B.E. Information Technology Third Year Second Semester Examination 2023 Subject: Multimedia Coding & Communications Time: 3 hours Full Marks: 100 ## Different parts under the same CO should be answered together. | CO1
[27] | a. What are the different video transition schemes? Explain any 4 of them in detail. b. Explain the difference between Vector image and Raster Image with suitable diagram. c. Describe 8-bit Gray Level Images. d. What do you know about synthetic sound. e. What is multimedia authoring? Mention different multimedia authoring metaphors and explain each of them in brief. | 9
4
5
3
2+4=
6 | | | | |-------------|---|-------------------------------|--|--|--| | | a. Explain GIF 87 file format in detail with suitable diagrams. b. What is Dithering and what is the relation of it with half-tone printing. c. Write short note on MIDI Messages. d. Differentiate between Multimedia Programming and Multimedia Authoring. e. What is multimedia authoring? Mention different multimedia authoring metaphors and explain each of them in brief. | 9
4
5
3
2+4=
6 | | | | | | (a) Execute LZW compression and decompression algorithm on the string "MISSISSIPPI" where the value of the string table is [M-1, S-2, I-3, P-4]. (b) A 4-symbol alphabet has the following probabilities P(a1) = 0.1, P(a2) = 0.5, P(a3) = 0.25, P(a4) = 0.15 and following codes are assigned to the symbols a1 = 110, a2 = 0, a3 = 10, a4 = 111. What is the average code word length for this source? | 8 | | | | | CO2
[37] | Construct a Shannon-fano tree and Hauffman tree for the word "APPLE". The code in real decimal numbers for the word "APPLE" formed out of a 4-symbol alphabet – "A", "P", "L" and "E" having probabilities 0.2, 0.4, 0.2, and 0.2 respectively. Compare the codeword length, its entropy, and coding efficiency expressed for the same word by both schemes. | | | | | 4 A long sequence of symbols generated from a source is seen to have the following occurrences. | Symbol | Occurrences | |--------|-------------| | al | 3003 | | a2 | 996 | | a3 | 2017 | | a4 | 1487 | | a5 | 2497 | 15 - (a) Assign Huffman codes to the above symbols, following a convention that the group/symbol with higher probability is assigned a "0" and that with lower probability is assigned a "1". - (b) Calculate the entropy of the source. - (c) Calculate the average code word length obtained from Huffman coding. - (d) Calculate the coding efficiency. 5. Show the step-by-step execution of encoding and decoding of the Arithmetic coding algorithm on the string "EAOU" where the probability distribution of the symbols are given the following table: | Symbol | Probability | |--------|-------------| | A | 0.12 | | E | 0.42 | | Ι | 0.09 | | 0 | 0.3 | | U | 0.07 | 10 7. A given 4 x 4 image array and its corresponding reconstructed image array obtained through a lossy compression scheme are given below: ## Ref. No.: Ex/IT/PC/B/T/324/2023 | | | | | | | | | | | | η | |-------------|--|-----|-----|----|--|-----|---------------------|-----|--------------|--|---| | | 148 | 129 | 133 | 89 | | 146 | 130 | 133 | 85 | | 9 | | | 153 | 138 | 103 | 84 | | 155 | 139 | 105 | 84 | | | | CO3
[14] | 155 | 141 | 92 | 78 | | 154 | 142 | 98 | 80 | | | | | 162 | 139 | 86 | 81 | | 162 | 139 | 84 | 78 | | | | | Original Image | | | | | | Reconstructed Image | | | | | | | Calculate the (a) MSE, (b) SNR and (c) PSNR of the reconstructed image array. | | | | | | | | 5 | | | | | 8. (a) What is quantization? What are the different forms of quantization in lossy compression? | | | | | | | | | | | | | OR | | | | | | | | | | | | | (b) Explain Rate-Distortion Theory and mention why it plays an important role in lossy compression techniques. | | | | | | | | | | | | CO4
[12] | 9. Differentiate between the following (Any three): a. Frequency Masking vs Temporal Masking b. MP3 vs MPEG c. JPEG - LS Standard vs JPEG - 2000 Standard d. Motion Compensation vs Motion Estimation e. MPEG 4 vs MPEG 7 | | | | | | | | 3 x 4 = 12 | | | | CO5
[10] | 10. Write short note on: a. Distributed Multimedia Application b. Multimedia Database System c. Multimedia Feature Extraction d. Multimedia Playback System e. Multimedia Data Transmission Network | | | | | | | | 2.5 x 4 = 10 | | |