B. Construction Engineering 2nd year 2nd Semester Examination – 2023 Subject: Theory Of structure-I

Time: 3 hours Full Marks: 100

PART-I(Full Marks-50) Use Separate answer sheet for each part.

Use Separate answer sheet for each part.	
CO1	[1] Answer any one from (a) & (b) in this block:
[10]	(a) Show that the deflection of a fixed beam subjected to a UDL is 1/5 times of deflection of Simply
	supported beam subjected to a same kind of loading. [10]
	(b) Show that the deflection of a fixed beam subjected to a point load is 1/4 times of deflection of
	Simply supported beam subjected to a same kind of loading. [10]
CO2	[2] Answer (a), (b) in this block
[15]	(a) Find the slope & deflection of the continuous beam ABCD as shown in figure. Assume any other
	data if required. Apply conjugate beam method. AB= I, BC=1.5I, CD=2I [10]
	data if required. Apply confugate beam method. Ab 1, be 1.51, eb 21 [10]
· '	100KN 150KN
	A) B C D
	4m $4m$ $4m$ $3m$
	(b) What do you mean by conjugate beam? Write the assumptions of conjugate beam.[5]
	(c) while the year means by confugure committees are assumptions of confugure committees.
	·
CO3	[3] Answer any one from (a), (b) in this block:
[15]	(a) Determine the vertical downward deflection at point E of the truss as shown in figure. The
	cross sectional area of AB=BC=CD=2500mm ² and AE=ED=3000 mm ² . BE=CE=5000 mm ² .
	Take E= 2.1X10 ⁵ N/mm ² .[15]
	В С "
	$\frac{1}{2}$
:	
	<u>F</u> D
	3m → 3m → 200KN
	(b) Find the vertical deflection at point B of the truss as shown in figure. The cross sectional area of
	all AD=BE=CF=5000mm ² and DE=EF=AB=BC=6000 mm ² . BD=BF=4000 mm ² . Take E=
	$2X10^5 \text{N/mm}^2$. 100K
	D E E
	5m
	A B C
	5m<+>5m<-

Page 2 of 1

EX/CON/PC/B/T/221/2023

CO1: Explain and discuss deflection of beams, Columns and Struts & Solve Area-moment theorems, Classify and solve problems regarding Fixed and Continuous beams(K2)

CO2: Solve Conjugate beam theorems and statically determinate and indeterminate structures, supports and reactions (K2)

CO3: Apply Unit load Method to calculate the deflection of Trusses (K3)

CO4: Explain & Solve Theorem of three moments structural systems. (K2)

CO5: Analyse Columns and Struts in terms of buckling by Euler's theorem, Rankine's formulae, Columns with eccentric load, Bi-axial bending(K4)

BE SECOND SEMESTER SECOND YEAR (CONSTRUCTION) EXAMINATION - 2023

Subject: THEORY OF STRUCTURES - I

PART II (50 Marks)

Time: 3 hours

Full Marks: 100

Answer questions as well as parts together & **SERIALLY**. Different parts of the same question should be answered together. Answer question **No. 1** & any **two** from **Block '2'** in pairs. Choice should be in pairs, either (a)(i) & (ii) OR(b)(i) & (ii) should be answered. Please start answering a **NEW** question or part thereof from a **new** page for the sake of precision & brevity.

