B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2023 SUBJECT: INDUSTRIAL WATER POLLUTION AND CONTROL

Time: 3 hours Full Marks: 100

Instructions: Use Separate Answer scripts for each part.

Part - I (Marks: 50)

Sl. No.	Question									СО	Marks				
1	The hourly flow pattern of an industrial process is given below. Determine the volume of the equalization basin by Mass balance.									[CO2]	[15]				
	Time	1	2	3	4	5	6	7	8	9	10	11	Noon		
	Inflow rate (m³/h)	2250	2235	2100	1920	1680	1380	1230	1350	1574	1574	1383	1174		
	Time	1	2	3	4	5	6	7	8	9	10	11	Midnight		
	Inflow rate (m³/h)	1050	960	930	930	975	1080	1170	1350	1570	1800	2100	2235		
2	An industrial effluent discharges 0.35 m³/min of wastewater with H ₂ SO ₄ (0.15N) requires neutralization to a pH of 7.0 using a limestone bed. Assume limestone is 60% reactive. Hydraulic loading with depth of limestone bed to get pH of 7.0 are estimated from laboratory studies and results are furnished in the table below.							[CO2]	[15]						
	Depth, m Hydraulic Loading, m ³ /m ² .hr			0.1	0.154			0.65		0.96		1.23			
				1.8		6.3	35.5			55.6		66.3			
	a) M volume vs b) W	volume vs. limestone bed depth. No Weight of acid per day to be neutralized.					tone								
3	Write sho	ort no	tes on	grab s	ample	and c	ompos	ite sar	nple.					[CO1]	[5]
4	Discuss the importance of segregation in tanneries wrt salt recovery, Cr recovery and Sulphide oxidation.							[C04]	[5]						
5	Neatly draw a flowchart of the treatment process for tannery effluent.								[C04]	[5]					
6	Describe the steps for a Chromium recovery system.							[C03]	[5]						

Ref. No.: Ex/CE/PE/B/T/422G/2023

B.E. CIVIL ENGINEERING FOURTH YEAR SECOND SEMESTER – 2023 SUBJECT: INDUSTRIAL WATER POLLUTION AND CONTROL (CE/PE/B/T/422G)

Instructions: Use Separate Answer scripts for each part.

Part - II (Marks: 50)

Sl. No.	Question	CO	Marks
1	Write down the basic equations for different types of precipitation process for removing	[C03]	[3]
	heavy metal.		
2	What is the range of average waste water generation from different type of slaughter	[CO4]	[3+3+4]
	houses?		
	What is the composition of the wastewater?		
	Suggest a suitable treatment methodology for wastewater from slaughter houses.		
3	Design an API separator for Indian oil refineries with an average flow rate of 300 m³/hr.	[CO2]	[8]
	[Assume any necessary data within the range]		
4	Design a flotation thickener without and with pressurized recycle to thicken the solids	[CO2]	[8]
	in activated sludge mixed liquor from 0.3 to 4%. Assume the following conditions:		
	i. $\frac{A}{S} = 0.008 ml/mg$		
	ii. Air solubility: 18.7 ml/ltr		
	iii. Recycled system pressure: 275 kPa		
	iv. Fraction of saturation = 0.5		
	v. Surface loading rate: 8 ltr/m²-min		
	vi. Sludge flow rate : 350 m³/day		
5	Waste water from a galvenizing shock industry is found to be highly acidic and requires	[CO2]	[8]
	neutralization prior to secondary treatment. The flow rate of waste water is 0.4 m³/min,		
	pH is 1.5. This flow is to be required to rise a pH of 7 by using lime. From titration curve		
	it is observed that 1st stage requires 2000 mg/ltr and second stage requires 300 mg/ltr.		
	Retention time is 5 – 10 min. Lime slurry consistency is 6-8 %. Assume depth of the		
	tank in the range of 1.2 to 2 meter. Determine:		
	i) Quantity of lime to be used.		
	ii) Lime slurry storage tank volume.		
	iii) Find out the power requirement of the mixture		

