Ref. No: Ex/ET/PC/B/T/211/2023(S)

B.E.Tel.E. 2nd YEAR REPEAT EXAMINATION, 2023 (1st Semester) ELECTRO MAGNETIC THEORY

Time: Three hours Full Mark		arks 100
No. of questions		Marks
	Answer any <i>five</i> questions. Consider ϵ_0 =8.854X10 ⁻¹² F/m and μ_0 =4 π X10 ⁻⁷ H/m Values of other universal physical constants may be assumed, if necessary.	
1.(a) (b)	Show how would you convert a vector from rectangular coordinate system to spherical one? Further prove that $\nabla X \nabla X \vec{A} = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$	10 10
2.(a) (b) (c)	Determine the electric far field due to a static electric dipole of elemental length in spherical polar coordinates. Why is its one component having zero value? Obtain the net effective capacitance formed by two capacitances C_1 and C_2 connected in parallel.	10 2 8
3.(a) (b) (c)	State Biot Savart's Law. Use it to obtain the magnetic field at the centre of a circular loop carrying a current I. Discuss how cyclotron motion is created and find an appropriate expression for cyclotron frequency.	2 10 8
4.(a) (b)	Evaluate the capacitance formed by two parallel rectangular conducting plates each of area A and separated by d in air. Consider a solid cylindrical conductor of radius a. Current I is distributed uniformly over its cross-section. Obtain \vec{H} at all points inside the conductor and outside it.	10 5+5
5.(a)	State and prove the boundary conditions on \vec{E} , \vec{H} , \vec{D} and \vec{B} as applied to Maxwell Heaviside equations.	5X4
6.(a) (b)	Derive appropriate expressions for attenuation constant, phase shift constant and phase velocity for electromagnetic wave propagation through a good dielectric medium. Also briefly discuss their physical significances. Repeat the same for the case of a good conductor.	10 10
7.(a) (b) (c)	Define polarization. What are the different types of polarization and what is its most general form? Discuss the conditions for generation of the different forms of polarization.	2 3 15
8. (a) (b) (c)	Write notes on any two of the followings: Surface impedance Poynting vector Retarded potential and gauge conditions	10X2

(c)