## B.E. MECHANICAL ENGINEERING SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAMINATION, 2023

## **HEAT TRANSFER**

Time: Three hours

Full Marks 100

|       | All parts of the same question must be answered together. Assume any unfurnished data suitably (Answer any 5 questions)                             |    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 (a) | Determine heat transfer rate through a solid cylinder of radius R and length L subject                                                              |    |
|       | to maintain a constant temperature To at the outer lateral surface for constant thermal                                                             |    |
|       | conductivity of solid k, constant heat transfer coefficient h, constant volumetric heat                                                             | 20 |
|       | generation $q_g$ and one-dimensional steady state heat transfer. Also draw the                                                                      | 20 |
|       | temperature distribution as a function of radial coordinate.                                                                                        |    |
| 2 (a) | Derive an expression for the temperature distribution and rate of heat transfer from a                                                              | 10 |
|       | fin of uniform cross section with insulated tip.                                                                                                    |    |
| (b)   | A 4-mm-diameter and 10-cm-long aluminum fin (k = 237 W/m·K) is attached to a                                                                        |    |
|       | surface. If the heat transfer coefficient is 12 W/m <sup>2</sup> ·K, determine the percent error in                                                 |    |
|       | the rate of heat transfer from the fin when the infinitely long fin assumption is used                                                              |    |
|       | instead of the adiabatic fin tip assumption.                                                                                                        | 10 |
| 3.(a) | Derive an expression for instantaneous temperature and heat transfer rate for a body                                                                | ·  |
|       | subjected to heating or cooling in terms of Biot and Fourier number.                                                                                | 10 |
| (b)   | The temperature of a gas stream is to be measured by a thermocouple whose junction                                                                  |    |
|       | can be approximated as a 1.2-mm-diameter sphere. The properties of the junction are                                                                 |    |
|       | $k = 35 \text{ W/m} \cdot \text{K}$ , $\rho = 8500 \text{ kg/m}^3$ , and $cp = 320 \text{ J/kg} \cdot \text{K}$ , and the heat transfer coefficient |    |
|       | between the junction and the gas is $h = 90 \text{ W/m}^2 \cdot \text{K}$ . Determine how long it will take                                         |    |
|       | for the thermocouple to read 99 percent of the initial temperature difference.                                                                      | 10 |

| 4. (a) | Consider the flow of mercury (a liquid metal) in a tube. How will the hydrodynamic            | 5  |
|--------|-----------------------------------------------------------------------------------------------|----|
|        | and thermal entry lengths compare if the flow is laminar?                                     |    |
| (b)    | Consider steady, laminar boundary type flow of a low Prandtl number (Pr <<1) fluid            |    |
|        | over a flat plate. The free stream velocity and temperature are $U_{\infty}$ and $T_{\infty}$ |    |
|        | respectively. The plate is maintained at a uniform temperature of $T_w$ . Show the            |    |
|        | following by the method of scale analysis:                                                    |    |
|        | $\frac{\delta}{L} \sim Re_L^{-1/2}$                                                           |    |
|        | $rac{\delta_T}{L} \sim Re_L^{-1/2} Pr^{-1/2}$ $Nu_L \sim Re_L^{1/2} Pr^{1/2}$                |    |
|        | $Nu_L \sim Re_L^{1/2} Pr^{1/2}$                                                               | 15 |
| 5. (a) | Define the following:  i) Black body and Opaque body                                          |    |
|        | ii) Stefan Boltzman Law                                                                       |    |
|        | iii) Wein's displacement law                                                                  | 8  |
|        | iv) Plank's Law                                                                               | O  |
| (b)    | Calculate the net radiant heat exchange per unit area for two parallel plates at              |    |
| (-)    | temperatures of 427°C and 27°C respectively. ε (hot plate) is 0.9 and ε (cold plate) is       |    |
|        | 0.6. A polished aluminum shield is placed between them, find the percentage                   | 12 |
|        | reduction in heat transfer. ε (Shield) is 0.4                                                 | 12 |
| 6.(a)  | Derive the expression for LMTD of a parallel heat exchanger.                                  | 10 |
| (b)    | In a counter flow double pipe heat exchanger, water is heated from 25°C to 65°C by            |    |
|        | oil with specific heat of 1.45 kJ/kg K and mass flow rate of 0.9 kg/s. The oil is cooled      |    |
|        | from 230°C to 160°C. If overall Heat transfer coefficient is 420 W/m² °C. Calculate           |    |
|        | following: a) The rate of heat transfer b) The mass flow rate of water, and c) The            |    |
|        | surface area of heat exchanger.                                                               | 10 |
| 7.(a)  | Explain the concept of black body and gray body.                                              | 6  |
| (b)    | Derive an expression for critical thickness of insulation for a cylinder. Discuss the         |    |
|        | design aspects for providing insulation scheme for cable wires and steam pipes.               | 14 |