B.E Metallurgical Engineering Second Year, Second Semester Supplementary Examination 2022 Subject: Materials Science

Time: Three hours

Full Marks: 100

(Answer any five questions from the following taking at least two from each group)

<u>GROUP – A</u>

1 (a) What is a crystal and how is it different from a lattice? Write in tabular form all the Bravai	is lattices and
the corresponding parameters associated with each of the Bravais lattices.	3+2+10 = 15
(b) What is the difference between single crystal and polycrystal? In which case anisotropic observed and why?	behaviour is 5
2. (a) What is Diamond? What is the difference between diamond and Graphite? What make	es graphite to
behave as a very good lubricant? Find the effective number of atoms per unit cell in diamond?	
(b) Write a short note on 'metallic bond."	+ 3 + 3 +5 =15 5
3. (a) Write down the conditions for formation of extensive solid solution. What is supperlattic example of superlattice and its crystal structure.	ce? Give one 4 + 2 + 2 = 8
(b) What is meant by terminal solid solution and solvus curve?	2 + 2 = 4
(c) What is meant by Coordination number? Find the coordination number in FCC structure.	2 + 3 = 5
(d) What is Wiess Zone law?	3
4. (a) What is the difference between a solution and a mixture? Give one example of binary systems containing single phase and two phases in each cases at room temperature and name	metallurgical the phase(s). 4 + 2 + 2 = 8
(b) Define Phase and "degree of freedom." Give an example of binary system where three pha	ases including
one liquid phase remain in equilibrium and find the "degree of freedom" for existence of such e	quilibrium.
2	+ 2 + 2 +3 = 9
(c) Give an example of solid-state invariant reaction.	3

5 (a) Neatly draw a binary isomorphous phase diagram. What is the amount of phase(s) at room temperaturein the drawn binary isomorphous system for 80-20 and 60-40 compositions?3 + 3 = 6(b) What is ferrite? Find the packing density of ferrite.2 + 4 = 6

(c) What do you understand by studying a phase diagram? Neatly draw the Fe-C phase diagram. 2 + 6 = 8

Lap 200ti

Pravash Chandra Chakraborti (Full Name and Signature of the Paper Setter)

Date: 20.06.2023

<u>GROUP – B</u>

6. (a) What is a matter wave? Find a relationship for wavelength of matter waves. 2 +	4 = 6
(b) Derive the time-dependent Schrodinger's Equation in one-dimension.	10
(c) In case of wave mechanics why do we need to consider probability density instead of simple probabi	lity?4
7. (a) After deriving all the necessary relationships to show that energy is quantized when a particle is con	nfined
in a box with rigid walls and present energy levels, wave functions and probability densities up to four qua	antum
states. 6 + 9) = 15
(b). A particle limited to the X-axis has the wave function ψ = ax between x = 0 and x = 1; ψ = 0 elsew	here.
Find the probability that the particle can be found between $x = 0.45$ and $x = 0.55$.	5
8. (a) What is the electric field of a material when the current is equal to 25A, the resistance is measure	ed to
be 78 Ω , the current density equals 24A/m2, and the length the current flows is 100m?	5
(b) According to Drude model find the relationship for thermal Conductivity in metals under conductive	heat
transfer condition.	9
(c) Elaborate the concept of Fermi-Dirac Statistics and Fermi energy in metals.	6
9 (a) Discuss the success and limitation of Drude model.	6
(b) A metallic wire has a resistivity of 1.42x10-8 Om. For an electric field 0.14V/m, find the average drift	t
velocity of electron.	6
(c) Explain the difference among metals, insulators and semiconductors in terms of "Band theory."	8

Proposition

Date: 20.06.2023

Pravash Chandra Chakraborti (Full Name and Signature of the Paper Setter)