Ref. No.: Ex/ME(M2)/BS/B/MATH/T/211/2023(S)

B.E. MECHANICAL ENGINEERING, SECOND YEAR, FIRST SEMESTER, SUPPLEMENTARY EXAM 2023

Mathematics - III

Full Marks: 100 Time: 3 Hours

Answer any 10 questions

 $10 \times 10 = 100$

- 1. A) In \mathbb{R}^3 , $\alpha = (4, 3, 5)$, $\beta = (0, 1, 3)$, $\gamma = (2, 1, 1)$, $\delta = (4, 2, 2)$ Examine if,
 - i) α is a linear combination of β and γ
 - ii) β is a linear combination of γ and δ
 - B) Prove that the set $S = \{ (0, 1, 1), (1, 0, 1), (1, 1, 0) \}$ is a basis of \mathbb{R}^3 .
- 2. A) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + x_2 + 2x_3, x_1 + 2x_2 + x_3)$ Show that T is a linear transformation. Find KerT and dimension of KerT.
 - B) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2,0,0), (0,2,0), (0,0,2) respectively. Show that dim ker $T + \dim Im T = 3$.
- 3. A) Let V be an inner product space and $u, v \in V$; $\alpha, \beta \in F$. Then show that,
 - i) $\langle \alpha u + \beta v, \alpha u + \beta v \rangle =$ $|\alpha|^2 ||u||^2 + \alpha \bar{\beta} \langle u, v \rangle + \bar{\alpha} \beta \langle v, u \rangle + |\beta|^2 ||v||^2$ ii) $||\alpha u|| = |\alpha| ||u||$
 - B) State and prove Cauchy-Schwartz inequality.
- 4. A) Write down the definition of unitary operators. Show that T in a unitary operator iff $\langle Tv, Tv \rangle = \langle v, v \rangle \forall v \in V$.
 - B) Write down the definition of normal operator.

 Let T be a normal operator on an inner product space V. Then,
 - i) $||T(v)|| = ||T^*(v)|| \forall v \in V$
 - ii) If v is any eigen vector of T, then v is an eigen vector of T^* as well. In fact, if $T(v) = \lambda v$, then $T^*(v) = \bar{\lambda}v$

[Turn over

- 5. A) Let A be a (7×7) , matrix over \mathbb{R} with characteristic polynomial $= (t-2)^4 (t-5)^3$ and minimal polynomial $= (t-2)^2 (t-5)^3$. What will be the possible Jordon Canonical form(s) of A?
 - B) Let V be the vector space over \mathbb{C} of all polynomials in a variable X of degree at most 3. Let $D: V \to V$ be the linear operator given by the differentiation with respect to X. Let A be the matrix of D with respect to some basis for V. Show that the Jordon canonical form of A is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

6. Find rational canonical form of the matrix

$$\begin{bmatrix} 2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2 \end{bmatrix}$$

7. Suppose V be the subspace of \mathbb{R}^5 with basis,

$$u_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}; u_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}; u_{3} = \begin{bmatrix} 1 \\ 4 \\ -1 \\ 1 \\ -1 \end{bmatrix}; u_{4} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

Apply Gram-Schmidt algorithm to find the orthogonal basis for V.

8. Solve the equation:

i.
$$xdy - ydx = \sqrt{y^2 + x^2}dx$$
 ii. $\frac{dy}{dx} = \sqrt{y - x}$

9. Find general solution and singular solution:

$$p = \ln(px - y)$$
, where $p = \frac{dy}{dx}$

10. Find the general solution:

$$(D^2 + D - 6)y = x^2$$
, where $D = \frac{d}{dx}$

- 11. Solve the Legendre's differential equation.
- 12. Define ordinary point and regular singular point of the differential equation

$$P_0(x)y_2 + P_1(x)y_1 + P_2(x)y = 0.$$

Find the series solution near the ordinary point x=0 of the equation

$$y_2 + 3xy_1 + 3y = 0$$

13. Solve the equation using the method of separation of variables.

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

14. Solve the equation using method of variation of parameter.

$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$

15. For Bessel's function $J_n(x)$ show that

$$i. \frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$$

$$ii. \ J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$