
B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR SECOND SEMESTER EXAM - 2023

Data Structures And Algorithms T		Time: 3 hours Ful	Full Marks: 100	
Ans	wer All Questions.			
Q1	(a) Define a list. What is the basic component of a list and what are the attributes component?		his	1+2
	(b) Show with an example how a sparse matrix can be represented using a linear linl list.		ked	3
	n = 4, by indicating how the two principles	compute $n!$? Show the trace of your solution mitive operations in (c) will be invoked.		1+2
		Hanoi problem. Prove that the number of primit wer of Hanoi problem is $f(n) = 2^n - 1$.	ive	2+5
		OR		
	(a) Define a queue and mention its tw(b) Draw an analogy between the se stack.	o primitive operations. t of primitive operations in a queue with that o	fa	1+2 2
	(c) Discuss a fixed memory implement (d) State one limitation of a linear que	ntation of queue. Clearly initialize your marker(seue. How can you overcome this limitation? used for - i) a typical video game, and, ii) proc		5 2+4 2+2
Q2	(a) Define a strictly binary tree with a of depth three.	n example. Draw all possible strictly binary tree	S	2+2
	(b) Draw a binary tree with root A, B	and C as respective left and right child of A, D d of B, F as the left child of C and G as the right metric order traversal of this tree.		2+3
		State a similarity and a difference between a gra	ph	2+2
	(d) Define a planar graph. State one planar graph of order 4. Verify your s	utility of such a graph. Draw a planar and a no olutions with Euler's formula.	n-	1+1+2+3
		OR		
		n example. Draw a binary search tree with 7, 11, 12, 3, 5 and 2. Show your steps.		2+3
	(b) Identify a potential problem with t	the tree in (a). How can you solve this problem? the difference in the sizes of the two graphs - K_n		2+5 1+3
	and K_n is $n(n + 1)/2$. (d) Explain how the problems of $-i$) project allocation among a given set of stude artment, and, ii) providing cable connections in	nts	2+2

Ex/ET/PC/B/T/225/2023

Q3	(a) Define O, Θ, Ω notations.	6
	(b) Prove or disprove: $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.	4
	(c) Find the solution to the recurrence relation $T(n) = T\left(\frac{n}{2}\right) + 1$ using the substitution method.	10
	OR	
	 (a) Given: T(n) = T(3n/4) + 1. Find the tight asymptotic bound for T(n). (b) Prove or disprove: 3n² + 4n² log log n + 5n + 2 = O(n² log n). (c) Find the solution to the recurrence relation T(n) = 3T(n/2) + n using the recursion tree approach. 	5 5 10
Q4	(a) Consider a situation where input data is generated by first drawing samples from $U[10,100]$ (a Uniform distribution with range [10, 100]) and then by converting the samples to their nearest integers. Explain what could be a suitable algorithm to sort this data.	2
	(b) Write a pseudocode for the algorithm in (a) and analyze its time-complexity. (c) Analyze whether the algorithm in (a) is suitable for sorting the following dataset: 12, 25, 37, 48, 56, 56, 66, 68, 75, 92, 85	5+2 3
	Suggest an alternative strategy if you consider the choice in (a) to be unsuitable. (d) How can you find a $key = 66$ in the dataset in (c) after sorting has taken place? Write your algorithm. Trace the solution. Analyze the time-complexity of your algorithm.	3+3+2
Q5	(a) What do you mean by Depth-First Search (DFS) algorithm in a graph? How it is different from Breadth-First Search (BFS) algorithm?	2+2
	 (b) Write a procedure for the DFS algorithm and analyze its time-complexity. (c) Apply the procedure in (b) on the following directed graph G = G(V, E) with the starting node as 'a'. Clearly show i) your steps and ii) the final output forest marking different types of edges. 	5+2 6

(d) Show how a nested parenthesis structure can be obtained from the start and finish 3 timestamps in (c).