BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIRST YEARSECOND SEMESTER EXAM 2023

SUBJECT: COMPUTER PROGRAMMING- I

Time: Three Hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of questions				Part I	4		Marks
		Ar	nswer Question N	o.1 and any	Two from	the rest.	
1.	Answer any one question						
	a) Write a computer program in FORTRAN 77 using False position method that finds a root of the equation x^2 - 5 x + 6 = 0, with initial guess 1.00 and 4.00, using tolerance of 0.001.						
	b) Write a FORTRAN 77 program to estimate a value y at a point x from a given table of values of x and y by using n th order Lagrange interpolation polynomial.						
2.	a) Using Newton-Raphson method, using two iterations, determine the roots of the following non-linear simultaneous equations, close approximation to start with x = 1.50 and y = 3.00. $x^2 + y^2 = 17$ $y^2 - 4x = 12$						
	b) Solve the following system of equations by simple Gauss elimination method. x - y + 4z = 16 3x + 2y + z = 18 x + 4y - 2z = 20						8
3.	a) What is an initial-value problem? How it differs from a boundary value problem?						3
	b) Using Runge-Kutta method of order four, find y at $x = 0.50$ and 1.00 by solving $y' = y - x^2$, $y(0) = 1.00$. Assume step size (h) = 0.50.						
	c) Explain Predictor – Corrector method for solving initial-value problem for the type $\frac{dy}{dx} = f(x,y)$ with initial condition $y = y_i$ at $x = x_i$.						
4.	a) Write an algorithm to find a root of a non-liner equation $f(x) = 0$ using Bi-section method.						
	b) Explain the limitation of using Newton-Raphson method.						
	c) Using Secant method, using two iterations, find a root of the equation $f(x) = (x-2)^2 - \ln(x) = 0$, in the range $1.25 \le x \le 2.00$.						
	d)) For the following table of values:						
		×	1.50	2.00	2.50		
		f(x)	1.676	2.301	2.898		
	Find $f(x)$ for $x = 1.80$ using Lagrange interpolation .What order of polynomial would you use in the above problem?						

Form A: Paper -Setting Blank

Ref No. -Ex/CE/5/T/104/2023

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FIRST YEAR SECOND SEMESTER - 2023

SUBJECT: COMPUTER PROGRAMMING-I

Full Marks 100

Time: Three hours (50 marks for each part)

Use a separate Answer-Script for each part No. of PART-II Question Write the equivalent FORTRAN expression for the following arithmetic statement: 1.(a) 1 (b) Write the equivalent arithmetic expression for the following FORTRAN statement: 1 Y=a*b/(c+d**k/m+k)(c) Find he value of the following FORTRAN expression using I=2,J=5,K=-2, 1 m=J**I/J*K(d) What will be the printed output, at the end of the following program segment? m = -567a=2.337WRITE(*,8) m,a 1 FORMAT(2X,I8,2X,F8.2) What will be the value of the variable n, at the end of the following program segment? 1 e) X=0DO I=1,5,3Do J=2,3 X=X+I/3END DO END DO WRITE (*,*) X **END** 3x3 = 92. Write short notes on the following. a) Function subprogram and subroutine subprogram b) Rules to be followed in written DO-Loop. c) Library function in FORTRAN

No. of Question					
	Answer any three Questions.	12x3=36			
3)	i) Write step-wise Algorithm and draw the flow chart to find out roots of given a quadratic equation.				
	ii) Write a FORTRAN program to the sum of following series for the first N terms, using function subprogram.	6			
	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots \dots$				
4)	 Write a FORTRAN program to print ascending order form given input as N number integer. 	6			
	ii) Write a FORTRAN program, to product of two Matrices [A] and [B], both of size (2x3) and (3X2) respectively and store the result in a separate matrix [C].	6			
5)	i) Write a FORTRAN program to the sum of following series for the first N terms, using function subprogram.	6			
	Y=1+ 2/2! - 3/3! +				
	ii) Write a C program to interchange the elements of two diagonal of two squire matrix.	6			
6)	i) Given four-digit integer number, write a FORTRAN program to print it in reverse and also find sum of the digits.	6			
	ii) Write a FORTRAN program to find number of days from given input as month and year.	6			