Ex/ME/5/MATH/T/111/2023

B.Mechanical(Evening). Examination, 2023 (1ST YR, 1ST SEM)

MATHEMATICS-III

Full Marks: 100 Time: Three hours

Part - I

Answer any four questions $12.5 \times 4 = 50$

1.(a) Find the Z-Transformations of the following functions:

(i)
$$f(n) = 9n$$
 (ii) $f(n) = 4^n$

(b) Solve the equation using Z-Transformation

$$f(n+1) + 3f(n) = n$$
, given: $f(0) = 2$.

- 2.(i) Find L[F''(t)], where L stands for Laplace Transformation.
- (ii) Solve the equation using Laplace Transformation:

$$y'' + 9y = 0$$
, $given: y(0) = 0$, $y'(0) = 2$

3. Find the Fourier Transformations of the following function

$$(i) \ f(x) = e^{-x^2}$$

$$(ii) f(x) = 1 \text{ when } |x| \le x_0$$

= 0, otherwisw.

[Turn over

4. State Dirichlet's conditions for convergence of a Fourier series. Find the Fourier series of the function

$$f(x) = 0, \quad when \quad -\pi < x \le 0$$
$$= \frac{\pi x}{4}, \quad when \quad 0 \le x \le \pi$$

5. (a) Find the Fourier series of the function

$$f(t) = 0$$
, when $-2 < t < -1$
= k , when $-1 < t < 1$
= 0 , when $1 < t < 2$.

(b) Find

$$L^{-1}\left(\frac{1}{\sqrt{2s+3}}\right).$$

Part-II

Answer any two questions:

15
$$\times$$
 2 = 30

6. (i) Solve the equation:

$$xdy - ydx = \sqrt{y^2 + x^2}dx$$

(ii). Find general solution and singular solution:

$$p = \ln(px - y)$$
, where $p = \frac{dy}{dx}$

7. Find the general solution:

$$(D^2 + 2D + 1)y = 4x^2$$
, where $D = \frac{d}{dx}$

8. Define ordinary point and regular singular point of the differential equation

$$P_0(x)y_2 + P_1(x)y_1 + P_2(x)y = 0.$$

Find the series solution near the ordinary point x=0 of the equation

$$y_2 + 3xy_1 + 3y = 0$$

9. Solve the Bessel's differential equation.

$$x^2y_2 + xy_1 + (x^2 - n^2)y = 0.$$

Part-III

Answer the following questions:

 $10 \times 2 = 20$

10. Solve the equations:

$$(i) \ (y+z)p + (z+x)q = x+y \ , \qquad (ii) \ z^2 - pz + qz + (x+y)^2 = 0$$

$$\left[where \ p = \frac{\partial z}{\partial x} \ , \ q = \frac{\partial z}{\partial y} \right]$$

11. Solve the equation using the method of separation of variables.

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$