BACHELOR OF ENGINEERING (MECHANICAL ENGINEERING) FIFTH YEAR SECOND SEMESTER EXAM 2023

Ref. No.: Ex/ME/5/T/524C/2023

INTRODUCTION TO TURBULENCE

Time:-Three Hours Full Marks:-100

Answer any five Questions

Assume any data relevant to the questions if not provided

- a) Define Laminar and Turbulent Flow with an example of each of the flows. What is a transitional flow? What are the critical Reynolds number (both upper and lower) of pipe flow and flow over a boundary layer?
 - b) Draw a boundary layer over a flat plate showing the laminar, transitional and turbulent zones along with laminar sublayer. (10)
- 2. Explain in details the characteristics of the turbulent flow. (20)
- 3. a) What do you understand by large eddies and small eddies? Why large eddies are called energy producing eddies? (10)
 - b) Explain isotropic and an-isotropic turbulence. (10)
- 4. a) With neat diagrams explain the origin of turbulence. (15)
 - b) Show that vortex superimposed on mean flow generates the fluctuating components u', v' in a turbulent flow. (05)
- 5. Show that both mean velocities $(\overline{U}, \overline{V} \text{ and } \overline{W})$ as well as fluctuating components (u', v' and w') follow continuity equation. (20)

- 6. Derive the Reynolds averaged Navier-Stokes equation for an incompressible unsteady turbulent 3-D flow in rectangular coordinate system. (20)
- 7. Explain Prandtl's Mixing Length theory for a 2-D incompressible and steady Turbulent flow and obtain the expression for the Mixing Length. (20)
- 8. Write short note on any two.

 $(2 \times 10 = 20)$

- a) Reynolds Stresses
- b) Energy cascading
- c) Wall Function in $k \varepsilon$ model.