Ref. No.: Ex/ME(M2)/BS/B/MATH/T/111/2023(S)

B.E. MECHANICAL ENGINEERING SUPPLEMENTARY EXAMINATIONS - 2023 FIRST YEAR FIRST SEMESTER

Mathematics-I

Time: Three hours Full Marks:100

(Notations and symbols have their usual meanings.)

GROUP- A

Answer any five questions from the following.

1. Test wheather the following series converges or not

(i)
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots$$

$$\begin{array}{l} (ii) \sqrt[3]{n^3 + 1} - n. \\ (iii) \frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \dots \end{array}$$

$$3 + 4 + 3$$

- 2. (i) Show that the sequence $\{x_n\}$, where $x_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$ is a bounded monotonic increasing sequence.
 - (ii) Examine the convergence of following sequences $\{x_n\}$, where

(a)
$$x_n = \frac{(3n+1)(n-2)}{n(n+3)}$$

(b) $x_n = \sqrt{n}$

$$(b)x_n = \sqrt{n}$$

$$5 + 3 + 2$$

- 3. (i) Suppose a function f(x,y) defined by $f(x,y) = \frac{x^4 + y^4}{x y}, x \neq y$ and f(x,y) = 0, x = y. Is f(x,y) continuous at (0,0)?
 - (ii) State and prove Lagrange's Mean value theorem.

$$5 + 5$$

- 4. (i) Using Mean Value Theorem prove that $\frac{2x}{\pi} < \sin x < x$, for $0 < x < \frac{\pi}{2}$.
 - (ii) Using Lagrange's method of undetermind multiplier find the extreme value of $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = p.

$$5 + 5$$

- 5. (i) (b) Expand the function $f(x) = \sin x$ in infinite series in powers of x if possible.
 - (ii) If a function f(x, y) is defined by $f(x, y) = xy \frac{x^2 y^2}{x^2 + y^2}$, when $x^2 + y^2 \neq 0$ and f(x, y) = 0, when $x^2 + y^2 = 0$, show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

5 + 5

6. (i) State Euler's theorem of homogeneous function of two variables. Using this theorem prove that

$$x^{2} \frac{\delta^{2} u}{\delta x^{2}} + 2xy \frac{\delta^{2} u}{\delta x \delta y} + y^{2} \frac{\delta^{2} u}{\delta y^{2}} = \frac{\tan u}{144} (13 + \tan^{2} u), \text{ if } u = \csc^{-1} \left[\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}} \right]^{\frac{1}{2}}.$$

(b) Evaluate the limit $\lim_{x\to 0} (sinx)^{(2tanx)}$

6 + 4

- 7. (i) If v be a function of r alone, where $r^2 = x^2 + y^2 + z^2$. Show that $\frac{\delta^2 v}{\delta x^2} + \frac{\delta^2 v}{\delta y^2} + \frac{\delta^2 v}{\delta z^2} = \frac{\delta^2 v}{\delta r^2} + \frac{2}{r} \frac{\delta v}{\delta r}$.
 - (ii) If $u = log(x^3 + y^3 + z^3 3xyz)$, then show that $\frac{\delta u}{\delta x} + \frac{\delta u}{\delta y} + \frac{\delta u}{\delta z} = \frac{3}{x + y + z}$.

5 + 5

GROUP- B

Answer Question Number 8 and any four questions from the rest.

8. Define Riemann Integration of a bounded function f(x) in [a,b].

2

- 9. (a) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of *Beta* function and hence evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$.
 - (b) Evaluate $\int_0^\infty 4x^4 e^{-x^4} dx$.

7 + 5

- 10. (a) Give an example of a bounded function which is not R-integrable.
 - (b) Suppose f(x) = x and $g(x) = e^x$, verify the first Mean Value Theorem of Integral Calculus for the interval [-1,1].

5 + 7

- 11. Examine the convergence of following integrals (any two)
 - (a) $\int_{1}^{\infty} \frac{dx}{x^{\frac{1}{3}}(1+x^{\frac{1}{2}})}$
 - (b) $\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$

(c) $\int_a^\infty e^{-x} \frac{\sin x}{x^2} dx$, a > 0

6 + 6

- 12. (a) Evaluate $\iint xy(x+y)dxdy$ over the area bounded by $y=x^2$ and y=x.
 - (b) Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^3 \sin\theta \cos\theta d\theta dr$.

6 + 6

- 13. (a) Determine the length of one arc of the cycloid $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$.
 - (b) Find the area of the loop of the curve $x(x^2 + y^2) = a(x^2 y^2)$.

6 + 6

- 14. (a) Find the surface of the solid generated by revolution of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about the x-axis.
 - (b) Show that $\Gamma(1/2) = \sqrt{\pi}$.

7 + 5