BE ELECTRICAL ENGINEERING SECOND YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATION 2023

SIGNALS AND SYSTEMS

Full Marks 100

(50 marks for each part)

Time: Three hours	(50
	Use a separate Answer-Script for each part

	Use a separate Answer-Script for each part	
No. of Questions	PART I	Marks
	Answer any THREE questions Two marks reserved for neat and well organized answers	
1. (a)	Define "duty cycle" and "AC-coupled crest factor" of periodic train of rectangular pulses. Derive the relation between the two.	8
(b)	Express the signal $f(t)$ shown in Fig. [A] in terms of singularity functions. Also sketch its derivative.	8
	f(t) A Parabola (zero slope at t=0)	
	10 2 4 t Fig. [A]	
2 (a)	Consider the signal f(t) shown in Fig. [B].	
	f(t) 2 -1 0 2.5 t Fig. [B] Sketch the signals $3 f(t/2)$, $f(3t)$ and $f(2t-2)$.	6

Ref No: Ex/EE/PC/B/T/211/2023(S)

No. of Questions	PART I	Marks
(b)	Decompose $x(t)$ shown in Fig. [C] into odd and even components. $x(t)$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
3.(a)	Derive expressions for the exponential and the trigonometric Fourier series of the periodic signal $y(t)$ shown in Fig. [D]. Also determine and sketch the one-sided amplitude spectrum and one-sided phase spectrum upto 5 th harmonic.	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)	Fig. [D] Determine the expression for the Fourier transform, the amplitude spectrum function and the phase spectrum function of the signal $x(t) = e^{-\alpha t } sgn(t)$; $\alpha > 0$.	6
4(a)	Examine whether the following is a power signal or energy signal or neither of them. $\phi(t) = 3r(t) - 3r(t-5) - 15u(t-5)$	6

Ref No: Ex/EE/PC/B/T/211/2023(S)

PART I	Marks
Convolve the signals $h(t)$ and $g(t)$ depicted in Fig.[E], graphically, and sketch the result of the convolution. $h(t) \downarrow 0 \qquad \qquad$	10
Write short notes on any two of the following.	
Impulse function and its properties	8+8
Fourier transforms of unit dc, signum function and unit step.	
Properties of convolution and interconnection of linear time-invariant systems.	
	Convolve the signals $h(t)$ and $g(t)$ depicted in Fig.[E], graphically, and sketch the result of the convolution. $h(t) = \frac{g(t)}{4} = \frac{g(t)}{4}$

Ref. No.: Ex/EE/PC/B/T/211/2023(S)

B. E. ELECTRICALENGINEERING 2ND YEAR 2ND SEMESTER SUPPLEMENTARY EXAMINATION, 2023

Subject: SIGNAL & SYSTEMS Time: Three Hours Full Marks: 100

Part II (50 marks)

Question 1 is compulsory

Answer Any Two questions from the rest (2×20)

Ques No.	tion		Marks
Q1	Ans	wer Any Two of the following:	
	(a)	Solve the following differential equation using the Laplace Transform method $\dot{y}(t) + 2y(t) = 2x(t)$, with, $x(t) = u(t)$, $y(0) = -1$.	5
	(b)	Determine whether the system characterized by the differential equation $\ddot{y}(t) - \dot{y}(t) + 2y(t) = x(t)$ is stable or not? Assume zero initial conditions.	5
	(c)	The unit impulse response of an LTI system is the unit step function $u(t)$. Find the response of the system to an excitation $e^{-at}u(t)$.	5
	(d)	Determine the analog diagram to implement the following differential equation $\dot{x}(t) + 0.1x(t) = 1$, $x(0) = 0$.	5
Q2	(a)	Define damping ratio (ξ) and undamped natural frequency (ω_n) for a second order system? Show the location of the poles, in the s-plane, of a second order system under the following conditions: (i) critically damped and (ii) undamped.	4+4
	(b)	Obtain the transfer function, $Y(s)/X(s)$, for the circuit shown in Fig. Q2(b). Find the values of ξ and ω_n for $C_1=C_2=100\mu F$, $R_1=R_2=2000\Omega$.	8+4
		R_1 R_2 $+$	

Figure Q2(b)

Ref. No.: Ex/EE/PC/B/T/211/2023(S)

Q3 (a) (i) Draw analog simulation diagram for the following system, and, (ii) obtain 4+8 magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to 10 volts without any overloading.

$$\ddot{x} + 2\dot{x} + 25x = 0$$
, $x(0) = 20$, $\dot{x}(0) = 0$, with, $|x|_{max} = 20$, $|\dot{x}|_{max} = 100$.

- (b) For an R-L-C series circuit driven by a constant voltage source obtain a state-space model. Assume the voltage across the capacitor to be the output.
- Q4 (a) Define state equation and output equation of an LTI system. 4+8

 Consider an LTI system given by the transfer function:

$$G(s) = \frac{10s + 10}{s^3 + 6s^2 + 5s + 10}$$

Obtain the state-space model of the following system in the phase variable canonical form.

- (b) (i) Write the differential equation governing the dynamic behaviour of the mechanical system, as shown in Figure Q4(b), and derive the transfer function of the system.
 - (ii) Derive the analogous electrical network based on *force-voltage* analogy.

Figure Q4(b)

friction.

Q5 Write short notes on *Any Two* of the following:

(a) Analogy between mechanical (m-k-b) and electrical (R-L-C) systems
 (b) Time response of undamped and critically damped second order systems
 (c) Initial and Final Value Theorem of Laplace Transformation
 (d) Modeling of an armature controlled d.c. motor driving a load with viscous