B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEM. EXAM. -2023

Subject: THEORY OF STRUCTURES IV (HONS.) Time: 3 hours Full Marks 100

(50 Marks for each Part) Use separate answer script for each Part

PART I (50 Marks)

Instructions: Use Separate Answer scripts for each part, Answer all questions

Questions 1 and 2 follows CO4 and Question 3 and 4 follows CO3

- 1. a) In similitude analysis what are different types of similarity that should be considered. Give a brief description of the same.
- 1. b) Define (i) Euler's number (ii) Froude's number (iii) Mach number and obtain the expression for each one of the dimensionless parameter. (9)
- 2. A pipe of diameter 1.5 m is required to transport an oil of specific gravity 0.90 and viscosity $3x10^{-2}$ poise at the rate of 2500litre/sec. Tests were conducted on a 15 cm diameter pipe using water at 20°C. Find the velocity and rate of flow in the model.
- 3. Develop the governing Matrix Finite Element equation (in local coordinate) using weak variational principle for the differential equation given below -

$$-\frac{d^2u}{dx^2} - u + x^2 = 0 \quad for \ 0 < x < 3$$

with u(0) = 0 and u(3) = 0. Develop the necessary matrix equation for equally spaced three numbers of 2-noded linear element and solve for 'u' at intermediate points.

4. Develop the shape functions (interpolation functions) for a quadratic Lagrangian element in natural coordinates. (6)

[Turn over

Ex/CE/PC/H/T/424/2023

B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEM. EXAM. -2023

Subject: THEORY OF STRUCTURES IV (HONS.) Time: 3 hours

Full Marks 100

PART-II (MARKS-50)

Use a separate Answer-Script for each part

No. of questions	Answer all questions	Marks 10+15+15+10=50
1.	Find the membrane forces in a cylindrical shell roof subjected to	CO2 10
	gravity load (self-weight) only.	
2.	A simply supported rectangular plate subjected to sinusoidal loading distributed over the plate surface is given by the expression. $q =$	CO1 15
• :	$q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$. q_0' is the intensity of loading at center of the plate.	
· ·	'a' and 'b' are the length of and breath of the plate. Deduce the expressions for deflection (w) and moments M_x , M_y , M_{xy} .	
3.	Show that the maximum deflection at the center of a simply supported rectangular plate subjected to a single concentrated load 'P' at center point is	CO1 15
	$w_{max} = \frac{4P}{\pi^4 abD} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2}$	
	Use Navier Solution. 'a' is the length of plate and 'b' is the width of plate. D is the flexural rigidity. 'm' and 'n' are no. of terms.	
4.	Deduce the relation between bending moments and curvature in pure bending of plates	CO1 10