B.E. ELECTRICAL ENGINEERING SECOND YEAR SECOND SEMESTER - 2023

SUBJECT: FIELD THEORY

Time: Three Hours Full Marks: 100

(50 Marks for each part)

Use a separate Answer-Script for each part Two marks for neat and well-organized answers

		Two marks for neat and well-organized answers		
_	stion o.	Part-I	Marks	
		Answer any three questions		
1.	(a)	A right isosceles triangle of side 1m has charges +1nC, +2nC and -1nC arranged on its vertices. Find the magnitude and direction of electric field intensity at the point P, which is the mid-point of the hypotenuse connecting the +1nC and -1nC charges. Medium is air.	7	
	(b)	A cylinder of unit volume is placed in a uniform field with its axis parallel to the direction of electric field. Determine the total charge enclosed by the unit cylinder.	6	
	(c)	Prove that the electric flux line and equipotential are always normal to each other.	3	
2.	(a)	Derive the boundary condition for tangential component of electric field intensity on dielectric-dielectric interface.	6	
	(b)	Starting from the work done in assembling the charges causing the electric field, derive the expression for volume density of energy in an electric field.	7	
	(c)	Determine whether $\vec{E} = 3x \hat{i} + 4y \hat{j} - 5z \hat{k}$ is a valid form of electric field or not.	3	
3.	(a)	Justify or correct the following statement giving reasons: "Electric field intensity just off the conductor surface is half of the electric field intensity on the conductor surface".	6	
	(b)	Derive an expression for the mechanical pressure acting on a conductor surface.	4	
	(c)	Justify or correct the following statement giving reasons: "Impregnation of porous solid dielectric should be done using a liquid dielectric whose relative permittivity is widely different from that of the solid dielectric".	6	

Ref No.: Ex/EE/PC/B/T/226/2023

3+5	In the case of a single core cable having three different dielectric media, explain under what condition the maximum electric field intensity will not occur just off the inner conductor surface. Derive the necessary expressions.	(a)	4.
1+4+3	State and prove Uniqueness Theorem. Explain whether getting different solutions of Laplace's equation for a given problem by the use of different methods is violation of Uniqueness Theorem or not.	(b)	
8	Derive the expression of capacitance between two infinitely long transmission line conductors.	(a)	5.
. 8	From the concept of electric dipole, derive the expressions for the components of electric field intensity at a given point above the earth surface due to a real point charge and its image charge.	(b)	

Ref. No.: Ex/EE/PC/B/T/226/2023

B.E. ELECTRICAL ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2023

FIELD THEORY

Time:3 hours

Full Marks: 100

(50 marks for each part)

Use separate Answer-script for each part

PART-II

Answer any three questions. Two marks for neatness. All symbols have their usual significance.

- 1. a) What is the **definition of curl?** Derive the **expression for curl** of a vector field **M** using **definition of curl**, written as $\nabla \times \mathbf{M}$ where ∇ is the vector differential operator in Cartesian co-ordinates.
- b) Establish **Boundary Conditions** for magnetic field when it passes through two different magnetic media having permeabilities μ_1 and μ_2 respectively. 8+8=16
- 2. a) Establish the **Stoke's Theorem**.
 - b) Derive the expression for Divergence of J and show ∇ .J=0
 - c) Establish $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial \mathbf{t}$ and show the pictorial view of this relation.

5+6+5=16

- 3. a) Establish $\nabla \times \mathbf{H} = \mathbf{J}$ and explain its physical significance.
- b) A square loop measuring 2 m by 2 m carries a 7.5 A steady current as shown in figure.1, where the loop is in the xz plane, the origin coinciding with a corner of the square. Using Biot-Savart law compute the B-field at a point on the y-axis 0.35 m from the origin in air material.

 6+10=16

Fig.1

- 4. a) Derive Electromagnetic Wave equations using Maxwell's equations.
- b) What is plane electromagnetic wave? Using electromagnetic wave equation of Magnetic Field $(\nabla^2 \mathbf{H} = \mu_0 \epsilon_0 \, \partial^2 \, \mathbf{H} / \partial t^2)$ in free space, obtain an **analytical solution of the wave equation** of Magnetic Field (H) considering it as a **plane wave** and also draw the wave propagation. **6+10=16**
- 5. Write short notes on any two.
- a) $\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial \mathbf{t}$ and the pictorial view of this relation.
- b) Electromagnetic wave polarizations: Linear, Circular, Elliptical.
- c) Poynting Theorem.