B. E. (ELECTRICAL ENGINEERING) 1ST YR 2^{SV}SEMESTER EXAMINATION, 2023

SUBJECT: - ELECTRICAL ENGINEERING MATERIAL

Time: Two hours/Three hours/ Four hours/ Six hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

PART I

Answer question 1 and any two from the rest.

1.	Answer	anv	four	of the	following.
		** ** *	I V UI		TOTTOTTE

- a) Why Ferro-magnetic shows spontaneous magnetism? 4×5
 b) Why free electrons move with uniform velocity in conductor?
 c) Why para magnetic Curie temperature is different to ferromagnetic Curie temperature?
- d) Why mean free path is related to resistivity of material?
- e) Why crystallographic axis important for magnetizing material?
- f) Explain how Meiessner effect can be supported by Maxwell's equation.
- 2. a) Explain how external magnetic field can alter the angular frequency of 5+4+6 rotating electron around the nucleus.
 - b) Referring to domain theory explain the phenomenon of anisotropy with characteristic plots and examples.
 - c) Referring to domain theory explain the phenomenon of anisotropy with characteristic plots and examples.
- 3. a) State the significance of Neel temperature in antiferromagnetic 5+4+6 material and derive the expression of it.
 - d) Explain how mean free path of electrons in conductor is related to scattering of electrons with ion core. State the significance of Fermi velocity of free electron in conductor.
- 4. a) Suggest suitable atomic model to prove that the velocity of free electrons in conductors is uniform when the conduction is subjected to uniform electric field.
 - b) Derive the expression of penetration depth over which external magnetic field will decay inside the superconductor.

[Turn over

Ref No: <u>EX/EE/5/T/122/2023</u>

B. E. (ELECTRICAL ENGINEERING) 1ST YR 2^{MP}SEMESTER EXAMINATION, 2023

SUBJECT: - ELECTRICAL ENGINEERING MATERIAL

Full Marks 100

Time: Two hours/Three hours/ Four hours/ Six hours

(50 marks for each part)

5. Write short notes on any three of the following:

 3×5

- a) Magnetistriction;
- b) Type-I & II superconductor;c) Relaxation time;
- d) Superconducting magnetic;
- e) Orbital magnetic dipole moment & angular momentum.

Ref No.: Ex/EE/5/T/122/2023

BACHELOR OF ENGINEERING (ELECTRICAL ENGINEERING) FIRST YEAR SECOND SEMESTER - 2023

SUBJECT: ELECTRICAL ENGINEERING MATERIALS

Time: Three Hours

Full Marks: 100 (50 Marks for each part)

Use a separate Answer-Script for each part Two marks for neat and well-organized answers

Q	uestion No.	Part-II			
		Answer any three questions			
1.	(a)	Calculate the frequency and the energy of photons emitted if an electron in a hydrogen atom makes a transition from a quantum state of principle quantum number $n=4$ to the ground state. Given $h=6.62e-34$ J. Derive the expression for solving the problem.	10		
	(b)	Discuss about the sigma and pi bonding of atoms.	6		
2.	(a)	Classify the materials according to the energy band theory of solids. Give proper examples of each class of materials.	9		
	(b)	What do you mean by Van der Waals and Hydrogen Bonding? Explain these bonding with suitable example.	4		
	(c)	Discuss about the differences between ionic bonding and metallic bonding.	3		
3.	(a)	The insulation resistance of a 100m long cable is 10 M Ω at 27°C. At 60°C the insulation resistance value decreases to 1% of that at 27°C. Find the insulation resistance at 40°C for a length of 50m of the same cable.	7		
	(b)	If sodium chloride crystal is subjected to an electric field of 1400 V/m and the resulting polarization is 4.2×10^{-8} C/m ² , calculate the relative permittivity of sodium chloride. Derive the formula you have used.	2+7		

[Turn over

Ref No.: Ex/EE/5/T/122/2023

4.	(a)	Discuss in brief the mechanism behind the breakdown of gas insulation. Does pressure affect the breakdown voltage of gas insulation?	5+4
	(b)	What are the major properties of transformer oil? Discuss how the impurities are removed from transformer oil. Name a substitute of transformer oil and explain why such substitutes are not very popular in use.	3+2+2
5.		Write short notes on any two of the following:	2×8
	(i)	Bonding and antibonding	
	(ii)	Polyethylene	
	(iii)	Teflon	
	(iv)	Varnishes.	