B.E. POWER ENGINEERING THIRD YEAR SECOND SEMESTER - 2023

Measurement and Transducers

Time 3 Hr.

1. Answer any three questions (CO1)

3×5

Full Marks: 100

- (a) Derive the expression for the deflection of a PMMC instrument which is spring controlled. How can the potential divider arrangement be used for multipliers in multirange voltmeter?
- (b) Derive the expression for the deflection of a spring controlled electrodynamometer type instrument under ac operation. Comment on the shape of its scale.
- (c) Explain the special features incorporated in an electrodynamometer to make it suitable for Low Power factor applications.
- (d) Derive the expression for deflecting torque in single phase induction type meter. Show that the deflection is maximum when the phase angle between the two fluxes is 90° and the disc is purly non-inductive.
- 2. Answer any two questions (CO2)

 2×8

- (a) Derive the expression for bridge sensitivity for Wheatstone bridge with equal arms. Also find the expression of the current through the galvanometer during unbalance operation of the bridge.
- (b) Draw the equivalent circuit and phasor diagram of a current transformer. Derive the expression for ratio and phase angle error.
- (c) Draw the circuit diagram of an Anderson Bridge? Derive the expression for the unknown inductance and the resistance measured by it.
- (d) How can the insulation resistance be measured using a Megger? Explain with the help of a diagram.
- 3. Answer any five questions (CO3)

5×8

- (a) The coil of a moving coil galvanometer is wound on a non-magnetic former whose height and width are both 3 cm and 2cm respectively. It moves in a constant field of 0.15 Wb/m². The moment of inertia of its moving parts is 0.5×10⁻⁶ kg-m² and the control spring constant is 30×10⁻⁶ Nm/rad. Calculate (i) the number of turns that must be wound on the coil to produce the deflection of 120° with a current of 10 mA.
- (b) A ring core current transformer, of nominal ratio 500/5 and a bar primary has a secondary resistance of 0.5 Ω . The secondary reactance is negligible. The resultant of the magnetizing and the iron loss component of the primary current for a full load secondary current of 5 A with a burden of 1 Ω is 3A at a power factor of 0.4. Calculate the ratio error at rated primary current.
- (c) The inductance of a moving iron ammeter is given by: $L = (8 + 4\theta \frac{1}{2}\theta^2)\mu H$ where θ is the deflection from zero position in degrees. Calculate the angular deflections in radian for currents 1, 2, 3, 4 and 5A. Comment on the scale shape thus obtained.
- (d) Hay's AC bridge has the following arms: AB is a coil of unknown impedance, BC is a non-inductive resistor of 1000Ω ; CD is non-reactive resistor of 800Ω in series with a standard capacitor of $0.4~\mu\text{F}$; DA is a non-reactive resistor of 16000Ω . Determine the unknown resistance and the inductance at the balanced condition if the supply frequency is 50~Hz.
- (e) Four arms of a Wheatstone bridge are as follows:
 - $AB = 100 \Omega$, $BC = 1000 \Omega$, $CD = 4000 \Omega$, and $DA = 400 \Omega$.
 - The galvanometer has a resistance of 200 Ω , a sensitivity of 100 mm/ μ A and is connected across AC. A source of 5 V DC is connected across BD. Calculate the current through the galvanometer and its deflection if the resistance of the arm DA is changed from 400 Ω to 401 Ω .
- (f) A moving coil voltmeter having a resistance of 15Ω gives full scale deflection of 100° with a potential difference of 100 mV applied across it. The dimension of the coil is $30 \text{ mm} \times 25 \text{ mm}$ with 100 turns. Find the flux density in the air gap and the diameter of the coil if the 25% of the instrument resistance

is due to the coil winding. The control spring constant is 0.4×10^{-6} Nm/deg. The specific resistance of the copper is 1.7×10^{-8} Ω m.

4. Answer any three questions (CO4)

3×8

- (a) What are piezoresistive gauges? Define the gauge factor and derive its expression.
- (b) What is hall voltage? Derive its expression. State the factors which influence the hall coefficient.
- (c) What are thermistors? Discuss the resistance-temperature characteristics of thermistors and the method of measurement of temperature with the use of thermistors.
- (d) Define the following transducer characteristics: Accuracy, Resolution, Repeatability and Noise
- (e) Describe the working principle of the resistance thermometers. Name the materials used for RTDs along with their properties.
- 5. Answer any one:

(CO5)

1×5

- (a) How does a pH meter work? Explain its working with suitable diagram.
- (b) Discuss how a thermocouple can be used for measurement of flame temperature.