Ref. No.: Ex/ET/T/215/2023

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2023

ANALOG CIRCUITS-I

Time: Three hours

Full Marks: 100

(All parts of the same question must be answered together)

Module I [Answer any one $(1\times20=20)$]

1. a) Write names and briefly explain the operations of the circuits (i, ii, iii, and iv).

[10+10]

- b) Sketch the output waveforms of the following circuits for
 - i. Sinusoidal input (consider diode drop)
 - ii. Square input (consider diode drop)
 - iii. Sinusoidal input (ideal diode)
 - iv. Amplitude modulated input (ideal diode)

Ref. No.: Ex/ET/T/215/2023

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2023

	ANALOG CIRCUITS- I	Time: Three hours	Full Marks: 100	
2.	a) A Zener voltage regulator has input voltage V_{in} =20V and R_S = 500 Ω . The Zener voltage at breakdown voltage is 6V. The Zener current at breakdown (I_{Zk}) is 0.1mA and maximum Zener current (I_{zm}) is 0.1 A. The dynamic resistance is 20 Ω . Find the range of load resistance can be used.			[10]
		nigh pass filter for a pulse input applied to a high-pass RC citage levels for (i) $RC = t_p$, (ii) RC	rcuit. Sketch the output	[10]
Module II [Answer any two (2×15=30)]				
	a) Draw a capacitive coupled CE mode npn BJT amplifier with an un-bypassed emitter resistance. With the help of small signal equivalent circuit (any one) find the expression for the voltage gain, input resistance and output resistance.			
	b) Explain the effect of coupling capacitances on voltage gain.			[3]
4.	a) Draw a collector to base feedback biasing of npn CE mode BJT to obtain $S(I_{C0})=10$ and collector current of 1mA. Assume Supply voltage as 10 V. Set operating point at the mid of the load line.			[10]
	b) Draw and explain the Darlington pair circuit using npn BJT.			[5]
5.	,	tine the values of R_D and R_S to V_{DD} =10 V, I_{DSS} =12mA and V_{GSo}	-	[5]
	, •	iated with CS mode FET amplite ree follower circuits free from M	-	[7+3]
Module III [Answer any one (1×10=10)]				

Module III [Allswei any one (1/10-10)]

- **6.** Define Op-amp. Write down six characteristics of an ideal OP-Amp. Explain origins of [2+3+5] input offset voltage, input bias current and slew rate of a practical op-amp.
- 7. Draw basic differential amplifier using npn BJT. Find out the common mode and [2+8] difference mode voltage gain for double input balanced mode configuration.

Ref. No.: Ex/ET/T/215/2023

B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR FIRST SEMESTER EXAM, 2023

ANALOG CIRCUITS- I

Time: Three hours

Full Marks: 100

[10]

Module IV[Answer any two $(2\times20=40)$]

a) Define line and load regulation of a voltage regulator. Explain the short circuit 8. [4+6] protection circuit in a series voltage regulator. b) Design a 10 V regulated power supply with a series voltage regulator. (Properly [10] choose the values of resistances, input voltage range and Zener voltage). Assume Zener resistance is as $\hat{0}\Omega$ and Zener current range is 0.1 mA to 100 mA. 9. a) Draw an inverting amplifier using OP-Amp. Determine the expression for voltage [10] gain, input and output resistances considering a practical OP-Amp. [10] b) With the help of proper circuit diagram, input and output waveforms explain the operation of an integrator circuit using OP-Amp. 10 a) Explain the super diode using OP-Amp. Draw a negative clipper circuit using OP-[10] Amp and sketch the output for a rectangular input of 5V peak.

b) Draw an op-amp circuit to solve $y = 5xy + 10x^2$