perature but also on the position coordinate. We have modified and followed the
finite temperature critical state model to calculate the complex susceptibility as
a function of temperature. We have considered low anisotropic superconducting

systems within the framework of the critical state model.

In Mueller’s model the proportionality constant in the j. o< % relation is given
as the pinning force density. Pinning force density is considered to be a function
of temperature and on the position where the local field is calculated is situated,
in grains or in the weak links between grains. We considered different grain size
distributions and found field profile inside the sample to be independent of the
grain size distribution for same average grain radius. This being the case, we have

modelled uniform grain size with uniform gap between grains.
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Figure 1.1: Schematic of Mueller’s Model
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In the first model, we considered granular superconductors with uniform dis-
tribution of grains throughout the sample. The grain boundaries form the weak
links with pinning force densities much less than that in the superconducting
grains. Penetration depth was assumed to have a power law temperature depen-
dence, with the exponent taken as 2. Pinning force density is treated as function
of temperature and field. Increase in penetration depth with temperature and de-
crease in pinning force density with temperature compete to influence the local
field inside weak links and grains. Susceptibility is computed by averaging local
magnetic field over time period of external field profile and the finite sample di-
mension. We change the amplitude of the ac (cosine) magnetic field while keeping
the dc magnetic field constant and study the system. Later, we use ac magnetic
field. Next, we consider a scenario where the pinning force density is a func-
tion of field itself. Starting from Mueller’s model where pinning force density
is independent of field (2), we increment the exponent slowly till pinning force
density is directly proportional to field and study its effects on field penetration
and field profile. In the next model we considered granular superconductors with
non-uniform distribution of grains in the sample. The sample is separated into
grains clusters made of grains with weak link boundaries and grain free separa-
tions, with the grain clusters and separations equal in length. Pinning force density
1s assumed to be a function of temperature and position inside the sample. Pinning

force density inside the grain is much higher than the other two regions and con-
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stant throughout the grain. In the first sample programmed, pinning force density
in the separations and weak links has the functional form of repetitive truncated
Gaussians with peaks lying at the centers of the separations and truncations either
at the edge of the sample or in the midpoints of the grain clusters. In the second
sample programmed, pinning force density in all the separations is assumed to
be constant and in the weak links between grains in the grain clusters, it is as-
sumed to be zero. Susceptibility across the entire temperature range is calculated.
The effect of varying the maximum value of pinning force density on 7, in either

scenario is also studied.
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Figure 1.2: Schematic of model where pinning force density minima coincides

with grain clusters, developed first to study granular superconductors
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1.4 Numerical Model

Final model under consideration is disordered granular superconductor with grain
clusters and grain-free separations. Presence of disorder increases the pinning
force density in the separations. The pinning force density in the grain is, in this
model, much lower than the pinning force density in the separations. There are
no weak links in the grain clusters. Pinning force density has the same functional
form in the grain clusters and the separations, including the same temperature
dependence and same functional dependence on position. In the first scenario,
pinning force density in the separations and grain clusters has the functional form
of repetitive truncated Gaussians with peaks lying at the centers of the separations
and truncations either at the edge of the sample or in the midpoints of the grain
clusters. In the second scenario, pinning force density in all the separations is
assumed to be constant and in the grain clusters, it is assumed to be zero. In such
grainscaped sample, we have solved the critical state equation separately for the
grained and grain-free segments, taking into account the effective permeability of
the region in question. Quadratic temperature dependence of penetration depth
is assumed as pnictides are the main group of samples we have modelled and

quadratic temperature dependence is experimentally observed in pnictides.
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Figure 1.3: Schematic of Gaussian pinning in final model developed to study
granular superconductors. Same Gaussian functional form is used for both the

grain clusters and the grain free regions.
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Figure 1.5: Schematic of two Repetitive Gaussian pinned granular sample with

grain clusters (grey) and Repetitive Gaussian spatial pinning profile
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We have simplified the model by considering grains of identical dimensions
in any given superconducting sample. We have verified that assuming normal or
triangular distribution of grain size along the same average grain radius, does not

change the field penetration.

1.5 Thesis outline

The subject matter of the thesis is presented in the following five chapters,

1. Chapter-1 Background and Objectives of the project are explained in detail
here. Review of existing literature is provided. Various numerical models
in existing literature are discussed. Mueller’s model is explained in detail.
Various models that we have developed are also discussed alongside dia-
grams detailing form of pinning density profiles. Different relative positions
of pinning profile maxima and grain clusters, and different dependences of
critical current density on local field profile and superconducting fractions

are highlighted.

2. Chapter-2 The penetration of the magnetic field in a network consisting of
the superconducting grains and intergranular region depends not only on the
applied external magnetic field but also on the underlying pinning force den-

sity and fraction of the superconducting grains in the sample. Considering
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the underlying pinning force density in the form of the repetitive Gaussian
(RG) nature we have solved the critical state model to get the spatial in-
ternal field profile at a particular time instant. The internal magnetic field
as a function of the position inside the superconductor exhibits nonlinear,
step-like nature. The complicated nature of the penetration of the field gets
strongly affected by the size of the granular region and the total pinning force
density in the superconductors. We have numerically calculated the real and
imaginary parts of the complex susceptibility. The variation of the imaginary
part with the temperature has a peak at a temperature which shifts towards

the higher temperature with the reduction of the superconducting fraction.

. Chapter 3 We solve the critical state equation with pinning force density
separable into functions of temperature and position numerically to find the
distribution of the internal magnetic field using a form of the London pen-
etration depth suitable for pnictide superconductors. Rademacher function
and repetitive Gaussian forms of the pinning force density have been mod-
elled. Superconducting grains are assumed to be embedded within two nor-
mal regions in Josephson junctions. Pinning force density is considered to be
higher in the normal regions as compared to that of the regions with grains
by several orders of magnitude. Over a wide range of temperature below the
critical temperature we have calculated and analysed local field profile at a

particular time instant using an external ac magnetic field. Time variation of

20



the local field at several positions has been calculated for both types of the

variation of the pinning force density.

. Chapter-4 We extend the 1D model to two dimensions assuming symmetry
along both x and y directions perpendicular to the incident magnetic field.
We program both types of pinning density profiles and multiple values of
grain radii and pinning magnitudes. We then compare the results with the 1D
case to identify similarities and differences between the 1D and 2D sample

models and try to identify causes behind any such changes.

. Appendix I The C code used to model the Repetitive Gaussian pinned sample

1s provided in its entirety in Appendix I.

. Appendix II Changes in the code for the 2D sample are mentioned in the

Appendix II.
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Chapter 2

Pinning mediated field penetration and complex

susceptibility in inhomogeneous superconductors

2.1 Introduction

The determination of the internal field profile inside a superconductor is always
very challenging both experimentally and numerically. It can have an exponen-
tial, linear and other nature depending on several internal and external factors
(1; 2; 3; 4). The penetration of the magnetic field in a superconducting network is
very complex in nature in presence of a particular underlying pinning force den-
sity. An internal distribution of the local magnetic field is governed by several
internal factors (5). The competition in the roles of the spatial distribution of the
pinning force density and size of the grain in controlling the internal field pro-
file remains very unclear. Any deliberately introduced defects in the sample will

change pinning force density of the sample and hence the diamagnetic response

25



of the superconductor. There are several studies in superconducting systems in
which local field profile has been calculated in different ways (6; 7; 8). The criti-
cal state model is very efficient to study the internal field profile numerically (9).
In (9) Muller, introduces various assumptions like H.; = 0 and introduction of
constants H;y and Hy in critical state equations for non-granular regions and for
granular clusters respectively, for finite current density when local field profile
is zero. Surface effects due to sample boundaries is ignored. For an external ac
magnetic field the internal field profile is related to the complex susceptibility.
The variation of the real and imaginary parts of the ac susceptibility with temper-
ature in superconducting systems is commonly used to understand flux pinning

properties (10; 11).

In this letter we have modelled the pinning force density by repeating a par-
ticular functional form and named it as the repetitive Gaussian (RG) form. Such
a modelling presupposes that defects in the superconductor can be deliberately
changed to give rise to a RG form of pinning force density. An external ac mag-
netic field of constant frequency is applied to a model superconducting network.
By means of the critical state model we have calculated internal field profile in
a superconducting network at several temperatures below the critical temperature
(9; 12). Unlike Muller, we have assumed a purely ac external magnetic field for
simplicity. All field profiles are calculated at a time instant of + = 0.02. We have

calculated the internal field profile for four grain radii, R,. The field profiles thus
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obtained using different set of parameters have been analyzed. The effect of the
grain size on the field profile has been studied. At a fixed pinning force density
amplitude the real and imaginary parts of the complex susceptibility have been
calculated using grain radius as a parameter. The shifting of the peak in the imag-
inary part as a function of temperature with the grain radius has been discussed
in qualitative way and compared with the shifting caused by the other parame-
ters. The effect of large dc magnetic field on peak temperature has also been

studied(20).

2.2 Model

The superconducting sample is modelled as grain-clusters (g) with fixed number
of grains per cluster, separated by nongrained regions (J). One nongrained region
and one grained region together form one composite segment and all composite
segments are of equal lengths. There are five composite segments in each half of
the sample. An ac magnetic field in the form of H = H%cos(wt) with H% = 200
is used externally. The critical state equation of the following form is solved for

the magnetic field inside the sample

dH(xt) 1 oy (x,T) 2.1)

dx Holtesf(T) |Hy(x,1)| + Hos
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where |H;(x,t)| is the local field in the nongrained regions at any time instant
t. ay(x,T) is the pinning force density in the same region. Similar critical state
equation holds for the superconducting grains. (s is the effective permeability of
the sample (9). Penetration depth A(T') = A9+ (T'/T)";n = 2 has been assumed.
A functional form of the pinning force density a;,)(x,T) is considered to follow
the separation of variables of temperature and position in both g and J regions as

given below.

T 2
(o) (X, T) = 0y (g)0(x) (1 - —> (2.2)

We have considered a functional form for the position-dependent pinning force

density, 0t (4)0(x) following the Gaussian function,

01 ol) =aige 172 23)

The Gaussian pinning force density profile is repeated and modelled with a peak
located at the midpoint of every nongrained region (J) and ¢ equal to 1/6th of
nongrained region length. This ensures low pinning in the grained regions (g) as
compared to the nongrained regions, J. Solving the critical state equation we have
found the internal field profile for a particular grain radius, R,. Dependence of the
internal field profile on the grain radius has been discussed. Using the field profile

we have calculated both the real and imaginary parts of the complex susceptibility
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as a function of temperature. We have also investigated the real and imaginary

parts as a function of T for several values of R,.

-1 . 1 . | . | .
-1.00 -095 -090 -0.85  -0.80
x/d

Figure 2.1: The spatial variations in Gaussian pinning force density inside gran-
ular superconducting sample for four different grain radius. One nongrained (J)
region and one grained (g) region comprising multiple grains with same radius,
form one composite segment and is shown in the figure. Each composite segment
is 1/10th of total sample length. x/d=-1 corresponds to the edge of the sample
whereas x/d=0 is taken as the centre of the sample. Repetitive Gaussian form is

obtained by repeating the above variation from x/d=-1 to x/d=+1
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Figure 2.2: (A-D) Variations of the internal field as a function of the position for
four grain radii. The pinning profile has the repetitive Gaussian functional form
with a maximum of oG = 6 x 10°. Panels (A), (B), (C) and (D) correspond to T’
=5, 15, 30 and 40 respectively. In each panel the profile in the non-grained region
is represented by Hj, and for the grained regions it is given by H,. H; and H, are
marked by separate color for a particular grain radius. Four different values of

grain radius are included in each panel.
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2.3 Results

In Figure 2.1 the variation of the pinning force density with x/d has been shown
in the limited range in position for the four different radii of the grains following
the Gaussian functional form as given in Equation 3. The first peak of the pinning
force density is located at x/d = —0.98 for R, = 3.6 x 107*, x/d = —0.96 for
R, =2.8x107% x/d = —0.94 for R, = 2.0 x 107%, and x/d = —0.92 for R, =
0.8 x 10~*. For each grain radius we have repeated the corresponding pinning
force density throughout the entire sample to achieve the total position-dependent
pinning profile. The total functional form has been obtained by using Equation 2
in which we used 7.=51. Inserting the total form of a;(,)(x,T’) we have calculated
the internal field profile H; and H, related to J and g regions respectively at a
particular time instant = 0.02 (9). In Figure 2.2 (A-D), we have plotted the
internal field profiles for 7=5, 15, 30 and 40 using same value of oG = 6 X 10°.
In the panel (A) of Figure 2.2, the field profiles are shown for R, = 0.8 x 1074,
2.0x1074,2.8x10"%and 3.6 x 10~* and T = 5. The field profile curve consisting
of successive H; and H, for R, = 3.6 X 10~ reveals that there is a nature of
penetration which does not follow the exponential nature. The nature of the field
profiles for other R, values also indicates the nonexponential nature of the field-
penetration at 7 = 5. The field penetrates maximum distance from the surface

(x/d =—1)for R, =3.6 10~* in comparison to the penetration depths for other
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three R, values. As shown in the panel (A), the internal field becomes zero at
certain x/d values which are different for different radii. At 7=5, H; = 0 at values
of x/d=-0.91,-0.92, -0.77, -0.59 for R, = 0.8 x 107#,2.0 x 107%,2.8 x 10~* and

3.6 x 10~ respectively.

In the panel (B) of Figure 2.2, we have shown the field profiles at T = 15 for
all four grain radius. The penetration of the field is deeper at T = 15 for all radii
in comparison to that of the depth of the penetration at T = 5. For T =15, H; =0
at values of x/d=-0.87, -0.75, -0.59 and -0.38 for R, = 0.8 x 1074, 2.0 x 107*,
2.8 x 107* and 3.6 x 10~ respectively. This also indicates that at T = 15 several
grain clusters in all samples (different R,) are completely free of field with the
zero Hj near the centre of the sample (both sides of x/d=0). For R, = 3.6 X 104,

38 percent of the length the sample remains free of the internal field at 7 = 15.

We have shown the field profiles in panel (C) of Figure 2.2 for T = 30 for
same set of radii. Interestingly the penetration of the field exhibits that H;=0 at
x/d=-0.48 and -0.16 corresponding to R, = 0.8 x 1074, 2.0 x 10~ respectively.
At T = 30 and for the grain radius R, = 0.8 x 1074, H; =0atx/d = —0.49 which
reveals that only the third, fourth and fifth grain clusters are free of magnetic
field. However, for other two higher radii R, = 2.8 X 104 and 3.6 x 104, H fi
is finite everywhere. Therefore, at 7 = 30, the shielding in the interior of the

sample vanishes for these two values of R, and complete penetration of the field
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is obtained. It is needless to mention that the overall step-like profile also remains

unaltered at 7 = 30.

In Figure 2.2(D) we have shown a panel in which the field profile has been
shown for T = 40. It is clear that at the same time instant + = 0.02, the field
penetrates upto the centre of the sample for all four R,. At the center, H; has the
maximum value for the highest R, = 3.6 x 10~4. In addition, it will be important
to mention that there is no normalised position x/d at which H;=0 at T = 40 for all
four samples with specific R,. Therefore, no complete shielding effect has been
found even at the center at a higher temperature 7 = 40 close to 7. = 51. However

the nonexponential behavior of the field profile remains unaltered in nature (13).

In addition to the above features of the local field profile, the changes in
field in the grain free regions (J), AH; becomes steeper with the lowering in the
temperature. At 7 = 15, the maximum change in field, AHj,,, = 200 for the
sample with grain radii R, = 0.8 X 10~* in the first grain free region from the
surface of the sample. At T = 30, AH ;4 = 108.97 for R, = 0.8 x 10~% in the third
grain free region from sample surface. It is important to mention that the change
in the field are also much higher in the regions of the sample with no grains, than
in the granular regions. Therefore, in presence of the oscillatory pinning force
density for all four R, as shown in Figure 2.1, the corresponding field profiles are

nonexponential at all 7 < T;. (14).
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Figure 2.3: Real part of the susceptibility, x’, as a function of temperature for

samples with different grain radius.
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Figure 2.4: Variations of the imaginary part of the ac susceptibility,x”, as a func-
tion of temperature for samples with different grain radius. 7}, is the temperature
at which x”(T') has a peak. In the inset the variation of 7, with R, has been plot-

ted.
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R,(107%) T, x"atT,

0.4 37 04318

0.8 36.5 04319

1.2 355 04318

1.6 3475 0.4318

2 33.5 04319

24 32 0.432

2.8 30 0.432

3.2 27.25 04319

3.6 23.25 04319

4.0 15.5 0.4319

Table 2.1: Change in the value of " peak and peak temperature 7, with different

grain radii R, for superconducting samples.

Integrating the field profile across non-grained and grained regions and within
limit of the time period of the ac cycle the susceptibility of a sample at a particular
temperature has been calculated. In Figure 2.3, we have plotted the variation of
the real part of the complex susceptibility, ¥’, as a function of the temperature.
As we increase the radius of the grain, the diamagnetic effect becomes weaker
at a particular temperature below 7. (15). The shielding effect becomes weaker

as is shown in Figure 2.2 at T =5 for R; = 3.6 x 10~* in comparison to that
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of sample with R, = 0.8 x 10~4. It is manifested in the variation of the real part
as well. At higher 7, the field profile penetrates strongly which results in higher
value of x’. In several superconducting systems, it is observed that x'(T) gets
affected in similar way as the applied amplitude of the ac field is increased. The
change in the variation x'(7) with the increase in R, numerically exhibits analo-
gous changes. Therefore, increasing the grain radius and increasing the amplitude
of the ac field in superconductor below the critical temperature show similar effect
in ¥'(T) (16). In Figure 2.4, we have shown the variation of the imaginary part
with the temperature, ¥"(T). Clearly x"(T) depends strongly on R,. The varia-
tion of x”(T) has the maximum at the temperature 7,, (16; 17). The peak in the
x"(T) at the temperature (7)) corresponds to the maximum magnetic loss (18).
The critical current decreases with the increase in temperature and the field pene-
tration depth increases with temperature leading to the above peak. The height of
the peak shows a negligible change with the change in the grain radii. Moreover,
the width of the peak increases with the increase in grain radii. In several cuprate
superconducting systems the shifting has been reported with the amplitude of the
ac field and it has been attributed to the pinning potential (16). In the inset of Fig-
ure 2.4, we have shown the variation of the 7, with R,.The shifting of the peak
temperature, 7, towards the lower temperature is a result of the increase in R,.
Table 2.1 further illustrates this shift in 7,, while at the same time, highlighting

the negligible change in the value of the ¥” peak. The value of the peak is approx-

37



imately equal to 0.432 for the different samples irrespective of grain radius. The
propagation of the flux front associated magnetic loss is therefore very sensitive
to R,. An analogous effect has been observed in experimental results with the

increase in the amplitude of the ac magnetic field (19; 20).

2.4 Summary

The repetitive Gaussian (RG) nature of the pinning force density in four supercon-
ductors having a specific radius of grains exhibit the nonexponential nature of the
internal magnetic field profile. The field profile is affected competitively by both
total pinning force density and superconducting fraction determined by the radius
of the grains. With the increase in the temperature, the penetration of the field
becomes deeper for any specific radius of the grain. At any temperature below T,
the penetration becomes deeper with the increase in the radius of the grain. The
variation of the imaginary part of the complex susceptibility with the temperature
exhibits a peak. The temperature at which the peak is observed shifts to the lower
temperature as a result of the increase in the radius of the grain. The grain radius
has an analogous effect in the imaginary part of the ac susceptibility as is obtained

by changing the amplitude of the ac magnetic field.
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Chapter 3

Dynamics of Local Magnetic Field Profile in

Disordered Superconductors

3.1 Introduction

Magnetic field profile inside a type-II superconductor is a subject of intensive
research following Bean’s model (1). Following the critical state model several
attempts are made to understand the position and time variations of the field pro-
file inside several superconductors having specific geometry. Depending on the
combinations of several parameters, e.g. geometry, nature of external field, the
magnetic field profile inside any superconductor is calculated (2; 17). Supercon-
ductors are modelled assuming granular regions and intergranular regions of dif-
ferent distributions. Both the granular and intergranular local field profiles being
functions of position and time contributes to the total susceptibility in a complex

way. The penetration of an ac magnetic field inside a superconductor affects both
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the real and imaginary parts of the susceptibility (3). It is difficult to map dy-
namics of the local internal field profiles both experimentally and analytically.
However numerically it is possible to understand the field variation even inside
a network consisting of both the superconducting grains and normal regions. In
cuprate superconductor the field profiles have been numerically estimated follow-
ing critical state model (4; 5). A shifting of the peak in the imaginary part of the

ac susceptibility has been explained (6).

Even though several explanations of the penetration of magnetic field inside a
type-II superconductor have been attempted using the critical state model it is not
understood how pinning force density can be modelled. Any underlying disorder
profile determines the pinning force density which in turn controls the flux pinning
and internal field profile. We have used critical state model to understand the field
penetration in pnictide superconductors. Two different types of position depen-
dent pinning force densities following (i) repetitive Gaussian and (i) Rademacher
functions (square wave) have been assumed. In the critical state equation, we
have also inserted a functional form of the London penetration depth A(7') which
is generally found to be very effective for pnictide superconductors. Internal field
profiles in the Josephson regions, Hy(x,¢) and granular regions H,(x,?) have been
calculated. Real and imaginary parts of the ac susceptibility have been calculated

as a function of temperature for both types of pinning landscapes.
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3.2 Model

The critical state equation of the superconducting sample is given as

dH(xt) _, 1 oy (x,T) (3.1)

dx Holterr(T) [Hy(x,1)| + Hos

where |H;(x,t)| is the local field in the Josephson regions at any time instant z.
oy(x,T) is the pinning force density in the same region and is assumed to be
a function of position and temperature. Similar critical state equation holds for
the superconducting grains. The sample is under an external ac magnetic field
Hfcos(mt) at any time instant ¢. . ss is the effective permeability of the sample
and

20, (R/A(T))

Her (1) = I s G ) o (R AT 2

Jn 1s the fraction of normal material, f; is the fraction of superconducting grains
in the sample, Iy and I; are modified Bessel functions of the first kind. R is the
grain radius. The effective permeability depends on the penetration depth. In
several pnictide superconductors a particular form of A(T) = Ap+ (T /T.)";n =2
has been successfully used to understand several properties (7; 8). We have also
inserted this form of A (7') in the critical state equation to determine the local field

profiles.
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Microscopic causes of pinning include position dependent changes in tran-
sition temperature and mean free path length in disordered media (9; 10). The
pinning force density is known to be higher in the disordered regions. In our
model we assume that the grain-free Josephson regions have higher pinning force
density than grains. Following the temperature dependence of the pinning force

density used in cuprates, firstly we express o, (x,T) as follows:
7\ 2
() (%, T) = Qy(g)0(x) (1 — —> (3.3)

Position dependent part of the pinning force density @;(,)0(x) has been modelled
in two different ways. @yo(x) is considered to be . (x) for the repetitive Gaussian
pinning and o} (x) for Rademacher form of pinning. 0t (x) is expressed as chGO (x)
and cho (x) for the repetitive Gaussian (RG) pinning and the Rademacher form
(RD) of pinning respectively. For the Rademacher form of pinning oj,(x) = o

and O‘go (x) = 0. We have used the repetitive Gaussian pinning function as follows:

O‘JG@o(X) —oige— (H)?/20° (3.4)

where L; are the peak positions and total to the number of non-grained separations
between the grain clusters in half sample. x = y; for x at midpoint of Josephson
regions. Here x # ; for any x in the grain clusters. Successive integration of local
field in Josephson region, Hy(x,t), and the local field inside grains, Hy(x,t), over

sample length and time period is used to numerically determine the susceptibility
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of the sample.

3.3 Results

In Figure 3.1, we have shown the variation of internal field profiles H;(x)/H?
and H,y(x)/Hy, with Hj, = 200, corresponding to the intergranular regions and
regions with grains respectively at a particular time instant t = 0.02 and 7' = 40,
as a function of normalised position x/d for two different average radii (i) R =
4% 107 and (ii) R = 4 x 10~*. For R = 4 x 107 values taken for the fractions
f» = 0.914 and f; = 0.086. Positions of peaks in RG pinning form shift inwards,
towards the centre of the sample with decrease in grain radii. At the centre of
the sample x/d = 0, the internal field H, is higher for R = 4 x 10~4. Net pinning
force increases with decrease in grain radii, and hence superconducting fraction,
in the sample. This results in a higher change in magnetic field in the interior of

the sample.
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Figure 3.1: A schematic diagram showing the variation of local field profile
H,/H; and H;/H}, in both grainfree regions and grain clusters, along with po-
sition of the grain cluster as a function of the normalised position x/d where
x/d=-1 represents one of the edges of the sample and x/d=0 represents midpoint
of the sample. For grain radii of R = 4 x 104, the grain cluster is marked with a
higher nominal value 0.725 as compared to the nominal value of 0.5 marking the
grain cluster with grain radius 4 x 107>, The number of grains in each cluster is

nogs = 215 . Internal magnetic fields are shown for T = 40, t = 0.02 and with

o = 577600.
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Figure 3.2: Variation of the granular magnetic field H, as a function of x/d at three

temperatures T = 40,25 and 1 for average grain radii R =4 x 10~* . For all values
of T we have used three different RG pinning parameter ag = 577600, 1299600
and 5198400. All variations of H, correspond to the time instant = 0.02. The
variations of internal magnetic field between any two grain clusters, Hy, with x/d

have been shown for all these set of parameters.
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Figure 3.3: Variation of the granular magnetic field H, as a function of x/d at
three temperatures 7 = 40,31 and 6 for the average grain radii R = 4 x 10~4
. For all values of T we have used three different RD pinning parameter o, =
3.8 10°,7.6 x 10° and 1.14 x 10”. All variations of H, correspond to the time

instant t = 0.02. The variations of internal magnetic field between any two grain

clusters, Hy, with x/d have been shown for all these cases.
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Figure 3.4: Variation of T, as a function of pinning force densities o for the
sample with RG pinning (a). In the inset of panel (a) the variation of the imaginary
part of ac susceptibility y”(T) has been shown, for R = 4 x 10~*. In the inset of
panel (b) we have shown the variation of y”(T) for two o, for R = 4 x 1074,

Variation of T}, with o, has been shown in panel (b).
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In Figure 3.2, we have plotted the variations of H, and H; as a function of
x/d for the RG pinning in sample with R = 4 x 10~%. At any constant T we have
shown H, for three values for oz = 577600, 1299600 and 5198400. At T = 40,
as we increase 0, H, decreases with x/d in the inner part of the sample. Step
like features are visible for all three 0. At a lower T = 25, H,, vanishes at x/d >
—0.8 for oz = 5198400. At a further lower temperature, T = 1, H, vanishes at

x/d > —0.6 for all 3 different values of 0.

In Figure 3.3, we have shown variations of H, as a function of x/d for the
pinning profile following RD in sample with R = 4 x 10~ at a time instant t =
0.02. At a constant 7 = 40 we have used three values of pinning force density
parameter, oz = 3.8 X 105,7.6 x 10° and 1.14 x 107. With the increase in o, the
penetration of field weakens. For the lowest o clear staircase like structure is
visible with very high H, even at the middle of the sample. As we further increase
o, to 7.6 x 10°, the overall variation of H, remains similar with a lower value in
the middle of the sample. However, for o = 1.14 % 107, H, = 0 for the region
with x/d > —0.8. At other two temperatures 7 = 31 and T = 6, the variations are
also plotted in Figure 3.3. Interestingly, at T = 31 and o, = 1.14 x 107, no field

penetrates inside any grain cluster, H, = 0.

To understand the variation of H; we have extracted rise height, AH; in the

Josephson region between any two superconducting grain clusters. For RG pin-
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ning AH; increases towards the middle of the sample (x/d = 0) for several com-
binations of 7 and o as shown in Figure 3.2. At 7 = 25 and oG =1299600,
the enhancement of AH; is from 20.77 to 68.35 towards the midpoint of the sam-
ple. As shown in Figure 3.3 for the RD pinning the maximum AH; = 32.20
has been obtained in the middle of the sample for a combination of 7 = 31 and
o, = 7.6 x 10°. Therefore, overall distributions of rise height in both (i) RG and

(i1) RD cases have analogous nature but are different in magnitude.

Following equations for the field profiles we have calculated the real and
imaginary parts of the ac susceptibility for both (i) RG and (i1) RD nature of
pinning force densities. In the inset of Figure 3.4(a) we have plotted the variation
of the imaginary part of the ac susceptibility y” with temperature for two oG as
representatives related to the RG nature. Clearly there is a peak in " (T) at a
temperature 7}, which varies strongly with og. However, the peak height in " (T)
remains unchanged. In Figure 3.4(a), we have plotted variations of 7, with o
for two values of R. An increase in T, with o is obtained with saturation for
higher o,g. For RD type of pinning force densities we have shown variations of
x" (T) for two different o as representatives in the inset of Figure 3.4(b). An
increase in T, with o has been obtained as shown in Figure 3.4(b). Therefore,
the shifting in the peak temperature remains similar in nature irrespective of the

nature of pinning force density.
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In Figure 3.5(a), we have plotted the variation of H; and H, for both types
of the pinning force density with (i) ag = 5.8 x 10° and (ii) o, = 2.4 x 10° and
the plot is shown over a range of x/d = —1 to x/d = 0 at different time instants.
Combinations of H, and H; changes with 7 which has been shown in a range
of t = 0 through r = 0.01 using a step of 0.002. Almost comparable pattern of
variations of staircase like behavior are visible. In panel (b) of Figure 3.5, we have
plotted a magnified variation of H, and Hj as a function of x/d at several instants
of time ¢. We can see that the internal field H; changes sharply near the midpoint
of the Josephson region, most prominently at time ¢t = 0.006. In Figure 3.6 we
can see the differences in local field profile more clearly for the two different

functional forms of pinning force density at one time instant t = 0.006.
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Figure 3.6: Local field profile at time t=0.006 in the first grain-free region and part

of the grain cluster
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Figure 3.7: Critical current density j.; in grain free regions in sample with R =

4 x 10~* and RD pinning constant o, = 3.8 x 10° at T = 31
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Local critical current density j.;(x,7) in the superconducting sample can be
calculated from the local magnetic field Hy(x, ) in grain-free regions (4) according

to the following equation

dH](x,t) (3.5)

:I:jcj(x,t) = dx

In Figure 3.7 we can see the increase in magnitude of the critical current in the
grain-free regions towards the centre of the sample at time ¢ = 0.02. The critical
current is uniformly zero in the grain-clusters and this results in uniform value of

field across these regions.

3.4 Conclusion

Locally critical current density is determined by the ratio of the total pinning force
density and the magnetic field at that point in the sample. For RD pinned sam-
ple, the field decreases from the surface whereas pinning force density remains
the same across the non-grained region. For the RG pinned sample, the field
decreases from the surface but the pinning force density increases initially. Com-
parison between the field profiles in samples with different pinning illustrates the
local dependence of magnetic properties of the sample on the pinning profile. At
t = 0.006, we can clearly see that though the local field profile is not identical

throughout the non-grained region, the values of the magnetic field at the surface
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and at the beginning of the grain cluster are nearly equal. Comparison between the
susceptibility vs temperature graphs of the two differently pinned samples illus-
trates the global dependence of the magnetic properties of inhomogeneous super-
conductors on pinning profiles. The peak temperature, 7}, increases with the in-
crease in the pinning force density in samples irrespective of the functional form.
For sample with Rademacher pinning and R = 4x10~%, T, varies from 14.75 to
48.63 for change in magnitude of pinning constants () from 2.4x10° to 5.4x107.
The difference between the peak temperatures for samples with different radii de-
creases with increase in pinning magnitude. This difference in 7}, for RD pinned
samples varies from about 7 for o, = 2.2x10° to about 1 for oy = 5.4x107. As
in (26), the temperature 7, corresponding to x” peak, has lower value for higher

grain radii.
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Chapter 4

Complex susceptibility in Repetitive Gaussian and

Rademacher pinned 2D samples with low anisotropy

4.1 Introduction

Critical State Equation has been successfully used to model superconducting sam-
ples of quasi one-dimensional shape assuming different functional dependence of
critical current on magnetic field. Exponential and inverse field dependent critical
current and field-independent critical current have been used to explain magnetic
properties of superconducting samples under different conditions. Importance of
sample geometry on magnetic field response of samples have been observed ex-
perimentally and numerically. Various methods have been used to apply critical
state model to samples with quasi 2D geometries by considering samples with
three unequal dimensions and width much less than length much less than height

(2). Trends in Lorentz force acting on flux lines are also calculated by consid-
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ering the interaction of individual vortex line with pinning microstructure (1).
Molecular Dynamics models have also been used to obtain magnetic properties of

superconductors (4)

We have undertaken 2D extension of the model as a step towards the under-
standing of more complicated and more realistic sample geometry, defect geom-
etry and hence pinning due to such defects. 2D extension of the model is under-
taken under the assumption of independent, decoupled pinning properties along
the two directions of the sample perpendicular to the applied field. Qualitative
comparison of changes in susceptibility with temperature between the 1D and 2D

models is undertaken.

4.2 Model for 2D

Keeping with the 1D model (12), we consider both Rademacher and Gaussian dis-
tributions for spatial variations in pinning profile of the sample. x and y directions
are considered identical in size and in pinning distributions and perpendicular
to the incident magnetic field. Solving the critical state equation independently
along both axes and integrating local fields along spatial extension of the sample

and time period of the ac field, we calculate the magnetic susceptibility of the
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sample. Critical state equations in 2D case are given as:

dH](x,t) 4 1 OC](X,T)
dx Holers(T) [Hy(x,1)| + Hoy
dHJ(yat) . 1 aJ(yaT)
dy Holderr(T) [Hy(y,t)| + Hoy

where a;(x,T) = ay(y,T) for x = y.

/ g Pinning Profile
Pl

Granular Reglon

(0,-d)

Figure 4.1: Schematic of 2D RD pinned sample
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In Figure 4.1, a diagrammatic representation of two dimensional Rademacher
pinned sample is shown. Pinning force density along each axis is either a non-
zero constant or zero. This leads to the formation of four distinct zones with zero
pinning force density along both x and y axis, maximum pinning along both di-
rections, or zero pinning along one axis and constant pinning along the other axis.
Our model assumes superconducting grains to be present only in the zone where
pinning is zero along both directions. Unlike the representative figure, the length
of the non-zero and zero pinning segments are not always equal. This leads to dif-

ferent fractions of superconducting grains f; calculated by the following equation

nogs x 2R x noseg \ >
fS:( g : "") (4.3)

d

where nogs? is the number of grains in each grain-cluster zone; noseg is the num-
ber of alternating constant and zero magnitude pinning force density segments

along each axis.

4.3 Results and Discussions

Superconducting fraction of 0.0462 to 0.7396 corresponding to a minimum grain
radii of R = 1x10 % and a maximum grain radii of R = 4x10°4, is probed un-
der this model for both Rademacher pinned and Repetitive Gaussian pinned 2D

samples.
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Figure 4.2: " vsT graph for RD pinning in 2D. Clear changes in slope visible for

T < T}, unlike the 1D scenario for the same pinning profile sample.
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Peak temperatures show a similar trend of increase to higher values with
decrease in grain radii as compared to the one dimensional case. T, = 36 and
22 for RD pinned 2D sample with R/d = 1x10~* and 4x10~* respectively and
o, = 1x10° as can be seen in Figure 4.2. T, also increases with increase in mag-

nitude of pinning potential.

05 ! | ! | ! 1 ! I ! |
o, =5.0x10°

Temperature

Figure 4.3: x""vsT graph for Gaussian pinning constant o = 5.0 x 10°, different
radii.
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R(10Y  f, T, x"atT,

1.0 0.0462 40 0.426

2.0 0.1849 40 0.428

3.0 0416 38 0.428

4.0 0.7396 31 0.432

Table 4.1: Change in the value of x” peak and peak temperature 7}, with differ-
ent grain radii R and superconducting fraction f; for RG pinned superconducting

samples with oG = 5.0x10°

T, = 40 and 31 for RG pinned 2D sample with R/d = 1x10~* and 4x10~*
respectively and aig = 5x10° as can be seen in Figure 4.3. From Table 4.1, we
can see that the value of peak '~ 0.43 for all values of grain radii and supercon-
ducting fractions. We can also observe 4 distinct changes in slope of x”vsT curve

in the region of decreasing temperature from 7), to 7;.

4.4 Summary

Comparison between the 1D and 2D critical state model illustrates the similarity
of qualitative global results in both Rademacher and Repetitive Gaussian pinned
samples. Major trends in )" peak position vs T variations with grain radii and

pinning strength remains the same and independent of dimensionality of the sam-
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ple. T, decreases with increase in grain radii. Even the value of )" peak changes
only in the second decimal place between 1D and 2D model. However, the na-
ture of ¥ vs T graph shows variation and more pronounced changes in slope.
In RD pinned sample, abrupt changes are noticed which were absent in the one

dimensional sample.

4.5 Future Direction of Research

* The effect of change in R/A ratio has been modelled entirely by changing
R. Given that London penetration depth in pnictides have a range of values,

change in A for a fixed value of R could be investigated.

* Effect of a mixed ac + dc magnetic field on the proposed model can be of

interest.

* Different temperature dependence of penetration depth in low temperature

region and near 7, would make the model more realistic.

* In the 2D case, different pinning strengths and/or different pinning functions

could be an area of study.

 Explanations for kinks in y” vs T graph is being sought.
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1

Appendix I

Code in C for Repetitive Gaussian Sample

I.1 Single Temperature Field Profile

Code for field profile generation in a Repetitive Gaussian pinned sample is shown
at a single temperature 7 = 35. Gaussian pinning constant ¢ = 6.0x10°. Variable
for temperature loop ntemp is defined as 1 and the temperature loop (line 89 in
the program) runs only once. For complex susceptibility calculation, this loop is
run over the entire temperature range 1 to 51.

#include <stdio .h>

> #include <math.h>

s #include <stdlib .h>

6

8

double* rkd4solver (double x2, int x3);
double derivative ( double yl, double y2, int y3);
float bessiO(float x1);

float bessil (float x2);
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16

19

26

29

)
)

#define

#define

#define

s #define

#define

#define

#define

#define

#define

#define

#define

#define

; #define

#define

#define

#define

7 #define

s #define

#define

#define

#define

s #define

d 1.0

nogs 215

R (0.00004%2)

noseg 5

seglength (d/noseg)

fs ((nogs#*2.0xRxnoseg)/d)

fn (1-fs)

ngsegl ((fn=xd)/noseg)

gsegl (seglength—ngsegl)

sigma (ngsegl/6)

ngendpointl
segmentendl
ngendpoint2
segmentend?2
ngendpoint3
segmentend3
ngendpoint4
segmentend4
ngendpoint5

segmentend5

(—d+ngsegl)
(-d+(d/noseg))
(segmentendl+ngsegl)
(segmentendl+seglength)
(segmentend2+ngsegl)
(segmentend2+seglength)
(segmentend3+ngsegl)
(segmentend3+seglength)
(segmentend4+ngsegl)

(segmentend4+seglength)

peakposl (—d+ngsegl/2)

peakpos2 (peakposl+seglength)
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34

35

36

40

41

43

44

45

46

47

48

49

51

53

54

55

56

#define

#define

#define

#define

390 #define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

peakpos3 (peakpos2+seglength)
peakpos4 (peakpos3+seglength)

peakposS5S (peakpos4+seglength)

Gendptl (—d+(ngsegl+gsegl/2))
Gendpt2 (Gendptl+seglength)
Gendpt3 (Gendpt2+seglength)

Gendpt4 (Gendpt3+seglength)

n 500000

ntemp 1

h (d/n)

tm 20

pi 3.14159265359
omega 314.15
lambda0O 0.0000125
Te 51.0

alphag 6.0e5

Hmaext 200.0

int counter=1, count=0;

// position , external magnetic field , average of field over
position and effective permeability arrays

double xP[n+1],Hma[tm+1],Bp[tm+1], mu[tm+1];
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58

s9 // variable to assign sign to derivative depending on increase or
decrease from previous time

0 double sign;

oo int dum=0;

e int cnxp=1;

3 // magnetic field array [position] [time]

¢« double H[n+1][tm+1];

os // intial field,

oo double Hini=0.0,sumg=0.0,sumng=0.0,countng=0.0, coung=0.0, suml,
sum?2 , mueff=0.0;

7 double T=0.0, time=0.0;

os double chip[ntemp], chidp[ntemp];

69

70 int main ()

71 {

73 double angle=0.0, xini=-d;
74

75 for (int ctime=0; ctime<=tm; ctime++)

76 {

77 time=(2.0x pixctime)/(omegaxtm) ;

78 H[O][ ctime ]=Hmaextxcos (omegaxtime) ;
79 Hma[ ctime ]=Hmaextxcos (omegaxtime) ;
0}
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81

84

86

87

88

89

90

91

92

94

95

96

97

98

99

100

104

FILE «fl = fopen("xposition.txt", "w");

for (int cposition=0; cposition<=n; cposition++)

xP[cposition ]=(cposition*h) —1.0;

fprintf (fl1,"%f\n" ,xP[cposition]) ;

}

fclose (f1);

for (int ctemp=0; ctemp<ntemp;ctemp++)

{
T=35.0; // Temperature
suml=0.0;
sum2=0.0;
for (int ctime=0; ctime<=tm; ctime-++)
{

Hini=Hma|[ ctime ];
sign=1;
if (ctime >=1)

{

if (Hma[ctime]-Hma[ctime —1]<0) sign=-1;

}
printf ("Hini %f\n" ,Hini) ;
double #arr=rk4solver (Hini

mu[ctemp ]=mueff;

, sign);
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106

107

108

111

112

114

115

116

117

118

119

126

127

for (int cposition=1; cposition<=n; cposition++)

{

H[ cposition ][ ctime]= arr[cposition —1];

free (arr);
int cmid=tm/2;
if (ctime==0)

{

for(int cposition=0;cposition <=n;cposition++)

{

if (H[cposition][0]<=0) {H[cposition][0]=0;}

else if (ctime<=cmid)

for (int cposition=0; cposition<=n;cposition++)

if (H[cposition ][ ctime]>H[cposition |J[ctime —1])

{
int posindexdum=cposition;

for (; posindexdum<=n;posindexdum++)

H[ posindexdum ][ ctime |]=H[ posindexdum ][0];

} break ;
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132 }

! }

34 else

135 {

136 for (int cposition=0; cposition<=n;cposition++)
137 {

138 if (H[cposition][ctime]<H[cposition [[ctime —1])
{

140 int posindexdum=cposition;

141 for (; posindexdum<=n;posindexdum++)
142 {

143 H[ posindexdum ][ ctime ]=H[ posindexdum ][ cmid ];
144 } break ;

145 }

146 }

147 }

148

149

150 double xpdum=0.0;

151 double Hdum=0.0;

152 sumg=0.0; int countg=0;

153 sumng=0.0; int countng=0;

154 for(int cposition=0; cposition<=n; cposition++)
155 {
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156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

174

175

176

177

xpdum=xP[ cposition ];
Hdum=H[ cposition ][ ctime ];
if (xpdum<=ngendpointl || (xpdum>=segmentendl && xpdum<=
ngendpoint2 ) |l ( xpdum>=segmentend2 && xpdum<=ngendpoint3) [I(
xpdum>=segmentend3 && xpdum<=ngendpoint4) || (xpdum>=
segmentend4 && xpdum<=ngendpoint5))
{
sumng=sumng +(Hdums mueff) ;

countng=countng+1;

}
else
{
sumg=sumg+(Hdum: (1.0 —mueff)) ;
countg=countg+1;
}

}

Bp[ctime ]=(sumng/countng )+(sumg/countg) ;

printf ("%f \n", Bp[ctime]);

FILE =fHJ = fopen("HJ.txt", "w");
FILE =fx]J = fopen("xJ.txt", "w");
FILE +#fHg = fopen("Hg.txt", "w");
FILE =xfxg = fopen("xg.txt", "w");
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178

179

180

181

182

184

185

186

187

188

189

190

191

192

194

195

196

197

198

199

for (int ¢=0; c<=n; c++)

{

xpdum=xP[c];

for (int cnt=0; cnt<=tm; cnt++)

Hdum=H[c ][ cnt ];

if (xpdum<=ngendpointl || (xpdum>=segmentendl && xpdum<=
ngendpoint2 ) |l ( xpdum>=segmentend2 && xpdum<=ngendpoint3)
xpdum>=segmentend3 && xpdum<=ngendpoint4)

segmentend4 && xpdum<=ngendpoint5))

{

fprintf (fHJ, "%f " ,Hdum) ;

if (cnt==0){ fprintf (fxJ,"%f " ,xpdum);}

if (cnt==tm)

fprintf (fHJ,"\n");

fprintf (fxJ,"\n");

else

fprintf (fHg, "%f " ,Hdum):

(xpdum>=

if(cnt==0) { fprintf(fxg,"%f " ,xpdum);}

if (cnt==tm)
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200 {
201 fprintf (fHg,"\n");

202 fprintf (fxg,"\n");

205 }

206

207 }

s felose (fxJ)
20 fclose (fHY) ;
20 felose (fxg) s

o feclose (fHg) ;

213 time=(2.0x pi*ctime ) /(omegaxtm) ;

214 suml+=(Bp[ctime ]*cos(omegas*time)) ;
215 sum2+=(Bp[ctime ]* sin (omega=xtime) ) ;
216}

217

218 chip[ctemp]=—-1.0+2.0%(suml/( Hmaext*(tm+1.0)));
219 chidp[ctemp ]=2.0%(sum2/( Hmaext*(tm+1.0)));
220 printf (" %f, %f, %f \n\n ", T, chip[ctemp], chidp[ctemp])

221 FILE sfmu = fopen("chi.txt", "a");

2 fprintf (fmu, "%f %f %f\n",T,chip[ctemp], chidp[ctemp]) ;
223 fclose (fmu) ;
224 printf ("%d\n" ,ctemp) ;

79



226

227

228

229

230

234

236

240

241

242

244

245

246

247

248

249

return 0;

double* rkd4solver (double h2,int sl)

{

printf ("Hini %f\n" ,h2);

double k1,k2,k3,k4,lambda, ratio;
double xpos=0.0;

lambda= lambdaO+pow ((T/Tc) ,2.0);
ratio=R/lambda;

mueff=fn+ fs=*((2.0%x bessil(ratio))/(ratioxbessiO(ratio)));

double #H2= (double*)malloc(sizeof (double)*n);

dum+=1;

for (int c¢=0; c<n; c++)

xpos=xP[c];

kl=hxderivative (xpos,h2,sl);
k2=h=xderivative (xpos+h/2.0, h2+k1/2.0,s1);
k3=h=xderivative (xpos+h/2.0, h2+k2/2.0,s1);

k4=hxderivative (xpos+h, h2+k3,sl);
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250

251

255

256

259

260

261

266

267

269

*(H24+c)=h2+k1/6.0+k2/3.0+k3/3.0+k4/6.0;

h2=x(H2+c) ;

counter+=1;

return H2;

}

double derivative (double x3, double h3, int s3)

double dhdx, expval ,h3p, Tval ,MU;

Tval=pow ((1.0-(T/Tc)) ,2.0);

if (x3<=Gendptl) expval =exp(—pow(x3—peakposl ,2)/(2*pow(sigma
,2.0))) 5

else if (x3<=Gendpt2) expval =exp(—pow(x3—-peakpos2 ,2)/(2pow(
sigma ,2.0)));

else if (x3<=Gendpt3) expval =exp(—pow(x3—-peakpos3 ,2)/(2:pow(
sigma ,2.0)));

else if (x3<=Gendptd) expval =exp(—pow(x3—-peakposd ,2) /(2pow(
sigma ,2.0)));

else expval =exp(—pow(x3—-peakpos5 ,2)/(2+pow(sigma,2.0)));
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270

3

271

272

274

276

271

278

279

280

281

284

286

287

288

289

292

x3>=segmentend2 && x3<=ngendpoint3)

if (x3<=ngendpointl [l (x3>=segmentend]l && x3<=ngendpoint2 )

<=ngendpoint4) |l (x3>=segmentend4 && x3<=ngendpoint5))

{

MU=mueff;

}

else

MU=1.0;

dhdx= —s3 «((alphagxexpval«Tval)/(MUx(fabs(h3)+0.1)));

if (dum==1 && cnxp%4==1)

{

FILE «f = fopen("alphasubJOsupGofx.txt", "a");
fprintf (f," %f\n", alphagxexpval);

fclose (f);

}

cnxp+=1;

return dhdx;
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203 float bessiO(float x1)

204 [/ Returns the modified Bessel function 10(x) for any real x.
25 {

0 float ax,ans;

297 double y; //Accumulate polynomials in double precision.
w0 1if ((ax=fabs(x1)) < 3.75) { //Polynomial fit.

200 y=x1/3.75;

300 Y*=Y 3

500 ans=1.0+y*(3.5156229+y%(3.0899424+y=x(1.2067492

320 +y #(0.26597324+y%(0.360768e—-1+y*0.45813e-2)))));

33 } else {

4 y=3.75/ax;

500 ans=(exp(ax)/sqrt(ax))*(0.39894228+y=*(0.1328592e—-1

306 4y *(0.225319e-2+y#(—=0.157565e-2+y*(0.916281e-2

307 +y*(=0.2057706e—-1+y %(0.2635537e—-1+y*(—-0.1647633e-1

208 +y%0.392377e-2))))))));

300 }

30 return  ans;

s}

32 //#include <math.h>

53 float bessil (float x2)

34 // Returns the modified Bessel function I1(x) for any real x.
35 {

356 float ax, ans;

317 double y;// Accumulate polynomials in double precision.
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sis if ((ax=fabs(x2)) < 3.75) {// Polynomial fit.

30 y=x2/3.75;

320 Y*=Y 5

21 ans=ax*(0.5+y*(0.87890594+y=*(0.51498869+y=*(0.15084934
20 +y#(0.2658733e—-1+y*(0.301532e-2+y*0.32411e-3))))));
23 } else {

24 y=3.75/ax;

25 ans=0.2282967e—-1+y*(—-0.2895312e—-1+y*(0.1787654¢e~-1
26 —y%0.420059e-2)) ;

327 ans=0.39894228+y#(—-0.3988024e—-1+y*(-0.362018¢e-2

28 +y#(0.163801e-2+y*(-0.1031555e—-1+y=*ans))));

0 ans #*= (exp(ax)/sqrt(ax));

330 return x2 < 0.0 ? —ans @ ans;

332 }

For the Rademacher pinned sample, only the function called derivative is
different.

i double derivative (double x3, double h3, int s3)
2 {
double dhdx, stepval ,h3p, Tval, MU;

4 Tval=pow ((1.0-(T/Tc)) ,2.0);

o if(x3<=ngendpointl |l (x3>=segmentendl && x3<=ngendpoint2 ) ||l (

x3>=segmentend2 && x3<=ngendpoint3) II( x3>=segmentend3 && x3
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16

19

)
W

26

<=ngendpoint4) ||

{

MU=mueff;

(x3>=segmentend4 && x3<=ngendpoint5))

stepval =1.0;

else

MU=1.0;

stepval =0.0;

dhdx= —s3 «((alphas=xstepval«Tval)/(MUx(fabs(h3)+0.1)));

if (dum==1 && cnxp%4==1)

{

FILE «f = fopen("alphasubJOsupRDofx.txt", "a");

fprintf (f," %f\n", alphassstepval);

fclose (f);

cnxp+=1;

return dhdx;
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Appendix I1

Changes in code for 2D pinned sample

Both x-component and y-component of the total field are calculated with dif-
ferent RK4 solver functions with separate calls to a derivative function as defined
in Appendix I, which computes magnetic field with position inside the sample in
accordance with the current-field relationship and returns the value as an array.
The reason for doing this is that the identical components along different axes
is just the starting point of the 2D scenario and having separate solvers makes it
easier to program different pinning defects, different pinning density profile along

different axes.

After we call the RK4 solvers in the main function, we compute total field at
each point while accounting for its position being either in the grained or grain-
free region in the sample. This also affects the effective permeability and that has

to be taken into account separately.
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