Time: 3 hours
Full Marks: 100
PART-I(Full Marks-50)
Use Separate answer sheet for each part.

$\begin{aligned} & \hline \mathrm{COl} \\ & {[10]} \end{aligned}$	[1] Answer any one from (a) \& (b) in this block: (a)Show that the deflection of a fixed beam subjected to a UDL is $1 / 5$ times of deflection of Simply supported beam subjected to a same kind of loading. [10] (b) Show that the deflection of a fixed beam subjected to a point load is $1 / 4$ times of deflection of Simply supported beam subjected to a same kind of loading. [10]
$\begin{gathered} \hline \mathrm{CO}^{2} \\ {[15]} \end{gathered}$	[2]Answer (a) ,(b) in this block (a) Find the slope \& deflection of the continuous beam ABCD as shown in figure. Assume any other data if required. Apply conjugate beam method. $\mathrm{AB}=\mathrm{I}, \mathrm{BC}=1.5 \mathrm{I}, \mathrm{CD}=2 \mathrm{I}[10]$ (b)What do you mean by conjugate beam? Write the assumptions of conjugate beam.[5]
$\begin{aligned} & \mathrm{CO} 3 \\ & {[15]} \end{aligned}$	[3] Answer any one from (a), (b) in this block: (a) Determine the vertical downward deflection at point E of the truss as shown in figure. The cross sectional area of $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=2500 \mathrm{~mm}^{2}$ and $\mathrm{AE}=\mathrm{ED}=3000 \mathrm{~mm}^{2}$. $\mathrm{BE}=\mathrm{CE}=5000 \mathrm{~mm}^{2}$. Take $\mathrm{E}=2.1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.[15] (b) Find the vertical deflection at point B of the truss as shown in figure. The cross sectional area of all $\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=5000 \mathrm{~mm}^{2}$ and $\mathrm{DE}=\mathrm{EF}=\mathrm{AB}=\mathrm{BC}=6000 \mathrm{~mm}^{2}$. $\mathrm{BD}=\mathrm{BF}=4000 \mathrm{~mm}^{2}$. Take $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. 100 KN

CO 4	3.Answer any one from (a), (b) in this block

[10]
(a) Draw the SFD \& BMD of the continuous beam as shown in figure. Use Three moments equations. $\mathrm{AB}=20 \mathrm{KN} / \mathrm{m}, \mathrm{BC}=15 \mathrm{KN} / \mathrm{m}, \mathrm{CD}=10 \mathrm{KN} / \mathrm{m}$. [15],

(b) State \& explain the claypeyrons three moments theorem. [15]

CO1: Explain and discuss deflection of beams, Columns and Struts \& Solve Area-moment theorems, Classify and solve problems regarding Fixed and Continuous beams(K2)
CO2: Solve Conjugate beam theorems and statically determinate and indeterminate structures, supports and reactions (K2)
CO3: Apply Unit load Method to calculate the deflection of Trusses (K3)
CO4: Explain \& Solve Theorem of three moments structural systems. (K2)
CO5: Analyse Columns and Struts in terms of buckling by Euler's theorem, Rankine's formulae, Columns with eccentric load, Bi-axial bending(K4)

BE SECOND SEMESTER SECOND YEAR (CONSTRUCTION) EXAMINATION - 2023

Time: 3 hours

Subject : THEORY OF STRUCTURES - I
 PART II (50 Marks)

Full Marks: 100
Answer questions as well as parts together \& SERIALLY. Different parts of the same question should be answered together. Answer question No. $1 \&$ any two from Block '2' in pairs. Choice should be in pairs, either (a)(i) \& (ii) OR (b)(i) \& (ii) should be answered. Please start answering a NEW question or part thereof from a new page for the sake of precision \& brevity.

1.	[1] Explain a. Beam-Column. [COI] Prove that for a beam column with an axial load \mathbf{P} at each of the pin jointed ends, the expression for bending moment at mid span is $[M]_{x=L / 2}=\mathbf{w L} / \mathbf{8}[\mathbf{1}+\mathbf{1 . 0 3 (P / P E)}+$ $\mathbf{1 . 0 4}(\mathrm{P} / \mathrm{PE}) \mathbf{2}+\ldots] \mathrm{OR}=\mathrm{wL}^{2} / \mathbf{8}$ when P is such that $\mathrm{P} / \mathrm{P}_{\mathrm{E}} \leq \mathbf{1 / 1 0}$ where $\mathbf{w}=$ transverse load per unit run along the beam span, $\mathbf{P}_{\mathbf{E}}=$ Euler critical load $\& \mathbf{L}$ is the effective span of the beam column. $[3+15]$	CO1 $\&$ CO5 [18]
2.	[2] Answer any one (1) from (a) \& (b) in this block [CO5]: (a)(i) Determine the ratio of Buckling Strength of two columns of circular cross sections one hollow \& other solid when both are made of the same material, have the same length \& cross section area \& same end conditions. The internal diameter of the hollow column is half of its external diameter. 16 (ii) A column $\boldsymbol{A B}$ of a diameter ' \boldsymbol{d} ' is hinged at ends carrying two equal $\&$ opposite loads \boldsymbol{P} each at eccentricities as in the figure. Assuming end moments to be applied at the points of support find the condition of the occurrence of the maximum bending moment at a distance ' \boldsymbol{x} ' from \boldsymbol{A} in the column. (b) (i) Determine the expression of maximum compressive \& tensile stress of a slim long column with initial curvature in the plane of the least radius of gyration, subjected to axial load \boldsymbol{P} with effective length l. Determine the experimental analysis as pronounced by Southwell in the case of this column. (ii) A hollow tube 4.0 M long with external \& internal diameter 40 mm \& 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN . Find the buckling load for the tube with both ends pinned. Also, find the safe load on the tube taking FOS as $\mathbf{5 . 0}$	CO5 [32]

