B.E. MECHANICAL ENGINEERING FOURTH YEAR SECOND SEMESTER - 2023 Subject: INTRODUCTION TO MODERN CONTROL THEORY(HONS.)

Time: Three hours Full Marks: 100

Answer any <u>FIVE</u> questions. Different parts of the same question should be answered together.

Assume any relevant data if necessary.

[1] Consider an electrohydraulic actuation system where a proportional valve PV drives a symmetric, double-acting cylinder C negotiating a spring S of stiffness k_s and a dashpot D of damping coefficient C. The total moving mass of the system is m. The fixed-displacement pump has a constant pressure p_P at its delivery port and the tank pressure is atmospheric. Take fluid to be incompressible, ignore any leakage and assume a suitable friction model.

The cylinder displacement x is recorded by an LVDT and the recorded signal is fed to the controller to estimate the

control voltage ν to the proportional valve.

<u>Fig: P1</u>

- (a) Construct a mathematical model of the system for $v \ge 0$.
- (b) Linearize the model by suitable linearization technique.
- (c) Develop a state space model of the linearized system.
- (d) If the system lumped uncertainty can be expressed as $e(x, u, v, t) \le 5$ and a sliding surface is defined as, $\sigma = 2x_1 + x_2$, where $x_1 = x$; $x_2 = \dot{x}$ construct a sliding mode controller of the system to hold the system at the origin of the state space. [6+2+4+8=20]
- [2] Obtain the state space model for 2 degrees of freedom (heave and pitch) half-car suspension system. Assume any symbols necessary, clearly stating their meanings.

 [20]
- [3] (a) For a system with plant transfer function $G(s) = 2/(s^2+4s+5)$, obtain a state space model. Hence design a state feedback control $u = -\mathbf{k}'\mathbf{x}$ to place the closed-loop eigenvalues at $-3\pm 2j$.
- (b) Design the observer matrix **L** to estimate the states of the system $\dot{\mathbf{x}} = \begin{bmatrix} -3 & 2 \\ 4 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{u}$; $y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}$, from the output y. Place the observer eigenvalues at -12 and -15.
- [4] (a) For an over-damped second order system, obtain the phase-plane equation and the isocline equation. Sketch the isoclines.
- (b) State Sylvester's Theorem for a general quadratic form.
- (c) For $Q = x_1^2 + 2x_2^2 + 3x_3^2 + 8x_1x_2 + 2x_1x_3 + 4x_2x_3$, check whether Q is positive definite.

[10+4+6=**20**]

[5] (a) Consider a fuzzy logic controller for an electrohydraulic actuation system with position error and velocity error as the inputs and control voltage as the output. The ranges of position errors is ± 0.1 m, velocity error is ± 1 m/s and control voltage is ± 10 V. Define suitable membership functions for the inputs and output (3 for position error, 3 for velocity error and 3 for control voltage) and associated fuzzy rules. Show the fuzzy rules (at least 5 rules) in terms of the membership functions in a graph paper. Also using the graph paper and the *Mamdani's Inference Method*, obtain the fuzzified control voltage for position error of -0.06m and velocity error of +0.2m/s. How can one defuzzify the fuzzy voltage output to get a crisp value?

(b) What are the advantages of fuzzy control systems?

[16+4=**20**]

[6] (a) Determine the output response of the system to the initial conditions and a unit step input:

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}; \qquad \qquad \mathbf{y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}; \qquad \qquad \mathbf{x_0} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- (b) What is meant by Formal Solution of the state space equations? What is meant by Transition Matrix?
- (c) Explain the term Controllability? What is the condition that a state space model is controllable? [10+5+5=20]
- [7] (a) State two typical features in response of a system that indicates existence of nonlinearity.
- (b) State two common nonlinearities that are encountered in dynamic systems and explain with suitable examples.
- (c) What is meant by learning of an Artificial Neural Network? What are the different types of learning?
- (d) What is meant by a feedforward neural network?
- (e) Explain with an example the difference between crisp set and fuzzy set in defining a physical variable.

[4+4+4+4+4=<u>20</u>]

- [8] Write short notes on any four (4) of the following:
 - (a) Lyapunov's Stability Theorem
 - (b) Companion form of system matrix
 - (c) State feedback control and the method of pole assignment
 - (d) Mamdani's Fuzzy Inference Method
 - (e) Robustness of sliding mode control
 - (f) Effect of learning rate and momentum factor in Artificial Neural Network training.

 $[4 \times 5 = 20]$