BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2023

FIELD THEORY

Time:3 hours

Full Marks:100

(50 marks for each part)

Use separate Answer-script for each part

PART-I

Answer any three questions. Two marks for neatness. All symbols have their usual significance

- 1. a) Derive the expression for curl of a vector field C, written as $\nabla \times C$ where ∇ is the vector differential operator in Cartesian coordinates. What is the physical significance of the $\nabla \times C$, curl of a vector field.
- b) Establish the Stoke's theorem.

10+6=16

- 2. a) What is significance of $\nabla J = -\partial \rho/\partial t$, where ρ is volume charge density.
- b) Establish $\nabla \cdot \mathbf{B} = \mathbf{0}$.
- c) Find the curl **H** at the origin, where $\mathbf{H}=(2y)\mathbf{i} (x^2+z^2)\mathbf{j} + (3y)\mathbf{k}$ A/m also what may be **J** here?

6+6+4=16

- 3. a) Establish $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$ and show the pictorial view of this relation.
- b) Establish $\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t$ and show the pictorial view of this relation.

What is displacement current?

8+8=16

- 4. a) Derive electromagnetic wave equations. Using E.M. wave equation in free space, obtain an analytical solution of the wave equation of Electric Field(E) considering it as a plane wave and also draw the wave propagation.
- b) What do you mean by electromagnetic fields? Why do E.M.fields travel?

10+6=16

5. Write short notes on any two:

8+8=16

- a) Boundary relation for magnetic field when it passes through two different magnetic media having permeabilities μ_1 and μ_2 .
- b) "Poynting Theorem".
- c) $\nabla \times \mathbf{H} = \mathbf{J}$ and its physical significance.