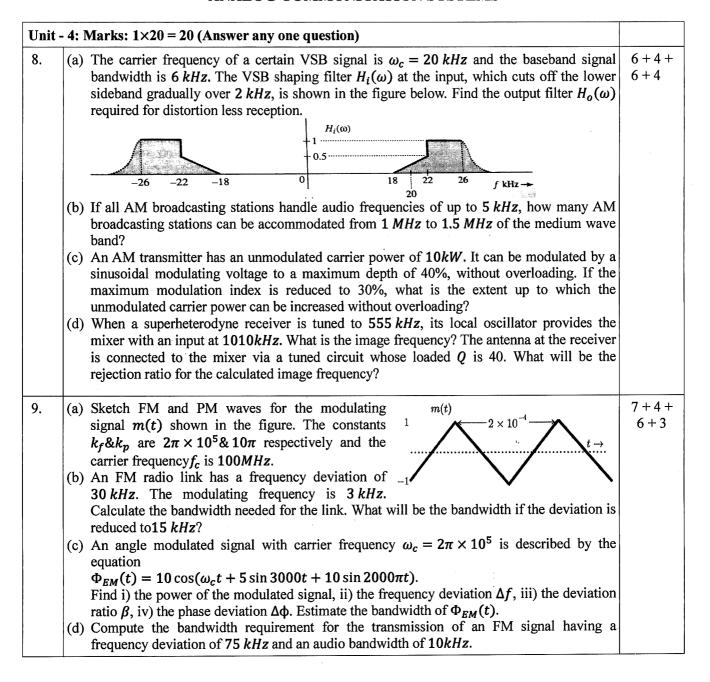
Ref. No.: Ex/ET/PC/B/T/223/2023

B.E. ELECTRONICS AND TELECOMMUNICATION ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2023 ANALOG COMMUNICATION SYSTEMS

Time: 3 hours Full Marks: 100

Answer all the questions of a unit in the same place. Also, answer all the sub-parts of a question together


Unit - 1: Marks 10		Marks
1.	(a) Mention the elements of a communication system. List the basic functions of the radio transmitter and the receiver.(b) Explain the need for modulation in a communication system.	4+6

Unit	- 2: Marks: $2 \times 15 = 30$ (Answer any two questions)	
2.	 (a) Using a Pulse train generator, and by a proper choice of the sampling, how can we generate a PAM signal? (b) Comment on the principle of generation of PPM pulses from PWM signal. (c) Considering a sinusoidal baseband signal and a train of pulses as the carrier signal, draw the PPM and PWM waveforms. 	
3.	 (a) Consider any arbitrary message signal g(t) and a sinusoidal carrier signal c(t). With necessary diagrams and mathematical expressions, how can you generate a Double Sideband Suppressed Carrier (DSB-SC) signal? (b) Derive the maximum power efficiency (η) of an AM modulator. Hence calculate the value of η for μ = 0.5. 	
4.	(a) Derive the time domain expression of Narrow Band Frequency Modulated (NBFM) Wave.(b) Draw the phasor diagrams of AM and NBFM and compare them.	7 + 8

Unit	- 3: Marks: $2 \times 15 = 30$ (Answer any two questions)	
5.	(a) Draw the block diagram of the Phase Locked Loop (PLL) and mention its components.(b) Explain the different modes associated with the operation of the PLL in details.	5 + 10
6.	(a) Draw the block diagram of a superheterodyne receiver.(b) Explain how this type of receiver provides heterodyning function.	5 + 10
7.	 (a) Explain the operation of the Foster-Seeley discriminator with the help of the circuit diagram and the necessary phasor diagrams. (b) A signal x_c(t) = 5 [1 + 2 cos ω_c(t)] is to be demodulated. Check whether some of the following detectors can be used: (i) an envelope detector, (ii) a square-law detector, and (iii) a synchronous detector or coherent detector. 	10 + 5

Ref. No.: Ex/ET/PC/B/T/223/2023

B.E. ELECTRONICS AND TELECOMMUNICATION ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2023 ANALOG COMMUNICATION SYSTEMS

Unit -	- 5: Marks: $1 \times 10 = 10$ (Answer any one question)	
10.	The use of pre-emphasis and de-emphasis filters in an FM system significantly reduce the effect of noise. Explain.	10
11.	Critically compare the noise performances of AM, DSB-SC and SSB-SC systems.	10