Ref No: EX/FET/OE/ITE/T/207/2023

OPEN ELECTIVE
BE 3R? AND 4™ YEAR, 2"? SEMESTER EXAMINATION, 2023
OBJECT ORIENTED PROGRAMMING FUNDAMENTALS

Time: 3 hours Full Marks: 100

Answer all parts of a question together in one place. Do not scatter the answers.

Cco1

[25
MARKS]

1. a) Justify the truth/falsity of each of the following statements. Provide supporting arguments and/or code
snippets (where needed) for justification. (Any 3)

i) Default values in function parameters must be supplied from left to right.

i) We can make a function inline by just specifying the keyword inline before the function signature.
iii) Call by reference takes lesser space than call by value.

iv) Function call statement must always appear on the right hand side of assignment operator.

b) Distinguish among each of the following triples. (Any 3)

i) Iteration vs. normal recursion vs, tail recursion

ii) Array vs. structure vs. class

iii) malloc() vs. calloc() vs. new

iv) Local variables vs. reference variables vs. pointer variables

¢) Write a recursive function to calculate a to the power b (a*). Both a and b are taken from user.
Hence, calculate the sum of the following series:
14+8+81+1024+......... n terms. (User will decide the value of n at runtime)

Or,
Create an array of N number of elements dynamically. Next pass it to a function that finds out the highest

element from the array recursively. N should be taken from user at runtime.
[(3x3)+(3x3)+7=25]

co2

130
MARKS]

2. a) Fill up the blanks with suitable phrases. Hence justify the validity of each of the completed statements
with supporting reasons. Provide code snippets where needed.

i) Data encapsulation means and it can be achieved by _ .

ii) Two functions cannot be overloaded on the basis of only. Their must differ.
iii) this operator cannot be used within because
iv) The compiler always provides one for a class only if we
v) Only the member variables of a class can be accessed within functions.
vi) Copy constructor always takes as parameter because
vii) A constant object of a class can be used to invoke only the methods so that .
viii) Constructors can be because . However the : cannot be.
ix) Only the member variables of a class can be changed within functions.
x) Usage of friend classes/functions is because
xi) Function overloading is also known as time polymorphism or binding.
xii) A constant member variable of a class can be initialized by '

[Turn Over]

b) Assume a class Money as the following definition. Now complete the class definition in order to properly
execute the statements in the main() method. Finally discuss the output.

class Money int main()
{ {
int rupees, paise; Money m1(450,90), m2(500,70),m4;
4 Money m3=ml,;
m3.add(m2);
m3.show();
md=subtract(m2,ml);
md.show(),
} .
Or,
Consider the following code snippet. Initialize the variable s with 10 and hence discuss the output of the code
with proper reasons.
class Sample int main()
{ {
inta; Sample s1(3), s2;
static int s, sl.show();
public: s2.show();
Sample (int x=0) Sample ob[3];
{ st+; Sor(int i=0;i<3;i++)
a=s+(++x); ob[i].show();
} Sample s3(i+1);
void show() s3.show(),
{ cout<<”g="<<g<<"s="<<s<<endl; Sample s4(i+2);
} s4.show();
rH ;
[(2x12)+6=30]

a) Consider the following class Sample. Update its definition to perform the tasks as specified in main().

- CO3 3.
Clearly indicate which portion of the class is dedicated for which task. Finally discuss the output.

[30
MARKS] class Sample int main()
{ { Sample 0b1(3), 0b2(4), 0b3;

ints; obl+=2;

I ob3=0bl*(0b2+5),
cout<<ob3;
0b2=20 + 0b3++,
cout<<ob2<<endi<<ob3,

/
Or,
Distinguish between each of the following pairs: Provide suitable code snippets in support of your answer.
i) Normal virtual function vs. pure virtual function
ii) Normal destructors vs. virtual destructors
iif) Late binding vs. early binding
iv) Multiple inheritance vs. hybrid inheritance

b) Consider the following two classes 4 and B. Complete their definitions to execute the statements specified
in main(). Clearly indicate which portion of the class is dedicated for which task. Finally discuss the output.
The order of the classes should not be changed.

class A ; ;

: int main()
{ . inta; { Aobal;
4 B obbl (5);

obal=0bbl;

class B obal->show();
{ inth; B obb2,0bb3;
Jx obb3=0bb2(10);

cout<<obb2<<endi<<obb3;
obb3-=++obbl;
cout<<obbl<<endl<<obb3,

}

¢) Fill up the blanks with appropriate phrases. Hence justify the validity of each of the completed sentences.
(Use code snippets if/where required for justification)

i) A pure virtual function, even if the class makes it .

ii) The of a class the class. Otherwise, -_error is reported.
iii) For overloading input and output operators, we always have to use functions because

iv) For converting a basic data type to an object of a class, we need . However,
for the reverse we need .

v) The data members of a class have more strict accessibility than public data members, but
less strict accessibility than data members.

vi) For [] operator overloaded function, it is better to return because

[8+10+(2x6)=3d]

CO4

(15
MARKS]

4. a) Do as directed:

i) If an object a class is created before a try block, then on coming out of that block, the destructor of the class
is called first and the catch block is executed next.—(Justify the truth/falsity of the statement with valid reason.)

ii) There is a provision of rethrowing an exception if . (Fill in the blank with
appropriate phrases. Use code snippet in support of your answer.)

iii) After executing the statements in the catch block, the program control again returns to the try block. (State
true or false. Provide reasons and/or code snippets in support of your answer)

iv) If we are not sure about the exact type of exception being thrown, then how can we handle such scenario?
(Show with suitable code snippet) '

b) What are the possible modes in which a file can be opened? State the signiﬁéance of each of them.

c) Show how a custom exception class object can be created, thrown and handled. (Use code snippet to show)
[(2x4)+3+4=15]

Course Outcomes:

CO1: Recognize and illustrate the basic concepts of OOP and its enhancements over procedural languages.

CO2: Explain, iilustrate and recognize the basic features. of classes and objects.

CO3: Explain and demonstrate the extended features of OOP (Inheritance, Polymorphism, Operator overloading).

CO4: Illustrate basic I/O, file I/O and exception handling.

