BACHELOR OF ENGINEERING (MECHANICAL ENGINEERING) THIRD YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATION 2023

STEAM POWER PLANT

Time: Three hours

Full Marks: 100

Answer any five questions from the followings

All parts of the same question must be answered together

(Use of steam table and charts are allowed)

- Q1. Answer the following questions:
- (a) Why does reheating of steam become necessary? Explain the effect of reheat on cycle output and efficiency.
 - (b) What do you understand by weatherability of coal?
 - (c) State function of chimney in a natural draught boiler.
 - (d) Classify steam turbines based on the principle of working.

(20)

- Q2. (a) Explain with neat sketch a simple regenerative Ranking cycle.
- (b) A steam power plant operates on a simple Rankine cycle between the pressure limits of 3 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 35 kg/s. Assume an isentropic efficiency of 85% for both the turbine and the pump. Show the cycle on a *T-s* diagram with respect to saturation lines, and determine (i) the thermal efficiency of the cycle and (ii) the net power output of the power plant. (8+12)
- Q3. (a) Explain the following terms: (i) proximate and ultimate analysis (ii) Blow off cock, fusible plug.
- (b) The percentage analysis by mass of the coal used in a boiler was: Carbon 83, hydrogen 6, oxygen 5 and ash 6. The dry flue gas contained CO_2 10.50, CO 1.30, O_2 7.67 and O_2 80.53, % by volume. The temperatures of the air and flue gas were 15°C and 215°C respectively. Find the total mass of air supplied per kg coal. (8+12)
- Q4. (a) Sketch and label a fire tube boiler. Show clearly all heat transfer surfaces, air-fuel-flue gas and feed water steam circuit.
- (b) Differentiate between fire tube and water tube boilers.

(10+10)

- Q5. (a) Draw and explain a simple 'closed pulverization system'.
 - (b) State function of burners. Also classify burners.

(10+10)

- Q6. (a) Define and classify steam nozzles.
- (b) Dry saturated steam at 10 bar is expanded in a convergent-divergent nozzle. The velocity of steam at exit is 685 m/s, the flow rate is 7 kg/s and the nozzle efficiency is 85%. Assume the flow to be isentropic up to the throat. Determine the throat and exit areas of the nozzle. Neglect the velocity of the steam at inlet.

 (6+14)
- Q7. (a) Explain in brief with neat sketch working of a de-Laval steam turbine.
- (b) A simple impulse turbine has one ring of moving blades running at 150 m/s. The absolute velocity of steam at exit from the stage is 85 m/s at an angle of 80° from the tangential direction. Blade velocity co-efficient is 0.82 and the rate of steam flowing through the stage is 2.5 kg/s. If the blades are equiangular, determine: (i) blade angles, (ii) nozzle angle, (iii) absolute velocity of steam issuing from the nozzle, (iv) axial thrust.

 (8+12)