Ref. No.: Ex/Met/PC/B/TS/222/2022(S)

## B.E. METALLURGICAL AND MATERIAL ENGINEERING SECOND YEAR SECOND SEMESTER SUPPLEMENTARY EXAM - 2022

**Subject: TESTING OF MATERIALS** 

| Time: 3 hours | Full Marks = 100                                        |
|---------------|---------------------------------------------------------|
|               | (Answer question no 1 and 7 and any four from the rest) |

| a. | Complete the table:                                                                                                 |                       |           |                    |                           |    |  |  |
|----|---------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|--------------------|---------------------------|----|--|--|
|    | Test Indente                                                                                                        |                       | r         | Load               | Application               |    |  |  |
| •  | Brinell                                                                                                             | 10 mm (dia.           | Steel bal | 1)                 | Nonferrous metals and all | oy |  |  |
|    | Vickers                                                                                                             |                       |           | 15 Kg              | All materials             |    |  |  |
| b. | why?                                                                                                                |                       |           |                    |                           |    |  |  |
| c. |                                                                                                                     |                       |           |                    |                           |    |  |  |
| d. |                                                                                                                     |                       |           |                    |                           |    |  |  |
| e. | With an increase in strain rate, ductility and tensile strength                                                     |                       |           |                    |                           |    |  |  |
| f. | The standard specimen geometry for impact testing is?                                                               |                       |           |                    |                           |    |  |  |
| g. | Three basic factors contribute to brittle-cleavage type fracture are                                                |                       |           |                    |                           |    |  |  |
| h. | what type of fracture surface will you expect if the impact test carried out at below th nil ductility temperature? |                       |           |                    |                           |    |  |  |
| i. | Match witl                                                                                                          | arameters in Group 2: |           |                    |                           |    |  |  |
|    | Group 1                                                                                                             |                       | Group 2   |                    |                           |    |  |  |
|    | 1. T                                                                                                                | ensile test           | I.        | Ductile to brittle | e transition temperature  |    |  |  |
|    | 2. I                                                                                                                | mpact test            | II.       | Equicohe           | esive temperature         | :  |  |  |
|    | 3.   F                                                                                                              | atigue test           | III.      | Viold mo           | int phenomenon            |    |  |  |

j. Define "fatigue ratio".

Creep test

k. Arrange in increasing order of creep resistance of a material: (i) Single crystal, (ii) Polycrystal, (iii) Directionally solidified crystal.

**Endurance limit** 

IV.

1. Which nondestructive testing will you prefer to detect the crack present inside the material?

[ Turn over

- a. State the purposes for conducting micro indentation at low load over macro indentation.
- **b.** What are the precautionary steps we need to follow for measuring the hardness using the Vickers hardness testing machine?
- c. The following data is obtained from a Brinell hardness test.

| Dia. Of indentation(mm) | Dia. Of indenter(mm) | Load (kg) |  |
|-------------------------|----------------------|-----------|--|
| 4.75                    | 10                   | 3000      |  |
| 3.33                    | 7                    | 1470      |  |
| 2.35                    | 5                    | 750       |  |

Determine the B.H.N. and explain the basic principle form the above data.

6 + (3 + 6) = 15

- **a.** Draw schematic load elongation, engineering stress strain and true stress strain curves on the same diagram for a low carbon steel tested under uniaxial tension. Compare the nature of these curves assigning reasons for differences.
- b. Find the relation between True stress and Engineering stress. If a true stress-true strain curve is given by  $\sigma = 1250e^{0.27}$ , where, stress is in MPa. What is the ultimate tensile stress of the material?

6+6+3=15

- **a.** Design an experiment to know the transition temperature curve for a plain carbon steel tested in notched impact.
- **b.** Sketch the curve and state the important metallurgical factors that affect the transition temperature.
- c. What is meant by the term notch sensitivity?

3+6+6=15

- a. Define range of stress, stress ratio and amplitude ratio in connection with cyclic loading.
- **b.** Discuss the effect of stress ratio on S-N curve of a material.
- c. Explain the effect of mean stress on fatigue of materials.

6. 8+7=15

- **a.** Draw typical constant load and constant stress creep curves delineating the different stages. Indicate the phenomenological processes in each stage. What is minimum creep rate?
- **b.** Define equicohesive temperature of a material. Copper (Cu) does not creep at room temperature but lead (Pb): why?

## 7. Compare to contrast (Any four): $(4 \times 5 = 20)$

- a. Failure Vs Fracture of materials
- b. Brinell Vs Vickers hardness test.
- c. Izod vs Charpy impact test
- d. Creep vs stress rupture test.
- e. Liquid dye penetration test vs Magnetic particle test