BACHELOR OF ENGINEERING (CIVIL ENGINEERING) SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAM – 2023

SUBJECT: COMPUTER PROGRAMMING-II

Time: Three Hours Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

.Answer any **Five** Questions.

No. of questions	Part I	Marks
1.	a) Define Eigen value and Eigen vector.	2
	b) Using polynomial method, determine the Eigen values and corresponding Eigen vectors for the matrix. $A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$	8
2.	a) Explain briefly power and inverse power method in connection with the Eigen value problems.	3
	b) Obtain Eigen values and corresponding Eigen vectors for the system of equations, using numerical methods (power and inverse power method), with three iterations. $2x_1 + 4x_2 = 0$ $3x_1 + 13x_2 = 0$	7
3.	a) Derive composite Simpson's one third rule using first three terms of Newton- Gregory forward formula.	8
	b) What is the basic difference between Simpson's 1/3 rule and Trapezoidal rule?	2
4.	a) Using three-point Gauss quadrature rule, estimate the integral. $\int_{0}^{4} (2x^{2} + x + 4) dx$	7
	Also, find the absolute relative true error.	
	b) Use the Trapezoidal rule with no. of segments (n)= 4, evaluate the integral. $\begin{cases} x^2 + 2x \text{ odd} \end{cases}$	3
	$\int_{2} (x^2 + 2x) dx$	

No. of questions	Part I	Marks
5.	a) Write an algorithm to compute the value of a definite integral using Trapezoidal rule.	4
	b) Derive the finite difference equation for f'(x) and f''(x).	4
	c) What is a boundary-value problem? How is it different from an initial-value problem?	2
6.	Compute the deflection at mid-point and quarter points of the beam shown in figure below using finite difference method. y 4.0 KN/m	10
	8.0 m	10
7.	Find the deflection for the cantilever beam at 1.0m,2.0m,3.0m and 4.0m from the fixed end using finite difference method. 5.0 KN EI 2.0 m 4.0 m	10

Form A: Paper-Setting Blank

Ref No.-Ex/CE/5/T/203/2023(S)

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) 2⁵¹ YEAR 1⁷⁰ SEMESTER SUPPLEMENTARY EXAM-2023 SUBJECT: COMPUTER PROGRAMING-II (Name in full)

Time: /Three hours

Full Marks 100 (50 marks for each part)

No. of	Use a separate Answer-Script for each part	
uestion	PART-II	
1	Answer any two Questions	5x2=1(
	a) Write step-wise Algorithm and draw the flow chart to find out roots of given a quadratic equation.	
	b)Distinguish between function subprogram and subroutine subprogram	
	c)Write short notes on different type of for-Loop & Rules to be followed in written for-Loop	
2	Answer any five Questions.	5x8=4
	i) Write a C program to the sum of following series for the first N terms, using function subprogram.	
men et en	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} - \dots$	
į.	ii) Write a C program to find number of days from given input as month and year.	
	iii) Write a C program, to product of two Matrices [A] and [B], both of size (2×3) and (3×2) respectively and store the result in a separate matrix [C].	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iv) Given four-digit integer number, write a C program to print it in reverse and also find sum of the digits	
	v) Write a C program to find the value of n c $_r$, using function subprogram.	
•	vi)Write a C program to print ascending order form given input as N number integer	
		1