Ref. No.: Ex/FTBE/PC/B/T/225/2023

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2023

Subject: CHEMICAL ENGINEERING KINETICS Part-1 (50) FM-100 Time- 3hrs Answer question no 4 and any two from the following

(Use separate answer script for each Part)

1. In a microbial laboratory, three test tubes containing microbial cultures are placed in three hot baths, maintained at different temperatures 70°C, 80°C and 90°C respectively. The following values of time-temp combination with respect to the no. of microorganisms (N) have been determined from the experiment. (20)

For 70°C		For 80°C		For 90°C	
Time, t	No. of	Time, t	No. of	Time, t	No. of
(s)	microorganism, N	(s)	microorganisms, N	(s)	microorganisms N
0	107	0	107,	0	107
30	105	30	105	30	5x10 ⁴
60	104	60	5x10 ³	60	10 ³
120	10 ³	120	102	120	550
180	500	180	50	180	150
300	10	300	1	300	1

Calculate how long it will take for the reduction of microorganisms to 1 in 1000 at 85°C.

2. Reactant A decomposes in a batch reactor, A ---> B

The composition of A in the reactor is measured at various times with results shown in the following columns 1 and 2. Find a rate equation using the integral method to represent the data. (20)

Time (t, s)	Concentration (CA, mol/liter)			
0	$C_{A0}=10$			
30	8			
50	7			
70	5			
90	3			
110	2			
130	1			

- 3. An enzymatic catalytic reaction $A \rightarrow B$ exibit the following behavior
 - a) A rate proportional to the concentration of enzyme introduce in to the mixture $[E_0]$.
 - b) At low reactant concentration the rate is proportional to the reactant concentration [A].
 - c) At high reactant concentration the rate levels off and become independent of reactant concentration.

Propose a mechanism to account for this behavior.

4. In a milk-pasteurization process, rate constant follows the Arrhenius' Law as follows: $k = k_0 e^{-E/RT}$. The pasteurization process was carried out at two different temperatures T_1° K and T_2° K (Where T_1 is higher than T_2). Discuss which temperature would be preferable for effective pasteurization?

Ref. No.: Ex/FTBE/PC/B/T/225/2023

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING

EXAMINATION 2023 (2nd Year, 2nd Semester)

Subject:

CHEMICAL ENGINEERING KINETICS (FTBE/PC/B/T/225)

PART II (50 Marks)

Time: 3 hours

Full Marks: 100

Q.4 is compulsory and answer any two from the following:

Q.1. 5×3= 15

- (i) How the heterogeneous reaction kinetics is developed?
- (ii) For a Gas-Solid system, if the solid particle is surrounded by a gas film, show the steps involved for such heterogeneous reaction schematically.
- (iii) Estimate the ε_A for the reaction $A \rightarrow 3.2R$ containing 20% inert in the feed?
- (iv) Estimate the molar feed rate of gaseous reactant A (mol/hr) if 30.5 lit/hr. pure A with concentration 200 mol/m³ is fed to the reactor?
- (v) Is Thiele modulus dimensionless?-justify your answer.
- Q.2. Derive the concentration profile of the reactant A inside a purely single cylindrical pore of length L with initial concentration of A at the pore mouth equals to C_{As} . Also estimate the concentration of A at the midway of such cylindrical pore with Thiele modulus value equals to 0.4 9+6=15
- **Q.3.** Write short notes on the following:

 $5 \times 3 = 15$

- (i) Pore blocking (ii) Thiele modulus (iii) Performance equation of catalytic reactor (iv) Shrinking Core Model (v) Catalytic reaction
- Q.4. There are two different catalytic reactions to form the same product R as shown below: Both the reaction occurs in a PFR type fluidized reactor utilizing same catalyst but with different gaseous reactant A & B, respectively. Both the reaction was occurred at total pressure 4 atm. and at 107° C. For scheme 1, pure A is to be fed but for scheme 2, feed must contain 25% inert. For both the scheme, molar feed rate of A and B is kept constant at 2 kmol/hr. Estimate (i) the amount of catalyst to achieve 75% conversion of A & B, respectively (ii) If the catalyst cost Rs. 10,000/kg., then which scheme would be preferable for the same conversion?

 $A \rightarrow R$ (scheme 1) $-r_A = 93.5$ (lit/kg. cat-hr) C_A