Full Marks 100

B.E.C.E. 4th Year EXAMINATION, 2023 (2nd Semester)

SUBJECT: ADVANCED ENVIRONMENTAL ENGINEERING (HONS.)

Time: Three hours

Use a separate Answer-Script for each part

No. of Part I(60Marks for This Part) Marks Questions Answer all the questions. Assume any data if not provided. All the drawings should be in pencil. Section-A (CO1) Fill in the blanks: Q1. 1×5 Boron is an important parameter for _____ grade water (i) quality. (ii) Self-purification factor is defined as the (iii) After pollution discharge in a stream body the point where dissolved concentration is minimum oxygen is known as (iv) According to UNEP a country is known to be water stressed country if percapita water availability is (v) If all the other parameters kept constant only rate of degradation is reduced then the dissolved oxygen deficit will _____than original. A city of 2×10⁵ people deposits 37 cubic feet per second(cfs) of sewage having a Q2. (a) BOD5 of 28 mg/L and DO 1.8 mg/L into a river that has a flow rate of 250 cfs and a 8 flow speed of 1.2 ft/s. Just at the upstream of the release point, the river has a BOD5 of 3.6 mg/L and DO 7.6 mg/L. The saturation value of DO is 8.5 mg/L. The deoxygenetion coefficient is 0.61/day and the reaeration coefficient is 0.76/day. Assume complete instantaneous mixing of the sewage and river. Find the distance for the river where DO concentration is minimum and the DO concentration of that point? Write and discuss two physical factors responsible for self-purification of a river. With a neat 2+5sketch write a short note on different zones of pollution for a river. Section-B (CO2) Define Mass transfer zone for column adsorption. Write the effects of following factors on Q3. (a) $2+(2\times4)$ adsorption process: surface area of adsorbent; solubility of the adsorbate; pH of the solution and temperature of the solution (b) Define breakpoint for column adsorption. Deduce the Freundlich adsorption isotherm equation 2+8

Ref No. -Ex/CE/PC/H/T/423/2023(S)

B.E.C.E. 4th Year EXAMINATION, 2023 (2nd Semester) SUBJECT: ADVANCED ENVIRONMENTAL ENGINEERING (HONS.)

Full Marks 100

Time: Three hours

Use a separate Answer-Script for each part

Part I(60Marks for This Part)		
graphically for the following data obtained from batch adsorption test of 1L volume.		
Mass of Adsorbent (g)	Equilibrium concentration of adsorbate in solution (mg/L)	
0	3.37	
0.001	3.27	
0.01	2.77	
0.1	1.86	
0.5	1.33	
kinetics. Define dispersion number mixed stirred tank reactor.	stating its unit. Differentiate between batch reactor and completely	2+3
to a given dose of chlori assuming 1st order kinet	ne. Determine the rate constant of disinfection graphically ics.	8
		j
	•	
	Mass of Adsorbent (g) 0 0.001 0.01 0.5 Deduce the expression of kinetics. Define dispersion number mixed stirred tank reactor. State two factors that should be a given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the following are data of the given dose of chloric transfer of the given dose of the given dose of chloric transfer of the given dose of chloric transfer of the given dose of the given	Mass of Adsorbent (g) Equilibrium concentration of adsorbate in solution (mg/L)

Ref. No.: Ex/CE/PC/H/T/423/2023(S)

B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAM 2023

SUBJECT: ADVANCED ENVIRONMENTAL ENGINEERING (HONS.) (CE/PC/H/T/423)

Time: 3 hours Full Marks: 40

Instructions: Use Separate Answer scripts for each part.

Part - II

Sl. No.	Question	CO	Marks
1	What are the sources of Bio-Medical Wastes?	[CO3]	[4+5+5+
	What are the different types of Bio-Medical waste and what are the different		5]
	treatment & disposal options used for them?		
	How Bio-Medical Waste can be disposed?		
	How Bio-Medical Waste can be transported and stored?		
2	What is the unit of AQI?	[CO4]	[2+2]
	Which criteria air pollutants does not have any breakpoint for calculating		
	Indian AQI?		
. 3	Write a short note on the classification of E-waste.	[CO3]	[5+6+6]
	Write down about the hazard due to improper disposal of E-waste.		
	Briefly discuss about the methods of E-waste estimation.		