Ref. No.: Ex/FET/OE/MET/T/220/2023(S)

B.E. Electrical Engineering 4th Year 2nd Semester Supplementary Exam - 2023

Subject: Testing and Characterization of Materials

Time: 3 hours Full Marks = 100

(Answer Question No: 10 and any eight from the rest)

1. 5+5=10

- **a.** Describe the relevance of hardness testing for assessing the mechanical integrity of electrical contacts and terminals.
- **b.** Compare the benefits of using different hardness testing methods (e.g., Rockwell, Brinell, Vickers) on various electrical components.

6 + 4 = 10

- a. Draw a schematic of load vs. displacement, engineering stress vs. engineering strain, and true stress vs. true strain curves on the same diagram for low-carbon steel tested under uniaxial tension. Compare the nature of these curves assigning reasons for differences.
- **b.** Explain the importance of measuring yield strength, ultimate tensile strength, and elongation in tensile testing of electrical wires.

6+4=10

- **a.** Draw a schematic of the load vs. displacement curve for low-carbon steel tested under uniaxial compression and discuss the nature of the curve.
- **b.** Discuss the factors influencing the compression strength of electrical insulators and their significance in high-voltage applications.

4+6=10

- a. How does impact testing help in evaluating the mechanical behavior of electrical enclosures subjected to external forces?
- b. Define DBTT. State the standard procedure for estimating the DBTT of a material.

[Turn over

5+5=10

- **a.** Define fatigue testing and its role in determining the endurance limit of electrical components subjected to cyclic loading.
- **b.** Discuss the relevance of the stress-life (S-N) curve in fatigue testing of electrical conductors.

6. 5+5=10

- **a.** What is creep testing, and how does it help understand the time-dependent deformation of electrical materials under constant stress and elevated temperatures?
- **b.** Explain the implications of creep behavior in electrical connectors used in high-temperature environments.
- 7. How can comprehensive characterization techniques aid in the failure analysis of electrical components to identify the root causes?
- 8. Discuss the mechanisms of electrochemical corrosion in electrical components, emphasizing how it affects the longevity and performance of connectors and terminals.
- 9. Describe the role of potentiostatic and galvanostatic tests in evaluating the corrosion resistance of electrical contact materials.

10. Write a short note on (Answer any four):

 $(4 \times 5) = 20$

- a. Possible ways to improve the fatigue strength of materials.
- **b.** Intergranular fracture vs. Transgranular fracture.
- **c.** Die penetration testing method and its range of applications.
- **d.** Advantages and limitations of using ultrasonic testing for flaw detection and thickness measurement in electrical insulation materials and printed circuit boards.
- e. Principles behind eddy current testing and its applications.