B.E. ELECTRICAL ENGINEERING SECOND YEAR FIRST SEMESTER Examination, 2023

SIGNALS AND SYSTEMS

Full Marks 100

Time: Three hours
Use a sensy state Answer-Serint for each part (50 marks for each part)

	ate Answer-Script for each part	
Question	PART I	Marks
1. (a)	Answer any THREE questions Two marks reserved for neatness and well-organized answers. Give proper units wherever necessary. Consider the circuit shown in Fig. [A]. $v_{in}(t)$ over one complete cycle can be expressed as $v_{in}(t) = r(t) - r(t-2) - 3u(t-2) + u(t-4)$. Sketch the signal $v(t)$, and express $v(t)$ as an exponential Fourier series. Depict the one-sided power spectrum of $v(t)$, up to the 5 th harmonic.	3+9
	Diode $v_{in}(t) = \frac{1}{v(t)}$	
(b)	Fig. [A] A periodic signal f(t) has an RMS value of 2V. Determine the	4
	RMS value of the signal $f(3t-1)$. Give relevant derivation.	
2. (a)	If $X(j\omega) = \frac{(j\omega+2)^2 j\omega}{(j\omega+3)(j\omega+1)}$, obtain the expression for the inverse Fourier transform of $X(j\omega)$.	5
(b)	Consider the signal $x(t) = (1 - e^{- t })[u(t+1) - u(t-1)]$. Without actually obtaining the Fourier transform $X(j\omega)$ of $x(t)$, answer the following:	

Question No.	PART I	Marks
	(i) Whether or not $X(j\omega)$ is real. (ii) Whether or not $X(j\omega)$ is even. Give appropriate justification for your answers.	4
(c)	Consider the signal $x(t) = Sin(\omega_o t) \text{ for } -\frac{2\pi}{\omega_o} \le t \le \frac{2\pi}{\omega_o}$ and $x(t) = 0$ otherwise.	7
	Verify whether or not the amplitude spectrum function of $x(t)$ is	
	$\left X(j\omega) \right = \frac{2\omega_o \sin\left(\frac{2\pi\omega}{\omega_o}\right)}{\omega_o^2 - \omega^2}$	
3. (a)	Depict the signal $\phi(t) = 2y(-4t+1.5)$, where $y(t)$ is the signal shown in Fig. [B]. Show clearly all the steps involved in obtaining $\varphi(t)$, with the help of well-labeled sketches.	
	$y(t)$ $-3 \frac{1}{2}$ t	7
(b)	Fig. [B] A series L-R circuit (with a time constant of 1s) is excited by a voltage signal $f(t)$ depicted in Fig. C. The voltage $v(t)$ across R is considered as the output.	9
	parabola (zero slope at t=7)	
	Fig.[C] Determine the expression for v(t).	
	2	

Ref No: Ex/EE/PC/B/T/211/2023

Question No.	PART I	Marks
4. (a)	Evaluate the following integral. $I = \int_{-\infty}^{+\infty} \left[\frac{Sin(2\pi t)}{\pi t} \delta(t) + (3t^2 + 2t + 1) u_1(t - 1) \right] dt$	6
	Where u _n (t) is the n th derivative of unit impulse. Prove the relevant properties of singularity functions utilized.	
(b)	A linear time-invariant system has an impulse response $g(t)$ as shown in Fig.[D]. It is excited by a signal $x(t) = e^{-t} \left[u(t) - u(t-1) \right]$. Perform time-domain operations to obtain expressions for the system output.	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5.	Fig. [D] Write short notes on <u>any two</u> of the following.	
(a)	Duty cycle and AC coupled crest factor of periodic trains of rectangular pulses.	8+8
(b)	Properties of convolution	
(c)	Power signals and Energy signals.	

[Turn over

Ref. No.: Ex/EE/PC/B/T/211/2023

B. ELECTRICAL ENGINEERING 2ND YEAR 1ST SEMESTER EXAMINATION, 2023

Subject: SIGNALS & SYSTEMS Time: Three Hours

Full Marks: 100

Part II (50 marks)

Question

Question 1 is compulsory

Marks

No.

Answer Any Two questions from the rest (2×20)

- Q1 Answer any Two of the following:
 - (a) Determine if the system given by

$$y(t) = \cos(100\pi t) x(t)$$

is time-invariant, linear, causal, and/or memoryless?

(b) Determine the unit impulse response of an LTI system described by

$$\frac{d^2y(t)}{dt^2} + y(t) = x(t)$$

where, y(t) and x(t) are output and input, respectively.

Assume zero initial condition.

(c) Find state equations for the following system

$$\frac{d^2y(t)}{dt^2} - 4y(t) = u(t)$$

where, y(t) and u(t) are output and input, respectively.

(d) Find an analog simulation for the equation y = 3x, given $|x|_{max} = 20$, and $|y|_{max} = 20$. Consider full amplifier range of 0 to 10 volts.

Q2 (a) Find the forced and the natural response of the system described by

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 6x(t)$$

where, the input, x(t), is a unit step function (with $x(0^+) = 1$)

and the initial conditions are given as $y(0^+) = 1$ and $\dot{y}(0^+) = 2$.

(b) Consider an LTI system given by the transfer function:

$$G(s) = \frac{s^2 + 7s + 2}{s^3 + 9s^2 + 26s + 24}$$
8+4

Obtain the state-space model of the system in the phase variable canonical form.

Draw the corresponding block diagram indicating the individual states.

Ref. No.: Ex/EE/PC/B/T/211/2023

- Q3 (a) For a standard 2nd order system obtain the expressions for unit step response for

 (i) un-damped condition and (ii) critically damped condition.

 4+4

 Also indicate the respective pole locations for each case.
 - (b) A mechanical system, as shown in Figure Q3(a), is subjected to 2 lb of force (step-input) at time t=0. The resulting response (displacement x in ft) exhibits a peak overshoot of 9.5% at time t =2 sec and finally settles down to a value of 0.1 ft as shown in Figure Q3(b).

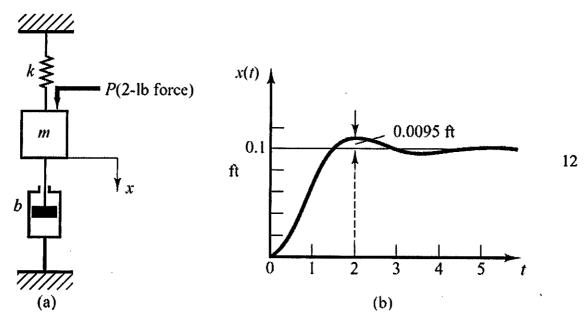


Figure Q3

Determine m, b, and k of the system.

The displacement x is measured from the point where spring and mass are at static equilibrium.

Q4 (a) Use one-sided Laplace Transform to find the output y(t) of a system given by

$$\frac{d^2y(t)}{dt^2} + 9\frac{dy(t)}{dt} + 20y(t) = x(t)$$
with, $x(t) = 2u(t)$, $(u(t)$ being the unit step function (with $u(0^+) = 1$),
and $y(0^+) = 1$, $\dot{y}(0^+) = -2$

(b) Stating the simplifying assumptions obtain the transfer function of an armature controlled d. c. motor driving a load with viscous friction.
 8+4
 Develop the block diagram for the system.

[Turn over

Ref. No.: Ex/EE/PC/B/T/211/2023

- Q5 (a) (i) Draw analog simulation diagram for the following system, and,
 - (ii) obtain magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to 10 volts without any overloading.

$$\ddot{x} + 2\dot{x} + 25x = 0$$
, $x(0) = 20$, $\dot{x}(0) = 0$, with, $|x|_{max} = 20$, $|\dot{x}|_{max} = 100$.

(b) Obtain the transfer function, $E_o(s)/E_i(s)$, for the bridged-T-network shown in Figure Q5.

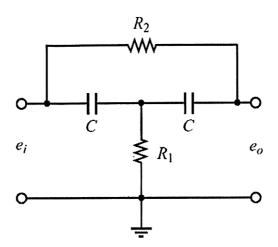


Figure Q5

8