Ref. No.: Ex/CE/5/T/408/2023(S)

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAM 2023

Design of Foundation PART-I

[Answer All the Questions]

[Use code: IS: 6403 & IS: 8009]

[Assume any data reasonably wherever necessary]

Total = 100

This Part = .50

1.	Discuss briefly the plate load test in connection with the determination of bearing capacity and settlement of granular soil.	[12]
2.	Column carrying a superimposed load of 600 kN is to be founded on a sandy deposit as shown in the Figure below. Design a suitable isolated footing for the same. G. L. Loose whitish grey silty fine sand $\gamma = 1.8 \text{ t/m}^3$ $\gamma' = 0.8 \text{ t/m}^3$, $\varphi' = 30$, Avg. N = 10 Medium dense brownish grey silty fine sand with mica $\gamma = 1.87 \text{ t/m}^3$, $\varphi' = 32$, Avg. N = 16 Dense to very dense brownish grey silty fine sand $\gamma = 1.93 \text{ t/m}^3$, $\varphi' = 34$, Avg. N = 23	[20]
3.	A raft foundation with dimensions 8m x 12m is to be constructed at a depth 1.5m below ground surface. The net foundation pressure can be taken as 38 kN/m². Calculate the total settlement of the foundation. The subsoil profile is given below. [Assume water table at the base of the footing] G. L. Silty Clay $ \gamma = 1.8 \text{ t/m}^3 $ $ \gamma' = 0.9 \text{ t/m}^3 $, Cu = 32 kN/m², $\frac{c_c}{1+e_0} = 0.06$ 4.0m Silty Clay $ \gamma = 1.8 \text{ t/m}^3 $ Cu = 20 kN/m², $\frac{c_c}{1+e_0} = 0.13$ 11.0m Silty Clay with Kankar $ \gamma = 1.9 \text{ t/m}^3 $ Cu = 48 kN/m², $\frac{c_c}{1+e_0} = 0.08$	[18]

Ex/CE/5/T/408/2023 (S)

B. E. (CIVIL ENGIEERING) FOURTH YEAR SECOND SEMESTER EXAM 2023 (Supplementary)

DESIGN OF FOUNDATIONPART-II

Time: Three Hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part
[No code or handbook is allowed, assume any suitable data]

No. of questio		Marks (50)
1)	Determine the allowable pile load capacity of a 750 mm RCC bored cast in	15
	situ pile of length 15 m installed in a soil as per following sub soil profile.	
	Assume Nq value of loose and dense sand as 15 and 42 respectively, and	
	assume value of δ and K as per Brooms recommendations.	
	YVIII	
	Loose Sand; $\gamma_t = 18 \text{ kN/m}^3$, $\phi' = 27^0$ WT	
	9 m Soft Clay; $\gamma_t = 19 \text{ kN/m}^3$, $c_u = 20 \text{ kN/m}^2$, $\alpha = 1$	
	Dense Sand; $\gamma_{\text{sat}} = 20 \text{ kN/m}^3$, $\varphi' = 35^0$	
	·	
2)	A group of nine piles, each having diameter of 450 mm, length 15 m, and	20
	spacing 1050 mm is driven in a sandy soil deposit having depth 20 m,	-
	underlain by a hard stratum. Calculate ultimate load capacity of pile group. If	
	settlement of a single pile at safe load capacity is 10 mm then what will be the	
	settlement of the pile group. Assume the properties of sand as $\phi' = 32^{\circ}$; $\delta = \frac{3}{4} \phi'$; N_q	
	= 27	
3)	Write short note on any of the three:-	5X3=15
	(a) Engineering News Formulae	
	(b) Calculation of settlement of a pile group	
,	(c) Group action of pile group	
	(d) Negative skin friction	
	(e) Concept of critical depth in cohesionless soil	