B.E. Information Technology THIRD YEAR SECOND SEMESTER SUPPLEMENTARY EXAM - 2023

Subject: Multimedia Coding & Communications

Time: 3 hours Full Marks: 100

Different parts under the same CO should be answered together.

CO1	1. W	rite	Sho	rt N	ote o	on:				$[4 \times 5 = 20]$			
[30]	a. Hypermedia												
	b. XML and SMIL												
	c. Frame Metaphor												
	d. Multimedia Authoring												
	2. Briefly illustrate about MIDI message. [5]												
						nessage. Iltimedia presentation.	[5]						
	3. E	[5]											
CO2	4. Differentiate between following terms with example. $[5 \times 2 = 10]$												
[30]	a. Run length coding and Dictionary based coding												
[20]	b. Variable length coding and Fixed length coding												
	o. Variable length coding and I fixed length coding												
	5. Show the step by step execution of the Huffman coding to compress an image. Also, show how to												
	calculate the compression achieved using the Huffman coding. [5+2 = 7]												
	6. Illustrate with example, how arithmetic coding overcomes Huffman's problem? [6]												
,	7. Below is a grey scale image X where grey levels are ordered from 0 to 6. X is represented using the												
	following matrix:												
		0	0	. 0	0	0	0	0	0	1			
		0	O	,	,	(3		0		•			
		0	0	1	Property	2	3	3	3				
		0	1]	3	3	3	4	4				
		0	1	a	a			. 4		-			
		0	. 1	3	3	5	- 5	4	4				
		0	2	3	.3	5	5	5	4				
		ñ	0	C)	63	e).		60	C				
		0	U	2	3	3	-1	6	6				
		0	0	0	2	2	3	4	4				
		0	()	0	0	()	0	0	0 .				
	X =	U	U	U	U	U	U	U					
	Show the step by step execution of the Huffman coding to compress the image. Also, calculate the												
	comp	compression achieved using the Huffman coding. [7]											

	Or Execute encoding and decoding of the arithmetic coding on the symbol "CAEE\$" using the following probability distribution: [7]												
	Symbol	Probability	Range										
	A	0.2	[0, 0.2)										
	В	0.1	[0.2, 0.3)										
	<u>C</u>	0.2	[0.3, 0.5)										
	D	0.05	[0.5, 0.55)										
	<u>E</u>		[0.55, 0.85)										
	F		[0.85, 0.9)										
	\$	0.1	[0.9, 1.0)										
CO3 [15]	9. What is rate distortion theory? What is quantization? [4 + 3 = 7] 10. Explain different distortion measures for lossy compression techniques. Or 11. What are the different forms of quantization in lossy compression? [8]												
CO4 [15]	12. What is negative compression? What are the types of compression? Discuss the significance of DCT for JPEG Image compression. [4+4+7 = 15]												
CO5 [10]	13. Explain different characteristics of multimedia data? What are the different parameters to determine the quality of service for multimedia data transmission, explain? Explain about Multimedia over IP.[2+5+3 = 10]												