Ref. No: Ex/ET/PC/B/T/211/2023

B.E.Tel.E. 2nd YEAR EXAMINATION, 2023 (1st Semester)

ELECTRO MAGNETIC THEORY

Time: Three hours Full Marks 10		larks 100
No. of questions		Marks
	Answer any <i>five</i> questions. Consider ϵ_0 =8.854X10 ⁻¹² F/m and μ_0 =4 π X10 ⁻⁷ H/m Values of other universal physical constants may be assumed, if necessary.	
1.(a) (b)	Discuss the physical significance of "Divergence" operation. Hence find an appropriate expression of the divergence of a vector in cylindrical coordinates.	8 12
2.(a) (b)	Two point charges of equal mass m and charge Q are suspended from a common point by two threads of negligible mass and length l. Find the inclination angle α with respect to the vertical made by each thread at equilibrium. Assume α to be very small. Determine the electrostatic pressure on a conducting surface carrying a surface charge density ρ_s suspended in a medium of permittivity ϵ .	8 12
3.(a) (b) (c)	A point charge Q is located at the origin of spherical coordinate system. Calculate the electric flux crossing the portion of a spherical shell described by $\alpha \le \theta \le \beta$. Comment on the result obtained for $\alpha = 0$ and $\beta = \pi/2$. A total charge of 40 nC is uniformly distributed on a circular disk. Determine the potential at a point 2m distant from the disk along its axis.	10 2 8
4.(a) (b)	Consider a single turn rectangular coil in the z=0 plane carrying a current I having dimensions w and I along x and y axes respectively. If a uniform magnetic field B exists in the +x direction, how much is the torque rotating the coil? Using the definition $\mathbf{B}=\nabla X\mathbf{A}$, derive an expression for magnetic vector potential from Biot Savart Law.	10 10
5.(a) (b) (c)	Assume that a material behaves as a good conductor if the displacement current through it is at least 10 times the conduction current. For sea water, ε_r =81 and σ =20S/m. What is the maximum frequency up to which sea water may be treated as a good conductor? For such good conductors, how do you evaluate the skin depth and the phase velocity? Discuss the concept of surface impedance and its significance therein.	4 8 8
6.(a) (b) (c)	State and prove Poynting theorem. Using it, determine the reflection coefficient at a dielectric-dielectric interface in terms of the material properties for both the cases of horizontal and vertical polarizations. Hence discuss the phenomenon of total internal reflection.	6 8 4
7.(a) (b)	For a current sheet $K=9.0a_y$ A/m is located at z=0, the interface between region 1 (z<0) with $\mu_r=4$ and region 2 (z>0) with $\mu_r=3$. Given that $H_2=14.5a_x+8.0a_z$ Am, find H_1 . Prove that for uniform plane waves, the mode of propagation is always TEM.	10 10
8.(a) (b)	What do you understand by retarded potential approach? Elaborate its usage in determining the radiated fields from a time varying current source.	4 16